A Spatial Logic for Concurrency

(Part 1)

Luis Caires
Departamento de Informatica FCT/UNL, Lisboa, Portugal

Luca Cardelli
Microsoft Research, Cambridge, UK

Abstract

We present a logic that can express properties of freshesessecy, structure,
and behavior of concurrent systems. In addition to stanttayidal and tempo-
ral operators, our logic includes spatial operations smoading to composition,
local name restriction, and a primitive fresh name quamtiffroperties can also
be defined by recursion; a central aim of this paper is thercdingbination of a
logical notion of freshness with inductive and coinductidinitions of properties.

1 Introduction

We present a logic for describing the behavior and spatiatstre of concurrent sys-
tems. Logics for concurrent systems are certainly not ney 12, 29, 16], but the
intent to describe spatial properties seems to have arislgnrecently. The spatial
properties that we consider here are essentially of twoskimthether a system is com-
posed of two or more identifiable subsystems, and whethestemsyrestricts the use
of certain resources to certain subsystems. Previous widrkHas considered also
whether a system is composed of named locations; in that tas@otion of spatial
structure is particularly natural.

The initial motivation for studying these logics was to béeaio specify systems
that deal with fresh or secret resources such as keys, nartt@snels, and locations.
In previous papers [10, 6], we have found that the spatigbgnties of process com-
position and of location structures are fairly managealitstead, the properties of
restriction are much more challenging, and are closelytedlto the study of logical
notions of freshness [20, 19, 31].

The main aim of this paper is to advance the study of restnicstarted in [11, 6]
and to build a closer correspondence with treatments dfifress [19]. For simplicity,
we use a basic process calculus (the asynchromaadculus) that includes composi-
tion and restriction. We omit locations in this paper beedahgy are easy to add along
the lines of [10], and are comparatively easier to handla tteamposition or restric-
tion. It will become clear that our general approach is yaimkensitive to the details of
specific process calculi, and is largely insensitive to tiynamics” (reduction behav-
ior) of specific calculi. Therefore, it can be easily adagtedther calculi, and perhaps
even generalized to process frameworks [21].

A formulain our logic describes a property of a particulartjpda concurrent sys-
tem at a particular time; therefore it is modal in space as agin time. This dual
modality can be captured by standard box and diamond opsyatdlecting reachabil-
ity in space and in time [10, 6]. As a further contributionloistpaper, though, we wish
to investigate a more general framework akin to thealculus [25], where formulas
can be recursive and can subsume box and diamond operataneowér, by com-
bining spatial and temporal connectives with recursion,care then define new and
interesting modalities, such as “under an arbitrary nunoeestrictions”. The most
technically challenging part of the paper is then the irdgoa of recursive formulas,
already present in [6, 9, 16], with logical notions of freekg, composition, and name
restriction, already presentin [6, 11].

We now give a brief overview of the constructs of the logidpibe moving on to the
formal treatment. LeP be the set of (asynchronouscalculus) processes. groperty
is a set of processes; a subsetfof A closed formula denotes a property, namely, it
denotes the collection of processes satisfying that foamul

¢ The collection of all properties (which is not quite the poset of P, as we shall
discuss) has the structure of a Boolean Algebra under desina, so we naturally get
boolean connectives(we take A A B andA = B as primitive).

e The above propositional fragment is extended to predica lvia a univer-
sal quantifiez.A. This quantifier has standard properties, but the boundlvizi
ranges always over the countable set of channel names ofdahegs calculus.

e The collection of all properties has also the structure obiangale, induced by
the parallel composition operator over processes. In thie,lohis is reflected by the
operatorsd|B (the tensor, or parallel composition, of two properti@s)the unit of
the tensor, or collection of void processes), andB (the linear implication associated
with the tensor). This last operator corresponds to corggstem specifications, which
are the concurrency theory equivalent of pre/post conutidn addition,A > B is a
first class formula that can be freely and usefully combinét wther operators.

¢ In much the same way that parallel process composition igltite quantale
structure, process restriction induces a pair of operat@rd and Aon, called reve-
lation and hiding, that give us a basis for describing rettd processes at the logical
level.

e The notion of “fresh name” is introduced by a quantifiéz.A; a processP
satisfiesdz. A if P satisfiesA for some name fresh i* andx.A. This quantifier
allows us to then derive a hidden name quantifier [11,1}. A is defined along the
lines of the freshness quantifier of Gabbay-Pitts [19]: trnections will be discussed.
A similar Uz. A quantifier is studied in [11] (in absence of recursion), butdandled as
a meta-level construct, and not as a proper formula that eaniked with recursion.

¢ A logical operatom(m) allows us to assert that a messagds present over
channeh, giving us some minimal power to observe the behavior of @sees.

e A “next step” temporal operato; A, allows us to talk about the behavior of a
process after a single (unspecified) reduction step.

¢ Finally, a second-order quantifiéX . A enables us to quantify over the collection
of all properties. CombiningX.A with other operators of our logic, we then define a
maximal fixpoint operator X. A (providedA is monotonic inX'), and a dual minimal
fixpoint operaton X.A. From these recursive formulas, we can then define operators
for temporal and spatial modalities, for instarigd denoting thatd holds anytime in
the future, ang> A, meaning thatd holds everywhere in space.

Related Work A logic for a process calculus including a tensor operatar aihid-
den name quantifier was developed in [6, 2], but a satisfactemantic treatment
for the latter connective not was achieved before the dauticins of [11] and of the
present paper. Initial versions of spatial logics for theldemt Calculus were intro-
duced in [10], which also investigated connections witkeéinlogic. We now target the
logic towards a more standafdcalculus.

Following the initial approach of Hennessy-Milner [22], d& logics for ther-
calculus have been proposed in [29, 16, 17]. The main differdetween our logic
and these more standard logics of concurrency is the preseicir case of structural
operations: namely, of a tensor operator that correspangdsocess composition, and
of a revelation operator that corresponds to name restnictisually, those other logics
require formulas to denote processes up to bisimulatiorgtwik difficult to reconcile
with a tensor operator that can make distinctions betwesmbar processes (however,
such an operator was anticipated in [15]). In our case, wg guire formulas to
denote processes up to structural equivalence, so thatsarteperator makes easy
sense. Sangiorgi has shown, for a closely related logitthleaquivalence induced by
the logic is then essentially structural equivalence [33].

The connections between name restriction and GabbaynBtitss of freshness [20,
19, 31], first studied in [11], are further explored in thippa

The work on Bunched Logics [30] and Separation Logic [32]lisely related to
ours, at least in intent. Spatial logics for trees and grdyatve also been investigated
in[9,7,8].

Organization of the paper We start with a concise review of the asynchroneus

calculus. In Section 3 we give a detailed presentation oéyimax of the spatial logic.

In Section 4, we introduce the central notion of property 8&t define satisfaction,
and we proceed with the analysis of semantical aspects dbgfie In Section 4.3 we

then study an appropriate notion of logical validity. In &es 5 and 6 we motivate and
discuss fresh and hidden name quantification, and the ieewsfinition of properties.

In Section 7 we discuss in more detail the arguments thatteadr choices.

2 Preliminaries on the asynchronousr-calculus

We review the syntax and operational semantics of the asgnolisr-calculus [1, 24],
following the notations of [27]. We base our presentation-efquivalence on the use
of transpositions (simple name replacements), which becpraminent later in the
paper.

Definition 2.1 (Processes)Given a countable set of namesthe setP of processes
is given by the following abstract syntax

m,n,p € A (Names)
P,Q,R ==
0 (Void)
PlQ (Par)

(vn)P (Restriction)
m(n) (Message)
m(n).P (Input)

1P (Replication)

We write na(P) for the set of all names that textually occur in a procEséeither
bound or free).

Definition 2.2 (Free names in Processedjor any process’, the set ofree namesf
P, written fn(P), is inductively defined as follows.

In restriction(vn) P and inputm(n).P, the distinguished occurrence of the namis
binding, with scope the proce$s We writebn(P) for the set of names which occur
bound in the proces®, and©N for the set{ P | N C fn(P)} of processes that
contain all names itV free. If IV is a finite set of names, and’ is a any set of names,
a substitutior? : N — N’ of domain N andcodomainN' is a mapping assigning
f(n) € N'to eachn € N, andn to eachn ¢ N. Thus, outside its domain, any
substitution behaves like the identity. Given a substitutl, we denote byD(0) its
domain. Theémageof a substitutior®, writtenJ(6), is the se{f(n) | n € D(6)}. We
write {n<m} for the singleton substitution of doma{m } that assigns to n.

Substitutions that just interchange a pair of names wily glapecial role in tech-
nical developments to follow. More precisely, thranspositionof » andm, noted
{n+m}, denotes the substitution : {m,n} — {m,n} such thatr(n) = m and
7(m) = n. Note that{n+~m} = {m«n}. Before defining safe substitution on pro-
cesses, we first introduce transposition, and then definengruence in the style of
[19].

Definition 2.3 (Transposition) Given a proces$” and a transposition-, we denote
by 7. P the process inductively defined as follows.

7-0 £ 0 ((vn)P) & (vr(n))r-P
rmn) 2 r(m)(r(n)) 7(p(n).P) 2 (p)(r(n)).(r-P)
m(PlQ) £ (1-P)|(-Q) m(!P) 2 IrP

Proposition 2.4 For all processes” and (), and transpositions,
1. r-7-P=P
2. {m<n}-r-P = 7-{r(m)-7(n)}-P

Proof. By induction on the structure a?. m

Definition 2.5 (Congruence) A binary relation= on processes iseongruenc&vhen-
ever for all processe®, @ andR,

pP=P (Cong Refl)
P=Q=Q=P (Cong Symm)
P2Q,Q=2R=P=R (Cong Trans)
P~Q=PRZQ|R (Cong Parl)
P=@Q = R|P=P|Q (Cong Parr)
P=Q = (vn)P = (vn)Q (Cong Res)
P=Q = m(n).P=2m(n)Q (Cong In)
P=2Q=1P2IQ (Cong Repl)

In this paper we essentially make use of two congrueneesingruence and structural
congruence. As usual-congruence=,, is the congruence that identifies processes up
to the safe renaming of bound names.

Definition 2.6 (a-congruence) a-congruences,, is the least congruence on processes
such that,

(vn)P =, (vp){n<p}-P wherep ¢ na(P) (Alpha Res)

m(n).P =, m(p).{ncp}-P wherep ¢ na(P) (Alphan)
Definition 2.7 (Safe substitution) For any process and substitutior# we denote by
6(P) the process inductively defined as follows:

6(0) £ 0

O(m(n)) = 6(m)(0(n))

0(P|Q) 2 9(P)|0(Q)

O((vn)P) £ (vp)8(P{n<p}) wherep ¢ D(6) UJ(9) U fn(P)
O(m(n).P) = 6(m)(p).0(P{np}) wherep g€ D(9)U3I(H)Ufn(P)
6('P) £ 19(P)

The name in the clauses for restriction and input is chosen freshgbsafe substitu-
tion is well-defined mapping on-equivalence classes of processes, as usual. We write
P4 for §(P) when# has the form{n<m} or {n<m}. We have

Lemma 2.8 Let P be a process. Then
1. 7.P =, 7(P) wherer is any transposition
2. P{n<p} =4 {n<p}-P wherep ¢ fn(P)
Proof. By induction on the structure @?. |
From Lemma 2.8 the usual characterizatiomefongruence follows:
Proposition 2.9 a-congruence is the least congruence on processes such that

(vn)P =, (vp)P{n<+p} wherep ¢ fn(P)
m(n).P =4 m(p).P{n<p} wherep ¢ fn(P)

As expected, safe substitution preseraesongruence:
Proposition 2.10 If P =, Q thend(P) =, 0(Q).
Proof. Standard. n

Definition 2.11 (Structural congruence) Structural congruence is the least con-
gruence on processes such that

P=,Q=P=Q (Struct Alpha)
Plo=P (Struct Par Void)
P|Q =Q|P (Struct Par Comm)
P|(QIR) = (P|Q)|R (Struct Par Assoc)
n € fin(P) = P|(vn)Q = (vn)(P|Q) (Struct Res Par)

n #p,n #m = (vn)p(m).P = p(m).(vn)P (Struct Res Inp)
(vn)0 =0 (Struct Res Void)
(vn)(vm)P = (vm)(vn)P (Struct Res Comm)
10=0 (Struct Repl Void)
P =!P|P (Struct Repl Copy)
(P|Q) ='P|'\Q (Struct Repl Par)
"p=1prP (Struct Repl Repl)

Although the axiom (Struct Res Inp) is absent from standegdgntations of-calculi,
the general consensus seems to be that such an axiom is epsible as a structural
congruence. (Struct Res Inp) is implicit in early work of Bl on the chemical
abstract machine, and is harmless as far as extensionatiespof processe® (g,
behavioral equivalence) are concerned. On the other hamésisome convenient
consequences in the setting of a more intensional logimliks. Moreover, Engelfriet
and Gelsema have shown the decidability of structural aggmgge in the presence of
the (Struct Repl Void/Par/Repl) and (Struct Res Inp) axi¢has.

Proposition 2.12 (Basic properties o) For all processes” and(,
1. If P = @ then f(P) = fn(Q).
2. Ifn € in(P) then(vn)P = P.
3. Forall transpositions-, P = @ if and only if7(P) = 7(Q).
4. For all substitutiond, if P = @, thend(P) = 0(Q).

Proof. Standard. n

Proposition 2.13 (Inversion) For all processes” and (@,
1. If (vn)P = 0thenP = 0.

2. If (vn)P = R|Q then there areR’ and Q' such thatP = R'|Q’ and either
R = (vn)R"and@ = Q' andn ¢ in(Q), or R = R' and@ = (vn)Q' and
n ¢ fn(R).

3. If (wn)P = (vm)Q then eitherP = {n<m}-Q or there areP’ and Q' such
thatP = (vm)P’, Q = (vn)Q' andP' = Q.

Versions of Proposition 2.13(1-2) for the Ambient Calculiase been proved in [13]
and [12]. Proposition 2.13(3) has a simple proof based aniteeis [18], as suggested
by J. Engelfriet.

The dynamics of processes is captured by reduction:

Definition 2.14 (Reduction) Reduction is the least binary relatiom on processes
inductively defined as follows.

m(n)|m(p).P — P{p+n} (Red React)
Q—Q = P|Q — P|Q (Red Par)
P— Q= (vn)P - (vn)Q (Red Res)
P=P P -Q,Q=Q=P—=Q (Red Struct)

Proposition 2.15 (Basic properties of-) For all processes® and @,
1. If P — @ then f(Q) C fn(P).
2. For all substitution®, if P — @, thenf(P) — 6(Q).

