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Abstract
a b
The Ambient Calculus is a process calculus where processes may re- b
side within a hierarchy of locations and modify it. The purpose of the
calculus is to study mobility, which is seen as the change of spatial p

configurations over time. In order to describe properties of mobile
computations we devise a modal logic that can talk about space as In the Ambient Calculus, contiguous locations (or processes)

well as time, and that has the Ambient Calculus as a model. are represented by standard parallel composiBqi®j}, and named
locations are represented by ambienf®]) which name a location
1 Introduction n with contentsP. This fragment of the Ambient Calculus, together

In the course of our ongoing work on mobility [3,4,5,12], we havew'th a void procesd)j and simple syntactic equivalences, amounts

often struggled to express precisely certain properties of rnobilteoatextual representation of edge-labeled trees. The example above

computations. Informally, these are properties such as “the agent h%%UId be \_Nr!tten aa[p[O]] | b[0], assuming there are no active pro-
gone away”, “eventually the agent crosses the firewall”, “everyCesses within the Iocatllons.. .
agent always carries a suitcase”, “somewhere there is a virus”, or .Even befqre conS|derujg procgs; e.xecut|on, we can talk about
“there is always at most one agent calidiere”. There are several Spatial properties and spatial specifications. For example, we have

conceivable ways of formalizing these assertions. It is possible t&e following correspondence between spatial constructs in the Am-

express some of them in terms of equations [12], but this is som ient Calculus and certain formulas of the logic we develop later:
times difficult or unnatural. It is easier to express some of them asProcesses

properties of computational traces, but this is very low-level. 0 (void)
Modal I_ogics (particularly, temppral logics) have emerged in n[P] (location)
many dc_>ma|ns as a good compromise _between expressiveness and p 1Q (composition)
abstraction. In addition, many modal logics support useful computa- Formulas
tional applications, such as model checking. In our context, it makes 0 there i thing h
sense to talk about properties that hold at particular locations, and it (there !S no |ng ere)
becomes natural to considgpatial modalitiesfor properties that n[<] (there is one thing here)
hold at a certain location, at some location, or at every location. A6 (there are two things here)
Space We have a logical constadthat is satisfied by the proce@sepre-

uslgnting void. We have logical propositions of the foftd] (mean-

Interesting spatial structures can be represented conveniently as un- . L
ordered edge-labeled trees, where edge labels correspond to nar{;?&thatg holds at locatiom) that are satisfied by processes of the

of sublocations, and subtrees correspond to sublocations. Such a repm n[P] (meaning that procesdis located an) provided thaP

resentation of locations is shared by the Ambient Calculus [3], th%gt'f:]'eg' V\ée@hr?vlz Iogut:_al prop;osmﬁ_nshof the ftc.)%] |;Bb(meart1_-
Distributed Join Calculus [10], the Seal Calculus [20], and trivially'"¥ a7 an old contiguously) which are satisfied by contigu-

by the many distributed process calculi with a flat location structur@-> Processes of the foffn| Qif P satisfies7andQ satisfies, or

(e.q.: [2]). vice versa.

The following edge-labeled tree represents two contiguous loTime

cations,a andb, such thab has no sublocations, aachas a sublo-  gpatia| configurations evolve over time as a consequence of the ac-

cation callecp. The diagram on the right gives a more intuitive butyjyities of processes. For example, our initial tree may go through the

equivalent description of location contiguity and containment: following two steps of evolution, as the result of a process moving
the locatiorp from a to b through the ether in between.
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We can think of processes as sitting at the nodes of edge-labelsttengthening the definition of structural congruence so that it char-
trees, and directing the movement of those nodes through the treesterizes the intended equivalence on spatial configurations.
So, the steps above could be caused by a process executing move- The following table summarizes the syntax of processes. We

ment instructions at the node unger
Mobility

have separated the process constructspatal andtemporaj this
is similar to the distinction between static and dynamic constructs in
CCS [17]. This paper focuses on the spatial constructs; the temporal

