
1

Abstract. We extend the modal logic of ambients described in [7] to the full ambient
calculus, including name restriction. We introduce logical operators that can be used
to make assertions about restricted names, and we study their properties.

1 Introduction
The π-calculus notion of name restriction [12], initially intended to represent hidden communi-
cation channels, has been used also to represent hidden encryption keys [2] and as the basis for
definitions of secrecy [2, 4]. In the context of the ambient calculus [6], name restriction can be
used to represent hidden locations and (by extrapolating [4] and [5]) secret locations. In general,
we would like to have process calculi where we can represent protocols for creating shared en-
cryption keys and secret locations; name restriction seems crucial to all this.

In π-calculus notation, (νn)P is a restriction of the name n in the process P, meaning that n
is not currently known outside the scope of P. The prefix (νn) is more a bookkeeping device than
a barrier. It is quite possible for P to communicate n to some external process; then the restriction
(νn) must be formally pushed outwards to encompass the new scope of n and maintain the scop-
ing invariant; this procedure is called name extrusion. Processes are considered equivalent up to
extrusion; that is, extrusion is not regarded as a computational step. Conversely, when a name is
forgotten in part of a process, the scope of (νn) may be restricted; this is called name intrusion.
Manipulation of (νn) prefixes includes, in particular, renaming and swapping of prefixes, so that
there is no obvious way of talking about “the first restricted name” or any particular restricted
name of a process.

The ambient calculus can be regarded essentially as an extension of the π-calculus with dy-
namic location structures. In [7] we present a modal logic for describing properties of ambient
calculus processes, with particular emphasis on expressing the structure and evolution of hierar-
chies of locations. Much of that logic can be applied directly to the π-calculus. However, in [7]
we left out name restriction; we now intend to fill that gap in a way that can be applied both to
the π-calculus, where names are channels, and to the ambient calculus, where names are loca-
tions. In both cases, we need to investigate the logical properties of name restriction.

In our existing logic we can describe detailed properties of processes. If we now consider
restriction, what does it mean to describe properties of restricted names? We would like to be able
to say, for example, “a shared key is established between locations a and b”, or “a secret location
is created that only a and b can access”. In a protocol that establishes such shared secrets, the se-
crets are typically represented by restricted names. The problem is that there is no obvious way
to talk about such restricted names in the specification of the protocol. We might be tempted to
use ordinary existential quantification, and say “there exists a name shared between locations a
and b”. But this is not good enough, because we want that name to be fresh and unknown to other
locations or potential attackers.

Therefore, we want a new form of quantification that can be read as “in the process there
exists a restricted name which we shall call x, and such that �”, where x is a variable that ranges
over names, and ��is some property that may involve x. Let us indicate this quantifier as (νx)�;
this formula is meant to correspond somehow to a process of the form (νn)P where x denotes n.
However, since (νn) can float, the matching of (νx) to any particular (νn) is not obvious.

This means that the logical rules of our tentative (νx)� quantifier are going to be fairly com-
plex, or at least unfamiliar. We have approached this complexity by splitting (νx)��into two op-

Logical Properties of Name Restriction

Luca Cardelli
Microsoft Research

Andrew D. Gordon
Microsoft Research

2

erators; one for quantifying over fresh names, and one for mentioning restricted names. The first
operator is the Gabbay-Pitts quantifier, �x.�, adapted to our context: it quantifies over all names
that do not occur free either in the formula ��or in the described process. The second is a binary
operator (not a quantifier) called revelation, n®�, which means that it is possible to reveal a re-
stricted name as the given name n, and then assert �. (Revelation fails to hold if it would lead to
a name clash in the process.)

We investigate the properties of n®��and �x.��separately. We combine them to define
(νx)� as �x.x®�, and then we study the derived properties of (νx)�.

2 Summary of the Ambient Logic
In this section, we provide a quick summary of the ambient calculus. Although this summary is
technically self-contained, we assume some knowledge of [6]: see that paper for discussion and
motivation. We also summarize the ambient logic studied in [7]. Again, this is self-contained, but
knowledge of that paper will help. Two new operators, revelation and its adjunct hiding, are in-
troduced here, and are discussed in the following sections.

2.1 The Calculus
The syntax of the ambient calculus is defined in the following table:

Processes

The set of free names of a process P, written fn(P) is defined as usual, where the only binders
are restriction and the input action, so that fn((νn)P) = fn((n).P) = fn(P) – {n}.

We write P{n←M} for the substitution of the capability M for each free occurrence of the
name n in the process P. Similarly for M{n←M’}. We identify processes up to renaming of bound
names; that is, we assume, for m � fn(P), that (νn)P = (νm)P{n←m} and (n).P = (m).P{n←m}.

We use some syntactic conventions. We use parentheses for precedence. The process 0 is
often omitted in the contexts n[0] and M.0, yielding n[] and M. Composition has the weakest bind-
ing power, so that the expression (νn)P | Q is read ((νn)P) | Q, the expression !P | Q is read (!P)
| Q, the expression M.P | Q is read (M.P) | Q, and the expression (n).P | Q is read ((n).P) | Q.

Structural congruence is a relation between processes used as an aid in the definition of re-
duction. With respect to [6], the structural rules for replication have been refined.

The reduction relation describes the dynamic behavior of ambients. In particular, the rules
(Red In), (Red Out) and (Red Open) represent mobility, while (Red Comm) represents local com-
munication (see [6] for an extended discussion). For example, the process a[p[out a. in b. �m�]] |
b[open p. (n). n[]] represents a packet p that travels out of host a and into host b, where it is
opened, and its contents m are read and used to create a new ambient. The process reduces in four
steps (illustrating each of the four reduction rules) to the residual process a[] | b[m[]].

P,Q,R ::=
(νn)P
0
P | Q
!P
M[P]
M.P
(n).P
�M�

processes
restriction
void
composition
replication
ambient
capability action
input action
output action

M ::=
n
in M
out M
open M
ε
M.M’

capabilities
name
can enter into M
can exit out of M
can open M
null
path

3

Structural Congruence

Reduction

2.2 The Logic
The syntax of logical formulas is summarized below. This is a modal predicate logic with classi-
cal negation. As usual, many standard connectives are interdefinable; we take T, ¬, ∨, �, � as
primitive, and F, �, ∧, �, � as derived.