3. If P - @ and@ = (vn)Q' for someR)’, then there i?’ such thatP = (vn) P’
andP' — @Q'.

x,y,z € VY (Name variables)

X, Y,Z € X (Propositional variables)
n € A UV (Names or name variables)
AB,C ==

F (False)

ANAB (Conjunction)

A = B (Implication)

0 (Void)

A|B (Composition)

A>B (Guarantee)

n®A (Revelation)

Aon (Hiding)

n(n’) (Message)

Vz.A (First-order universal quantification)
Nz.A (Fresh name quantification)

QA (Next step)

X (Propositional variable)

VX.A (Second-order universal quantification)

Figure 1: Formulas.

Proof. (1—2) Standard. (3) By induction on the derivationfof—) (see Remark 2.16
below). m

Remark 2.16 Proposition 2.15(3) is a consequence of Proposition 2)1&{d does
not hold for versions ofr-calculi where= does not satisfy (Struct Res InpE.g,
considerP 2 p(p)|p(m).(vn)m(n): we haveP — (vn)Q’ whereQ' = p(n). Now,
pick any P’ such thatP = (vn)P'. Then, we can show that for aR such that
P’ — Rwe haveR = (vn)Q' Z Q'. However, if we admit (Struct Res Inp), we have
P = (vn)(p(p)|p(m).m(n)), so we can také>’ = p(p)|p(m).m(n).

Remark 2.17 Reduction as defined in Definition 2.14 is “almost the sam¢hasisual
one in the following sense. Let. be the the standard structural congruence of [27]
restricted to the asynchronomscalculus. Thus.C=. Likewise, let—. be the stan-
dard reduction of the asynchronomsalculus. It is clear thats .C—. We also have
that for all processe® and@, if P — @ then there is a proceggsuch thatP —. R
and@ = R.

3 Syntax of the Spatial Logic

Basic constructs of our spatial logic include propositipgpatial, and temporal opera-
tors, first-order and second-order quantifications, arghfiess quantificatiowef, [19]).
As shown later, from this basic set of connectives we can defiguite expressive set
of properties, including fixpoint combinators (supportingluctive and coinductive
definition of properties) and an internal satisfiability ratty [10].

Definition 3.1 (Formulas) Given an infinite se¥’ of name variables, and an infinite
set X’ of propositional variables (mutually disjoint from), formulas are defined as
shown in Fig. 1.

The meaning of these formulas was briefly discussed in theduottion; their seman-
tics is given later in Definition 4.17. We highlight here sooféhe more unusual op-
erators. The formul@ is satisfied by any process in the structural congruence ofas
0. The formulaA|B is satisfied by any process that can be decomposed into gesces
that satisfy respectivelyl and B. Guarantee is the logical adjunct of composition:
A B is satisfied by those processes whose composition with argeps satisfying
A results in a process satisfying. The formulan®A is satisfied by all processes
congruent with some processn) P, whereP satisfiesA. The formulad@n is sat-
isfied by any proces® such that(vn)P satisfiesA; i.e.,, by a process that satisfies
A after hidingn. Messagen(n) holds of processes structurally congruent to a mes-
sagem(n). The formulaz.A denotes fresh name quantification; a process satisfies
Nz. A if for (some/all) fresh names (fresh in the process and in the formula), it satis-
fies A{z<n}. This quantifier exhibits the universal/existential analténce typical of
freshness: a property holding of some fresh names shoudald of any other fresh
name. As we shall see, combining the fresh name quantifiamenitelation will enable
us to define a hidden name quantifier, that is a quantifier caares that are locally
restricted in the process at hand.

In formulas of the fornvz. A, Nz. A, andv X . A the distinguished occurrencesof
and X are binding, with scope the formula We define on formulas the relatiag,
of a-congruence in the standard way, that is, as the least cengeudentifying formu-
las modulo safe renaming of bound (name and propositioaaiables. We consider
formulas always modula-congruence.

Definition 3.2 (Free names and variables in formulas)For any formulaC, we in-
troduce the following sets, inductively defined in Fig. 2.

fin(C) free names i
fv(C) free name variables iy
fpv(C) free propositional variables i¢’

By fnv(A) we mean the sdt(A) U fn(A). A formula isname-closedf it has no free
name variables, andosedif it has no free variables whatsoever.

We extend the previously given notion of substitution to rarariables and for-
mulas as follows. Whe# is a finite set of either variables and names, ah a set
of namesf : S — N means thab is a substitution assigning a nameinto each
variable or name . If 6 : S — N is a substitution thefi_, denotes the substitution
of domainS \ {«} and codomainV defined by_,(y) = 6(y), forally € S\ {z}.

Definition 3.3 (Safe substitution) For any formula4 and substitutio we denote by
0(A) the formula inductively defined as follows.

o(F) = F dn®A) = 0(n)ed(A)
6(0) =0 B(Aon) = 6(A)2f(n)
0(ANB) £ 6(A)AO(B) O(Nz.A) & WNx.f_.(A)
(A= B) £ 6(A) = 6(B) O(Vz.A) £ Vz.0 ,(A)
0(A|B) = 9(A)|6(B) 0(04) = 08(A)
9(A>B) 2 6(A)>6(B) H(X) £ X
on(n’)) = 6m((n")) O(VX.A) £ VX.H(4)

C (o)) oVC)
F
0 0 0 0
ANB
Aj’lf fn(A) Ufn(B) NMA)UNB) | fpv(4) UTpu(B)
Av B
n(n') {n,n'}nA {n,n'tnV 0
A oy | Mooy [v
ol fn(4) (A \ fa) fpv(4)
oA (A) NA) VA
X 0 0 x]
VXA A A A\ (X

Figure 2: Free names in formulas.

When A and B are formulas, we denote by{ X + B} the capture avoiding substitu-
tion of all free occurrences oX in A by B, defined in the expected way. By[—]
we denote a formula context with possibly multiple occucesof the hole-. Then,
whenever is a formula, we denote bi[A] the formula obtained by textually replac-
ing every occurrence of the hole in the contextF'[—] by A. Note that free (name
or propositional) variables ial will be captured by binders present F{—]; cf., the
standard notion of context substitution.

4 Semantics

The semantics of formulas is defined by assigning to eachularmha set of processes
[A], namely the set of all processes that satisfy the propertgtéd by formulad.

However not any set of processes can denote a property inpepway. For in-
stance, it is sensible to requifel] to be closed under structural congruence. That is,
if a processP satisfies some property, then any proces§ such that) = P must
also satisfyA. We also want to be able to express freshness of names wittiorel
to [A]. Suppose we hav® € [A], n ¢ fn(A) butn € fn(P). Sincen ¢ fn(A),
the free occurrences ofin P arefreshfor the formulaA. Now, the particular choice
of the namen should not depend oA itself, since it is natural to consider that all
fresh names ford are to be treated uniformly. Therefore, it is natural to iegu
that alsoP{n<m} € [A], wherem is any other fresh name fot and P, that is
m & fn(P) ufn(A).

Hence, we say that a set of proceséds supportecby the set of name¥d if, for
all m, n notin the supporiV, if P belongs to® thenP{n<m} is also in®. We then
take as properties only those sets of processes that havea(ipport. Intuitively, the
support of a property is the semantic counterpart of thefde¢e names of a formula;
the least support of the denotation of a formula is includethe set of free names of
the formula. Sets with infinite support could only correspémformulas that have an

infinite set of free names, and are therefore excluded.

Moreover, the notion of finite support seems crucial for thmantics of the fresh
name quantifiel/lz. A, and consequently for the semantics of the derived hidderena
quantifierHz.A. The semantics of the spatial logics of [11, 10, 6] is giverems
of sets of processes that are closed only under structungiraence, but if we try to
extend that semantics to recursive formulas, we run intoodlpm: Mxz.A is not a
monotonic operator, and could not be used together withrseamu This discussion is
continued in more detail in Section 6.

4.1 Property Sets

The above observations motivate the following notiopuafperty set A property set
is a set of processes closed under structural congruendaéety supported.

Definition 4.1 (Property Set) A property se{Pset) is a set of process@ssuch that
1. (Closure undee) Forall Q,if P € ¥ andP = Q then@ € V.

2. (Finite support) There is a finite set of nam¥€ssuch that, for alln, m ¢ N, if
P € ¥then{n-m}-P € 0.

Definition 4.2 (Collections of Property Sets)
1. Py is the set of all Psets supported by the finite set of nakhes

2. P_ is the set of all Psets.

The finite setN mentioned in Definition 4.1(2) is referred to asw@pportof the Pset.
We use¥ and® to range over property sets. A suppdvtplays for a Pset a role
similar to (a bound on) the set of free names of a formula, awadbles the definition of
a notion of name freshness with respect to a possibly infagiteof processes. We use
the notationS= to denote the closure under structural congruence of atrampset of
processes.

Lemma 4.3 (Operations on Psets¥or all finite N C A,
1. If N C N' thenPy C Pyr.
2. (Bottom and Top) € Py andP € Py.
3. (Meetand Join) If C Py then S € Py andJ S € Py.
4. (Inverse) It € Py then® =P\ ¥ € Py.

Proof. See appendix. m

We can also extend the application of transpositions (nathifrary substitutions!)
to Psets as follows: if is a transposition and is a Pset, define(¥) £ {r(P) | P €
T},

Note that Lemma 4.3(2-4) implies

Proposition 4.4 (Lattice) For all finite N C A, we have
1. (Pn, C,U,N) is a complete lattice.

2. (Pn,U,N, ™) is a Boolean algebra.

10

Remark 4.5 Note thatP_ is neither closed under arbitrary unions nor closed under
arbitrary intersections. For instance, (@t;,m»,...) be a linear ordering oA, let

Py, £ 0 and for anyi > 0, P; 2 m;(n).P;_1. Then{P;}= is finitely supported (with
support{m, ... ,m;}) foranyi > 0, but{J,~,{F;}= is not. Thus the collection of
all PsetdP_ is not a complete lattice. B

However, we can recover closure under all basic set-theanpérations, by restricting
to a cumulative hierarchy of finitely supported sets [19].

Definition 4.6 For any finite set of name®d’, a collectionS of Psets is finitely sup-
ported byN if for all m,n ¢ N and® € S we have{m<«+n}(®) € S.

Definition 4.7 P%; is the set of all collections of Psets supported by the firgteo$
namesy.

Lemma 4.8 If S € P% then|J S € Py and() S € Py.

Proof.If P € [JS thenP € ® forsome® € S C|JS. IfQ=PthenQe ® € S C
US. Lett = {m«n} withm,n ¢ N. Sincer(®) € S, we also have(P) € |JS.
The case fof) S is similar. [

Definition 4.9 (Tensor and Unit) For everyPy, define operations
®: Py x Py = Py 1: Py
by letting, for all¥, ® € Py

T® £ {P|ExistsQ,R. P=Q|RandQ € ¥ andR € &}
1 £(pP|P=0}

In [10] it is shown that the set of adt-closed subsets §? gives rise to a commutative
guantale. The same result still holds for domains of Psets.

Proposition 4.10 (Quantale) For all finite N C A, (Py, C, |, ®, 1) is a commutative
guantale, that is:

1. (Pn, C,) is a complete join semilattice.
2. (Pyn,®, 1) is a commutative monoid.
3.2 JS=U{20 T |¥cS} foral®ecPyandS C Py.

Proof. See appendix. m

Lemma 4.11 (Transposing Psets)Ve have
1. For any proces$ and Pset¥, P € 7(¥) if and only if7(P) € .
2. ¥ e Pyifandonlyifr(¥) € Py (.
3. Ifm,n ¢ N and¥ € Py then{mn}(¥) = T.

Proof. See appendix. m

11

Definition 4.12 (Support) Let N be a set of names. A Ps@&tis supportecby N
whenever every permutation that fix€salso fixest. MoreoverV is finitely supported
by IV if supported byV and N is finite.

We also have

Proposition 4.13 (Least Support) Let® € Py. Then
1. There is a least set of names s¢ppsuch thatd € Psuppae,)-
2. For any transposition, supg7(®)) = 7(supd®)).

Proof. See appendix. m

Intuitively, the set of namesup{®) represents the set of “free names” of the Pset
® (in the sense of Lemma 4.11(3)), hersegpd —) is the semantic counterpart of the
setfn(—) of free names of a formula.

Remark 4.14 We can verify that a Psdlt supported byV is finitely supported byV
in the precise sense of [19]:

A name permutatiom over A is an injective name substitution such tiatr) =
J(m). Let Sy be the group of all name permutations; recall that any peatimurt can
be expressed as a composition of transpositions. For artydRse(¥) € P_, by
Lemma4.11(2). Hencié_ is anSx —set.

Now, let¥ € Py. Pick anyr € S, and assume that is not the identity permu-
tation. This implies that there is some permutatiénsuch thatr’ (rm) = «(m) for all
m € A andn'(m) # m, forallm € ©(x'). Assume that for alh € N, n(n) = n.
Then, for alln € N, 7'(n) = n. We can see thaV is disjoint from®(7') = J(x').
Hence,n’ can be written as a composition of transpositiens: - 7, such thatr; =
{pi¢>q;} andp;,q; ¢ N, foralli =1,.-- k. Thereforer'(¥) = n(¥) = ¥. This
means thatV (finitely) supports?. We conclude thaP_ is aperm A)-set with the
finite support property.

4.2 Satisfaction

We define the denotation of a formutaby a PsefA] € Py, (4). However, sinced
may contain free occurrences of propositional variabtegjénotation depends on the
denotation of such variables, which is given by a valuation.

Definition 4.15 (Valuation) A valuationv is a mapping from a finite subset &f (the
propositional variables), assigning to each propositibmariable X in its domain
D(v) a Pset¥. Given a formula4, a valuation forA is any valuationv such that
fpv(4) C D(v).

Thus, the role of valuations is to interpret free propositiiovariables occurring in
the formulaA. Whenv is a valuation, we write)[X <] to denote the valuation of
domain®(v) U { X } that assignd to the propositional variabl&’, andv(Z) to any
other propositional variablg # X . For any valuatiow, we let

(o) £ [J{supro(X)) | X € D(v)}

Taking into account the extra information yielded by a véia we now give a refined
characterization of the free names of a formdlas follows

12

[F. 29

[AAB]l, 2 [A].N[B].

[A= B], & {P]ifP € [A],thenP € [B],}

[0]. 21

[4Bl. 2 [AlL ®[Bl.