We regardmobility as the evolution of spatial configurations over ¢onstructs and the dynamic behavior are necessary but secondary for

time. A specification logic for mobility should be able to talk aboutq; cyrrent purposes.
the structure of spatial configurations and about their evolutior},rocesses

through time; that is, it should be a modal logic of space and time,
A typical specification would say that the configuration looks P,Q,R::=

processes

initially like a certain tree, and eventually like some other tree. In 0 void
some cases we may want to be very precise about describing the  p|Q composition spatial
structure of locations, even though this runs against the traditional Ip replication
attitude in logics for process calculi that prevents “counting” the M[P] ambient
numl_)gr qf processes (or locations) involved. Our logic can be very M.P capability action
specific, in this sense. . g
. . . I (n).P input action } temporal
Of course, since we are dealing with specifications, we may :
also want to be able to be imprecise, and describe things that happen (M) output action
“somewhere” or “sometime”. Rarely, though, we want to be very M ::= messages
precise about particular execution steps, so that the same flavor of name + names
Iogi_c of mobili_t)_/ seems applicable to a_variety o_f calculi. In fact, the in M can enter intdv
notion qf mob_lllty as e_volutlon 'of location trees is shared by sevgral out M can exit out oM > capabilities
calculi, including Ambients, Join, and Seal, although the mechanism openM can operM
and properties of mobility steps differ greatly between them.
In this paper, we concentrate on the Ambient Calculus for con- € , null ) } paths
creteness, but our main thrust is applicable to any distributed process MM composite

calculus that includes a hierarchical and dynamic structure of loca-
tions.

The set of free names of a procBsairittenfn(P), is defined as usu-

al; the only binder is in the input action. We wign — M} for the

Paper Outline

substitution of the messadykfor each free occurrence of the name

Spatial modalities have an intensional flavor that distinguishes our in the proces®. Similarly for M{n—M’}. The O process is often

logic from other modal logics for concurrency. Previous work in theomitted in the contexts{0]
area concentrates on properties that are invariant up to strong equiv-

andM.0, yieldingn[] and M.

alences such as bisimulation [15,6], while our properties are invar?-2 Structural Congruence and Reduction

ant only up to simple spatial rearrangements. Some of our tecltructural congruence is

a relation between processes; it is used

niques can be usefully applied to other process calculi, even on@gavily in the logic, as well as in the reduction semantics. Intuitively,

that do not have locations, such as CCS.

structural congruence equates processes up to simple “rearrange-

‘We start from a computational basis: a process calculus, Surfnent” of parts, without any computational significance. We can
marized in Section 2, that acts as a model for the logic. In Sectionjgentify five groups of rules in the following table: for equivalence,

we introduce logical formulas and a notion of satisfaction. In Sectiolfbr congruence of spatial operators, for composition, for replication,
4, we derive logical inference rules, including rules for time, spaceand for temporal operators and paths.

and satisfiability modalities, and novel rules for locations and Pro%ctural Congruence

cess composition (the rules are summarized in the Appendix). At the
end of this section we give a detailed example of logical inference.P =P

In Section 5 we investigate model checking of mobile programs, onP=Q O Q=P

the basis of the satisfaction relation between processes and formulaR=Q,Q=R 0O P=R
Finally, in Section 6, we compare our logic with relevant and linear
logics. P=Q U P|R=QJR
P=Q O 'P=1!Q

2 The Ambient Calculus with Public Names P=Q O M[P]=M[Q]

In this paper we consider only ambients having public names; thatisP |[Q=Q |P

we do not deal with name restriction and scope extrusion. Handling(P |Q) [R=P | Q| R)
of private names in a logic is a very interesting topic, but we leave itp [0 = P

for future work.

(PIQ=P|Q
2.1 Ambients 10=0
We summarize a modified version of the basic Ambient Calculus of 'P=P|P

[3]. The changes consist in removing name restriction, and in iP=1p

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Par)
(Struct Repl)
(Struct Amb)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)

(Struct Repl Par)

(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)



P=Q 0 MP=MQ (Struct Action) here and now an empty location calledTime operaton[%] repre-

P=Q 0 (X.P=(¥.Q (Struct Input) sents a single step in space, allowing us to talk about the place one

eP=P (Structe) step down intan. Another qperator?%_ a!lows_ us to talk about an

(MM').P = MM P (Struct .) arbitrary number of steps in space; this is akin to the temporal even-
\ o T ' | tuality operatorO%.