Logical Formulas

The meaning of the formulas will be given shortly in terms of a satisfaction relation. Infor-
mally, the first three formulas (true, negation, disjunction) give propositional logic. The next five
(void, composition and its adjunct, location and its adjunct) describe tree-like structures of loca-
tions. Revelation and its adjunct are new to this paper, and are discussed in detail later. The two
spatial and temporal modalities make assertions about states that may happen “further away” in
space or time respectively. Quantified variables range only over names: these variables may ap-

P � P
P � Q � Q � P
P � Q, Q � R � P � R

P � Q � (νn)P � (νn)Q
P � Q � P | R � Q | R
P � Q � !P � !Q
P � Q � n[P] � n[Q]
P � Q � M.P � M.Q
P � Q � (n).P � (n).Q

ε.P � P
(M.M’).P � M.M’.P

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

(Struct ε)
(Struct .)

(νn)(νm)P � (νm)(νn)P
(νn)0 � 0
(νn)(P | Q) � P | (νn)Q if n�fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

P | 0 � P
P | Q � Q | P
(P | Q) | R � P | (Q | R)

!0 � 0
!(P | Q) � !P | !Q
!P � P | !P
!P � !!P

(Struct Res Res)
(Struct Res Zero)
(Struct Res Par)
(Struct Res Amb)

(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)

(Struct Repl Zero)
(Struct Repl Par)
(Struct Repl Copy)
(Struct Repl Repl)

n[in m. P | Q] | m[R] 	

� m[n[P | Q] | R]
m[n[out m. P | Q] | R] 	

� n[P | Q] | m[R]
open n. P | n[Q] 	

� P | Q
(n).P | �M� 	

� P{n←M}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P 	

� Q � (νn)P 	

� (νn)Q
P 	

� Q � P | R 	

� Q | R
P 	

� Q � n[P] 	

� n[Q]

(Red Res)
(Red Par)
(Red Amb)

P’ � P, P 	

� Q, Q � Q’ � P’ 	

� Q’ (Red �)

	

�* reflexive and transitive closure of 	

�

η a name n or a variable x

�, �, � ::=
T
¬�

� ∨ �
0
� | �
���

formulas
true
negation
disjunction
void
composition
composition adjunct

η[�]
�@η
η®�

��η
��

��

�x.�

location
location adjunct
revelation
revelation adjunct
sometime modality
somewhere modality
universal quantification

4

pear in the location and revelation constructs, and their adjuncts.
The collections of free names, fn(�), and free variables, fv(�), of a formula ��are defined

along standard lines, keeping in mind that there are no name-binding constructs and just one vari-
able-binding construct (�x.�).

A formula � is closed if fv(�) =
. Substitution �{η←µ} of a name or variable µ for another
name or variable η in a formula �, is defined in the usual way. We identify formulas up to renam-
ing of bound variables, that is, we assume the identity �x.� = �y.�{x←y}, where y � fv(�). We
often write η[] for η[0], �F for ��F, and �¬ for ¬�.

2.3 Satisfaction
The satisfaction relation P � ��means that the process P satisfies the closed formula �. The def-
inition of satisfaction is based heavily on the structural congruence relation. The satisfaction re-
lation is defined inductively in the following tables, where Π is the sort of processes, Φ is the sort
of formulas, ϑ is the sort of variables, and Λ is the sort of names. We use similar syntax for logical
connectives at the meta-level and object-level, but this is unambiguous.

The meaning of the temporal modality is given by reductions in the operational semantics of
the ambient calculus. For the spatial modality, we need the following definitions. The relation
P�P’ indicates that P contains P’ within exactly one level of nesting. Then, P�*P’ is the reflexive
and transitive closure of the previous relation, indicating that P contains P’ at some nesting level.
Note that P’ constitutes the entire contents of an enclosed ambient.

Satisfaction

Again, all these logical connectives are described and discussed in [7], except for revelation
and its adjunct, which are the subject of Section 3.

Remark: Given our policy of identifying formulas up to the renaming of bound variables, we
need to check that satisfaction is well defined with respect to the equation �x.� = �y.�{x←y},
where y � fv(�). We need to show for all processes P, formulas �, and variables x and y such that
y � fv(�) that P � �x.� if and only if P � �y.�{x←y}. By definition, P � �y.�{x←y} if and only
if �m�Λ. P � �{x←y}{y←m}. Since y � fv(�), we have �{x←y}{y←m} = �{x←m}. There-
fore, P � �y.�{x←y} if and only if �m�Λ. P � �{x←m} This is the definition of satisfaction for
�x.�. So it follows that y � fv(�) implies that P � �x.� if and only if P � �y.�{x←y}. �

P�P’ iff �n, P”. P � n[P’] | P”

�* is the reflexive and transitive closure of �

�P�Π.
�P�Π, ��Φ.
�P�Π, �,��Φ.
�P�Π.
�P�Π, �,��Φ.
�P�Π, �,��Φ.
�P�Π, n�Λ, ��Φ.
�P�Π, ��Φ.
�P�Π, n�Λ, ��Φ.
�P�Π, ��Φ.
�P�Π, ��Φ.
�P�Π, ��Φ.
�P�Π, x�ϑ, ��Φ.

P � T
P � ¬�

P � �∨�
P � 0
P � � | �
P � ���
P � n[�]
P � �@n
P � n®�

P � ��n
P � ��

P � ��

P � �x.�

� ¬ P � �
� P � � ∨ P � �
� P � 0
� �P’,P”�Π. P � P’|P” ∧ P’ � � ∧ P” � �
� �P’�Π. P’ � � � P|P’ � �
� �P’�Π. P � n[P’] ∧ P’ � �
� n[P] � �
� �P’�Π. P � (νn)P’ ∧ P’ � �
� (νn)P � �
� �P’�Π. P	
�*P’ ∧ P’ � �
� �P’�Π. P�*P’ ∧ P’ � �
� �m�Λ. P � �{x←m}

5

Fundamental Lemmas
The following lemmas are crucial in what follows.