[A>B], £ {P|ForallQ.ifQ € [A],thenP|Q € [B],}
[n®A]w £ {P|ExistsQ. P = (vn)Q andQ@ € [A],}
[Aon], £ {P|(n)P € [A].}

[n(ml, = {P|P=mn)}

[Vz.A], S ﬂneA[[A{:cen}]]v

MzAle 2 Ungpee () ([A{zen}lo \ {P | n € In(P)})
[0 Al £ {P|ExistsQ. P — Q andQ € [A4],}
[X]. 2 y(X)

[[VX-A]]U = ﬂ\l/eP,[[A]]v[XelII]

Figure 3: Denotation of formulas.

Definition 4.16 (Free names under a valuation)if A is a formula andv a valuation
for A, we define the s¢” (A) of free names oft underv by

fn®(4) £ fn(4) U J{suprv(X)) | X € fpv(4)}

The setfn”(A) is used in an essential way in the definition of the semanfitsedresh
name quantifier, where the quantification witness is tesiettéshness with respect to
the property set denoted by the formwla where the formulad may contain free
occurrences of propositional variables.

Definition 4.17 (Denotation and Satisfaction)Thedenotation maj—],, inductively
defined in Fig. 3, is the function that assigns a set of preeef4], to each name-
closed formulad and valuation (ford) v. We writeP =, A wheneveP € [A],: this
means thai satisfieformula A under valuatiorv.

The boolean connectiveB,(A and=-) are interpreted as expected, while the spatial
operations related to compositiod, () are interpreted in terms of the quantale opera-
tions in Definition 4.9. Ther is given the expected semantics for the adjunct operator
of the tensor. The spatial operations related to name higéevglation and hiding) are
defined along similar lines.

In the semantics of name quantification the quantified namabhle is ranged over
the setA of all names.

The semantics given to the freshness quantifier is such thetcessP satisfies
[Nz.A], if and only if P satisfie A{z<+n}], for some name fresh inA andP: this
is the reason for subtractiqd® | » € fn(P)}, as further discussed in Section 5. Since
in generalA may contain free occurrences of propositional variableshness with
relation to formulad must be defined in terms ¢h’(A), as already mentioned; this
is justified in more detail in Section 5.2, where alternatiedinitions for the semantics
of Nz.A are also discussed.

The denotation of second order quantification is also defaseedxpected, except
that the quantified propositional variable ranges over @pprty sets (rather than all
sets of processes).

13

We now show that the denotation map is well-defined. Sinceeansidering
formulas up toa-congruence, we start by verifying that the denotation nsapell-
defined on the corresponding equivalence classes.

Lemma 4.18 For all formulas A, B and valuations for A and B, if A =, B, then
[[A]]v = [[B]]v-
Proof. Induction on the structure of. |

Note that assignments to propositional variables that daoour free in the in-
terpreted formula do not affect its denotation. Thereferdyations can always be
weakened and thinned whenever appropriate.

Remark 4.19 For any formulad, Pset® and valuatiorv for A4, if X ¢ fpv(A) then
[[A]]v = [[A]]U[X<—<I>]-

We now extend the application of transpositions to valuegjdhis is done in the ex-
pected way: when is a valuation, let-(v) be the valuation with same domainaand
defined byr(v)(X) £ r(v(X)), forall X € D(v).

Lemma 4.20 For any formula4, valuationv and transpositiorr, if 7 = {m<n} and
m,n &€ fin(v) then[A], = [A]; ().

Proof. For anyX € D (v) we havem,n ¢ supgv(X)) andv(X) € Psuppu(x))-
Thust(supg X)) = supd X)) by Lemma 4.11(3). Hence(v) = v. [

Fundamental properties of the denotation mapping aredsitatbe following main
theorem, from which all correctness properties of the seicsfollow.

Theorem 4.21 For all formulas A and appropriate valuations
1. [Aly € Ppoo(a).
2. For all transpositions, 7([A],) = [7(4)]-(v)-

Proof. See Appendix. [

The property expressed in Theorem 4.21(2) corresponde >hivarianceprop-
erty of [19], and essentially means that the denotation ajren@ila depends on the
distinctions between the names that occur on it, rather dinathe particular identities
of such names.

Lemma 4.22 For any formulad and valuationw for A we have

supp[A].) € fn"(A)
Proof. By Theorem 4.21(1)A], € Ps,»(4); hence by Proposition 4.13 there is a least
setN = supf[4],) such thafA], € Pn. Sosupg[4].,) C fn"(A).]
Remark 4.23 By inspection of the proof of Theorem 4.21 we can verify

e Assume[A], € Py and[B], € Py;. Then

[Fl. € Py [A = B], € Pnum [Aon]s € Pyugny
[0]. € Py [A|B], € Pnum [0A], € Py
[p(D)]v € Prpgy [A> B], € Pnum [XT. € Psuppe(x))

[AANB]y € Pnumr [n®A]w € Prugny

14

o If [A{zn}], € Pyugny foralln € A, then[Vz. A], € Py
o If [A{z¢n}], € Pyugny foralln & fn”(A), then[Uz. A], € Py
o If {[A]ly;xw) | ¥ € P_} € P4 then[VX.A], € Py

Lemma 4.24 Let A be any formulay[X < ¥] a valuation forA and B, and B any
formula in whichX does not occur free. Then

[A{X<B}o = [Aloix e 51.]

Proof. Induction on the structure of formuld. n

Another consequence of the closure property stated in EBnedr21(2) is that the
relation of satisfaction between processes and formulatoged under fresh name
renaming.

Lemma 4.25 (Fresh renaming)Let P be a process and a closed formula such that
Pl A Ifm & fn(A) ufn(P) thenP{n+m} E A{n<m}.

Proof. Sincem ¢ fn(P) U fn(A), by Lemma 2.8(2) we havB{n+m} = P{n<-m},
andA{n<m} = A{n+m}. We conclude by Theorem 4.21(2). [

It should be stressed that the use of transpositions, agsteghto us by A. Pitts,
together with the notion of support, yields for Lemma 4.25@ofthat is much simpler
than direct oneseg(g, [2, 10]). Further motivation and alternatives for the ergs
semantics will be discussed in the next sections.

4.2.1 Basic Derived Connectives

Some derived connectives of basic interest are defined asgmext.

-4 £ A=F (Negation)

T £ -F (True)

AVB 2 (-A) =B (Disjunction)

A|lB & =(-A|-B) (Decomposition)

Jr.A 2 Vz.-A (Existential quantification)
IJX.A & -WX-4 (Second order existential quantification)
~A £ A»F (Unsatisfiability)

A A a4 (Validity)

©n L2 eT (Free name)

n#n 2 ©ne(©non') (Inequality)

n=n" 2 =(n#n) (Equality)

@A L2 0-4 (All next)

Standard operations of the classical predicate calcuhraety—A (Negation),3z.A
(Existential quantification)4 v B (Disjunction) andl (True) are defined as expected.
Another interesting connectiveif| B, the DeMorgan dual of compositiof| B, which
supports the definition of a form of spatial quantificationprcess satisfied|| B if
and only if every component dP with respect to compaosition, satisfies eitheor B.

A processP satisfies~ A if there does not exists any procé&gshat satisfiesl. Hence

A is valid if some process satisfied [10]. A process satisfie®n if the name denoted
by n is free in it [11]. Then, any process satisfiggr’ if, in presence of a process

15

containingn free, if we hiden’ we still have a process that contaipdree: this can
only hold true ify’ andn’ denote distinct names. We also have the modalityhich

is the dual of®: a process satisfigs A if and only if all processes to which it reduces
in one step satisfy.

Proposition 4.26 For every proces® and names:, p we have

1. P € [©n], ifand only ifn € fn(P).

2. P € [n =p], ifand only ifn = p.
Proof. 1. See [11]. 2. We verify thaP € [©n > (©nop)], if and only if n # p.
SupposeP’ € [©On > (©nop)],. Then, for every® such thatn € fn(Q) we have
Q|P € [©nop],. This impliesn € fn((vp)(Q|P)), and thus: # p. Conversely, if

n # pandn € fn(Q) thenn € fn((vp)(Q|P)) andn € fn(Q|P), for all P. Thus, for
every(@ such thatr € fn(Q), we haveQ |P € [©nwp], for all P. m

4.3 Validity

We now introduce a notion of logical validity. A formul& s valid if all of its ground
instances, under all valuations, are satisfied by all psE®es

Definition 4.27 (Valid Formula) A formula A is valid if for all substitutionsé with
fv(A) C ®©(#), and for all valuations; such that fpy4) C D (v), we have]f#(A)], =
P.

We use the meta-level statemeralid(A) to assert validity of formulad. Logical
validity satisfies the following general principles.

Proposition 4.28 (Instantiation) Let F'[—] be any formula context. We have
1. For anyn and formulaA4, valid(4) = valid(A{z<+n}).
2. For any formulad, valid(F[X]) = valid(F[A])

Proof. 1. Assumevalid(A). Then for all substitutiong wherefv(A) C ©(9), for
all valuationsv such thatfpu(4) C ©(v), we haveP = [6(A4)],. Let#’ be any
substitution withfv(A{z+n}) C D(¢') and defines = 0", o {z<6'(n)}. Now,
fv(A) C ©(o). ThusP = [o(A)], for any appropriate valuation Sincec(A4) =
0'(A{z+n}), we are done.

2. Similar to proof of Lemma 4.29 (induction in the sizefgf-]). m

Lemma 4.29 (Substitutivity) Let[6(A)], = [¢(B)], for all substitution®) and valu-
ationsv, and letF'[—] be a formula context. Then, for all substitutianand valuations
w we have[o (F[A])]w = [o(F[B])]w-

Proof. See appendix. m
A direct consequence of substitutivity is

Proposition 4.30 (Replacement of equivalents) et F'[—] be any formula context. We
have valid4 < B) = valid(F[A] & F[B]).

Proof. Assumevalid(A < B). Then[#(A)], = [8(B)], for any valuationv for
A & B and substitutiod. Letw be any valuation foF'[A] < F[B]; we must show
that[o (F[A])]w = [¢(F[B])]w, for any substitutiowr. But this follows directly from
Lemma 4.29. [

16

5 Fresh and Hidden Name Quantification

In this section the semantics of Section 4 is used to invatgibasic properties of the
fresh name quantifier and of the derived hidden name quantifie

5.1 The Fresh Name Quantifier

As we have seen, freshness plays a central role in the spagdial but uses of the
freshness quantifiddz. A can be rather subtle. Consider, as an example, the formula
Nz.z(m), satisfied by any procegdsuch that, for any. fresh in P and different from

m, P satisfiesi(m). Butif P satisfies:(m), it must be congruent to(m), and hence

it must contaim. Thereforep is not fresh inP, a contradiction. In fact, the denotation

of Nx.z(m) is empty. This shows that many simple use¥lodre vacuous, when the
fresh name maps directly to a free name of the process.

There are, however, two basic ways of making good use of #shfquantifier. The
first way is to usé/ in conjunction with®, so that the fresh name is used to reveal a
restricted name of the process (then the fresh name doesapotona free name of the
original process). In this situation, we definitely do notnivthe name used to reveal
a restricted name to clash with some other name of the prodgss is one of the
reasons that motivates the use\¢® | n € fn(P)} in the semantics dflz. A (Fig. 3),
to eliminate such a possibility. The combinationléfand® is discussed further in
Section 5.3.

The second way is to us¢ in conjunction with>, so that the fresh name mapsto a
free name of the context, but not of the process. For exaropiesider the formula

Nz Vy.(z(y) > &(x(y)|T))

This formula holds of all processésthat verify the following: if a message on a fresh
channel: is composed in parallel witf?, then no reduction from the resulting process
consumes such a message.

Intuitively, we expect such a property to hold of every pisxcdn fact, letP be any
processyn some name not free iR, andm any name. Pick any procegssuch that
Q E» n(m). So,Q = n(m). Now, we verify that ifQ|P — R, thenR = n(m)|P’,
whereP — P’, because® Z n(q).R'|R". ThusP |=, n{m) > @(n(m)|T). Sincem
is arbitrary,P =, Vy.n(y) > @(n(y)|T). Sincen is neither free inP nor belongs to
fn? (Vy.x(y) > @(z(y)|T)), we concludeP =, Nz Vy.x(y) > c(z(y)|T).

Afundamental consequence of closure of satisfaction uinelgl renaming (Lemma
4.25) is the following characterisation of fresh name gifi@ation, that makes clear the
universal/existential ambivalence of freshness: if sone@e@rty holds of a fresh name,
it holds of all fresh names.

Proposition 5.1 (Gabbay-Pitts Property) Let iz. A be a name-closed formul®, a
process, ana a valuation forlz. A. Then, the following statements are equivalent

1. P =, Nz A.
2. Thereisn € fn(P) U fn"(A) such thatP =, A{zx+n}.
3. Foralln & fn(P) U fn"(A) we haveP =, A{z+n}.

Proof. (1 = 2) By definition. @ = 3) By Remark 4.19, there i& such that
n ¢ fn(P)U fn"*(A) and P |=,, A{xz«n}, wherev, is the restriction ofv to

17

the free propositional variables of. Now, pickm ¢ fn(P) U fn"4(A), and let
7 = {m<+mn}. By Theorem 4.21(2), we conclud€P) =, (,,) 7(A{z<n}), that
is, P Er(vy) A{z<m}. Note thatm,n ¢ fn(va); henceP |=,, A{z<+m}, by
Lemma 4.20(1). Henc® =, A{z<+m}, by Remark 4.19.3 = 1) Immediate. =

A corollary of the previous proposition is

Proposition 5.2 Let A be a name-closed formula amda valuation forA and B. We
have

1. [Vz.A], C [Nx.A], C [Fz.A],
2. [Nz.(A = B)], = [Vz.A = Nz.B],

Proof. 2. (Left to right) AssumeP € [Mz.(A = B)], andP € [Wz.A],. Then
P € [A{z<n}], forsomen ¢ fn(P)Ufn"(A), andP € [A{z<m} = B{z+<m}],
for somem ¢ fn(P)Ufn"(A = B). By Proposition 5.1(3), foralb & fn(P)Ufn"(A)
we haveP € [A{x+n}],. In particular,P € [A{z<+m}],, thusP € [B{z+m}],.
We concludeP € [Wz.B],. (Right to left) AssumeP € [Nz.A = Nz.B],. Pick
m & fn(P) U fn(A = B) and assumé € [A{z<m}],. ThenP € [Uz.A],,
this impliesP € [Wz.B],. By Proposition 5.1(3)P € [B{z+m}],. HenceP ¢
[Nz.(A = B)]e. L]

Fresh quantification distributes over all boolean conmestinot only implication
(cf.,, Proposition 5.2(2), it suffices to note that (trivialflz.F], = [F],). In the next
lemma, we list some other distribution properties of fresdsquantification.