Spatial configurationsare ambient configurations consisting
only of spatial operators. For exam@gh[0] | !c[0|0] | !0] is a spa-
tial configuration. These configurations have a natural interpretatiohhe syntax of logical formulas is summarized below. This is a modal
as edge-labeled finite-depth trees, where replication introduces infRredicate logic with classical negation. As usual, many standard
nite branching. The rules for structural congruence are sound aﬁ@nnectives are interdefinable. The meaning of the formulas will be
complete for equivalence of these trees. We do not elaborate this figiven shortly in terms of a satisfaction relation. Informally, the first
ther, but it suffices to say that this completeness result motivates tifaree formulas (true, negation, disjunction) give propositional logic.
choice of axioms for structural congruence, and particularly the axthe next three (void, location, composition) capture spatial config-

ioms for replication (which are the same as in Engelfriet's work orirations, as we discussed. Then we have quantification over names,
the Tecalculus [9]). the two temporal and spatial modalities, and two further operators

that we explain later. Quantified variables range only over names:

3.1 Logical Formulas

Reduction : - . . .
| | these variables may appear in the location and location adjunct con-
nfinm. P |Q] | m[R] — m[n[P | Q] | R] (Red In) structs.
minfoutm. P |Q] | Rl — n[P | Q] | M[R] (Red Out) Logical Formulas
openn.P |n[Q] — P|Q (Red Open) | ; ; |
(N).P [ (M) — P{n M} (Red Comm) n is a name or a variable
P—Q O n[Pl—n[Q] (Red Amb) @, B,C =
P—Q O PIR—=QI|R (Red Par) T true
P=P,P—-QQ=Q 0 P —-Q (Red=) -4 negation
—s* is the reflexive and transitive closure-ef A0B disjunction
' ' 0 void
The reduction relation describes the dynamic behavior of am- n[¥] location
bients. In particular, the rules (Red In), (Red Out) and (Red Open) A\ B composition
represent mobility, while (Red Comm) represents local communica- VXD universal quantification over names
tion (see [3] for an extended discussion). For example, the process: oG sometime modality
alplout a in b. (m)]] | b[open p (). X[I] >A somewhere modality
g@an location adjunct

represents a packethat travels out of hostand into hosb, where
itis opened, and its contemtsare read and used to create a new am:

bient. The process reduces in four steps (illustrating each of the four i i .
reduction rules) to the residual procefs| b[mf]]. The first three The free names of a formufa(¢4), are easily defined since there are

states correspond to the tree diagrams in the Introduction. no name binder§. The free varia_b_les Of_ a form_‘u[@), are defin_ed
along standard lines: only quantifiers bind variables. A foriflis

B composition adjunct
|

alplout a in b. (m)]] | blopen p (X). X{I] closed iffW(%) = .

— &[] | plin b. {m)] | blopen p (x). K] (Red Out) _ _

— al] | blp[m)] | open p (). X[ (Red In) 3.2 Satistaction

— af] | b[{m) | ). x[]] (Red Open) The satisfaction relatioR = 2 means that the proceBsatisfies the
— a[] | b[m(]] (Red Comm) closed formuldZ. This relation is defined inductively in the follow-

ing table, wherél is the sort of processes,is the sort of formulas,
9 is the sort of variables, ardis the sort of names. We are very ex-
plicit about quantification and sorting of meta-variables because of

2-1 Facts about Structural Congruence
(1) P|Q=0iff P=0andQ=0.

(2)n[P] # 0. subtle scoping issues, particularly in the definitio® &f Vx.. We

(3) n[P] = Q | Riff eitherQ = n[P] andR= 0, orQ= 0andR= n[P]. use the same syntax for logical connectives at the meta-level and ob-

(@) mP] = n[Q] iff m=nandP = Q. ject-level, but this is unambiguous.

G)mP] | Q] = m[P'] | n'[Q] iff eitherm=m", n=n’", P = P’, The meaning of the_ temporal modglity is given by reductions i_n
Q=Q,orm=n,n=m,P=Q,Q=P" the operational semantics of the Ambient Calculus. For the spatial

modality, we need the following definition: the relatBhP’ indi-
cates thaP containsP’ within exactly one level of nesting; that is,
P’ is one step away frof in space, in some downward direction.