2-1 Lemma (Satisfaction is up to �)
(P � ��∧ P � P’) � P’ � � �

2-2 Lemmas (Inversion)
(1) P � Q � fn(P) = fn(Q)
(2) (νn)P � 0 � P � 0
(3) (νn)P � m[Q] � �R�Π. P � m[R] ∧ Q � (νn)R (for n ≠ m)
(4) (νn)P � Q’ | Q” � �R’,R”�Π. P � R’ | R” ∧ Q’ � (νn)R’ ∧ Q” � (νn)R” �

Remark. It is not true that (νn)P � (νn)Q implies P � Q. Take P = n[] and Q = (νn)n[]; then
(νn)n[] � (νn)(νn)n[] but n[] � �(νn)n[]. �

2-3 Lemma (Fresh renaming preserves �)
For all closed formulas �, processes P, and names m, m’,
if m’��fn(P)∪fn(�) then P � � ⇔ P{m←m’} � �{m←m’}. �

The proof of Lemma 2-1 is an induction on the structure of �. See [8] for Lemmas 2-2. The
proof of Lemma 2-3 is by induction on the number of symbols in the closed formula �, which is
unchanged by substituting a name for a variable or another name; this proof is an extension of the
analogous one from [7] with cases for revelation and hiding. It is common for semantic properties
of the π-calculus and its descendants to be preserved by fresh renaming; an early example is a
fresh renaming lemma for strong bisimulation in the original article on the π-calculus [13, 9].

2.4 Validity
Valid Formulas, Sequents, and Rules
A closed formula is valid when it is satisfied by all processes. A general formula is valid when it
is valid under any closed instantiation of its free variables with names.

More precisely, if fv(�)={x1, ..., xk} are the free variables of � and ϕ�ϑ→Λ is a substitution
of names for variables such that dom(ϕ)⊇fv(�), then we write �ϕ�for �{x1←ϕ(x1), ..., xk←ϕ(xk)},
and we define:

Valid Formulas

We use validity for interpreting logical inference rules, as described in the following tables.
We use a linearized notation for inference rules, where the usual horizontal bar separating ante-
cedents from consequents is written ‘�’ in-line, and ‘;’ is used to separate antecedents.

Sequents are interpreted as follows. A simple sequent ���� ��is interpreted as the validity of
the formula ���. Sequents with conditions about disjointness of variables, or disjointness of
variables from names, are reduced to simple sequents, as described below. Equality of names η=µ
is definable in the logic as η[T]@µ [7].

Sequents

For example: ���� � means �ϕ�fv(���)→Λ. �P�Π. P � �ϕ � P � �ϕ.
Logical rules are interpreted as follows, where � are sequents (any of the three forms above,

vld(�)ϕ � �P�Π. P � �ϕ for ϕ�ϑ→Λ with dom(ϕ)⊇fv(�)
vld(�) � �ϕ�fv(�)→Λ. vld(�)ϕ

���� � � vld(���)
���� � (η1≠µ1, ..., ηn≠µn) � (η1≠µ1 ∧ ... ∧ ηn≠µn ∧ �)��� �
��	��� � (Ξ) � (���� � (Ξ)) ∧ (���� � (Ξ)) where Ξ = η1≠µ1, ..., ηn≠µn

6

including sequents with side conditions and double sequents):

Rules

The definition of validity for formulas with free variables allows us to handle quantification
over names. We obtain the validity of the following standard rules for the universal quantifier,
and for the definable existential quantifier:

Quantification

Remark: (���� R). The distinction between variables and names in formulas, and the use of vari-
ables (as opposed to names) in quantification is crucial for (� R). The version of (� R) with names
instead of variables:

���� � � ���� �n.� where n ��fn(�),
is not sound. Consider the valid sequent m[T]��� ¬n[T]. If quantification binders were names, then
the rule (� R) could be used to produce m[T]��� �n.¬n[T], which is not valid. Since quantification
binders are variables, one can only deduce m[T]��� �x.¬n[T]. �

Remark: (���� L). The use of substitutions that admit variables, in addition to names, in (� L), is
crucial. Otherwise, if (� L) is formulated as �{x←m}��� � � �x.���� �, there does not seem to
be any way to derive, for example:

���� � � �x.���� �x.�
which is obtained by starting from �{x←x}��� � and applying (� L) and then (� R). �

A number of proof principles can be derived from the definition of validity:

Instantiation Principle. Let � be a one-directional sequent, then, for any x,n:

Substitution Principle. Let �{−} be a formula with a set of formula holes, indicated by −, and let
�{�} denote the formula obtained by filling those holes with �, after renaming the bound vari-
ables of � so they do not capture free variables of �.

Case Analysis Principle. A case analysis principle is useful for proofs involving equality and in-
equality; inequalities often occur as side-conditions of primitive and derived rules. A predicate �
is classical iff �ϕ�fv(�)→Λ. {P ��P � �ϕ} � {Π,
}. Note that T, F, and η=µ are classical pred-
icates; so is �F, for any � (meaning that ��is unsatisfiable), and so is the conjunction, disjunction,
and negation of classical predicates. Let �{−} be a one-directional sequent with a set of formula
holes, and � be a classical predicate. Then:

3 Revelation
We now study the logical connectives η®� (revelation), and ��η (revelation adjunct or hid-
ing). These connectives make assertions about restricted names that occur in processes.

�1; ...; �n�� �0 � (�1 ∧ ... ∧ �n) � �0

�1 �� �2 � �1 � �2 ∧ �2 � �1

(� L) �{x←η}��� � � �x.���� � where η is a name or a variable
(� R) ���� � � ���� �x.� where x ��fv(�)
(� L) ���� � � �x.���� � where x ��fv(�)
(� R) � �� �{x←η} � ���� �x.� where η is a name or a variable

(Inst) ��� �{x←n}

(Subst) ���	��� ��� � �{��}�	��� �{��}

(Case Analysis) �{T}; �{F}� � �{�}

7

3.1 Satisfaction
The formula η®� is used to reveal a restricted name; it is read “reveal η then �”, where η is ei-
ther a name (n) or the occurrence of a variable (x) that denotes a name. A process P satisfies the
formula n®� if it is possible to pull a restricted name occurring in P to the top and rename it n,
and then strip off the restriction to leave a residual process that satisfies �.

We cannot rename a top-level restricted name of P to n if n is already free in P. Therefore,
a revelation formula provides a way of testing for the free names of the underlying process P, as
we discuss below.