Lemma 5.3 (Distribution properties of) We have

1. [Nz.(A|B)], = [Mz.AWz.B], 2.[Wz.(A> B)], C [Uz.A> WNz.B],

3. [Nz.0A], = [6UNz.A], 4. [Nz.n®A], = [neWz.A],
5. [Nx.Vy.A], C [Vy.Nz.A], 6. [Nz VX.A], C [VX.Nz.A],
Proof. See Appendix. [

It is not hard to see that properties 5. and 6. above are nct stjualities: for a
counterexample tey.Mz.A C Nz.Vy.A considerg.g, A £ z#y.

5.2 Discussion
In [19] aWN-quantifier is defined, such that
Nz.A & {n| A{x<n}} is cofinite

There is a quite close connection between higuantifier and ours, superficial differ-
ences being related to the fact that we are working in a madgt.| In our case, we
have

Proposition 5.4 P |=, Nz.Aifand only if{n | P |, A{z<n}} is cofinite.

Proof. (Left to right) Pick P =, WNz.A. Thus there is;u ¢ fn'(A) U fv(P) such
that P =, A{z+n}. By Gabbay-Pitts (Proposition 5.1(3)) we have that forrall
if n & fn”"(4) Ufv(P) thenP |=, A{z<n}. Hence{n | P =, A{z¢n}}is
cofinite. (Right to left) Assume& = {n | P =, A{z<n}} is cofinite. Then, there

18

is a finite setM (= A '\ S) such that for alla, if n ¢ M thenP =, A{z+n}. Pick
m & fn’(A)Ufn(P) U M. ThenP |=, A{z+m}, henceP =, Nz.A.]

Now, let us define the following (meta-level) quantifier
N'2.B 2 {n e A|B{z+n}}is cofinite

whereB is a meta-level statement of the (informal) theory of Psé&eztion 4. Note
that*z.B is defined exactly as thd-quantifier of Gabbay-Pitts. Then, we can read
the statement of the previous proposition as:

P € [Wz.A], it and only if U*n.(P € [A{z+n}].)

It is interesting to discuss alternative freshness quandifiOur semantics dfz. A
is such that? |=, Nz.A holds if and only if there is a name fresh both in4 and P,
such thatP |= A{z<+n} (cf., Proposition 5.1). Itis natural then to ask what happens if
n only is required to be fresh id. Let us define for this propose a different quantifier
Fz.A where

P ¢ [Fz.A] ifand only if 3n ¢ fn(A) such thatP € [A{z<+n}]

One could then attempt to defibr. A asFz.(A A =©z). Although[Fz.A] is a Pset,
the main problems witliFz. A, with respect tdlz.A, are a failure of monotonicity
(Proposition 6.5), a failure of the substitutivity propefttemma 4.29), and a failure of
the Gabbay-Pitts property (Proposition 5.1) relating toappr notion of “freshness”.

For substitutivity, we have thdin(n) V -n(n)] = [T]. So, we would expect
that[Fz.((n(n) Vv -n(n)) Az(z))] = [Fz.(T Az(z))]. Butn(n) € [Fz.(T Az(z))],
whilen(n) & [Fz.((n{n)V-n(n)) Az(z))]. So,Fz.A is not a proper “compositional”
logical operator. While, rather amazinghg. A is.

For monotonicity, consider

Y ={d{0)}= € {p),c{0)}= = ¢

Note thaty, ¢ € Py, 3, o' V(X |z(z)) = {¢} andfn*¥ (X |a(z)) = {p,q}.
On the one handy(q) |p(p) € [Fz.X|z(x)]. xy], Decause there is ¢ {q} (namely
p) such thaig(q) [p(p) € [X|n(n)].(x—y]- On the other hand, we havéq)|p(p) ¢
[Fz.(X|z(z))]ox s, because there is no out of {p,q} such thatq(q)|p(p) €
[XIn(n)]oixa). SO[Fz.(X|2(2)]oixy) € [Fr.(X|2(x))]o[xg). We conclude
thatFz.A cannot be used with recursive formulas.

For the Gabbay-Pitts property, consider wheghgt) € [Fz.—z(x)]. This means,
by definition: there is a name such thatp(p) € [-n(n)]. This is true, take any
n # p. If we had a Gabbay-Pitts property fBr:. A we would obtain that for all names
n, p(p) € [n(n)]. But this is false: takes = p. So, by the interpretation of the
Gabbay-Pitts property, the candid&te. A is not a proper “freshness” quantifier.

5.3 The Hidden Name Quantifier

When combined with revelation, the fresh name quantifieegiise to a natural oper-
ation of quantification over hidden (restricted) names inazess. Intuitively, a hidden
name is revealed under a fresh identity, and then a propeeyderted of the process
where the name is hidden.

Hz.A £ Nz.2®A

19

A formulaHz.A reads “there is a restricted namesuch that4 holds for the process
under the restriction”. From the above definition, we getftiewing direct semantic
characterization of the name-closed formidia A

[Hz.A], ={Q | Q@ = (vn)P andn ¢ fn(Q) U fn’(A) andP € [A{z+n}].}

The hidden name quantifier makes it possible to express prep®f processes
that depend on (or need to mention) some secret name. Foteasimiple example,
consider the closed formula

Jy.Hz.(y(z)|T)

We can verify that a process satisfies this formula if thergoime name: such that
P satisfies the formulddz.(n(z)|T). But this means that there is some name
fresh with respect t&® andHz.(n(z)|T), such thatP = (vn)Q and@ = n(m)|R
for some@ and R. In summary,P satisfies3y.Hz.(y(z)|T) if and only if P =
(vm)(n(m)|R) for somem andn # m (hencen is public). We conclude that the
formulady.Hz.(y(x)|T) is satisfied by those processes that are ready to seadrat
name over @ublicchannel.

As a further example, let{z} be some formula with a free occurrence of the name
variablez, and consider

KeepgA{z}) £ Hz.A{z} A (T > OHz. A{z}|T)

A process that satisfigseepsA{z}) is always able to guarantee, until the next step,
persistence of property with respect to some secreit owns, even when attacked by
some other arbitrary process. L@tbe the process

(vm)(m(n)|la(p).m(q).m(p))

We havefn(Q) = {a,n}. Now defineMsg(z,y) £ (z(y)|T). We can verify that)
satisfieKeep$ly.Msg(z, y)).
As a further example, consider the formula

NoRes2 —Hz.©x

A processP satisfiedNoResdf and only if it is not the case that there is a proc@sand

a namen such thatP = (vn)Q andn € fn(Q). In other words P satisfiesNoResf

and only if for all processe@ and names such thatP = (vn)Q we haven ¢ fn(Q).
Intuitively, this means thaP has no “genuine” restricted hidden name at the outermost
level, because i = (vn)Q for some@ andn, thenP = Q (n ¢ n(Q) implies
(vn)Q = Q). So, we will callrestriction-freeany process that satisfiddoRes For
instancen(m) satisfiesNoResand so doesvn)m(m) if m # n, but(vn)n(n) does

not.

Lemma 5.5 (Some properties oH) We have
1. [Hz.(AA -©2)], = [Nz.A],
2. Ifx & fn(B) then[Hz.(A|(B A =©x))], = [(Hz.A4)|B].
3. [Hz.A|Vz.B], C [Hz.(A|B)],
4. [Hz.0 A], = [OHz.A],

20

Proof. 1. (Left to right inclusion) Pick some process € [Hz.(A A =©z)],. By
the characterization given above, this means that (vn)(Q for some@ andn such
thatn ¢ fn(P) U fn"(A) and@ € [A{z<n} A ©n],. Butthen,n ¢ fn(Q) and
Q € [A{z<n}],. We concludeP = (vn)@Q = @, by Proposition 2.12(2). Therefore,
P € [Nz.A],. In the other direction the proof is similar.

2. (Lefttorightinclusion) Let € [Hz.(A|(BA-©z))],. ThenP = (vn)(Q|R),
heren & fn(P) U fn¥(Hz.(A|(B A =©2))), @ Ev A, R =, B andn ¢ fn(R). Then
P = (vn)Q|R, and we concludé’ |=, Hz.A|B. The converse inclusion is also
immediate, using Proposition 5.1.

3. (Left to right inclusion) LetP € [Hz.A|Wz.B],. ThenP = Q|R where for
alln ¢ fn(Q) U fn?(A) there isQ’ such thaty = (vn)Q' andQ’ |, A{z+n}, and
R | B{z<p} forall p ¢ fn(R) U fn"(B), by Proposition 5.1. Pickn ¢ fn(Q) U
nY(A) U fn%(B) Ufn(R). HenceR =, B{z+m}. Moreover, there ig)"” such
thatQ = (vm)Q" andQ" =, A{z<+p}. S0Q"|R E (A|B){z<m}, and thus
(vm)(Q"|R) = Hz.(A|B). To conclude, note that = (vm)(Q"|R).

4. (Left to right inclusion) Pick some processe [Hz.©A],. So,P = (vn)Q
for some@ andn such that) — Q' and@’ € [A{z<n}],, wheren is fresh with
respect toP and A. But thenP — (vn)Q'. Sincen is also fresh w.r.t(vn)Q’, we
conclude(vn)Q' € [Hz.A],. HenceP € [¢Hz.A],. (Right to left inclusion) Take
some proces® € [OHz.A],. Then there ig) such thatP — @ and@ € [Hz.A],.
Then@ = (vn)R whereR € [A{z+n}], andn & fn(Q) U fn"(A). Now, since
P — @Q, by Proposition 2.15(3) there af¢ andR' such that? = (vn)P’, P’ — R’
andR’ = R. This means thaP ¢ [Hz.0 A]. [

In the next section, we give further examples using the hidueme quantifier
together with recursion.

6 Recursive Definitions

The possibility of defining properties by induction and @hiction is a major source
of expressiveness of our spatial logic. Of particular ies¢is the combination of prop-
erties involving recursion and freshness.

6.1 Encoding Recursion

We show that recursive definitions can be expressed in theVemsecond order quan-
tification and the guarantee operator. We begin by encoditidity of a formulad by
~-A (see Section 4.2.1):

1A 2 (A=>F)sF (Validity)
We compute:

['A]. = [(A = F)>F],

= {P | Forall R.R € [A = F], = P|R € 0}

={P|Forall R-R € [A = F],}

= if [A], = P thenP elsef)

Next, we can us§!(A = B)], to say thaf A], is included in[B],:

A= B 2 (A= B) (Entailment)

21

Then
[AE B], = [(A= B).
=if [A = B], = P thenP else()
=if {P| P € [A], = P € [B],} = P thenP elsef
= if [A], C [B]. then else

Finally, we can use the following formula to define the greaf@opertyY” such
thatY < A, providedA is monotonic inY’:

VY. A £ FYYA(Y = A) (Greatest fixpoint)
We can verify

[VY.A], = [AY.Y A (Y & A)], =
User. @ N (if @ C [A]uya) thenP elsel) =
U{® [@ € P and® C [Alyy. s}

We now show that the last line above defines a greatest fixpoint

Lemma 6.1 For any formulaA and valuatiorw with fpM(A) C ©(v) U { X'} the map-
ping $(x) given by

T (®) 2 [Aluix v
isamapping®. — P_.

Proof. Let ¥ € P_. Then¥ € P, for some finite set of name&/. Let M' =
M U fn?(A4). Sincefn’™<¥(4) C M U M’ by Theorem 4.21(1) we conclude
[Aloix—w) € Prronr CP_. L

A mappingf : P_ — P_ is monotonidgf ¥ C & implies f(¥) C f(®) for all
Psets¥ and®. For any mapping : P — P_, afixpointof f is a Pse@ € P_ such
that f(¥) = ¥. The C-greatest (respectively-smallest) fixpoint off, if it exists, is
denoted bygfix(f) (respectivelyffix(f)). We say that a formulal is monotonic inX
if for all valuationsv the mappin@;’w{) is monotonic. We have

Lemma 6.2 Let A be a formula monotonic itk'. Theng?, v, has a unique greatest
fixpoint given by

Proof. First, note that althougB_ is not a complete lattice we still haje X.A], €
P_ by Theorem 4.21 (1), sinaeX. A is definable in the logic. Let = [vX.A], and
o Y (©) = [Alyx o] We verify that® = @. We first check tha® C @.
If P € &thenP € ¥ for some¥ € P_ such thatt C [A],;xw. Since¥ C &,
by monotonicity, we havel C [A],xe = ® and thusP € ®. On the other
hand, since® C @, by monotonicity, we hav@A],xe] = ® C [A]y[x«a].- Then
® C [vX.A], = &. Finally, if some¥ € P_ verifies¥ = [A],[x v then¥ C &.
Hence we conclude the result. L]

Note that Lemmas 4.24 and 6.2 imply soundness of the unfpldimciple for
v X A, thatis we havgr X.A], = [A{X+vX.A}],.
Similarly we can define the least fixpoint operator

uY A £ VWA Y)=Y (Least fixpoint)
and note thafuY.A], = N{® | ® € P_ and[A],}y s C ®}. We then have

22

¢ Neg(C) PogC)
F
0 0 0
n(n")
AA?BB Neg(4) UNegB) | PogA) U PogB)
i::g PogA) UNegB) | NegA) UPogB)
n®A
Aon
V. A Neg(A) PogA)
Nx. A
oA
X 0 X}
vX.A Neg4) \ {X} PogA4) \ {X}

Figure 4: Negative and Positive occurrences.

Proposition 6.3 (Induction and Coinduction) Let the formulaF’ be monotonic inX.
For any formulaA such thatX ¢ fpv(A), we have

1. valid F{X+A} = A) = valid(pX.F = A)
2. validA = F{X+A}) = valid(A = vX.F)

Proof. (1) We assumealid(A = F{X<«A}), and provevalid(A = vX.F). To
that end, we select any valuatienfor A = vX.F, any substitutiord and show
[f(A)]s C [0(vX.F)],. We have

[0(A)]o C [O(F{XA}))]w = [0(F)H{X0(A)}o
By Lemma 4.24[0(F){ X +60(A)}], = [0(F)]v[x«[o(4)].]- BY assumption we have
[0(A)]s C [0(F)]ox—[oa)].;- Hence8(A)], C [(vX.F)],. (2) Similar to (1).m
Along usual lines, some syntactical conditions on the freeuaences ofX in a
formula A can be imposed in order to ensure monotonicityoof A.

Definition 6.4 (Negative and Positive Occurrences)or any formulaC, the setNeg(C')
(resp. Pog(C)) of the variables which occur negatively (resp. positiyétyC are in-
ductively defined in Fig. 4.