PLP iff 3n,P”. P=n[P]|P”

O

3 The Logic

In a modal logic, the truth of a formula is relative to a state (or
world). In our case, the truth ofspace-timenodal formula is rela-  Then,P|"P’ is the reflexive and transitive closure of the previous re-
tive to thehere and nowEach formula talks about the current time, lation, indicating thaP containg®’ at some nesting level. Note that
that is, the current state of execution, and the current place, that I, consists of either the top leve| or the entire contents of an en-
the current location. For example, the formun{i@] is read:ithere is  closed ambient.



Satisfaction A0B A2-(B>-9 fusion

(e PET FI0B L+ -B) fusion adjunct
vPin, Z.0. PE-2 = ~PEA ISyntactic conventions>’, <, ‘@, ‘<, and X’ bind more stroniq
. . A ’ ’ ’ H

VP:I'I, AB. P A3 j P ig OPE ly than‘|’ ; and they all bind more strongly than the standard logical

vP:n. PFEO 2 P=0 connectives, which have standard precedences. Quantifiers extend

VP:M, nA\, Z:®. PE N4 £ IP:MN.P=nP]OP EX to the right as far as possible.

VPN, AB®.  PEA|B £ FPPUM.P=PIP” Decomposition is the DeMorgan dual of composition. A de-
OPEXAOP EB composition formuld? || B is satisfied if for every parallel decom-

VP:M, x93, 4:d. PEVXA & VmA.PEZ{Xx-m} position of the process in question, either one component safisfies

VP:M, Z-o. PE O A JPN.P="POPEY or the other satisfi€8. Then %" means that in every decomposition

VYP:M, F®. PE {9 A IPM.PUPOPEY either one component satisfi@sor the other satisfieB; since the

VPN, 0. PEZ@n 2 nPlEZ latter is impossible, in every possible decomposition one component

N must satisfyZ. For example:r{T]0 n[m[T]])¥ means that every

VPN, 4,B:®. PE S>3 VP:N.PEXA0 PIPEB
L

| ambientn that can be found here contains a single subambient
The DeMorgan dual ¢B¥ is &, which means that it is possible to
find a decomposition where one component sati§fieBor exam-
ple, nfm[T]?]? means that there is at least one amhieneére that
contains at least one subambiemt

Other operators are derived as DeMorgan duals: existential
quantification, and everytime and everywhere modalities. Examples
for these modalities aremn[T] (there is always a location called
here), and< - (n[T]?) (there is now no location calledanywhere).

Fusion$2 0 B, is an operator that arises in relevant logic (when
> is seen as relevant implication). In our cont&xt] B means that
there is a context satisfying that helps ensuring. The adjunct of
?usion,‘}f |0 <B, turns out to be very natural in specifications: it
means that in every decomposition, if one part sati$figben the
other part must satisfp.
The following is a fundamental property of the satisfaction re-
n; it states that satisfaction is invariant under structural congru-
ence of processes. In other words, logical formulas can only express
gggperties that are invariant up to structural congruence. The proof
IS"a simple induction on the structuresaf

We spell out some of these definitions. A prodesatisfies the
formulan[¥]] if there exists a proce$¥ such thatP has the shape
n[P’] with P’ satisfying%. A proces$ satisfies the formul&@’ | 4"
if there exist processés andP” such thaP has the shape’ | P”
with P’ satisfyingZ andP” satisfying?d". A process satisfies the
formula<$SZ if &2 holds in the future for some residalof P, where
“residual” is defined byP—"P’. A proces<P satisfies the formula
L>-97if 4 holds at some sublocati® within P, where “sublocation”
is defined byP|"P’.

The last two connectives, @ angcan be used to express as-
sumption/guarantee specifications [1]; they were inspired by th
wish to express security properties. A reading 6f/@n is thatP
(together with its context) manages to satigfgven when placed
into a location called. A reading ofP = >3 is thatP (together
with its context) manages to sati§B/under any possible attack by latio
an opponent that is bound to satigfy Moreover,P E (o%4)>(0%)
can be interpreted as saying tRatreserves the invariaf# We will
see that these two connectives arise as natural adjuncts to the lo
tion and composition connectives, respectively.