The inverse (technically, the adjunct) of revelation is called hiding: ��η, which is read
“hide η then �”. A process P satisfies the formula ��n if (νn)P satisfies �, that is, if it is possible
to hide n in P and then satisfy �. The satisfaction relation P � ��for revelation and hiding is re-
peated below:

Satisfaction for Revelation and Hiding

Here are some simple examples:

Revelation gives us a way to talk about the free (or “known”) names of a process. This can
be embodied in a derived operator ©n, satisfied by a process P iff n�fn(P). Several other derived
connectives can be imagined:

Examples of Derived Connectives

For clarity, we expand the definitions of these derived connectives:

Expanded Definitions

Examples:

3.2 Rules
Before giving our set of primitive rules of revelation and hiding, we discuss the most interesting

P � n®�� � �P’�Π. P � (νn)P’ ∧ P’ � �
P � ��n� � (νn)P � �

(νn)n[] � n®T because n[] � T
0 � n®T because 0 � (νn)0 and 0 � T
¬ n[] � n®T because there is no process (νn)P’ � n[]
(νm)m[] � n®n[] because (νm)m[] � (νn)n[] and n[] � n[]
m[] � (n®n[])�m because (νm)m[] � n®n[]

©η � ¬η®T
closed � ¬�x.©x
separate � ¬�x.(©x | ©x)
atmostfree η � closed�η

contains η free (it is not possible to reveal η)
no free names
no shared free names
contains at most η free

�P�Π.
�P�Π.
�P�Π.
�P�Π.

P � ©n
P � closed
P � separate
P � atmostfree n

iff ¬�P’�Π. P � (νn)P’ iff n�fn(P)
iff �n�Λ. �P’�Π. P � (νn)P’ iff fn(P) =

iff ¬�n�Λ. �P’,P”�Π. P � P’ | P” ∧ n�fn(P’) ∧ n�fn(P”)
iff �m�Λ. �P’�Π. (νn)P � (νm)P’ iff fn(P) ⊆ {n}

n[] � ©n because ¬�P’�Π. n[] � (νn)P’
(νm)m[] � closed because �n�Λ. (νm)m[] � (νn)(νm)m[]
n[] | m[] | (νp)(p[] | p[]) � separate

8

properties of ® and � that are derived in this section. In order to emphasize some symmetries,
we use here a combination of primitive and derived rules.

First, the cancellation and swapping properties of double restriction, (νn)(νn)P � (νn)P and
(νn)(νm)P � (νm)(νn)P, are inherited by both ® and �:

Next, consider the combinations:

We see easily that P � n®(��n) means that P � � and that n�fn(P), where n�fn(P) can be written
also as P � n®T. Instead, P � (n®�)�n means that, although P may not satisfy �, if we hide n
in P we obtain something where we can reveal n and satisfy �. For example, (νm)n[m[]] �
m®m[n[]], but (νm)n[m[]] � (n®m®m[n[]])�n, because (νn)(νm)n[m[]] � (νn)(νm)m[n[]] �
n®m®m[n[]]. In other words, P � (n®�)�n means that we can satisfy � by hiding the name n
of P, and revealing a possibly different restricted name of P as n. We obtain the properties:

The interactions of ® and � with | are the most interesting, and the most complex. There are
basically three distribution rules: distribution of ® over | in both directions (with a constraint),
unrestricted distribution of � over | in one direction, and distribution of n®((−)�n) over | in both
directions.

The first rule embodies the scope extrusion rule, (νn)(P | Q) � ((νn)P) | Q if n�fn(Q). This
can be seen more clearly if we note that n�fn(Q) is equivalent to Q � (νn)Q; then the extrusion
rule can be written as (νn)(P | (νn)Q) � ((νn)P) | ((νn)Q) with no side condition.

The second rule implies that if (νn)(P | Q) � � | � then it is possible to distribute the restric-
tion so that (νn)P � � and (νn)Q � �; this is a consequence of Lemma 2-2(4).

The last rule looks mysterious, but has a simple interpretation. According to one of the
equivalences above, it can be rewritten as (� | �) ∧ n®T 	����(� ∧ n®T) | (� ∧ n®T); that is, the
name n does not occur in a parallel composition iff it does not occur in either component. The
right-to-left direction is actually a derivable rule.

A similar set of rules holds for distribution of ® and � over n[−]:

The distribution of n®− over m[−] (first rule) holds in both directions as long as n ≠ m.
The distribution of −�n over m[−] (second and third rules) comes in two cases, depending

on whether n=m. In each case, the right-to-left direction is derivable. From n[T]�n ���F we can
derive n®T����¬n[T], which means that if a name n does not occur free in a process, the process
cannot be a location named n.

n®n®��	����n®� n®m®�����m®n®�

��n�n�	������n ��m�n������n�m

n®(��n) (n®�)�n

n®(��n)�	����� ∧ n®T
n®(��n)����� �����(n®�)�n
n®(��n)������n ��n����(n®�)�n
n®(��n)����n®� n®�����(n®�)�n

n®(� | n®�)�	����n®� | n®�

(� | �)�n �����n | ��n
n®((� | �)�n) 	����n®(��n) | n®(��n)

n®m[�] 	����m[n®�] (n ≠ m)
m[�]�n 	����m[��n] (n ≠ m)
n[�]�n 	����F
n®(m[�]�n) 	����m[n®(��n)] (n ≠ m)

9

The distribution of n®((−)�n) over m[−] (fourth rule) is derivable in both directions, from
the first two rules. Again, this rule can be rewritten as m[�] ∧ n®T 	����m[� ∧ n®T] (n ≠ m); that
is, the name n does not occur in a location iff it is distinct from the name of the location and it
does not occur inside the location.

Finally, ® and � commute in one direction:

We now take the following set of rules as primitive (i.e., we verify their validity in the mod-
el). The first group handles double revelation, distribution of ® over ∨, congruence of ® with ��,
the adjunction rule connecting ® and �, and the rather curious but very useful fact that ¬ com-
mutes with �. The other three groups deal with the interactions of ® and � with 0, |, and n[−].