We say that a propositional variahléis positive(resp.negativg in A if X € PogA)
(resp. X € NegA)). We also say that a formuld is monotonic inX (resp. anti-
monotonic inX) wheneverX ¢ Neg(A) (resp.X ¢ PogA)). Note that a variabl&
can be both positive and negative in a formdlaMoreover, if X is either positive or
negative ind thenX € fpv(A). We have

Proposition 6.5 (Monotonicity) For all formulas A, appropriate valuations, and
Psets¥, ¢

1. If X ¢ Neg(A) and¥ C & then[A],;x—w] C [A]vjxa]
2. If X ¢ PogA) and¥ C @ then[A],x e € [Aloxw-

23

Proof. See Appendix. m

Alternatively, a semantic monotonicity property can beresged within the logic.
Then, the definition of fixpoints and the derivation of theiojperties (e.g. unfolding)
can be carried out entirely within the logic (by carryingragomonotonicity assump-
tions), without relying on metatheorems such as Propasié. To this end, for any
formula A with Z free, andX, Y fresh we can define:

A{Z+} 2 WXVY.(X B Y) = (A{Z«X} = A{Z«Y})
We can verify:
[A{Z+}], =if (Forall ® and¥. & C ¥ = [A],1z—a) C [A][zw)) thenPelse)

where the formula in parentheses expresses the monotoafcihe mapping® —
[A]lv1z), which is fromPP_ to IP_ by construction.

6.2 Recursion and Freshness

The semantics of the fresh quantifiéz. A is based on finding fresh names outside of
n?(A4) = fn’(Nz.A), and therefore outside the supporfifz. A], (by Lemma 4.22).
The fact that names outside the support can be freely renéhed@heorem 4.21(2)
and Lemma 4.25) implies that any choice for a fresh name vatkvequally well.

Itis instructive to see how freshness interacts with rdonrConsider the formula

vY Nzn(z)>0Y
By the fixpoint unfolding property, this formula must have tame meaning as
Nz.n(z) > @(Nz' n{a')y > ¢)

Obviously, thefn™ (—) of the original formula and of its expansion are the same. So,
“at each iteration” we have to choose fresh names outsidsaimne set of names, and
there is an infinite supply of them. Moreover, at each iteratthe\{P | n € fn(P)}
part of the semantic definition dlz.A subtracts those processes that use hames that
have been chosen in previous iterations. Further, sincéelsh names used at each
iteration can be freely renamed, they do not affect the suget, by Definition 4.1(2).

As already discussed, the notion of finite support and Pestserucial for the se-
mantics oz.A. In particular, without a notion of finite suppodf(, Definition 4.1(2)),
it seems naturalto s¢t’(X) £ {n | n € in(P) andP € v(X)}, since we must some-
how take into account the names contributed by (a bindingkof)rhen, consider the
set¥ = {p(p)}= and the formulad = Nz.(~z(z)|X), with fnlX ¥ (4) = {p}. We
can easily check that

9@ p) € [Alxew = |J ()| X]xew \ {P|n € Mm(P)})
né{p}

Now consider® = {r(r) | r € A}= with ¥ <*/(4) = A. So we have that
«)p(p) & [Alxea) = 0. Hence,¥ C @, but[A]ix v £ [A]jxa; a fail-
ure of monotonicity.

Instead, in our semantit¢4z. A is a monotonic operator, (see Proposition 6.5 (1,2)),
the functional associated with a fixpoint formw& . A is in fact a monotonic operator
P — P_(see Lemmab.l).

24

6.3 Using Recursion

By combining fixpoints formulas with hidden name quantificatwe can describe a
“nonce generator”, that is, a process that sends an unbdunmdeber of fresh names
on a channel:

vX.Hz.m(z)| X

We can verify that(vn)m(n) | vX.Hz.m(z)|X. Let® = {P | P = (vn)m(n)}.
We have that € Py,,;. It suffices to check thad C [Hz.m(z)|X]xq]. For this,
take anyP € @, so that we havé® = !(vn)m(n) = (vn)m(n)|!(vn)m(n). The
left subprocess is ifiHz.m(x)]x —¢], and the right one is i® = [X]x 4. More
generally, we can verify tha® = A implies!P = v X.(A4|X).

The standard “always in the futuré’4 and “eventually in the future® A modali-
ties of (branching time) temporal logic are defined as usual:

04
QA

vX.(AANEX) (Always)
puX.(AVOX) (Sometime)

A
A

For these connectives we have
P ¢ [OA], if and only if for all @ such that? = @ we haveQ € [A],
P € [0A], if and only if there isQ) such that? = Q andQ € [A],

By combining fixpoints with spatial and temporal connectivme can define many
interesting properties. For instance, consider the fallgviormulas:

Client 2 Hz.(Proto(x)| Request (x))

Server2 vY.Mz.Proto(z) > O(Handler(x)|Y)

A processP realizes theClient specification if it is built out of two components satis-
fying Proto(z) and Request(xz) wherez is a hidden name aP. The intention is that
Proto(x) specifies some protocol th&tcan perform with its environment, making use
of the hidden name, while Request(z) describes further properties Bfwith respect
to x. For example, we may have

Proto(z) £ n(z)

meaning that the protocol is just to send the nano& channeh.
FormulaServerspecifies a somewhat more involved property. By unfoldirey th
recursive definition, we conclude th&éerverdenotes the greatest property such that

Servers WNy.Proto(y) > O(Handler(y)|Servey

Hence, a procedq satisfies theServerspecification if in presence of another process
executingProto(y) for some/any fresh namg () is guaranteed to evolve to a sys-
tem composed of two parts, one satisfying propéfandler(y), and other satisfying
propertyServer(for example, a copy of the initial process). Note that thargntee is
provided just for protocols that play accordingReoto(y) for a fresh naménonce)y
(fresh with respect to th8erve}. We can then verify that the following entailment is
valid

ServefClient= {(ServeftHz.(Request(z)|Handler(x)))

25

This formula means that any system composed Ijlient and aServeris guaran-
teed to possibly evolve to a configuration wher8exverpersists along with a pair of
processesiequest(xz) and Handler(z), that share a secret

We can also introduce the following derived operators andystheir characteriza-
tion

groupA £ upX.(0VA|X) (Group)

insde® A £ uX.(AVHz.X)

inside” A £ S inside® =4

A £ insde’(A|T) (Somewhere)

SA £ inside”(A|F) (Everywhere)
The formulagroup A holds of any proces® such thatP = @] ...|Q for some
processe§)s, ..., Qr, Where eacli); satisfies4.

The formulainside 4 holds of any proces® such thatP = (vny) - - - (vng)Q

for some fresh names; , . .. ,n; and proces§), where() satisfiesA.

Lemma 6.6 We have
[wX.(AVHz.X)], ={(wn1)---(wne)Q | Q € [A], andn; & fn"(A)}=

Proof. Let ¥ £ {(vny)---(vn)Q | Q € [A], andn; ¢ fn"(A)}=. Let M =
fmn"(A) = fn"(inside?A); it is easy to check thal € P,;. ¥ is closed under
structural congruence by construction. Also, pick any pss@ € ¥, name, q ¢
M and letr = {p+»q}. ThenP = (vnq)---(vni)Q where@ € [A],. Hence
7(P) = (v7(ny)) -+ (v7(ng))7(Q), and we have (@) € [A],. We want to show
that? = [puX.(AV Hz.X)],.

We first prove¥ C [pX.(A V Hz.X)],. To that end, we take arndy € IP5; such
that[A vV Hz. X], x s € ® and verify¥ C .

Pick P € ¥. ThenP = (vny)--- (vng)Q and@ € [A],, for somek > 0. We
show by induction ok that P € ®.

If £ = 0, we haveP = @ € [A],, and thusP € [A V Hz.X],x s by Re-
mark 4.19, sinceX is not free inA. HenceP € ®. If k > 0 we haveP = (vn,)P’
where P’ = (vng)---(vng)@ € Y. By induction hypothesis, we haw®’ € .
HenceP' € [X],x«a]- ThusP € [n1®X],x«a)- We haven, ¢ fn(P) and
m ¢ M = X)) = N UNzaeX). ThenP € [HeX]uxea
and soP € [AV Hz.X],xs). We concludeP € @, also in this case. Hence
U C [pX.(AVHz.X)],.

Finally, to show[uX.(A vV Hz.X)], C ¥, it suffices to verify the inclusiofi4 v
He. X],xew C ¥. If P € [AV Hz.X],x v then either? € [A], and thus
P € U,orP = (vn)P' whereP' € ¥ andn & fn'(A) Ufn(P). In the last case, is
also immediate thaP € ¥. We concludel = [pX.(AV Hz.X)],. [

A processP satisfied 14 if and only if somewhere insid®, possibly under some
restricted names, there is a component satisfyintn a similar way, a process satisfies
inside” A if and only if for all namesuy, . . . , ny fresh with respect tel, and processes
Q@ such thatP = (vn,) - - - (vng)Q, Q satisfiesA.

A processP satisfies> A if and only if all components oP, regardless of the local
name contextin which they are placed, satidfyFor example, a proceg3satisfies the
closed formula’>—3z.3y.z(y) if and only if it contains no unguarded messages. Thus
the formula(>—3z.3y.2(y) = EF, asserting that every process without unguarded
messages is bound to inactivity, is logically valid.

26

For an example of a property making use of several of the apatid temporal
modalities consider

Membetz) £ ©z A Vy.(y(z)|T =y =)
Group £ OHz.(group Membetz))

A process satisfieGroupif all of its future states will always be composed by a group

of processes sharing a secretaind such that each member of the group is only able to
sendz on z itself: in particular, this means that no group member cad $be secret

x on a public channel, since is a restricted (hence not public) name in the whole

process.

7 Discussion

7.1 Structural Congruence and Intensionality

Structural congruence is usually considered just as a teglafevice, as a convenient
intermediate step towards what really matters: a behadvsmmantics of processes.
In this views, structural congruence seems to have no stiagemeaning in itself.
Processes are seen more as pure behaviors than as conmaltsygtems possessing
interesting structural properties. Then, process opeyat@ seen as mappings behav-
iors to behaviors, completely forgetting the structure mfgesses and their individual
identity. So, any interpretation of structural congruemag appear as strangely inten-
sional.

However, spatial structure (i.e. something finer than bielalequivalence) has
always been discussed in the concurrency literature. Ftarnce, at the beginning
of his 1989 “Communication and Concurrency” book, Milneysa’Underlying both
these notions is the assumption that each of the several glastich a system has its
own identity which persists through time.[] For if we wish to identify a particu-
lar event we have little choice but to identify the agentscahityparticipate in it; this
amounts to determininghere i.e. at which part or parts, the event occurs”. Early pa-
pers on CCS made a precise distinction between static &etid dynamic (temporal)
operators. The view of a concurrent system as a spatialiitalised collection of inter-
acting agentsis also implicitly present in the actors madelin the Chemical Abstract
Machine model; the latter was the inspiration for the stitaltcongruence-based pre-
sentation ofr-calculus [26]. The spatial view of a system of processegaggpagain
in the bi-graphical models Milner is considering recen8g]l

Increasingly, the emphasis has been shifting, both in joeeind in theory, from
concurrentsystems talistributedsystems. We see a distributed system as a kind of ac-
tive data structure, with localized parts and an internchiéecture. Different internal
architectures should not be equated, or everything mighatpse to the single-machine
case. So this is not a question of intensionality but rathguestion of expressive (or
observational) power. It is also important to realize thatisknown extensional tech-
nical tools carry over naturally to the spatial case, anchateestricted to a particular
view of the world. Such is the case for Hirshckoff, Lozes amati@orgi's space-time
bisimulation [23].

Admittedly, we take a rather radical position here, basiaglogic entirely on the
intentional interpretation. It would be conceivable, faample, to have two kinds of
parallel composition, only one of which having a spatial dlavBut, in any case, a
structural congruence relation is needed to model someidgbroperties of space, in

27

the same way as (labeled) reductions model properties aiviimh Both dimensions
seem useful in the design of a calculus of concurrency. Bimtiedsions induce partic-
ular structures whose properties are important; we seégdag specify both kinds of
properties.

7.2 Structural Congruence: Technical Aspects

In retrospect, we may justify the introduction of structurangruence in process cal-
culi, factoring it out from other process congruences likgrbulation, not just as a
technical device towards something else, but as a way to motiens of spatial struc-
ture into the process model.

There is still, however, a hard question about what exadtyukl be the rules
of structural congruence. There has always been a gray atesedén equivalences
embedded in structural congruence and equivalences ddriwv@xtensional means.
Even some properties of structural congruence that we adaph as the expansion
law for replication! P =!P|P, have a rather doubtful spatial interpretation. Still, ove
time, a rather standard set of rules has emerged. Some ravesheen motivated
by decidability concerns [18, 13, 12], which turn out to batcal to any practical
application of our logic.

We feel we have made some contribution to this issue, becase expected or
convenient logical properties require certain propexiestructural equivalence. This
way, we helped wrestle some equations out of the gray areselgahe commutation
of input with restriction.

Still, one may wonder: what is the equivalence induced byhsart intensional
logic, and how sensitive is it to the definition of structurahgruence?q.f. [22, 29].)
For the closely related Ambient Logic, Sangiorgi has shomat togical equivalence
characterizes (essentially) the structural congruene¢ion adopted there [33], and
we expect similar results to hold in many spatial logics. Wé® &xpect this kind of
results to facilitate decisions about the definition of stwal congruence.

7.3 Logical Adjuncts

The guarantee operator was invented very early in the wotk@Ambient Logic [10],
in order to write security specifications for processes wuaylkn hostile contexts. Only
afterwards we realized that guarantee was the natural etdjficomposition, and that
the adjunction property greatly simplified the system obaxs that we were deriving
from the satisfaction semantics.

This aspect of the early logic was so satisfactory that weelgtwent looking for
other adjunctions (for ambient formation, and for revelatas in this paper). While
these other adjuncts are not immediately intuitive, theyhave strong logical prop-
erties that can be used effectively in algebraic maniparatie.g. for hiding we get
-(Aon) a4+ (-A)on). Each adjunct has an interpretation in terms of a security
property: for guarantee it is correctness in presence ohéigumous attacker, and for
hiding it is correctness in presence of an attacker that @utkannel to the outside
world.

Adjuncts eliminate the need for other operators, and tbeediltimately simplify
the logic. For example, via adjuncts we can define name agudllore interest-
ingly, Sangiorgi characterized logical equivalence inAmebient Logic [33] by clev-
erly defining logical formulas that capture certain prodeshaviors. One of those

28

formulas corresponds to input processes, for which, likthepresent logic, we did
not have (and, as it turns out, we did not need) a primitivecllgperator.