The definition of satisfaction is based heavily on the structuraB-1 Proposition (Satisfaction is up te=)
congruence relation. This use of structural congruence may appear (PEZ0OP=P)0 P EXA
arbitrary: other equivalence relations could be used in its place. Wg
have tried to motivate the choice of structural congruence by dis-  We end this section with an example of a proof that a certain
cussing in Section 2.2 how structural congruence precisely capturggocess satisfies a certain formula. A proof of even a very simple
the intuition of ambients as spatial configurations. Moreover, strucnhegative formula requires techniques for analyzing the derivation of
tural congruence is easily decidable, which is useful in modelstructural congruences. For example, consider proving the following
checking applications (see Section 5). assertion, wherm # n:

The following table lists some derived connectives, illustrating
some properties that can be expressed in the logic. The informal M0 110 F = 3x X[T] [ X[T]
meanings can be understood better by expanding out the definitions  For a contradiction, suppose tidi | n[] £ 3x. X[T] | {T]. By

from the table above. Some discussion follows. definition, this means there isPasuch tham(] | n[] = P and there is
Derived Connectives agqwithPEq[T] | q[T]. This implies that there are procesBesand
| F a1 false :3 Sl;)(fh’:th[a:rt‘;lﬂ | n||] zt::’ | R;gwith FI: ;qi[;lj] an?(;‘i I:S.q['.li]. IIn
urn, implies there i€’ such thaP’ = . Similarly,
ADB  2-(-A0-9) conjunction P" Eq[T] iqmpliespthere i€” such thaP” = q[Q”(j]. In summar;?
a0 B A2-94909 implication
TP 2@0 BOBO D) logical equivalence mi [ nl = q[Q714[Q"]
a||B A2 (A |=DB) decomposition According to the Fact 2-1(5), there are two ways in which this equa-
ol AA||F every component satisfiég tion can have been derived. In either case, it followsnthag and
9P A2 |T some component satisfigs n = g, and thereforen = n. This yields the desired contradiction, as
IxA A oVxaF existential quantification we are assuming that# n.
oA L2509 everytime modality
=4%) A4 everywhere modality



4 Validity fore, there may be formulations of our logic which identify a set of

atructural rules, perhaps along the lines of [18]. At the current stage

In this section, we study valid formulas, valid sequents, and vali - =
logical i . . in the development of our logic, however, it is unclear how to pro-
ogical inference rules. All these are based on the satisfaction rela-

tion given in the previous section. Once the definition of satisfactioﬁeed in that direction.

is fixed, we are bgsically committed to whatever Iogig comes_out of 2 Rules of the Logic

it. Therefore, it is important to stress that the satisfaction relation ap- ) ) )

pears very natural to us. In particular, the definitiong, of<], and In t_he seqyel, we organize our results into tables Qf Rules_, which are

Z | B seem inevitable, once we accept that formulas should be abyélldated in the_model, and into tables of Corollaries, which are de-

to talk about the tree structure of locations, and that they should nbyed purely logically from the inference rules.

distinguish processes that are surely indistinguishable @) ithe

connective$2@n and%>%3 have natural security motivations. The

modalitiesC9 and<-Atalk about process evolution and structure in The following is a non-standard presentation of the propositional se-

an undetermined way, which is good for mobility specifications. Thejuent calculus [14], based on our single-assumption single-conclu-

rest is classical predicate logic, with the ability to quantify over lo-sion sequents. In this presentation, the rules of propositional logic

cation names. become very symmetrical, and many proofs become more regular,
Through the satisfaction relation, our logic is based on solidaving to consider only single formulas instead of sequences of for-

computational intuitions. We should now approach the task of dismulas.

covering the rules of the logic without preconceptions. As we shalpropositional Rules

see, what we get has familiar as well as novel aspects. T (AL  9000D)F B M (AT B
4.1 The Meaning of Rules (A-R)  Z+ (COD)OB M A+ C(DIB)

A closed formula is valid if it is satisfied by every process. (For the (X-L) A D OCEAEB
moment, we consider only validity for closed formulas, i.e., propo- (X-R)  A-COB DAFBIC
sitional validity.) We use validity for interpreting logical inference (C-L) A4+ B 04+ B
rules, as described in the next definition. We use a linearized nota{C-R) A+ BB 0AF B
tion for inference rules, where the usual horizontal bar separating an{w-L) %+ 3 0%C+ B
tecedents from consequents is writtéhin-line, and *;" is used to (W-R) 9+3B 09+ COB