3-1 Proposition (Validity: Revelation Rules)
(®) � x®x®� 	����x®� (® |) � x®(� | x®�)�	����x®� | x®�

(® ®) � x®y®� ���y®x®� (� |) � (� | �)�x �����x | ��x
(® ∨) � x®(�∨�) ���x®��∨ x®� (® � |) � x®((� | �)�x) ���x®(��x) | x®(��x)
(® ��) ������ � x®� ���x®�

(® �) η®������ �� � �����η (® n[]) � x®y[�] 	����y[x®�] (x ≠ y)
(� ¬) � (¬�)�x�	��� ¬(��x) (� n[]) � y[�]�x ���y[��x] (x ≠ y)
(� �F) � �F

�x 	����F (� n[]) � x[�]�x ���F

(® 0) � x®0 	����0
(� 0) � 0�x ���0 �

From the rules that we have validated in Proposition 3-1, we can derive a large collection of
facts by logical deduction, including the following:

3-2 Logical Corollaries (Case Analysis)
Let �� be a classical predicate (typically, �� is a side condition of the form x ≠ y).

(CA | ∧) � (�� ∧ �) | (�� ∧ �)�	��� �� ∧ (� | �)
(CA | �) � (�� � �) | (�� � �)��� �� � (� | �)
(CA n[] ∧) � z[�� ∧ �]�	��� �� ∧ z[�] where z may occur in ��
(CA ® ∧) � z®(�� ∧ �)�	��� �� ∧ z®� where z may occur in �� �

3-3 Logical Corollaries (Revelation)

m®(��n) ���(m®�)�n

(�) � ��x�x�	������x
(� �) � ��y�x������x�y
(® � R)� �����(x®�)�x

� x®�����(x®�)�x
(® � L)� x®(��x)�����

� x®(��x)������x
(® � |) � x®((� | �)�x)

	����x®(��x) | x®(��x)
(® | ®) � x®(x®� | x®�) 	����x®� | x®�

� x®� | x®��	����(x®� | x®�)�x
(| ® �) � x®� | x®(��x)����x®(� | �)
(� | ®) � ��x | x®���� (� | x®�)�x
(® ∨) � x®(��∨ �) 	����x®��∨ x®�

(® ∧) � x®(��∧ �) �� x®��∧ x®�
hence: � x®��	����x®� ∧ x®T

(® F) � x®F ���F

(� |) � ��x | x®(��x) ���(� | �)�x
� (� | �)�x �����x | ��x

(� ®) � ��x����(x®�)�x
hence: � x®(��x)����x®�

(® ∧ �)� x®(� ∧ ��x)�	����x®� ∧ �
hence: � x®(��x)�	����x®T ∧ �

(® ∨ �)� x®(� ∨ ��x)����x®� ∨ �
(� ��) ���� � � ��x��� ��x
(® � |) � x®((� | �)�x) 	����x®(��x) | x®(��x)
(® � |) � x®((� | �)�x) ���(x®�)�x | (x®�)�x
(® ∧ |) � x®T ∧ (� | �) 	����(x®T ∧ �) | (x®T ∧ �)
(® � |)� (x®T��) | (x®T��)��� x®T � (� | �)
(� n[]) � y[�]�x 	����y[��x] (x ≠ y)
(� n[]) � x[�]�x 	����F
(@ ®) � (x®�)@x�	��� F
(@ ® ≠)� (x®�)@y�	��� x®(�@y) (x ≠ y)

10

Remark. The derived rule (® ¬0) says that if we reveal a restricted name and find non-0, then the
original process is also non-0. That is, non-0-ness cannot be hidden by restriction. Consider, for
example, the process P = (νn)n[]. Under many standard behavioral equivalences ≈ we have P ≈
0 [11]. However, we have P ��n®¬0, and hence by (® ¬0), we have that P ��¬0. This example
shows quite clearly that our logic is finer than standard behavioral equivalences, and that it can
inspect the structure of restricted processes. �

4 Fresh-Name Quantifier
In this section we define a formula, �x.�, with the meaning “for fresh x, � holds”. Here, “fresh”
means, informally, distinct from any name that might clash with an existing name.

The set of free (i.e., non-fresh) names that occur in a process or formula is always finite;
hence sets of fresh names are always cofinite. (A cofinite set is the complement of a finite set with
respect to an infinite universe, which, in our case, is the countable universe of names Λ.) If there
is a suitable fresh x, then there are infinitely many of them, since a fresh name can be replaced by
any other fresh name. Therefore, “freshness” can be expressed formally as the existence of a cofi-
nite set of interchangeable names [10]. We use Fin(S) for the collection of finite subsets of a set S.

4.1 The Gabbay-Pitts Property
We would like to obtain the following property for �x.�:

That is, P � �x.��iff there exists a fresh name m such that P � �{x←m}.
This definition is given by existential quantification over fresh names. Remarkably, there is

an equivalent definition based on universal quantification. The equivalence of these two defini-
tions is based on a deep property of the logic (Lemma 2-3), and will be used to great effect later.
We state the equivalence as follows: there exists a fresh name m such that P � �{x←m}, if and
only if for all fresh names m we have P � �{x←m}:

4-1 Proposition (Gabbay-Pitts Property)
�P�Π, ��Φ, N�Fin(Λ).

N ⊇ fn(P,�) ∧ fv(�) ⊆ {x} �
(�m�Λ. m�N ∧ P � �{x←m}) ⇔ (�m�Λ. m�N � P � �{x←m})

Proof
Assume N ⊇ fn(P,�) and fv(�) ⊆ {x}.

Case ⇐) Assume �m�Λ. m�N � P � �{x←m}. Since N is finite and Λ is infinite, there is a p�Λ
such that p�N. Then, by assumption, P � �{x←p}. We have shown (�p�Λ. p�N ∧ P �
�{x←p}).