Rather surprisingly, the guarantee operator can be usegfittechn internal notion
of validity and satisfiability. Initially this seemed a cosity, but we were able to
take advantage of it in a definition of recursive formulad tled to a considerable
simplification in the proof of the main theorem (as discudseldw).

Adjuncts fit naturally in the sequent structure investigatePart Il of this paper,
where guarantee is the natural “implication” that corregjsto the composition “con-
junction”, leading to a “modus ponens” style rule. Moreqgvarrecent work [7] it
is shown that the guarantee operator is tractable in a fiage,ceven if it appears to
guantify over an infinite collection of contexts.

7.4 Second Order and Recursion

The second order quantifier was introduced at a late stagéo that point [4] we had

greatest fix-point formulas as a primitive, with a syntactionotonicity restriction.

The proofs of Theorem 4.21 and the equivalent of Lemmas & v6re entangled by
a mutual induction, because the fixpoint case of TheoremMadlo rely on a mono-
tonicity property. This made both the statement and thefmobheorem 4.21, and the
structure of the paper, more complex and obscure. The semwled quantifier does
not introduce such difficulties, allowing for a self-comted proof of Theorem 4.21.

Via second order quantification and guarantee we are thentallefine greatest
and least fixpoints, and we can derive their rather subtlpgrtes and rules. More-
over, we can define monotonicity assumptions internallyhaut having to rely on a
meta-level restrictions on the syntax. This way, the tresinof recursion becomes
completely formal and internal to the logic. We believe thipreferable even indepen-
dently of the above argument about proof techniques.

Alternatively, we could have derived the recursion lemnmasifgeneral properties
of Nominal Set Theory [19, 31] (in fact, Psets are nominad)sédowever, for the sake
of concreteness, we preferred to work them out in detail, stamdard set theoretic
framework.

7.5 Alternative Semantics

In the definition of the semantics for our logic, the struetof Psets is put to use
only in the clause for the second-order quantifier, and inctaase for the freshness
quantifier (becausf” (A) usessupg —)). But if we consider a restricted logic without
second-order connectives (or fixpoints) and propositieaahbles, it turns out that
[A] is a set of processes finitely supportedibyA), for very general reasons related to
equivariance properties of satisfaction. Therefore, thméwork of Psets and Gabbay-
Pitts’s theory ofa-conversion based on transpositions [20, 19, 31] seems thee
natural setting to develop the semantics of our logic. Nixedess, we may discuss
alternative formalizations of notions of freshness.

For example, in [6, 3] the satisfaction relation for a redakegic is indexed not
only by a valuatiorv, as in our current semantics, but also by a finite set of natnes
(a signature): a closely related approach has been adopfedrh in his development
of modal logics for ther-calculus [16, 17]. In the former approach&s,P =, A is
only defined when the free names@fandA are included irt (roughly, because free
names in the image af must also be taken into account), and we witec [A]*
whenX; P =, A. The signatur& is mainly useful to assist in the generation of fresh

29

witnesses, namely, in the semantics in [2]js extended element by element in the
semantic clauses for the universal and the hidden nameifjea(d primitive). For
instance, the semantics of the hidden name quantifier isetkfinus:

Y, P =, He Aifand only if P = (vn)Q andX, n; P |=, A{z<n}

where freshness is ensured by the provisp X.

Although in principle this approach should also work for dagic, we find that
the technical development would not turn out to be simplére &xplicit indexing of
the semantics over signatures causes satisfaction to lsetsitive to the name frame
one choosese.g, for no finite set of names we get[T]* = P, while in our present
semantics we concludd] = P immediately.

Another inconvenience of the explicit indexing is the neteldrings, in our case,
of obtaining technical principles of preservation of datition under renaming, thin-
ing and weakening of the signature. Such principles areawddr instance, to show
the spatial extrusion properties of the hidden name quaniiemma 5.5(2)), and
the counterpart of the Gabbay-Pitts property, which areraatic in our more lax se-
mantics. These are specific requirements of the semantiwgrdbgic, related to the
presence of the tensor and modalities for name restrictiaat,do not arise in more
standard logics for the-calculus [16, 17].

Some technical complications also arise in the definitiothefsemantics of fix-
points and related propositional variables, that would absrry over to the semantics
of second-order quantification. In fact, suppose we define

[uX-BIY £ (¥ CPE) | [Blixew € ¥}

whereP(X) is the set of all processes with free names included.ilNow, consider
the following formula (N.B.NoRess defined in Section 5.3)

A2 pX.(NoResv Hz.X)

Intuitively, the formulaA is satisfied by all processes one gets by embedding a rest-
riction-free process under a certain number of restristiomore precisely, by all pro-
cesses of the forrfvn,) - - - (vny,)Q with @ restriction-free. Now, considdrd]?, the
set of all processes without free names that satisfiWe expecte.g, (vn)n(n) €
[A]°. However, by the candidate definition above we get)n(n) ¢ [A]°, be-
cause[NoRe§’ = {0}, the set® 2 {0} verifies[NoResv Hz.X]{y 4 = @ and
(vn)n(n) ¢ ®. This shows that such semantic definition for the least fixpisi not
adequate. Then, to get a correct definition, compatible thig{—]> semantics, in-
stead of ranging? over all subsets dP(X) we must rang& over a larger collection
of subsets of”. Such a collection turns out to be essentially the colleatiball Psets
supported by (in the sense of the present semantics). In fact, by workisiglé the
domain of Pset®_, we can define the semantics of least-fixpoint in quite stahda
terms:

[0X.B], £ (¥ € P | [Blyxu) C ¥}

as shown in Section 6 (and indirectly in [4]). Another po#gih adopted in [16, 17],

it to forbid all occurrences of free names in fixpoint formajleequiring instead the ex-
plicit parametrisation of propositional variables on teé af “free” names their deno-
tations can use. Such technique seems difficult to adoptrinase, because it requires
formulas and propositional variables to be assigned fixdégsr This makes it hard

30

to obtain,e.g, the needed signature weakening principle, or a generatifutivity
principle (Lemma 4.29 and Proposition 4.30).

Another aspect that deserves some discussion relates tsewffn’(A) in the
semantic definition of freshness. Our definition of the sararf freshness makes
use of the auxiliary concept” (A), the set of free names in a formulaunder a valu-
ationv (Definition 4.16). The set of nam¢ga’(A) gives a bound to the support of the
property set denoted hy underv, and is fully justified by Theorem 4.21 (1). However,
we may question why in the definition #it”(A) both syntactic (the free names 4j
and semantic information (the support of the Psetg itome into play. To remove this
explicit reference to the free namesAfwe might consider an alternative presentation
of the logic, where pure names are banned from the syntaxwiuias, and semantics
is defined with relation to extended valuations interpigtiot just propositional vari-
ables, as in our preferred semantics, but also name vesiableis alternatived —]*
semantics avoids any mention of the free names of the forswaad is equivalent to
the one given: we can verify thatdf, andvy are the restrictions of a valuatierto V
andX respectively, then we hayjel]’ = [vy(A4)]y, forall formulasA and valuations
v. The semantics of the freshness quantifier could then be @iye

Mz Al 2 () ([ALgen \ {P [n € (P)})
ng¢J(v)

whereJ(v) is the image (or range) of a valuation defined byJ(v) £ {v(z) | = €
YND(v)}ulU{supv(X)) | X € X ND(v)}. Note that in this definition names are
picked fresh with respect to the “global” s&tv), instead of the “local” sefn” (A):
this fact has some unfortunate consequences. Namely, timtezpart of Remark 4.19,
stating invariance of the semantics with respect to wealgnof valuations, would
then require an extended amount of propertieg,(the Gabbay-Pitts property, Propo-
sition 5.1), to be established at an early stage of the dpwaat, namely as additional
clauses to the statement of the main theorem (Theorem 4.21).

8 Conclusions

We have investigated the satisfaction relation for a logicancurrent processes that
includes spatial operators, freshness quantifiers, anotgige formulas. In particular,
we have shown how coinductively defined logical propertietliding freshness quan-
tification can be given a semantics in terms of maximal fixfsoim a lattice of finitely
supported sets of processes.

The logical rules arising from such a satisfaction relatoa investigated in Part
I of this paper [5]. Several interesting logical propestleave already been discussed
with respect to this model.

Some properties of the logic are very sensitive to the foatiuh of structural con-
gruence (in fact, Sangiorgi has shown that the process @guiee induced by a similar
logic is essentially structural congruence [33]). Therahigays a tension between em-
bedding an expected process equivalence into the defimfistructural congruence,
or leaving it as a derived behavioral equivalence. Someetbkigical properties have
provided new insights into this delicate balance.

The general structure of our definitions can be easily adaatevarious process
calculi, and is also largely independent from the detailthefoperational semantics.
Although the semantics considered here is based on unthbalesition systems, it

31

could be extended in a natural way to labeled transitionesyst motivating then the
introduction of Hennessy-Milner-like “labeled” modadisi into the spatial logic. Nev-
ertheless, some basic features of what a formula denotegpalosure under struc-
tural congruence and finite support, should be expecteditbihall variations.

In conclusion, the general term of “spatial logic” has alfeivell defined, though
informal, meaning. A spatial logic always offers a degreénténsionality, in order
to talk about fine details of process structure. This is whakquired if we want to
meaningfully describe the distribution of processes amdube of resources over a
network.

Acknowledgments Andy Gordon contributed to the early stages of this paper. Re
marks by Andy Pitts lead to several improvements in the séiogaf our logic. We
also acknowledge many useful comments by Mads Dam. Thamskstal Giorgio
Ghelli, Philippa Gardner and Luis Monteiro for relatedadissions. The anonymous
referees also contributed useful comments. Caires ackuongk the support of Mi-
crosoft Research for a visit to the Cambridge Lab during ithhe tve worked on this
paper, and Profundis FET IST-2001-33100.

References

[1] G. Boudol. Asynchrony and the-calculus (note). Rapport de Recherche 1702,
INRIA Sofia-Antipolis, May 1992.

[2] L. Caires.A Model for Declarative Programming and Specification withn€Cur-
rency and Mobility PhD thesis, Dept. de Informatica, FCT, Universidade Nova
de Lisboa, 1999.

[3] L. Caires. A specification logic for mobility. Technicaport, Universidade Nova
de Lisboa, DI/FCT, 2000.

[4] L. Caires and L. Cardelli. A Spatial Logic for Concurrgn¢Part 1). In
N. Kobayashi and B.C. Pierce, editoRoceedings of the 10th Symposium on
Theoretical Aspects of Computer Science (TACS 20@1)me 2215 ot ecture
Notes in Computer Sciengeages 1-30. Springer-Verlag, 2001.

[5] L. Caires and L. Cardelli. A Spatial Logic for Concurrer(®art I1). INnCONCUR
2002: Concurrency Theory (13th International Conferendecture Notes in
Computer Science. Springer-Verlag, 2002.

[6] L. Caires and L. Monteiro. Verifiable and Executable Sfieations of Concur-
rent Objects inC .. In C. Hankin, editorProgramming Languages and Systems:
Proceedings of the 7th European Symp. on Programming (ESSOB),Inumber
1381 in Lecture Notes in Computer Science, pages 42-5@prMerlag, 1998.

[7] C. Calcagno, Luca Cardelli, and Andrew Gordon. Decicvadjdity in a Spatial
Logic of Trees. To appear, 2002.

[8] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logie fpierying graphs. 189td
Colloguium on Automata, Languages and Programming (ICAQ®22 (Malaga,
Spain) Lecture Notes in Computer Science. Springer-Verlag, 2002

32

[9] L. Cardelli and G. Ghelli. A Query Language Based on thebdent Logic.
In David Sands, editolProgramming Languages and Systems: Proceedings of
the 10th European Symposium on Programming (ESOP 200l)me 2028 of
Lecture Notes in Computer Scienpages 1-22. Springer-Verlag, 2001.

[10] L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modabgics for Mobile
Ambients. In27th ACM Symp. on Principles of Programming Languageges
365-377. ACM, 2000.

[11] L. Cardelli and A. D. Gordon. Logical Properties of NarRestriction. In
S. Abramsky, editorTyped Lambda Calculi and Applicationsumber 2044 in
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[12] W. Charatonik and J.-M. Talbot. The decidability of nebdhecking mobile am-
bients. InProceedings of the 15th Annual Conference of the Europeaodies
tion for Computer Science Logitecture Notes in Computer Science. Springer-
Verlag, 2001. To appear.

[13] S. Dal-Zilio. Spatial Congruence for Ambients is Deadide. InProceedings of
ASIAN'00 — 6th Asian Computing Science Conferenaeber 1961 in Lecture
Notes in Computer Science, pages 365-377. Springer-Vatag).

[14] M. Dam. Relevance Logic and Concurrent CompositionPtaceedings, Third
Annual Symposium on Logic in Computer Sciemamges 178-185, Edinburgh,
Scotland, 5-8 July 1988. IEEE Computer Society.

[15] M. Dam. Relevance Logic and Concurrent Compositi®mD thesis, 1989.

[16] M. Dam. Model checking mobile processesnformation and Computatign
129(1):35-51, 1996.

[17] M. Dam. Proof systems far-calculus logics. In de Queiroz, editdrogic for
Concurrency and SynchronisatioB8tudies in Logic and Computation. Oxford
University Press, To appear.

[18] J. Engelfriet and Tj. Gelsema. Multisets and Strudt@angruence of ther-
calculus with ReplicationTheoretical Computer Scieno@11):311-337, 1999.

[19] M. Gabbay and A. Pitts. A New Approach to Abstract Syritasolving Binders.
To appear in Formal Aspects of Computing

[20] M. Gabbay and A. Pitts. A New Approach to Abstract Syritasolving Binders.
In 14th Annual Symposium on Logic in Computer Sciepages 214-224. |IEEE
Computer Society Press, Washington, 1999.

[21] P. Gardner. From Process Calculi to Process Frameworls Catuscia
Palamidessi, editoiCONCUR 2000: Concurrency Theory (11th International
Conference, University Park, PA, USAplume 1877 ol ecture Notes in Com-
puter Sciencgpages 69—88. Springer, August 2000.

[22] M. Hennessy and R. Milner. Algebraic laws for Nondetarism and Concur-
rency.JACM, 32(1):137-161, 1985.

33

[23] D. Hirschkoff, E. Lozes, and D. Sangiorgi. SeparailExpressiveness and De-
cidability in the Ambient Logic. InProceedings of the Third Annual Symposium
on Logic in Computer Scienc€openhagen, Denmark, 2002. IEEE Computer
Society.