4.2.1 Propositions

separate antecedents. (1d) 099
Validity, Sequents, and Rules (Cut)y HA-COB; AOCFDB 0 AT + BB
"Vd@) & VPN.PED Validity for (closed)z ~~ (T) 90T+ B 0AF B
(F) A+-FOB 0A+DB
A+-B A Vld(gD CB) Sequent ("'L) T-COB 0D =C-B
A4+B & A+B 0 BraA Double Sequent (--R) “ACHDB 0Ar-COB
L |
Ik By oo; Dt Bn OAp - By £ Inference Ruler=0) The standard deduction rules of propositional logic, both for the se-
Gh-B0... 0% B0 Ao+ Bo guent calculus and for natural deduction (interpreting “[M as the
Dy By T By 0T 4B & Double Conclusion left andO on the right), are derivable from the rules in the table.
B MDA B, & Double Rule The logical rules of composition apply not only to our calculus but
DB OBy, O DB, 04 By also to any calculus that includes a standard process composition op-

' | erator, for example, CCS.
We adopt a non-standard formulation of sequents, where eagtomposition Rules
sequent has exactly one assumption and one concl&&iof®. Our T I
intention in doing so is to avoid pre-judging the interpretation of the (10) 0A104-4
structural operator “,” in standard sequents. In our logic, by tdking (-0 O%A[-0F=-0
on the left andon the right of- as structural operators (i.e.,as*”), (A1) OA[B[0) 4 (A|D)|C
all the standard rules of sequent and natural deduction systems witX |) ~ OA B+ B[4
multiple premises/conclusions can be derived. Instead, by taking [or(|[F) A +DB; D' +B" OFA |A'+B' | B”
the left of+- as a structural operator, all the rules of intuitionistic lin- (| 0) O(@m) |[C-aa|cadB|C
ear logic can be derived. Finally, by taking nestings ahd | on the (1 OF D+ (A |BYD(B |FYO(=B |-B")
left of - as structural “bunches”, we obtain a bunched logic [18]. We (|>)  9|CF3 M 9F C>B
discuss this further in Section 6. | |

Noticeably, we abandon Gentzen’s distinction between struc-  The first two rules assert thads part of any process, and that

tural rules and other logical rules, which has been a staple of formgl5 part is nord so is the whole. The next three rules give associa-
logic since [11]. We do not see this as a fundamental or irrevocab{g,ity commutativity, and congruence of composition.

step. Not all logics fit easily into Gentzen’s initial approach, and The converse of thelJdistribution rule ( [J), namelyZ | C O
many alternative sequent structures have been studied [7]. Thercgw,_ (0B) | C, is derivable. So is a-distribution rule, @IB)




|CH92|C OB |C. However, the converse of that, nam@lyC 03B
|CH (@0OB) | C, is not sound. (Tak& = n[m[T]], B =n[p[T]], C=
n[T], andP =n[m(]] | n[p[]; thenPE @ |CandPE B |C, but- P

ity of locations with respect tdand(l. The rule ([] @) states that
SA@n andn[¥]] are adjuncts, and the rule (@) states that the loca-
tion adjunct @ is self-dual.

E (4B) | C.) As a consequence, one cannot always “push | inside  Note that (] +-) holds in both directions, and that the inverse
[ on the left-hand side of a sequent. In particular, after an applicadirections of §[] [) and @[] [) are derivable; hence, the location
tion of ( |F) one cannot in general renormalize a sequent to bring fragment of the logic is particularly simple to handle.

(or“.") to the top level. Some Location Corollaries

The decomposition axiom, (| || ), can be used to analyze a com=

positionsd” |2 with respect to arbitrarily chos&y and?3". An easy (nll F) On[F]+F

consequence of it is(Z | B) - (Z|T) O (T | ~B), which means ("1 D) O n[A3] F n[A]0n[3]
that if a process cannot be decomposed into parts that $atisfy (1 O O n[Z]0n[B] - n[S0B]
B, but can be decomposed in such a way that a part s&sfiesn (@+F) A+ B O AGN B@N

it can also be decomposed in such a way that a part does not satisfyn[z@n]) 0 n[g@n] - @
B. An even simpler consequence is thél | B) - T | =B, which (n<Z1@n) 09+ n[g]@n
is one of the few cases in which one can pusitross |. (N[~ O n[=%] F =[]
The rule (1>) states tha® | B and%>B are logical adjuncts - n[F]) 0 ~n[Z] 4F n[T] 0 n[~9]
This has a large number of interesting consequences, most of thgng

deriving from the adjunction along standard lines.

