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Abstract� The ambient logic is a modal logic proposed to describe the
structural and computational properties of distributed and mobile com�
putation� The structural part of the ambient logic is� essentially� a logic
of labeled trees� hence it turns out to be a good foundation for query
languages for semistructured data� much in the same way as 	rst order
logic is a 	tting foundation for relational query languages� We de	ne here
a query language for semistructured data that is based on the ambient
logic� and we outline an execution model for this language� The language
turns out to be quite expressive� Its strong foundations and the equiva�
lences that hold in the ambient logic are helpful in the de	nition of the
language semantics and execution model�

� Introduction

This work arises from the unexpected convergence of studies in two di�erent
�elds� mobile computation and semistructured data�

Unstructured collections� or unstructured data� are collections that do not
respect a prede�ned schema� and hence need to carry a description of their own
structure� These are called semistructured when one can recognize in them some
degree of homogeneity� This partial regularity makes semistructured collections
amenable to be accessed through query languages� but not through query lan�
guages that have been designed to access fully structured databases� New lan�
guages are needed that are able to tolerate the data irregularity� and that can
be used to query� at the same time� both data and structure� Semistructured
collections are usually modeled in terms of labeled graphs� or labeled trees �	
�

The ambient logic is a modal logic proposed to describe the structural and
computational properties of distributed and mobile computation ���
� The logic
comes equipped with a rich collection of logical implications and equivalences�
The structural part of the ambient logic is� essentially� a logic designed to describe
properties of labeled trees� It is therefore a good foundation for query languages
for semistructured data� much in the same way as �rst order logic is a �tting
foundation for relational query languages� First order logic is a logic of predicates
i�e� relations� and therefore it is particularly suitable to describe relational data�
But� to describe tree�shaped data� we need a more suitable logic� a logic of trees
or graphs�

Here we de�ne a query language for semistructured data that is based on the
ambient logic� and we outline an execution model for this language� The language



turns out to be quite expressive� Its strong foundations and the equivalences that
hold in the ambient logic are helpful in the de�nition of the language semantics
and execution model�

The paper is structured as follows� In this section we present a preview of the
query language� and compare it with related proposals� In Section � we de�ne
the tree data model� In Section 	 we present the logic� upon which the query
language� de�ned in Section �� is de�ned� In Section � we present the evaluation
model� In Section � we draw some conclusions�

��� A Preview

Consider the following bibliography� expressed in the syntax of our language
TQL� which we explain in detail later� Informally� a�F
 represents a piece of data
labeled a with contents F� The contents can be a collection of similar pieces of
data� separated by �j�� When the collection is empty� we can omit the brackets�
so that� for example� POPL� 
 can be written as POPL�

The bibliography below consists of a set of references all labeled article� Each
entry contains a number of author �elds� a title �eld� and possibly other �elds�

ARTICLES�

article� author�Cardelli
 j author�Gordon
 j title�Anytime Anywhere

j conference�POPL
 j year�����

j keyword�Ambient Calculus
 j keyword�Logic
 
 j

article� author�Cardelli
 j title�Wide Area Computation

j booktitle�ICALP
 j year�����
 j pages����	���
 j publisher�SV
 
 j

article� author�Ghelli
 j author�Pierce
 j title�Bounded Existentials

j journal�TCS
 j year����

 


Suppose we want to �nd all the papers in ARTICLES where one author is
Cardelli � then we can write the following query�

from ARTICLES � �article�X

X � �author�Cardelli


select paper�X


The query consists of a list of matching expressions contained between from
and select � and a reconstruction expression� following select � The matching ex�
pressions bind X with every piece of data that is reachable from the root
ARTICLES through an article path� and such that a path author goes from
X to Cardelli � the answer is paper �author �Cardelli 
 j author �Gordon 
 j � � �
 j
paper �author �Cardelli 
 j title�Wide Area Computation 
 j � � �
� i�e� the �rst two
articles in the databases� with the outer article rewritten as paper �

This query language is characterized by the fact that a matching expression
is actually a logic expression combining matching and logical operators� For
example� the following query combines path expressions and logical implication
�� to retrieve papers with no other author then Cardelli� Informally� T matches
anything� hence the second condition says� if X is an author� then it is Cardelli�

�



from ARTICLES � �article�X

X � �author�T
 � �author�Cardelli


select X

Moreover� queries can be nested� giving us the power to restructure the collection�
as we explain later�

��� Comparisons with Related Proposals

In this paper we describe a logic� a query language� and an abstract evaluation
mechanism�

The tree logic can be compared with standard �rst order formalizations of
labelled trees� Using the terminology of �	
� we can encode a labeled tree with a
relation Ref�sourceOID� label�� destinationOID�� The nodes of the tree are the
OIDs Object IDenti�ers� that appear in the source and destination columns�
and any tuple in the relation represents an edge� with label label� Of course�
such a relation can represent a graph as well as a tree� It represents a forest if
destination is a key for the relation� and if there exists an order relation on the
OIDs such that� in any tuple� the source strictly precedes the destination�

First order formulas de�ned over this relation already constitute a logical
language to describe tree properties� Trees are represented here by the OID of
their root� We can say that� for example� �the tree x is a�
� by saying�

�y� Ref x� a� y� � �y�� y��� �Ref y� y�� y���� � �x�� x��� x�� �� y � �Ref x� x�� x����

There are some di�erences with our approach� First� our logic is �modal�� which
means that a formula A is always about one speci�c �subject�� that is the part of
the database currently being matched against A� First order logic� instead� does
not have an implicit subject� one can� and must� name a subject� For example�
our modal formula a�
 implicitly describes the �current tree�� while its translation
into �rst order logic� given above� gives a name x to the tree it describes�

Being �modal� is neither a merit nor a fault� in itself� it is merely a di�erence�
Modality makes it easier to decribe just one tree and its structure� whereas it
makes it more di�cult to describe a relationship between two di�erent trees�

Apart from modality� another feature of the ambient logic is that its funda�
mental operators deal with one�step paths a�A
� and with the composition of
trees A j A��� whereas the �rst order approach describes everything in terms of
one�step paths Ref o�� a� o���� Composition is a powerful operator� at least for
the following purposes�

� it makes it easy to describe record�like structures both partially b�
 j c�
 j T
means� contains b�
� c�
� and possibly more �elds� and completely b�
 j c�

means� contains b�
� c�
 and only b�
� c�
�� complete descriptions are di�cult in
the path based approach�

� it makes it possible to bind a variable to �the rest of the record�� as in �X is
everything but the title�� paper �title�T
 j X 
�

	



The query language we described derives its essential from�select structure
from set�theoretics comprehension� in the SQL tradition� and this makes it sim�
ilar to other query languages for semistructured data� such as StruQL ���� ��
�
Lorel ��� ��
� XML�QL ��	
� Quilt ���
� and� to some extent� YATL ���
� An in�
depth comparison between the XML�QL� YATL� and Lorel languages is carried
out in ���
� based on the analysis of thirteen typical queries� In ���
 we wrote
down those same queries in TQL� the result of this comparison is that� for the
thirteen queries in ���
� their TQL expression is very similar to the correspond�
ing XML�QL� with a couple of exceptions� First� those XML�QL queries that�
in ���
� are expressed using Skolem functions� have to be expressed in a di�erent
way in TQL� since we do not have Skolem functions in the current version of
TQL� However� our Skolem�free version of these queries is not complex� Second�
XML�QL does not seem to have a general way of expressing universal quanti��
cation� and this problem shows up in the query that asks for pairs of books with
the same set of authors� this is rather complex to express in XML�QL� but it is
not di�cult in TQL� Another related class of queries that are simpler to express
using TQL are those related to the non�existence of paths� such as ��nd all the
papers with no title� or ��nd all the papers whose only author� if any� is Ghelli��
Lorel does not have these problems� since it allows universal quanti�cation� Quilt
and XDuce ���
 are Turing complete� hence are more expressive than the other
languages we cited here�

One important feature of TQL is that it has a clean semantic interpretation�
which pays o� in several ways� First� the semantics should make it easier to
prove the correctness and completeness of a speci�c implementation� Moreover�
it simpli�es the task of proving equivalences between di�erent logic formulas or
queries� To our knowledge� no such formal semantics has been de�ned for YATL�
The semantics of Lorel has been de�ned� but looks quite involved� because of
their extensive use of coercions�

� Information Trees

We represent semistructured data as information trees� In this section we �rst
de�ne information trees� then we give a syntax to denote them� and �nally we
de�ne an equivalence relation that determines when two di�erent expressions
denote the same information tree�

��� Information Trees

We represent labeled trees as nested multisets� this corresponds� of course� to
unordered trees� Ordered trees e�g� XML data� could be represented as nested
lists� This option would have an impact on the logic� where the symmetric A j B
operator could be replaced by an asymmetric one� A�B� This change might
actually simplfy some aspects of the logic� but in this paper we stick to the
original notion of unordered trees from ���
� which also matches some recent
directions in XML ��
�

�



For a given set of labels �� we de�ne the set IT of information trees� ranged
over by I � as the smallest collection such that�

� the empty multiset� fg� is in IT �
� if m is in � and I is in IT then the singleton multiset fhm� Iig is in IT �
� IT is closed under multiset union

U
j�J Mj�� where J is an index set� and

M � J 	 IT �

��� Information Terms

We denote �nite information trees by the following syntax of information term
info�terms�� borrowed from the ambient calculus ��
� We de�ne a function ��F 


mapping the info�term F to the denoted information tree� To this aim� we de�ne
three operators� �� m� 
 and j� on the domain of the information trees� which we
use to interpret the corresponding operations on info�terms�

Info�terms and their information tree meaning

F ��� info�term

� denoting the empty multiset

m�F 
 denoting the multiset fhm�F ig

F j F denoting multiset union

���

 �def � �def fg
��m�F 


 �def m���F 


 �def fhm� ��F 

ig
��F � j F ��

 �def ��F �

 j ��F ��

 �def ��F �

 
 ��F ��



We use � to denote the set of all terms generated by this grammar� also
using parentheses for precedence� We often abbreviate m��
 as m�
� or as m� We
assume that � includes the disjoint union of each basic data type of interest
integers� strings� � � �� hence ���
� or �� is a legitimate info�term� We assume that
�j� associates to the right� i�e� F j F � j F �� is read F j F � j F ����

��� Congruence over Info�Terms

The interpretation of info�terms as information trees induces an equivalence
relation F � F � on info�terms� This relation is called info	term congruence� and
it can be axiomatized as follows�

Congruence over info�terms

F � F
F � � F � F � F �

F � F �� F � � F �� � F � F ��

F � F � � m�F 
 � m�F �

F � F � � F j F �� � F � j F ��

F j � � F

�



F j F � � F � j F
F j F �� j F �� � F j F � j F ���

This axiomatization of congruence is sound and complete with respect to the
information tree semantics� That is� F � F � if and only if F and F � represent
the same information tree�

��� Information Trees	 OEM Trees	 UnQL Trees

We can compare our information trees with two popular models for semistruc�
tured data� OEM data ���
 and UnQL trees ��
� The �rst obvious di�erence is
that OEM and UnQL models can be used to represent both trees and graphs�
while here we focus only on trees� We are currently working on extending our
model to include labeled graphs as well� but we prefer to focus on the simpler
issue of trees� which is rich enough to warrant a separate study�

UnQL trees are characterized by the fact that they are considered modulo
bisimulation� which essentially means that information trees are seen as sets
instead of multisets� For example� m�n�
 j n�

 is considered the same as m�n�

�
hence UnQL trees are more abstract� in the precise sense that they identify more
terms than we do�

On the other hand� information trees are more abstract than OEM data�
since OEM data can distinguish a DAG from its tree�unfolding�

� The Tree Logic

In this section we present the tree logic� The tree logic is based on Cardelli and
Gordon�s modal ambient logic� de�ned with the aim of specifying spatial and
temporal properties of the mobile processes that can be described through the
ambient calculus ���
� The ambient logic is particularly attractive because it is
equipped with a large set of logical laws for tree�like structures� in particular
logical equivalences� that can provide a foundation for query rewriting rules and
query optimization�

We start here from a subset of the ambient logic as presented in ���
� but we
enrich it with information tree variables� label comparison� and recursion�

��� Formulas

The syntax of the tree logic formulas is presented in the following table�
The symbol �� in the label comparison clause� stands for any label compar�

ison operator chosen in a prede�ned family �� we will assume that � at least
contains equality� the SQL string matching operator like � and their negations�
The positivity condition on the recursion variable � means that an even number
of negations must be traversed in the path that goes from each occurrence of �
to its binder�

�



Formulas


� ��� label expression

n label constant
x label variable

A�B ��� formula
� empty tree

��A
 location
A j B composition

T true
�A negation

A� B conjunction

X tree variable
�x�A quanti�cation over label variables

�X �A quanti�cation over tree variables

� � �� label comparison

� recursion variable
���A recursive formula least �xpoint�� � may appear only positively

The interpretation of a formula A is given by a semantic map ��A

�� � that maps
A to a set of information trees� with respect to the valuations 	 and 
� The
valuation 	 maps label variables x to labels elements of �� and tree variables
X to information trees� while 
 maps recursion variables � to sets of information
trees�

Formulas as sets of information trees

���

�� � �def f�g
����A


�� � �def f	���I 
 j I � ��A

�� �g
��A j B

�� � �def fI j I � j I � ��A

�� �� I � � ��B

�� �g
��T

�� � �def IT
���A

�� � �def IT n ��A

�� �
��A � B

�� � �def ��A

�� �  ��B

�� �
��X 

�� � �def f	X �g
���x�A

�� � �def

S
n�� ��A

��x��n�� �

���X �A

�� � �def

S
I�IT ��A

��X ��I�� �

��� � ��

�� � �def if 	�� � 	��� then IT else �
�����A

�� � �def

T
fS � IT j S � ��A

�� ��� ��S�g

���

�� � �def 
��

This style of semantics makes it easier to de�ne the semantics of recursive
formulas� Some consequences of the semantic de�nition are detailed shortly�

���

�� � is the singleton f�g� ����A


�� � contains the information tree m�I 
� if
m � 	�� and I is in ��A

�� �� We assume that 	 maps any label in � to itself�
so that we can apply 	 to � even when � is not a variable�� For each I in ��A

�� �

�



and I � in ��B

�� � � ��A j B

�� � contains the information tree I j I �� ��T

�� � is the set
of all information trees while its negation F denotes the empty set�� ���A

�� � is
the complement of ��A

�� � with respect to the set of all information trees IT � I
is in ��A � B

�� � if it is in ��A

�� � and in ��B

�� �� I is in ���x�A

�� � if there exists
some value n for x such that I is in ��A

��x��n�� � � Here 	�x �	 n
 denotes the
subtitution that maps x to n and otherwise coincides with 	� ��� � ��

�� � is the
set IT if the comparison holds� else it is the empty set� �����A

�� � is the least
�xpoint with respect to set inclusion� of the monotonic function that maps any
set of information trees S to ��A

�� ��� ��S��

The meaning of a variable X is given by the valuation 	� Valuations connect
our logic to pattern matching� for example� ��m�n��



 is in ��x�X 


�� � if 	 maps x
to m and X to ��n��


� The process of �nding all possible 	�s such that I � ��A

�� �
is our logic�based way of �nding all possible answers to a query with respect to
a database I �

We say that F satis�es A under 	� 
� when the information tree ��F 

 is in the
set ��A

�� �� and then we write F ���� A�

F ���� A �def ��F 

 � ��A

�� �

Satisfaction enjoys the following properties� which are easily derived and help
making the above semantic de�nition more explicit� These properties may form
the basis of a matching algorithm of F against A�

Some properties of satisfaction

F ���� � � F � �

F ���� ��A
 � �F �� F � 	���F �
 � F �
���� A

F ���� A j B � �F �� F ��� F � F � j F �� � F �
���� A � F ��

���� B
F ���� T

F ���� �A � �F ���� A�
F ���� A � B � F ���� A � F ���� B
F ���� �x�A � �m��� F ���x��m��� A
F ���� �X �A � �I �IT � F ���X ��I��� A
F ���� � � �� � 	�� � 	���
F ���� ���A � F ���� Af� � ���Ag
F ���� X � ��F 