[24] K. Honda and M. Tokoro. On Asynchronous Communicati@m@&ntics. In
M. Tokoro, O. Nierstrasz, and P. Wegner, edit@bject-Based Concurrent Com-
puting 1991 number 612 in Lecture Notes in Computer Science, pagesl21-5
Springer-Verlag, 1992.

[25] D. Kozen. Results on the PropositionalCalculus. Theoretical Computer Sci-
ence 27(3):333-354, 1983.

[26] R. Milner. Functions as processédath. Struc. in Computer Scienc@¢2):119—
141, 1992.

[27] R. Milner. Communicating and Mobile Systems: thealculus Cambridge
University Press, 1999.

[28] R. Milner. Bigraphical reactive systems: basic theofechnical Report 523,
Cambridge Computer Laboratory, 2002.

[29] R. Milner, J. Parrow, and D. Walker. Modal logics for nilebprocessesTheo-
retical Computer Sciencd14:149-171, 1993.

[30] P. O’'Hearn and D. Pym. The Logic of Bunched Implicatiorighe Bulletin of
Symbolic Logic5(2):215-243, 1999.

[31] A. Pitts. Nominal Logic: A First Order Theory of NamesdaBinding. In
B.C. Pierce N. Kobayashi, editdProceedings of the 10th Symposium on Theo-
retical Aspects of Computer Science (TACS 2p@dlyme 2215 of ecture Notes
in Computer Scienggages 219-235. Springer-Verlag, 2001.

[32] J. C. Reynolds. Separation Logic: A Logic for Shared &hlé Data Structures.
In Proceedings of the Third Annual Symposium on Logic in Coengsitience
Copenhagen, Denmark, 2002. IEEE Computer Society.

[33] D. Sangiorgi. Extensionality and Intensionality oktAmbient Logics. 1ni28th
Annual Symposium on Principles of Programming Langugggges 4-13. ACM,
2001.

Appendix (Proofs)

Lemma 4.3

For all finite N C A,

1. If N C N' thenPy C Pp:.

2. (Bottom and Top) € Py andP € Py.

3. (Meet and Join) I C Py then() S € Py and{J S € Py.
4. (Inverse) If¥ € Py then? = P\ ¥ € Py.

Proof.

34

1. Pick¥ € Py. Now, ¥ is closed undex; we must just verify tha¥ is supported
by N'. Pickm,n ¢ N'. SinceN C N', we havem,n ¢ N. Therefore, since
U € Py, forall P € ¥, we haveP{m<«+n} € ¥. Thus¥ € Py..

2. Immediate.

3. LetS C Py.

(a) PickP € N S. Then, for all¥ € S, we haveP € ¥ and¥ € Py. Now, if

Q = P,thenQ € ¥, forall ¥ € S. Thus@ € (| S. Now letm,n ¢ N. We

haveP{mn} € ¥, forall ¥ € S. HenceP{m++n} € (| S. We conclude
ﬂS € Py.

(b) PickP € |J S. Then, there igl € S such that? € ¥ and¥ € Py. Thus, if
Q =P,thenQ € ¥ C|JS. Now letm,n ¢ N. Then,P{men} € ¥ C|JS.
HencelJ S € Py.

4. Assumel € Py. Pick P € ¥. LetQ = P and suppos€) ¢ ¥. ThenQ € ¥
andP € ¥, contradiction. Henc@ € . Likewise, pickm,n ¢ N and suppose
P{m+n} ¢ ¥. ThenP{m<«n} € ¥, and this implies” € ¥, a contradiction.
Hence we must havB{m+sn} € ¥. We concludel € Py.

Lemma4.11
1. For any procesB and Pset, P € 7(¥) ifand only if 7(P) € .
2. ¥ e Pyifandonly if 7(¥) € P ().
3. Ifm,n ¢ N and¥ € Py then{m-n}(¥) = T.

Proof.

1. LetP € 7(¥). Then there ig) € ¥ with 7(Q) = P. Thus@ = 7(P). Since¥
is closed undee, 7(P) € .

2. Assume¥ € Py. Pick P € 7(¥). We haveP = 7(Q) for someQ) € ¥.

Pick R = P. Hence we have(R) = @, and thus-(R) € ¥, by closure under
= of ¥. ThereforeR € 7(¥), and we conclude that(?) is closed undes.

Now, pickm,n ¢ 7(N), and letr’ = {m«n}. We haver(m),7(n) ¢ N.
Thus{r(m)+7(n)}(Q) € ¥. This impliest({r(m)+-7(n)}(Q)) € ().
But 7({r(m)~7(n)HQ)) = {men}(r(Q)) = 7'(P), by Proposition 2.4(2).
Hencer'(P) € 7(¥). We concluder(¥) € P, (y.

3. AssumeP € ¥ € Py. Then{m<«<n}(P) € ¥, and thusP € {m+<m}(¥).
On the other hand, iP € {m<+m}(¥) then there i) € ¥ such thatP =
{m+m}(Q). But{mem}(Q) € ¥, soP € 0.

35

Proposition 4.10

For all finite N C A, (Py,C,J,®,1) is a commutative quantaleProof. We first
verify that(Py, ®, 1) is a commutative monoid.

First, note thatl is closed unde& by definition. Moreover, for any? € 1 and
transpositiorr, we haver(P) = 7(0) = 0. Hences(P) € 1, for any transpositiom.
We conclude that € Py .

To verify that® is a binary operation ofty, pick any® and® in Py, and some
PecU¥®®. If PP=PthenP’' = Q|Rwhere@ € ¥ andR € ¥. HenceP' € ¥ ® ®.
Moreover, ifm,n ¢ N andr = {m«mn}, thent(P) = 7(Q|R) = 7(Q)|r(R). Since
7(Q) € ¥ andt(R) € ®, we concluder(P) € ¥ ® . Now, from simple properties
of structural congruence it follows thatis commutative, associative, and has unit

Since(Py, C,U,N) is a complete lattice, and thus closed under arbitrary jains
remains to verify that distributes over arbitrary joins, that B ® (JS = [J{? ®
¢ | ¢ € S}, foranyS C Py. But this is an immediate consequence of the definition
of ®. m

Proposition 4.13
Let® € Py then
1. There is a least set of nanggp ®) such that € Psyppa)-
2. For any transposition, if sup®) = M thensupg7(®)) = 7(M).

Proof. (1) See [19] Proposition 3.5.

(2) Let be a transposition® be a Pset and assuraep®) = M. This means
that® € Py, and for all N such thatd € Py we haveM C N. To verify that
supf7(®)) = 7(M) we need to show(®) € P, (,s) (which holds by Lemma 4.11(2))
and that for all finited!” such7(®) € Py we haver(M) C M'. So, take a finite
set of nameg/’ and assume(®) € Py. Thus® € P51y, by Lemma 4.11(2). By
assumption, we conclude¥/ C 7(M'). But thent(M) C M' (for 7 is an bijective
mappingp i, (A) = prin(A)), and we are done. (]

Theorem 4.21
For any formulad and valuatiory
1. [A]ls € Ppuvay-
2. For all transpositions, 7([A],) = [7(A)]-)-

Proof. The proof of (1—2) proceeds by mutual induction on the sizéhefformula
A. Instead of the equality in (2) we prove that[A],) C [7(A)]-). From this
fact, the equality immediately follows. Indeed, pieke [7(A4)]; (), we haver(P) €
T(I7(Alr) € [r7(A)l77(v) = [A]v, henceP € 7([A].).
e CaseA =F
(1) Clearly[F[, =0 € Py, (-
(2) Trivial, sincer([F],) = 7(0) = 0.

36

e CaseA=BAC.
(1) Then[B A C]y = [B]v N [Co-
By induction hypothesis (1) and Lemma 4.3(1) béB, and[C], belong to
Puo(a)- We conclude by Lemma 4.3(3).
(2) Let T be a transposition. IP € 7([A A B],) then there isP’ such that
P = 7(P'") with P' € [A], andP' € [B],. ThenP € 7([A],) andP €
7([B]»). By induction hypothesis (2} € [7(A)]-) andP € [7(B)](v)-
Hence,P € [T(A A B)]-(v)-

e CaseA=B=C.

(1) Pick P € [B = C],. Therefore, ifP € [B], thenP € [C],. By induction
hypothesis (1)[B], € P,y and[C], € Ppo(cy -

Pick any@Q = P. Assume@ € [B],. ThenP € [B], and thusP € [C],.
HenceQ € [C],, and we conclud€) € [B = C],.

Now pickm,n ¢ fn'(B = C) and letr = {m<«n}. We havem,n ¢ fn’(B)
andm,n ¢ fn'(C). Assumer(P) € [B],. ThusP € [B], by induction
hypothesis (1). The® € [C], and by induction hypothesis (1) agai(P) €
[C]». Hencer(P) € [B = CJ..

(2) Let 7 be a transposition. Pick € 7([B = C],). Then,7(P) € [B],
implies7(P) € [C],. AssumeP € [7(B)](,)- By induction hypothesis (2),
we concluder(P) € [B],. Then,7(P) € [C],. By induction hypothesis (2)
again,P € [1(C)] (). ThereforeP € [7(B = C)];(v)-

e Cased = 0.
(1) [0], =1 € Pp,v(0) = Py by Proposition 4.10.
(2) Letr be a transposition. PicR € 7([0],). Thent(P) = 0 andP = 0. So
P e [r(0)];) =1.

e Cased = B|C.
(1) By induqtion _hypothesis (1) and Lemma 4.3(1) we hgB¢, € Pp,»(5) C
Pp (Bjc)- Likewise we conclud¢C, € Py (Bc)-
By Proposition 4.10[B|C], = [B]., ® [C]. € Py (Blo)-
(2) LetT be a transposition. PicR € 7([B|C],). Hencer(P) = Q'|Q" with
Q' € [B], andQ" € [C]y, for someQ@’ and@"”. Thent(Q') € 7([B].),
and7(Q") € [r(B)]-(), by induction hypothesis (2). Likewise,(Q") €
[7(C)](v)- Hencer(Q'|Q") € [r(B|C)];w)- To conclude, just note that
P=7(QQ").

e CaseA =B»C.

(1) PickP € [B>C]y. Then, for allQ) € [B],, we haveQ|P € [C],. Pick any
P’ = P,and anyQ’ € [B],. We haveQ'|P' = Q'|P. By assumption@)’|P €
[C]., and, by induction hypothesis (1) |P’ € [C],. HenceP' € [B > C],.
Pickm,n ¢ fn"(Bw>C) and letr = {m<+n}. Thenm,n ¢ fn"(B) andm,n ¢
fn?(C). Now, pick any@’ such that)’ € [B],. By induction hypothesis (1),
7(Q") € [B]y. Thereforer(Q')|P € [C],. By induction hypothesis (1) and
Proposition 2.12(3)(7(Q")|P) = Q'|7(P) € [C].. Hencer(P) € [B > C],.

37

(2) Let r be a transposition. PicR € 7([B > C],). Then there i’ = 7(P)
such that for all) € [B],, we haveQ|P' € [C],. Pick anyQ' € [7(B)]-(w)
Then7(Q") € 7([7(B)];(v)).- By induction hypothesis (2)7(Q’) € [[B]]v
Thent(Q')|7(P) € [C]y. S0,Q'|P € 7([C]y). By induction hypothesis (2),
Q'IP € [7(C)]+(v). HenceP € [1(B > C)];)

Cased = q®B.

(1) Pick anyP € [¢®B],. ThenP = (vq)Q and@ € [B],. Pick anyP’ =
P, we haveP’' = (vq)Q, and thusP' € [¢®B],. Pickm,n ¢ fn'(¢®B)
and letr = {m<n}. Thenm,n &€ fn"(B), m # ¢ andn # q. Hence
7(P) = (vq)7(Q), by Proposition 2.12(3). By induction hypothesis (1), we
haver(Q) € [B],. Sor(P) € [¢q®B].,.

(2) Let T be a transposition. PicR € 7([¢®B],). Then there isP’ = 7(P)
such thatP' = (vq)@ and@ € [B],. We haver(P') = (v7(q))7(Q), by
Lemma 2.8(1). By induction hypothesis (2), we hay@) € [7(B)], (). Hence
P =1(P') € [1(@)®7(B)]+(v) = [T(4®B)](v)-

CaseA = Boyg.

(1) Pick anyP € [B®gq],. Then(vq)P € [B],. Pick anyP’ = P, we
have(rvq)P' = (vq)P, and thus, by induction hypothesis (liq) P’ € [B]s,.
Therefore,P’ € [Boq],. Pickm,n ¢ fn'(Bq) and letr = {m<«n}. Then
m,n ¢ fn"(B), m # qandn # q. By induction hypothesis (1), we have
7((vq)P) € [B]y. Sincer((vq)P) = (vq)7(P), we haver(P) € [Boq],.

(2) Let 7 be a transposition. Pic® € 7([B2q],). Then there isP' =
7(P) such that(vq)P' € [B],. Thent(P) € [Boq]y, thatis,(vq)r(P) €
[Blv- Thent((vq)7(P) = (v7(q))P € 7([B]v). By induction hypothesis (2),
(vT(q)P € [r(B)];(v)- HenceP € [r(B)oT(q)]-(v) = [T(BO)]+(v)-
CaseA = p(q).

(1) We havep(qg)], = {P | P = p(q)}, which is closed undee by definition.
Additionally, for all m,n ¢ {p,q}, we have than<m}P = p{q) for all
P = p(g).

(2) Lett = {men}. If P € 7([p{q)]v) thent(P) = plq), andP = 7(p(q)).
Itis clear thatP € [7(p(q))]~(v)-

CaseA = Nz.B.

(1) Pick P € [Nz.B],. Then, there ig such thay ¢ fn"(B) U fn(P) andP €
[B{z<+q}],. Pick@ = P, by induction hypothesis (1) als@ € [B{z<+q}],,
andq ¢ fn(Q) by Proposition 2.12(1). Thug € [Uz.B],.

Now, pick 7 = {m<«+n} with m,n ¢ fn”(Uz.B) = fn"(B). Pick anyp ¢
¥ (B)U{m,n,q} Ufn(P)Ufn(r(P)) and letr’ = {g+p}. By induction hy-
pothesis (2), we have (P) € [7'(B{z<q})]; (v, thatisP € [B{z<p}]., by
Lemma4.11(3). By induction hypothesis (1), we conclafB) € [B{z+p}],.
Thus,7(P) € [Wz.B]., sincep ¢ fn*(B) U fn(r(P)).

(2) LetT = {m<n}. If P € 7([Mz.B],) thent(P) € [Wz.B], and thus there
is someg ¢ fn"(B) U fn(7(P)) such that-(P) € [[B{meq}]],,.