Some Composition Corollaries 4.2.4 Time and Space Modalities
[

The “somewhere” modality was our starting point in developing our

(E F) Cé[ ;(/;B% ;?@D ADBEA>D logic. We can now investigate its properties.

E'>'>|)) 0 EQID‘B; : @>C) - F>C ITime and Space Modality Rules

>-L) DFEBECOD|EB)FC (©) O0H 4 -o-9 () 0419

(1T O9+99|T (oK) Oo@0B)FoD0aB (= K) Ox(P0B) - 190 1B

(1P O4|F-F (oT) Oo9+4 (*xT) Oxg+9

(1D O0@@OB) |CFL|COB|C (o4) Oo¥t+ oo (X 4) OrgGrF urg

(10 0L |COB|CF (AB) |C oT) OT +oaT (xT) OT+HXT

(Tr) OTpARSA (ok) A+-BOA+-oB (X ) A-BORAE 1B

(F>) OTrF>A (©nfl) On[©9] - on[9] (+nl) On[<9) -

GO OB ELX>B.  OD(BI) 4+ A>BOAC (©]) OOF|OBFOE|B) (X ]) UL |Br+(Z|T)
09> (COB) Fa>B. O @IO)>BA-A>BOCH>DB
ODBFACOB). 0A>BOABCra@I) | ($O) Deodroed |
0 (F0)>B + A>B.

04>a0OC>BF (F0)>
A>BOCHDBE( (BI The operator® and<- obey the rules of S4 modalities (the first

It is worth pointing out that some composition rules produce in_6 rules in each column); these follow simply from reflexivity and

o n « i
teresting interactions between fhand | fragments of the logic. For transitivity of —* and”. These operators, however, are not S5 mo

: . . dalities, that isP4 - oY is not valid (i may happen along some
example, & | D) DO+ Ais derivable using (|[|) and40). reduction branch, it will not necessarily happen starting from every

reduction point), and neither4s2+ X <-4 (if 2 holds in some sub-
location, it does not necessarily hold in some sublocation of every
Sublocation).
The modalities differ prominently in the way they distribute
over compositions and locations, as seen in the subsequent 4 rules.
The last rule shows that the two modalities permute in one di-

4.2.3 Locations

The location rules are specific to calculi with tree-structured loca:
tions, such as the Ambient Calculus.

Location Rules
[ 1

E:H :(l))) g :{g]] lt :?—'0 1-0) rection: somewhere sometime implies sometime somewhere. But
I3 M % the other direction is not sound. (ConsiBer (open nm[p(]]) | n(].

Eng FD; ’ l_[SZ)]D [(gﬁ] F[;[[FB]] ThenP E &<-p[0], butP ¥ <-op[0]).

n n n n . .

0 O 0 ] - A NP] ISome Modality Corollaries

"] @) 9] F B 0D+ B@n (CF) A+-B OOAER OB k) A-B O>AFB

(- @) 0 9@n - -((-F)@n) oD Oo@@EB) 4 cAmB (2 0D OX(@03) 4 X490r B

(©T) 09+ 09 (¢ T) ODF <D

The first two rules assert that locations are non-void and are not(@ ¢) Oo%+ ¢4 (X ) ORAE A
decomposable. The next three rules give congruence and distributiv{> K) O0A0 OB+ (A0 B) (- K) O0<-A0 B (A0 B)
(© 4) DO+ OA (& 4) 06T+ 4D
(© 0) OO(AIB) 4 OAOB (& ) O<-(AIB) - +AKB
(0 F) OOF+F (¢ F) O¢F+F

1 We say that two binary operataisO are logical adjuncts BEOC

F B MY+ COPB. The main adjunction of logic is given by the
pair 00 . Moreover, we say that two unary operator® are log-
ical adjuncts IO+ B A+ OB.



(ox) OoxY+ 2o%

(o n[)) Oon[4] F n[o%]

(0 @) O@EA)@n+Aan
(¢ @) 0%@nt+ (LK) @n.
(o>) 093+ (0A)>DB
(O >) O(CA>B + A>B.