Case �) Assume �m�Λ. m�N ∧ P � �{x←m}; in particular, m�fn(P,�). Take any p�Λ and as-
sume p�N. If p=m we have by assumption that P � �{x← p}. Otherwise, if p≠m then
p�N∪{m}; since fn(P,�{x←m}) ⊆ N∪{m}, we have that p�fn(P,�{x←m}). By applying
Lemma 2-3 to the assumption P � �{x←m} we obtain P{m←p} � �{x←m}{m←p}; that
is, P � �{x←p}. In both cases, we have shown that (�p�Λ. p�N � P � �{x←p}). �

(� T) � T 	����T�x
(� F) � F�x 	����F
(� ∨) � (��∨ �)�x 	������x�∨ ��x
(� ∧) � (��∧ �)�x 	������x�∧ ��x
(� 0) � 0 ���0�x
(® ¬0) � x®¬0 ���¬0

(® � n[])� x®(y[�]�x) 	����y[x®(��x)] (x ≠ y)
(® ∧ n[]) � x®T ∧ y[�] 	����y[x®T ∧ �] (x ≠ y)
(� ® ≠) � x®(��y) ���(x®�)�y
(® �) � �x.y®� 	����y®�x.� where x ≠ y
(® �) � y®�x.� ����x.y®� where x ≠ y �

P � �x.� ⇔ �m�Λ. m�fn(P,�) ∧ P � �{x←m}

11

4.2 A Gabbay-Pitts Logical Rule
We now want to formulate a Gabbay-Pitts property similar to Proposition 4-1, but expressible
within the logic. We are going to use extensively the idiom x#N ∧ x®T, for a quantified variable
x. The first part of this conjunction says that the name x is fresh with respect to a given set of
names N that usually includes the set of free names of a formula of interest. The second part says
that x is fresh in the “underlying process”, because P � n®T iff n�fn(P). For a suitable choice of
N, the whole conjunction can be understood as saying that x is “completely fresh”, both at the for-
mula and process level, in a given situation.
Notation

With this understanding, the following proposition states the single rule (schema) that we
add to our logic in order to capture “freshness”, and establishes its soundness. Note that this rule
holds for open formulas.

4-2 Proposition (Validity: Gabbay-Pitts)
(GP) � �x. x#N ∧ x®T ∧ ��	��� �x. (x#N ∧ x®T) � �
where N�Fin(Λ∪ϑ) and N ⊇ fnv(�)-{x} and x�N

Proof
Assume N ⊇ fnv(�)-{x} and x�N. We need to show that the sequent is valid, that is that
�ϕ�(fv(�)-{x})→Λ, P�Π. P � (�x. x#N ∧ x®T ∧ �)ϕ ⇔ P � (�x. x#N ∧ x®T � �)ϕ.

(1) � �x. x#N ∧ x®T ∧ ���� �x. x#N ∧ x®T � �
Take any ϕ�(fv(�)-{x})→Λ and P�Π, and assume P � (�x. x#N ∧ x®T ∧ �)ϕ. That is, as-
sume �m�Λ. m�Nϕ∪fn(P) ∧ P � �ϕ{x←m}, where Nϕ∪fn(P)⊇fn(P,�ϕ) and fv(�ϕ) ⊆ {x}.
By Proposition 4-1, we obtain �m�Λ. m�Nϕ∪fn(P) � P � �ϕ{x←m}, that is P � (�x. x#N
∧ x®T � �)ϕ.

(2) � �x. x#N ∧ x®T � ���� �x. x#N ∧ x®T ∧ �
Take any ϕ�(fv(�)-{x})→Λ and P�Π and assume P � (�x. x#N ∧ x®T � �)ϕ; that is as-
sume (�m�Λ. m�Nϕ∪fn(P) � P � �ϕ{x←m}), where Nϕ∪fn(P)⊇fn(P,�ϕ) and fv(�ϕ) ⊆
{x}. By Proposition 4-1, we obtain �m�Λ. m�Nϕ∪fn(P) ∧ P � �ϕ{x←m}, that is P � (�x.
x#N ∧ x®T ∧ �)ϕ. �

Remark. (GP) gives us a way to prove that �x.���� �x.�. This depends on the fact that the set of
names is non-empty, and is obviously not derivable from the normal quantifier rules. Take N =
fnv(�)-{x}. Starting from ���� �, by right weakening and quantifier introduction we obtain �x.
� �� �x. x#N ∧ x®T � �. Again starting from ���� �, by left weakening and quantifier introduc-
tion we obtain �x. x#N ∧ x®T ∧ � �� �x. �. By (GP) we have �x. x#N ∧ x®T � ���� �x. x#N ∧
x®T ∧ �. Hence, by transitivity we obtain �x. ���� �x. �. �

4.3 Fresh-Name Quantifier
Without extending the syntax of our logic, we can define quantification over fresh names, �x.�,
as follows:

4-3 Definition (Fresh-Name Quantifier)
�x.� � �x. x#(fnv(�)-{x}) ∧ x®T ∧ � �

Hence fn(�x.�) = fn(�) and fv(�x.�) = fv(�)-{x}.
Note that the right-hand side of this definition depends on the set of free names and variables

of �. Therefore, this is not a definition within the logic, but rather a meta-theoretical definition

• For N�Fin(Λ∪ϑ) we define the formula η#N � �µ�N(η�µ).
For any P and closed m#N, we have P � m#N iff m�N.

• Let fnv(�) � fn(�)∪fv(�), so that fnv(�)�Fin(Λ∪ϑ)

12

(or abbreviation) that should always be understood in its expanded form. Any general theorem or
derived rule involving �x.� will in fact be a schematic theorem or rule with respect to the free
names and variables of �, in the same way that (GP) is a rule schema.

By (GP) (Proposition 4-2) we have:

In terms of satisfaction, we obtain:

4-4 Lemma (P � �x.�)
P � �x.�

iff �m�Λ. m�fn(P,�) ∧ P � �{x←m}
iff �m�Λ. m�fn(P,�) � P � �{x←m} �

Therefore, �x.� can be understood as saying either that there is a fresh name x such that �
holds, or that for any fresh name x we have that � holds. These formulations are equivalent be-
cause of the cofinite nature of sets of fresh names. If there is a suitably fresh x such that � holds,
then any other fresh name will work equally well, so all fresh names will work. Conversely, if for
all suitably fresh names � holds, since any set of fresh names is (cofinite and hence) non-empty,
there exists a fresh name for which � holds.