 � 	X �
F ���� � � ��F 

 � 
��

��� Some Derived Formulas

As usual� negation allows us to de�ne many useful derived operators� as described
in the following table�

�



Derived formulas


��� A
 �def ����A
� A jj B �def ��A j �B�
F �def �T A � B �def ��A � �B�
�x�A �def ��x��A� �X �A �def ��X ��A�
���A �def �����Af� � ��g�

F � m�� A
 means that �it is not true that� for some F �� F � m�F �
 and not
F �

� A�� i�e� �if F has the shapem�F �
� then F �
� A�� To appreciate the di�erence

between m�A
 and its dual m�� A
� consider the following statements�

� F is an article where Ghelli is an author� F � article �author �Ghelli 
jT

� If F is an article� then Ghelli is an author� F � article �� author �Ghelli 
jT


F � A jj B means that �it is not true that� for some F � and F ��� F � F � j F ��

and F �
� �A and F ��

� �B�� which means� for every decomposition of F into
F � j F ��� either F �

� A or F ��
� B� To appreciate the di�erence between the j

and the jj operators� consider the following statements�

� There exists a composition of F into F � and F ��� such that F � satis�es
article �A
� and F �� sats�es T� i�e�� there is an article inside F that satis�
�es A� F � article �A
 j T

� For every decomposition of F into F � and F ��� either F � satis�es article �� A
�
or F �� satis�es F� i�e�� every article inside F satis�es A� F � article �� A
 jj F

The dual of the least �xpoint operator ���A is the greatest �xpoint opera�
tor ���A� For example ���� is equivalent to F� while ���� is equivalent to T�
More interestingly� ���� � m��
 describes every information tree that matches
m�m�� � �m�


� and� on �nite trees� it is equivalent to ���� � m��
� However� if
we consider in�nite trees� the distinction between least and greatest �xpoint be�
comes more important� For example� the in�nite tree m�m�� � �

 satis�es ���� �
m��
� but does not satisfy �����m��
� When we consider only �nite trees� as we
do here� the � and � operators are quite similar in practice� since most interesting
formulas have a single �xpoint�

Satisfaction over the derived operators enjoys the following properties� most
of which are easily derived from the de�nition� while others are more subtle�
For example� the properties of greatest �xpoints include a coinduction principle�
Again� these properties may form the basis for a matching algorithm�

Some properties of satisfaction for derived formulas

�F ���� F

F ���� ��� A
� �F �� F � 	���F �
 � F �
���� A�

F ���� A jj B � �F �� F ��� F � F � j F �� � F �
���� A � F ��

���� B�
F ���� A � B � F ���� A � F ���� B
F ���� �x�A � �m��� F ���x��m��� A
F ���� �X �A � �I�IT � F ���X ��I��� A
F ���� ���A � F ���� Af� � ���Ag
F ���� ���A � �B� F ���� B � �F �� F �

���� B � F �
���� Af� � Bg

�



Many logical equivalences have been derived for the ambient logic� and are in�
herited by the tree logic� We list some of them here� These equivalences could
be exploited by a query logical optimizer�

Some equations

��A
 � ��T
 � ��� A
 ��� A
 � ��T
 � ��A

��F
 � F ��� T
 � T

��A � A�
 � ��A
 � ��A�
 ��� A�A�
 � ��� A
 � ��� A�

��A � A�
 � ��A
 � ��A�
 ��� A�A�
 � ��� A
 � ��� A�

���x�A
 � �x���A
 x �� �� ��� �x�A
 � �x���� A
 x �� ��
���x�A
 � �x���A
 x �� �� ��� �x�A
 � �x���� A
 x �� ��
���X �A
 � �X ���A
 ��� �X �A
 � �X ���� A

���X �A
 � �X ���A
 ��� �X �A
 � �X ���� A

A j A� � A� j A A jj A� � A� jj A
A j A�� j A�� � A j A� j A��� A jj A�� jj A��� A jj A� jj A���
A j F � F A jj T � T

T j T � T F jj F � F

A j A� � A���� A j A�� � A j A��� A jj A� � A���� A jj A�� � A jj A���
A j �x�A� � �x�A j A� x ��FVA�� A jj �x�A� � �x�A jj A� x ��FVA��
A j �x�A� � �x�A j A� x ��FVA�� A jj �x�A� � �x�A jj A� x ��FVA��

��� Path Formulas

All query languages for semistructured data provide some way of retrieving all
data that is reachable through a path described by a regular expression� The tree
logic is powerful enough to express this kind of queries� We show this fact here
by de�ning a syntax for path expressions� and showing how these expressions
can be translated into the logic� This way� we obtain also a more compact and
readable way of expressing common queries� like those outlined in the previous
section�

Consider the following statement� X is some article found in the ARTICLES
collection� and some author of X is Cardelli � We can express it in the logic using
the m�A
 j T pattern as�

ARTICLES � article �X � author �Cardelli 
 j T�
 j T

Using the special syntax of path expressions� we express the same condition as
follows�

ARTICLES � �articleX ��author �Cardelli 


Our path expressions support also the following features�

� Universally quanti�ed paths� X is an article and every author of X is Cardelli�

ARTICLES � �articleX ��author �Cardelli 


��



� Label negation� X is an article where Ghelli is the value of a �eld� but is not
the author�

ARTICLES � �articleX ���author ��Ghelli 


� Path disjunction� X is an article that either deals with SSD or cites some
paper Y that only deals with SSD�

ARTICLES � �articleX ��keyword � �cites �articleY��keyword��SSD


� Path iteration Kleene star�� X is an article that either deals with SSD� or
from which you can reach� through a chain of citations� an article that deals
with SSD�

ARTICLES � �articleX ��cites �article�
�
�keyword�SSD


� Label matching� there exists a path through which you can reach some �eld
X whose label contains e and mail � matches any substring��

ARTICLES � ���
�
��e�mail���X 


We now de�ne the syntax of paths and its interpretation�

Path formulas


 ��� label matching expression

� matches any n such that n like �

� matches whatever  does not match
� ��� path element

� some edge matches 

� each edge matches 

p� q ��� path

� elementary path

pq path concatenation

p� Kleene star
p � q disjunction

pX � naming the tree at the end of the path

A path�based formula p�A
 can be translated into the tree logic as shown below�
We �rst de�ne the tree formula Matchesx� � as follows�

Matchesx� �� �def x like �
Matchesx��� �def �Matchesx� �

Path elements are interpreted by a translation� �� 

p� into the logic� using the
patterns m�A
 j T and m�� A
 jj F that we have previously presented�

����A


p �def �x�Matchesx� � � x���A

p
� j T
����A


p �def �x�Matchesx� � � x�� ��A

p
� jj F

��



General paths are interpreted as follows� p��A
 is recursively interpreted as �either
A holds here� or p��A
 holds after traversing p�� Target naming pX ��A
 means�
at the end of p you �nd X � and X satis�es A� hence it is interpreted using
logical conjunction� Formally� path interpretation is de�ned as shown below� path
interpretation translates all non�path operators as themselves� as exempli�ed for
T and j�

��pq�A


p �def ��p�q�A



p ��p��A


p �def ���A � ��p��


p

��p � q��A


p �def ��p�A


p � ��q�A


p ��pX ��A


p �def ��p�X � A


p

��T

p �def T ��A j A�

p �def ��A

p j ��A�

p

��� Tree Logic and Schemas

Path formulas explore the vertical structure of trees� Our logic can also express
easily horizontal structure� as is common in schemas for semistructured data�
E�g� in XML DTDs� XDuce ���
 and XMLSchema ��
� However� the present
version of our logic deals directly only with unordered structures��

For example� we can extract the following regular�expression�like sublan�
guage� inspired by XDuce types� Every expression of this language denotes a
set of information trees�

� the empty tree
A j B an A next to a B
A � B either an A or a B
n�A
 an edge n leading to an A
A� �def ��� � � A j �� a �nite multiset of zero or more A�s
A� �def A j A� a �nite multiset of one or more A�s
A� �def � � A optionally an A

In general� we believe that a number of proposals for describing the shape of
semistructured data can be embedded in our logic� Each such proposal usually
comes with an e�cient algorithm for checking membership or other properties�
These e�cient algorithms� of course� do not fall out automatically from a general
framework� Still� a general frameworks such as our logic can be used to compare
di�erent proposals�

� The Tree Query Language

In this section we build a full query language on top of the logic we have de�ned�

��� The Query Language

A query language should feature the following functionalities�

� binding and selection� a mechanism to select values from the database and
to bind them to variables�

��



� construction of the result� a mechanism to build a result starting from the
bindings collected during the previous stage�

Our Tree Query Language TQL� uses the tree logic for binding and selection�
and tree building operations to construct the result� Logical formulas A are as
previously de�ned�

TQL queries


Q ��� query

from Q � A select Q� valuation�collecting query

X matching variable

� empty result

Q j Q composition of results

��Q
 nesting of result

fQ� tree function� for any f in a �xed set �

We allow some tree functions f � chosen from a set � of functions of type
IT 	 IT � to appear in the query� For example�

� count�I�� which yields a tree n��
� where n is the cardinality of the multiset
I �

� op�I�� where op is a commutative� associative integer function with a neutral
element� if all the pairs in I have a shape n�I �
� where n is a natural number�
then op�I� combines all the n�s using the op operation obtaining the integer
r� and returns r��
�

In practice� these functions would include user�de�ned functions written in an
external programming language�

��� Query Semantics

The semantics of a query is de�ned in the following table� The interesting case
is the one for from Q � A select Q�� In this case� the subquery Q� is evaluated
once for each valuation 	� that extends the input valuation 	 and such that
��Q

� � ��A

��� �� all the resulting trees are then combined using the j operator�

The notation 	�V
�

� 	V means that V� � V and that 	�V
�

and 	V coincide
over V� For F � RV 	 IT � we de�ne Par�V�RV F 	V� �def

U
�V�RV F 	V��

where 
 is multiset union� namely the information tree operator that is used to
interpret j�

Query semantics

��X 

�V � 	VX �

���

�V � �

��Q j Q�

�V � ��Q

�V j ��Q
�

�V

�	



��m�Q


�V � m���Q

�V 


��x�Q


�V � 	Vx����Q

�V 


��fQ�

�V � f��Q

�V �

��from Q � A select Q�

�V
� Par��V��f��V� j V��V�FV�A�� ��V�� �V� ��Q��

�V
���A��

��V
�
� �
g ��Q�

��V�

According to this semantics� the result of a query from Q�
� A select Q�� can

be an in�nite multiset� Therefore� in a nested query� the database Q� can be
in�nite� even if we start from a �nite initial database� Obviously� one would not
like this to happen in practice� One possible solution is to syntactically restrict
Q� to a variable X � Another solution is to have a static or dynamic check on the
�niteness of the result� one such option is dicussed in Section ����

��� Examples of Queries

We explain the query operators through examples� As in Section ���� we abbre�
viate a query

from Q � A select from Q�
� A� select Q��

as
from Q � A� Q�

� A� select Q�� �

The database ARTICLES is the one given in Section ����
All papers whose only author if any� is Cardelli can be retrieved by the

following query where we use X � � � � as an alternative to a nested binder
X � � � ���

from ARTICLES � �article �X � �author �Cardelli 

 select X

We may use disjunction to �nd both e	mails and emails inside some author
�eld�

from ARTICLES � �article ��author ��e	mail �X 
 � �email �X 



select e	mail �X 


Using recursion� we look for e	mail at the current level or� recursively� at any
inner nesting level��

from ARTICLES � ��� �e	mail �X 
 � �email �X 
 � �x� �x��

select e	mail �X 


The following query binds two label variables y and z to the label and the
content of a �eld y�z
� where z is �like �Ghelli� � like matches ��� to any
substring�� Recursion may be used to look for such �elds at any depth�

� When every X is inside an m
� operator� like in this example� recursion is guaranteed
to terminate� but we still have enough �exibility to express complex queries� such as
queries that evaluate boolean circuits 
��

��



from ARTICLES � �article ��y�z
 � z like �Ghelli�

select found �label�y
 j content�z



Query nesting allows us to restructure data� For example� the following query
rearranges papers according to their year of publication� for each year X outer
from�� it collects all the papers of that year� The composition Year �X 
 j Z binds
Z to all �elds but the year� this way of collecting all the siblings except one is
impossible� or di�cult� in most other query languages�

from ARTICLES � �article ��Year �X 


select publications by year � Year �X 


j from ARTICLES � �article �Year �X 
 j Z 

select article �Z 
 �




Relational�style join queries can be easily written in TQL either by matching
the two data sources with two logical expressions that share some variables equi�
joins� or by exploiting the comparison operators� Universal quanti�cation can be
expressed both on label and tree variables� more examples can be found in ���
�

��� Safe Queries

It is well�known that disjunction� negation� and universal quanti�cation create
�safety� problems in logic�based query languages� The same problems appear in
our query language�

Consider for example the following query�

from db � author �X 
 � autore �Y 
� j T select author �X 
 j autore�Y 


Intuitively� every entry in db that is an author binds X but not Y � and vice�
versa for autore entries� Formally� both situations generate an in�nite amount
of valuations� for example� if 	db� � author �m�

� then f	� j ��db

� � ��A

�� � �g is
the in�nite set

fdb �	author �m�

� X �	m�
� Y �	I� j I � IT g �

Negation creates a similar problem� Consider the following query�

from db � �author �X 
 select notauthor �X 


Its binder� with respect to the above input valuation� generates the following
in�nite set of bindings�

fdb �	author �m�

� X �	I� j I � IT � I �� m�
gg �

and the query has the following in�nite result�

fnotauthor �I 
 j I�IT � I �� m�
g �

These queries present two di�erent� but related� problems�
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� their semantics depends on the sets � and IT of all possible labels and
information trees�

� their semantics is in�nite�

We say that a query is safe when its semantics is �nite� Query safety is
known to be undecidable for the relational tuple calculus ��
� and we suspect
it is undecidable for our calculus too� However� as in relational calculi� it is not
di�cult to devise some su�cient syntactical conditions for safety� and to solve the
non�safety problem by restricting the language to the syntactically safe queries�
A di�erent way to solve the problem is to allow unsafe queries� and to design
a query processor for them� Our semantics accounts for unsafe queries� since it
does not restrict the set of valuations generated by a binder to be �nite� nor
does it restrict the query answer to be �nite�

� Query Evaluation

In this section we de�ne a query evaluation procedure� This procedure is really
a re�ned semantics of queries� which is intermediate in abstraction between the
semantics of Section ��� and an implementation algorithm� It is based on an
algebra of trees and tables that is suggestive of realistic implementations� and
may be seen as a speci�cation of such implementations� In Pisa we have realized
one such implementation� which is described in ��	� �
�

The query evaluation procedure is based on the manipulation of sets of val�
uations� These sets� unfortunately� may be in�nite� For a real implementation�
one must typically �nd a �nite representation of in�nite sets� Moreover� at the
level of query manipulations� one would like to push negation to the leaves� in�
troducing dualized logical operators as indicated in the �rst table in Section 	���
These dualized operators also become part of an implementation� We do not deal
here with the possible ways of �nitely representing these in�nite sets� or how to
implement operators over them� In ��	� �
� though� we describe a technique for
�nitely representing sets of valuations in terms of a �nite disjunction of a set of
conjunctive constraints over the valuations� in the style of ���� ��
�

Any practical implementation of a query language is based on the use of
particular e�ciently implementable operators� such as relational join and union�
We write our query evaluation procedure in this style as much as possible� but
we naively use set complement to interpret negation� and we do not deal with
dualized operators�

Our query evaluation procedure shows how to directly evaluate a query to a
resulting set of trees� In database technology� instead� it is typical to translate
the query into an expression over algebraic operators which� in ��	� �
 and in
XML Query Algebra ��
� include also operators such as if�then�else� iteration
and �xpoint�� These expressions are �rst syntactically manipulated to enhance
their performance� and �nally evaluated� We ignore here issues of translation
and manipulation of intermediate representations�

The core of the query evaluation problem is binder evaluation� A binder
evaluation procedure takes an information tree I and a formula A� that is used

��



as a pattern for matching against I � The procedure takes also a valuation 	 and
returns the set of all the valuations for the free variables of A that are not in
the domain of 	�

To describe the procedure� we �rst introduce an algebra over tables� Tables
are sets of valuations here called rows�� We then use this algebra to de�ne the
evaluation procedure�

��� The Table Algebra

Let V � V�� ���� Vn be a �nite set of variables� where each variable Vi is either an
information tree variable X � whose universe U X � is de�ned to be the set IT
of all information trees� or a label variable x� whose universe U x� is de�ned to
be the set � of all labels�

A row with schemaV is a function that maps each Vi to an element of U Vi��
we use 	V as a meta�variable to range over rows with schema V or just 	 when
V is clear from context�� A table with schema V is a set of rows over V� we use
T V for the set of tables with schema V� and RV as a meta�variable to range
over T V� When V is the empty set� we have only one row over V� which we
denote with �� hence we have only two tables with schema �� the empty one� ��
and the singleton� f�g� We use �V to denote the largest table with schema V�
i�e� the set of all rows with schema V�

The table algebra is based on �ve primitive operators� union� complement�
product� projection� and restriction� each carrying schema information� They
correspond to the standard operations of relational algebra�

The operators of table algebra


RV �V R�V �def RV �R�V � �V

CoVRV� �def �V nRV � �V

V� V � � � RV �V�V
�

R�V�

�def f	� 	� j 	 � RV� 	� � R�V�

g � �V�V
�

V� � V �
Q
V

V�RV �def f	
� j 	���V

�

� �	 � RV� 	 � 	�g � �V
�

FV�� ��� � V � �V����R
V �def f	 j 	 � RV� 	V��� � 	V��

��g � �V

The table union RV �V R�V is de�ned as the set�theoretic union of two tables
with the same schema V�

The table complement CoVRV� is de�ned as the set�theoretic di�erence
�V nRV�

If RV and R�V�

are two tables whose schemas are disjoint� their table carte�
sian product RV �V�V

�

R�V�

is de�ned as the set containing all rows obtained
by concatenating each row of RV with each row of R�V�

� The result has schema
V �V��

If V� is a subset of V� the projection
Q
V

V�RV is de�ned as the set of all rows
in RV restricted to the variables in V��

��



Let 	V� be the function that coincides with 	V overV� and maps every � �� V
to �� If FV�� ��� � V� then the restriction �V����R

V is the set

f	V j 	V � RV and 	V��� � 	V��
��g �

where � is a label comparison operator� as in Section 	�
We will also use some derived operators� de�ned in the following table�

Table algebra	 derived operators


V � V� � ExtV
V�RV� �def RV �V�V

�nV �V
�nV � �V

�

RV V R�V �def CoVCoVRV� �V CoVR�V�� � �V

RV �
V�V�

R�V�

�def ExtVV�V�RV� V�V
�

ExtV
�

V�V�R�V�

� � �V�V
�

RV �V�V
�

R�V�

�def ExtVV�V�RV� �V�V
�

ExtV
�

V�V�R�V�

� � �V�V
�

V� � V �
�
V

V� RV �def CoV
�


Q
V

V�Co
VRV�� � �V

�

The operator RV �
V�V�

R�V�

is well�known in the database �eld� It is called
�natural join�� and can be also de�ned as follows� the set containing all rows
obtained by concatenating each row 	 in RV with those rows 	� in R�V�

such
that 	 and 	� coincide over V  V�� One important property of natural join
is that it always yields �nite tables when is applied to �nite tables� even if its
de�nition uses the extension operator� Moreover� the optimization of join has
been extensively studied� for this reason we will use this operator� rather than
extension plus intersection� in the de�nition of our query evaluation procedure�

Outer union RV �V�V
�

R�V�

and co�projection
�
V

V� RV are useful for treating
the dualized operators�

Outer union is dual to join� in the following sense�

RV �V�V
�

R�V�

� CoV�V
�

CoVRV� �V�V
�

CoV
�

R�V�

��

Projection and co�projection are both left�inverse of extension�

QV�

V
ExtV

V�RV�� � RV

�
V
�

V
ExtV

V�RV�� � RV

However� they represent two di�erent ways of right�inverting extension�

Q
V

V�RV �
T
fR�V�

j ExtV
�

V R�V�

� � RVg
�
V

V� RV �
S
fR�V�

j ExtV
�

V
R�V�

� � RVg

��� Query Evaluation

We specify here an evaluation procedure QQ�� that� given a query Q and a row
	 that speci�es a value for each free variable of Q� evaluates the corresponding

��



information tree� A closed query �from Q � A select Q�� is evaluated by �rst
evaluating Q to an information tree I � The pair I�A is then evaluated to yield
a table RV whose schema contains all the free variables in A� Finally� Q� is
evaluated once for each row 	 of RV� all the resulting information trees are
combined using j� to obtain the query result� This process is expressed in the
last case of the table below�

The �rst part of the table describes how a quadruple I�A� 	V� � is evaluated
by a binder evaluation procedure B to return a table with schema SA�V�  ���
The schema function S is speci�ed in the table that follows� and enjoys the
property that SA�V�  �� � FVA� n V� Here � is an environment that maps
recursion variables � to functions from information trees to tables� We assume
that � is always given together with a schema  � mapping recursion variables to
sets of variables V� such that ��� � IT 	 T 		����

The notation fx �	 n�g represents a table that contains only the row that
maps x to n� and similarly for fX �	I�g�

Binder and query evaluation

BI����V�	 � if I � � then f�g else �

BI� n�A
��V�	 � if I � n�I �
 then BI ��A��V�	 else �

BI� x�A
��V�	 � BI� 	Vx��A
��V�	 if x � V

BI� x�A
��V�	 � if x �� V
if I � n�I �
 then fx �	n�g �

fxg�S�A�V�		� BI ��A��V�	else �

BI�A j B��V�	 �
SS�AjB�V�		�
I��I���fI��I�� j I�jI���Ig BI

��A��V�	 �
S�A�V�		��S�B�V�		� BI ���B��V�	�

BI�T��V�	 � f�g

BI��A��V�	 � CoS�A�V�		�BI�A��V�	�

BI�A� B��V�	 � BI�A��V�	 �
S�A�V�		��S�B�V�		� BI�B��V�	

BI�X ��V�	 � if I � 	VX � then f�g else � if X � V

BI�X ��V�	 � fX �	I�g if X �� V

BI� �X � A��V�	�
QS�A�V�		�
S�A�V�		�nfXgBI�A��V�	

BI� �x� A��V�	 �
QS�A�V�		�
S�A�V�		�nfxgBI�A��V�	

BI� � � ����V�	 � �
S������V�		�

�V������
V

���
��
�S����

��V�		�

BI� ���A��V�	 � Fix �M �IT 	 T S�
��A�V�		���Y �BY �A��V�	�� ��M ��I�

BI� ���V�	 � ���I�

QX ��V � 	VX �

Q���V � �

QQ j Q���V � QQ��V j QQ���V

Qm�Q
��V � m�QQ��V 


Qx�Q
��V � 	Vx��QQ��V 


QfQ���V � fQQ��V�

��



Qfrom Q � A select Q���V � let I � QQ��V and RFV�A�nV � BI�A��V� �
in Par���RFV�A�nV QQ����V 
���

The schema function S

S��V� � � � �

Sn�A
�V� � � � SA�V� � �

Sx�A
�V� � � � SA�V� � � � fxg nV�

SA j B�V� � � � SA�V� � � � SB�V� � �

ST�V� � � � �

S�A�V� � � � SA�V� � �

SA � B�V� � � � SA�V� � � � SB�V� � �

SX �V� � � � fXg nV

S�X � A�V� � �� SA�V� � � n fXg

S�x� A�V� � � � SA�V� � � n fxg

S� � ���V� � � � FV�� ��� nV

S���A�V� � � � SA�V� � �� �	 �
�

S��V� � � � � ��

Since the rule for comparisons � � �� is subtle� we expand here some special
cases�

Some special cases of comparison evaluation

BI� x � x���V�	 � �
fx�x�g
x�x� �

fx�x�g if x �� V� x� �� V

BI� x � x���V�	 � �
fxg
x��V�x���

fxg if x �� V� x� � V

BI� x � x���V�	 � �	
�V�x���V�x���

	 if x � V� x� � V

BI� x � n��V�	 � �
fxg
x�n�

fxg if x �� V

BI� n � n���V�	� �	n�n��
	 i�e� if n � n� then f�g else ��

Lemma ��

S���A�V�  �� � SA�V�  ��� �	 S���A�V�  ��
�

BI�A��V�	 � T
S�A�V�		��

Lemma �� Let A be a formula� V be a set of variables� let � be a set f�ig i�I of
recursion variables that includes those that are free in A� and let � be a function
de�ned over � such that� for every �i� ��i� � IT 	 T 		��i�� where  ��i� is
disjoint from V� then

�	 � �V� I � IT � BI�A���	 � f	� j 	� � �S�A�V�		�� I� ��A

��� 
��� �	����g

where !�	� � �� ���fI j 	 � ���I�g �

��



The following proposition states that the query evaluation procedure is equiv�
alent to the query semantics of Section ���� The proof uses Lemma � in the
from�select case�

Proposition �� �Q� V � FV Q�� 	V� QQ��V � ��Q

�V

� Conclusions and Future Directions

We have de�ned a query language that operates on information represented
as unordered trees� One can take di�erent views of how information should be
represented� For example as ordered trees� as in XML� or as unordered graphs�
as in semistructured data� We believe that each choice of representation would
lead to a slightly di�erent� logic and a query language along the lines described
here� We are currently looking at some of these options�

There are currently many proposals for regular pattern languages for semi�
structured data� many having in common the desire to describe tree shapes and
not just linear paths� Given the expressive power of general recursive formulas
���A� we believe we can capture many such proposals� even though an important
part of those proposals is to describe e�cient matching techniques�

In this study we have exploited a subset of the ambient logic� The ambi�
ent logic� and the calculus� also o�er operators to specify and perform tree
updates ��
� Possible connections with semistructured data updates should be
explored�

An implementation of TQL is currently being carried out� based on the im�
plementation model we described� The current prototype can be used to query
XML documents accessible through �les or through web servers�
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