)
Now, pickp ¢ {m,n} U fn(r(P)) U fn(P) U fu¥(B) U fn”¥)(r(B)) and let
7' ={gep}. 7' (7(P)) = 7(P) € [7'(B{zq})]r () = [B{z<p}r(v)-

38

By Remark 4.19 we havgB{z<p}].(v) = [B{z+p}]; (w), Wherew is the
restriction ofv to fpv(B).

By Lemma 4.20(1) we hav@B{z«p}] - (w) = [B{z<p}]w, sinceq,p ¢
fn(w). So,7(P) € [B{z<p}]w-

By Remark 4.19, this implies(P) € [B{z<+p}].-

But thenP € [r(B){z+p}]-(»), by induction hypothesis (2). We conclude
P € [r(N2.B)], (), sincep & fa™ ") (7(B)) U fn(P).

Cased = Vz.B.

(1) Pick anyP € [Vz.B],. Then, forallg € A, P € [B{zq}]-

Pick any@ = P. For allq € A, by induction hypothesis (1§ € [B{z<+q}].-
Therefore) € [Vz.B],.

Pickm,n & fn”(Vz.B) = fn’(B) and letr = {m<n}. We need to show that
forall ¢ € A, 7(P) € [B{z<+q}]»-

Forallg ¢ {m,n}, by induction hypothesis (1) we havéP) € [B{z<+q}]..
Forq = m, we haveP € [B{z+m}],. Thent(P) € [B{z<n}],) by
induction hypothesis (2).

Let w be the restriction ob to fpv(B). Note thatm,n ¢ fn(w), for if (say)
n € fn(w), thenn € supdw(X)) for someX € fpv(B), and we would have
n € fn”(B) = fn”(B), a contradiction.

By Remark 4.197(P) € [B{z<n}]7(w)-

Since we haven, n ¢ fn(w), by Lemma4.20(1) we conclud&{z«n}]-(,) =
[B{z+n}].. By Remark 4.19[B{z<+n}]., = [B{z+n}], and thenr(P) €
[B{z+n}],.

Forgq = n, we conclude-(P) € [B{z<+m}], in a similar way.

Thent(P) € [B{z<q}].. forallg € A; this impliesr(P) € [Vz.B],.

(2) LetT be a transposition. PicR € 7([Vz.B]y). Thent(P) € [B{z<q}],,
forall g € A.

By induction hypothesis (2), for all € A, P € [r(B){z+7(q)}]-(v). Then
P € [r(B){z+q}]-(v), forall g € A, sincer is a bijectionA — A. Therefore,
Pec [[T(VCU.B)]]T(U).

Cased = ¢B.

(1) If P € [¢B], then there isR such that? - RandR € [B],. If Q = P
then also) — R, so@ € [¢B],. Now, pickm,n & fn"(®0B) = fn'(B),
and letr = {m<n}. By Proposition 2.15(2)7(P) — 7(R). By induction
hypothesis (1)7(R) € [B].. Hencer(P) € [¢B]..

(2) Let7 be a transposition. 1P € 7([®¢B],) thent(P) € [¢B],. Thus there
is @ such that-(P) — @ and@ € [B],. By Proposition 2.15(2), and induction
hypothesis (2)P — 7(Q) and7(Q) € [7(B)]-(). HenceP € [7(®B)]:(v)-

Cased = Z.

(1) We have Z], = v(Z). Sincefn”(Z) = supgv(Z)), we have thaf 7], €
]anv(Z).

(2) Let 7 be a transposition. IP € 7([Z],) thent(P) € v(Z). Therefore,
Perw(2)) =1(0)(2) = [Z]r(v)-

39

e Cased =VZ.B.

(1) Let v’ be the restriction o to the free propositional variables af. By
Remark (4.19), sinck4], = [A]),, we show the property w.r.t.'.

Let M = fn” (VZ.B) = fn* #<%(B). By Lemma 4.8, to verify[vZ.B], €
Py, it suffices to check thaf £ {[B],z« s | ¥ € P_} is afinitely supported
(by M) set of Psets. Picki,n ¢ M and® € S: then® = [B]v'[Z+ Y]
for some¥ € P_ and letr = {m<n}. By induction hypothesis (2), we have
that7(®) = [7(B)]-(v)[zr(@)- Sincer(v') = v' and7(B) = B, we have
7(®) = [Blo(zer(a) €S-

(2) Let 7 be a transposition. LeP € 7([VZ.B],). Thent(P) € [VZ.B]..
This means that for ab € P_, we haver(P) € [B],z—s]. ThereforeP ¢
7([Blujz«e)- By induction hypothesis (2), we have € [7(B)];)z r(@)]:
forall ® € P_. Sincer is a bijectionP_ — P_, we conclude that for alp €
P_, P € [7(B)]+(v[z«a- SO,P € [7(VZ.B)](, and indeed([VZ.B],) C
[7(VZ.B)].

Lemma 4.29

Let [6(4)], = [#(B)], for all substitutions# and valuation, and letF[—] be
a context. Then, for all substitutiorts and valuationsy we have[o(F[A])]w =
[o(F[B])]w-
Proof. By induction on the size of the contek{—].
e CaseF[-]=G[-]= H[-].
By definition,[o (F[A])]w is the set of all processéssuch that i) € [o(G[A])]w
then® € [o(H[A])]w. By induction hypothesigo(G[A])]w = [0(G[B])]w
and[o(H[A)]w = [o(H[B])]w-
Hence[o (F[A])]v = [o(F[B])].-

o Cased’[—| = G[-|AH[-], F[-] = G[-]|H[-], F[-] = G[-]PH[-], F[-] =
BG[-], F[-] = n®G[—], andF[-] = n@G[—]. By induction hypothesis, as
above.

e CaseF[—] = Vz.G[-]. Assumex ¢ D (o).

We have[o(F[A])]w = Npealo(GlA]){z+n}]w.. By induction hypothesis,
[o(GlAD{z+n}]w = [0(G[B]){z<+n}]w, forall n.

ThereforeN, .\ [o(GIAD {z¢-n}]w = Nuer[o(GB) {zen} ..
But(,,ex [o(G[BY){zn}]w = [o(F[B])]w-

e CaseF[-] = VNz.G[-]. Assumex ¢ D (o).
(Leftto rightinclusion) PickP € [o(Ux.G[A])]w. Thenthereis & fn® (o (G[A]))U
fn(P) such thatP € [o(G[A]){zn}]w.
Letm & fn"(0(G[A])) U fn*(o(G[B])) Un(P), letT = {m+n}. Letu
be the restriction ofw to the free propositional variables 6i[A], we have
[o(G[AD){z+n}]w = [0(G[A]){z<n}].. By Theorem 4.21(2);(P) = P €
T([o(GAD{z=n}]u) = [o(G[AN{zm}]u = [o(GIAD{zm}]w.

40

By the induction hypothesis we concluffec [o(G[B]){zx+m}]..
Sincem ¢ fn"(0(G[B])), we obtainP € [o(F[B])]w-
(Right to left inclusion) Symmetrical.
e CaseF[—-] = X. ThenF[A] = X = F[B] and we havdo(F[A)]. =
[o(X)]w = w(X) = [0(X)]w = [o(F[B])]w-
e CaseF -] =VZ.G[-].

(Left to right inclusion) TakeP € [o(VZ.G[A])]w. By definition, for all¥ €
P_, P € [o(G[AD]w|zw)-

By induction hypothesis, for alt € P_, P € [0(G[B])]w[z«w]- We conclude
P € [o(VZ.G[B))]w-

(Right to left inclusion) Handled symmetrically.

Lemma 5.3
1. [Nz.(A|B)], = [Mz.AWNx.B], 2.[Wz.(A> B)], C [Uz.A> WNz.B],
3. [UNz.0A], = [6UNz.A], 4. [Nz.n®A], = [neWz.A],
5. [Nz .Vy.A], C [Vy.Nz.A], 6. [Nz VX.A], C [VX.Nx.A],

Proof. 1. (Right to left inclusion) LetP |=, Nz.A|z.B. Then there are processes
) and R such thatP = Q|R and@ |=, Nz.A andR |=, WNz.B. Pick a name: ¢
fn(P) U fn*(Nz.(A|B)). Thenn ¢ fn(Q) U fn*(Uz.A) andn & fn(R) U fn’ (Nz.B).

By Proposition 5.1(3) we hav@ |=, A{z<n} andR =, B{z<n}. ThenP |=,
Nz.(A|B) as claimed. (Left to right inclusion) Similar, use Propiogit5.1(2).

2. LetP =, Nz.(A> B). Then for all names ¢ fn(P) U fn"(A4) U fn"(B) and
any process) such thatQ) =, A{z+n} we haveQ|P |=, B{z+n}. Pick anyR
such thatR =, WNz.A. We need to show tha?|R =, Wz.B. Pick a name where
p € In(P) Ufn(R) U fn"(B) U(R) U fn"(A). We haveR =, A{z<p}. By the
assumption, we conclud@|P =, B{z<p}. ButthenR|P =, VNz.B.

3. (Left to right inclusion) LetP |=, Wz.9A. Then there is a process, and a
namen, fresh w.r.t. P andfn"”(A) such thatP — @ and@ |=, A{z«+n}. Butifn
is fresh w.r.tP it is also fresh w.r.tQ sincefn(@Q)) C fn(P). HenceQ® =, Nz.A and
P =, oWz.A. (Right to left inclusion) LetP |=, ¢Wz.A. Then there isQ andn
fresh w.r.t.Q andfn”(A) such thatP — @ andQ =, A{z<+n}. Pick any namen,
fresh w.r.t.v and P (and thus fresh w.rtQ). Let = {m<«n}, by Theorem 4.21(2)
we havel) =, A{z<m}, sincer(Q) = Q, 7(v) = vandr(A{z<n}) = A{z+m}.
HenceP =, ®A{z<+m}, and thenP |=, Nz.0 A.

4. (Right to left inclusion) LetP |=, n®@Wz.A. Then there is a procegg such
thatP = (vn)Q and@ =, A{z<p}forallp & fn"(A)U(Q). Letq & fn"(A) U
fn(Q) Ufn(P) U {n}. ThenP |=, n®A{z<+q}. We concludeP |=, Nz.n®A. (Left
to right inclusion) LetP =, Nz.n®A. Then there ig ¢ fn(P) U {n} U fn"(A) such
thatP = (vn)Q and@ |=, A{z<+q}. Sinceq # n, we conclude; ¢ fn(Q). Thus
Q =, Nz.A. We concludeP |=, neWz. A.

5. LetP =, Vz.Vy.A. Thenforallp & fn” (Vy.A) Ufn(P) and alln € A we have
P =, A{z<p}H{y«n}. Thus,foralln € Aandallp ¢ {n}U fn"(Vy.A) Ufn(P) we
haveP =, A{z+p}{y<n}. HenceP |=, Vy.Nz. A.

41

6. LetP =, Nz.VX.A. Thenforallp € fn’(VX.A) Ufn(P) and all¥ € P_ we
haveP |=,x«w] A{z<p}. Thus, forall¥ € P andallp ¢ supgd¥)Ufn’(VX.A)U
fn(P) we haveP |=,x v A{z«p}. Thus, forall¥ € P we haveP |=,xy
Nz.A. HenceP =, VX .Uz A.]

Proposition 6.5

For any formulad and valuationy, and Pset¥, ¢
1. If X ¢ Neg4) and¥ C & then[A],;xw] C [A]vjxa]
2. If X ¢ PogA) and¥ C & then[A],ix e C [Aoix—w-

Proof. The proof of (1-2) proceeds by mutual induction on the sizéhefformulaA.
Note that the size of a formula does not change when replainges and variables
for names.

e CasesA =F, A = 0andp(q).
Immediate.

e CasesA = BAC andA = OB.
Immediate, by the induction hypothesis.

e CaseA=B=C.

(1) ThenX ¢ NegC) andX ¢ PogB). AssumeP € [B = Cl,xu-
This implies that if P € [B],x«w) thenP € [Cyx«v). AssumeP ¢
[Bloix—a)- SinceX ¢ PogB), by induction hypothesis (2)? € [B],x«w-
ThenP € [C]yx—w- By induction hypothesis (1) € [C],x—s]. Hence
Pe [[B = C]]v[X(—(b]-

(2) Symmetric to (3).
e Casesd = B|CandA =BprC
Like (CaseA = B A () and (Cased = B = (') above.

e Cased = q®B.
(1) ThenX ¢ PogB). AssumeP € [¢®B],x«w). ThenP = (vq)Q and
Q € [B]ux—w) By induction hypothesis (12 € [B],x«s. HenceP ¢
[[Q®B]]U[X<—<I>]-
(2) Symmetrical.

e CaseA = Boyq.
Like (Cased = q®B) above.

e Cased = Nz.B.

(1) We haveX ¢ Neg(B{z<n}), foralln € A. LetP € [Wz.B],x v and
w be the restriction of to the free propositional variables dfz. B (we assume
that X € fpv(A) otherwise the result is immediate).

By Remark 4.19P € [Viz.B],(x w. Then, thereig suchthay ¢ fn"'™* ¥ (B)U
fn(P) andP € [B{z+q}]wix v

42

Now, pickp ¢ X Y(B) U fn(P) U m*X<®(B) and definer = {g<p}.
Note thatp, ¢ ¢ sup¥) U fn(w). By Theorem 4.21(2), we hawgP) = P €
T([B{z+q}uixew) C [B{zp}uixcu, sincer(¥) = ¥ andr(w) = w.

By induction hypothesis (1) € [B{z<p}]w[xa]-

But p was chosen such thatg fn”*~*(4), soP € [Nz.B],x 4. This
implies P € [x.B],[x 4], by Remark 4.19.

(4) Symmetrical.

Cased = Vz.B.

(1) We haveX ¢ Neg B{z<n}), foralln € A. LetP € [Vz.B],x], that
is, foralln € A, P € [B{z<+n}],xw]. By induction hypothesis (1), for each
n € A, P € [B{z<n}],x . HenceP € [Va.B],[x -

(2) Symmetrical.

Cased = 7.

(1) The caseZ # X is trivial. If Z = X, the assumption yieldgX], x v] =
vCo= [[X]]v[X<—<I>]-

(2) X ¢ PogZ) impliesX # Z, and we conclude.

Cased = VZ.B.

(1) ThenZ ¢ Neg B). By Lemma 4.18, we may assunde # X. Assume
P € [VZ.B]yxw]- This implies that” € [B],[xw|z«o) forall © € P_.
By induction hypothesis (1) € [B],x«a]ze), forall ® € P_. Hence
P e [[VZ'B]]U[X%Q]'

(2) Symmetrical.

43