Remark. The meaning of �x.� when ��has free variables other than x is subtle. When we write
�x. ...n... we intend x to be fresh w.r.t. any existing name, and in particular n; similarly, when we
write �x. ...y... we intend x to be fresh with respect to any name denoted by y. Consider �y. �x.
y=x; this formula should not be valid. In fact, it is contradictory because, by definition, it means,
�y. y®T ∧ �x. x≠y ∧ x®T ∧ y=x. Similarly, �y. �x. y=x and �y. �x. y=x are contradictory. (In-
stead, �x. �y. x=y is valid.) �

The following rules are now derivable entirely within the logic:

4-5 Logical Corollaries (Fresh-Name Quantifier)
(� �) � �x.� 	�����x. x#N ∧ x®T ∧ � where N ⊇ fnv(�)-{x} and x�N
(� �) � �x. x#N ∧ x®T � ��	��� �x.� where N ⊇ fnv(�)-{x} and x�N
(� ¬) � ¬�x.� 	�����x.¬�

(� |) � �x.(� | �) 	����(�x.�) | (�x.�)
(� ��) � ���� � �x.� ����x.�
(� fv) � �x.� 	����� where x�fv(�)
(� n[]) � �x.y[�] 	����y[�x.�] where x≠y
(� R) � ∧ x#N ∧ x®T �� � � ���� �x.� where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(� L) � ∧ x#N ∧ x®T �� � � �x.���� � where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(� E) ���� �x.�;� � ∧ x#N ∧ x®T �� � � ���� � where N⊇ fnv(�)-{x} and x�N∪fv(�) �

Remark. Of particular interest (and difficulty) is the distribution of � over |, rule (� |):
� �x.(� | �) 	����(�x.�) | (�x.�)

Distribution over | holds in one direction for universal quantification, in the other direction for
existential quantification, and in both directions for fresh-name quantification. This rule can be
understood informally as follows (this is a sketch of the formal derivation). In the left-to-right di-
rection we use the existential interpretation of �. Take any P; if P � �x.(� | �) then there are a
fresh name x and processes P’,P” such that P � P’ | P” and P’ � � and P” � �. Hence, there is
a fresh name x such that P’ � � and again a fresh name x such that P” � �; that is, P’ � �x.� and
P” � �x.�. Therefore, P � P’ | P” � (�x.�) | (�x.�). In the right-to-left direction we use the
universal interpretation of �. Take any P; if P � (�x.�) | (�x.�) then there are processes P’,P”
such that P � P’ | P” and P’ � �x.� and P” � �x.�. This means that for all names x’ fresh in P’
and �, we have P’ � �{x←x’} and for all names x” fresh in P” and �, we have P” � �{x←x”}.

�x.��	��� �x. x#fnv(�)-{x} ∧ x®T � �

13

Now, for all names y that are fresh in P’, �, P”, �; we have that P’ � �{x←y} and P” � �{x←y}.
That is, P � P’ | P” � �y.(�{x←y} | �{x←y}) = �x.(� | �). �

5 Hidden-Name Quantifier
As discussed in the introduction, a hidden-name quantifier should be a construct of the logic that
allows us to talk about restricted names in processes. We would like to define a formula (νx)� to
mean, informally, that “for hidden name x” (hidden in the underlying process), � holds. The in-
tention is that there should be some correspondence between the binder (νx) in the formula, and
a binder (νn) in a process that satisfies the formula. We take:

5-1 Definition (Hidden-Name Quantifier)
(νx)�� � �x.x®� �

Hence fn((νx)�) = fn(�) and fv((νx)�) = fv(�)-{x}. Moreover, by definition of �:

and, because of Logical Corollary 3-3(® ∧), we can simplify this to:

In terms of satisfaction, we obtain:

5-2 Lemma (P � (νx)�)
P � (νx)� iff
�m�Λ. m�fn(P,�) ∧ �P’�Π. P � (νm)P’ ∧ P’ � �{x←m} �

We have in fact experimented with several plausible definitions for the hidden-name quan-
tifier, before converging on the one above. We have found that the following property, (νx-prop-
er), distinguishes the definition above from other definitions of (νx)�� that turned out to be
unsatisfactory or flawed:

5-3 Proposition (νx-proper)
For all n�Λ, x�ϑ, P�Π, and closed ��Φ:

n�fn(P) ∧ P ��(νx)(�{n←x}) ⇔ �P’�Π. P � (νn)P’ ∧ P’ � � �

Corollary: P’ � � � (νn)P’ ��(νx)(�{n←x}). �

This property can be written in logical form as n®T ∧ (νx)(�{n←x})�	��� n®�, for all n.

Remark. It is natural to first consider the simpler property:

The ⇐ direction is equivalent to (νx-proper⇐). However, the � direction is inconsistent with the
fundamental Lemma 2-1. Start with n[] ��n[]. By (νx-1⇐) we obtain (νn)n[] ��(νx)x[]. Since
(νn)n[] � (νn)(νn)n[], by Lemma 2-1 we obtain that (νn)(νn)n[] ��(νx)x[]. Then, by (νx-1�) we
obtain (νn)n[] ��n[], that is (νn)n[] ��n[], which is contradictory by Lemma 2-2(1). The problem
is that we cannot expect a (νx) in the formula to match any (νn) in the process, but only an appro-
priate one. Hence the refined statement of (νx-proper). �

The following rules for (νx)��can be derived by the rules for revelation and fresh-name.

5-4 Logical Corollaries (Hidden-Name Quantifier)
(ν �) � �x. (x#N ∧ x®T) � x®��	��� (νx)� where N ⊇ fnv(�)-{x} and x ��N
(ν �) � (νx)� 	�����x. x#N ∧ x®T ∧ x®� where N ⊇ fnv(�)-{x} and x ��N

 	�����x. x#N ∧ x®�

(ν R) � ∧ x#N ∧ x®T �� x®� � ���� (νx)� where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(ν L) x®� ∧ x#N �� � � (νx)���� � where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)

(νx)� = �x. x#fnv(�)-{x} ∧ x®T ∧ x®�

(νx)� 	��� �x. x#fnv(�)-{x} ∧ x®�

(νn)P’ ��(νx)(�{n←x}) ⇔ P’ � � (νx-1)

14

(ν E) ���� (νx)�;� x®� ∧ x#N �� � � ���� � where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(ν ��) � ���� � (νx)� ���(νx)�
(ν fv) � (νx)(��x) 	��� � where x ��fv(�)
(ν fv) � � �� (νx)� where x ��fv(�)
(ν ®) � (νx)(x®�) 	��� (νx)�
(ν �) � (νx)(��x) �� (νx)�
(ν 0) � (νx)0�	��� 0
(ν n[]) � (νx)y[�]�	��� y[(νx)�] where x≠y
(ν |) � (νx)(� | x®�)�	��� ((νx)�) | ((νx)�)
(ν � |)� (νx)(��x) | (νx)(��x) 	��� (νx)((� | �)�x) �

Remark. We obtain �x. x®���� (νx)���� �x. x®�. However, there are no interesting rules for
¬(νx)�. �

Remark. This fails:
� (νx)� �� � where x�fv(�)

because (νn)(n[] | n[]) ���x.x®(¬0 | ¬0) but (νn)(n[] | n[]) ��¬0 | ¬0. This is ®’s fault, not �’s:
n®� �� � fails with the same counterexample. �
Example
As an example of a specification containing a hidden-name quantifier, consider a situation where
a secret is shared by two locations n and m, but is not known outside those locations.

We can state this as follows (recall that ©η � ¬η®T and that P � ©n iff n�fn(P)):

It reads: for a fresh x, the name x is known at n and m, and is restricted anywhere else.
Expanding the definitions, we obtain:

The last line reads: P satisfies the specification iff there exists a name r that is fresh (not conflict-
ing with n and m or public to P), such that r is known to the processes R’ and R” located at n and
m, and is restricted inside P.

Here is a simple example of an implementation of this specification:

6 Related Work and Conclusions
We have introduced a logic for describing concurrent processes with restricted names. Most pre-
vious logics for concurrency have strived to describe properties that are invariant under some
coarse process equivalence, such as bisimulation. Because of our original motivation in describ-
ing location structures in detail, the properties described by our logic are much finer, and are in-
variant only up to structural congruence (see also [14] for a recent characterization). Because of
this, our logic is closely related to intuitionistic linear logic and to bunched logics: see [7] for a
comparison. Our logic is unusual also because it handles variables ranging over a countable uni-
verse of names; these variables can be the subject of universal, existential, fresh-name, and hid-
den-name quantification.

Our logic is built directly out of a process model, so logical soundness is easy to check. Log-
ical completeness is a much more difficult question. We do not expect the full logic to be com-
plete with respect to our model (even for finite behaviors). Silvano Dal Zilio is investigating some
small, complete fragments of the logic. So far, we have mostly tried to discover as many true log-
ical facts as possible (a measure of which is, for example, to be able to embed other logics into

(νx) (n[©x] | m[©x])

P ��(νx) (n[©x] | m[©x])
⇔ �r�Λ. r�fn(P)∪{n,m} ∧ �R’,R”�Π. P � (νr)(n[R’] | m[R”]) ∧ r�fn(R’) ∧ r�fn(R”)

P = (νp) (n[p[]] | m[p[]])

15

ours [7]), and to minimize the collection of basic rules. We have concentrated in particular on
commutation and distribution properties of operators that can be useful in formal proofs.

In the present paper, fresh-name quantification is modeled after Gabbay and Pitts [10],
adapted to our context; it provides logical rules for reasoning abstractly about freshness. Hidden-
name quantification is obtained by combining fresh-name quantification with a revelation opera-
tor (not a quantifier) for revealing restricted process names. Most novel axioms have to do with
revelation; they often reflect and resemble well-known properties of π-calculus restriction. Tech-
nically, we have added to our previous ambient logic just the revelation operator (and its adjunct)
and an axiom schema expressing the Gabbay-Pitts property. In particular, fresh-name quantifica-
tion, hidden-name quantification, and their properties, are derived.

Recently, we have become aware of related work by Luís Caires (both [3] and more recent
unpublished work). Our aims are quite similar, but we are currently using different formal tech-
niques; we are in the process of comparing results.

References
[1] Martín Abadi, Secrecy by Typing in Security Protocols. JACM 46, 5 (September 1999), 749-786.
[2] Martín Abadi and Andrew D. Gordon, A Calculus for Cryptographic Protocols: the Spi Calculus.

Information and Computation 148(1999):1-70.
[3] Luís Caires and Luís Monteiro, Verifiable and Executable Logic Specifications of Concurrent Ob-

jects in 	π. In Programming Languages and Systems, Proceedings of ESOP’98, Chris Hankin (Ed.),
LNCS, Springer, 1998. pp. 42-56.

[4] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon, Secrecy and Group Creation. Catuscia Pala-
midessi, editor. Proceedings of CONCUR 2000. LNCS 1877, Springer 2000, pp. 365-379.

[5] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon, Ambient Groups and Mobility Types. Pro-
ceedings of IFIP TCS2000. J. van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, T. Ito (Eds.). The-
oretical Computer Science; Exploring New Frontiers in Theoretical Informatics. LNCS 1872, Springer,
2000. pp. 333-347.

[6] Luca Cardelli and Andrew D. Gordon, Mobile Ambients. Foundations of Software Science and Com-
putational Structures, Maurice Nivat (Ed.), LNCS 1378, Springer, 1998. pp. 140-155.

[7] Luca Cardelli and Andrew D. Gordon, Anytime, Anywhere. Modal Logics for Mobile Ambients.
Proceedings of the 27th ACM Symposium on Principles of Programming Languages, 2000. pp 365-377.

[8] Silvano Dal Zilio, Spatial Congruence for Ambients is Decidable. Technical Report MSR-TR-2000-
41, Microsoft Research, May 2000.

[9] Furio Honsell, Marino Miculan and Ivan Scangnetto, π-Calculus in (Co)Inductive Type Theory. TCS
2000.

[10] Murdoch J. Gabbay and Andrew M. Pitts, A New Approach to Abstract Syntax Involving Binders.
In Proceedings 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 1999.
IEEE Computer Society Press, 1999. pp 214-224.

[11] Andrew D. Gordon and Luca Cardelli, Equational Properties of Mobile Ambients. Wolfgang Tho-
mas, Editor. Foundations of Software Science and Computational Structures, Second International Con-
ference, FOSSACS'99. LNCS 1578. Springer, 1999. pp 212-226.

[12] Robin Milner, Communicating and Mobile Systems: the π-Calculus. Cambridge University Press,
1999.

[13] Robin Milner, Joachim Parrow and David Walker, A Calculus of Mobile Processes, Parts 1-2. Infor-
mation and Computation, 100(1), 1-77. 1992

[14] Davide Sangiorgi, Extensionality and Intensionality in the Ambient Logics. Proceedings of the 28th
ACM Symposium on Principles of Programming Languages, 2001. pp 4-13.