4.2.5 Satisfiability

Validity and satisfiability can be reflected into the logic by means o
the 4" operator (here we usé for - %):

dO(@@n) - (0)@n

OO(A>B) - (OA)>(OB)

aF L2 I>F 9 is unsatisfiable
vidg 2 gF Ais valid

Satg & g 9 is satisfiable
PES" iff VP:M.-P'EY
PEVIdY iff VP:M.P'EA
P E Sat¥ iff IP:N.P ESA

From the definitions of andF, we obtain thaP F &~ « (VYP":.
PEZO PIPEF) « (VP:M. =P ED). Le.,PE S iff Zis un-
satisfiable, independently &f

One of the main properties & is thatZ |47 + F, by (> | ).

As an example$-VYx.~ (X[T]?) is the formula for “somewhere there
are no ambients”. Since there are no infinite spatial FatRsP, |

P;s | ..., we can show in the model that this formula is valid. On the
other hand, its temporal dual, “sometime there are no ambients”,
OVX.A (x[T]H), is invalid; for instance, it is not satisfied bjy.

The following lemma yields a substitution principle for predi-
cate validity, allowing us to replace logically equivalent formulas in
larger contexts. LeB{ -} be a formula with a set of formula holes,
indicated by-, and let3{%4} denote the capture-avoiding substitu-
tion of & for the holes in3{-}.

4-1 Lemma (Substitution)
vId(A@ = A" 0 VId(B{A} = B{AY})
O

4-2 Corollary (Substitution Principle)
A A-A" 0 B{A} 4+ B{A"}
|

4.2.7 Name Equality

Itis possible to encode name equality within the logic in terms of lo-
cation adjuncts, by taking:

n[Ti@u

A

n=u

That is, 2 cannot be both satisfiable and unsatisfiable. In addition We\/e obtain. for albefv(n) fv() - A and allP:n:

obtain, from the model, the following rules, from which it is possible
to show within the logic thafld andSatobey the rules of S5 modal
operators:

Satisfiability Rules

(>F-) O v
(->F) 09 +4F

[ 1
if 4 is unsatisfiable the# is false

if Zis satisfiable thef" is not

Some Satisfiability Corollaries

(I>F) O9|F+F

>GFH) B OF +BF

>Fp) O0B>A+A>BF

(F>F) OT-FF

(T>F) OF4-TF

->F OFFra. OAF -9
09 F -9, 0g g

4.2.6 Predicates

So far we have considered only propositional validity; when consid
ering quantifiers, we need to extend our notion of validity. If
V(@) ={x4, ... x¢ are the free variables 67 andpefv(4) -~ A is a
substitution of variables for names, we weitgfor S9{ x; — §(xa), ...,

Xk < (%)}, and we define:

VId@) & Voe(@) - A VPN PED,

This definition of predicate validity generalizes the previous defini-
tion of vid, which was restricted to the case\dfd) = g. It similarly
generalizes the definitions of sequents and rules.

We can now introduce quantifiers and their rules:

Quantifier Rules

I (V-L) HAxen}+-B OVXA-DB (nanameora variablel)
(V-R) 9+B OAFVYXB wherex ¢ fv(%)
L

PEM=HMe = ¢(N)=0W)

As an example, the following formula means “any two ambi-
ents here have different names”, which can be read as a no-spoofing
security property:

V. Vy. X[T]|Y[T]|TO = x=y

4.2.8 Lifting Propositional Validity

Using equality, we can extend propositional validity to predicate va-
lidity in the sense of the proposition proved at the end of this section,
Proposition 4-9. This way, we can systematically extend to predicate
logic the rules we have derived so far for propositional logic.

To prove this proposition, we need renaming lemmas for satis-
faction, Lemma 4-6, and for validity, Lemmas 4-7 and 4-8. First, we
state three auxiliary lemmas.

4-3 Lemma (Fresh renaming preserves)
Consider any proce$sand namem, m’, withm’¢ fn(P). For all
P, if P=P’ thenm'¢fn(P’) andP{m~m’} = P’{mm’}. More-

- over, for allQ, if P{m—m’} = Q then there is & with P = P,
m'¢fn(P’) andQ = P'{m~m’}.

|

4-4 Lemma (Fresh renaming preserves»)
Consider any proce$sand namem, m’, with m’¢fn(P). For all
P’, if P—=P’ thenm’¢fn(P’) andP{m~ m’} -=P’{m~m’}. More-
over, for allQ, if P{m~m’}—Q then there is & with P—P’,
m'¢fn(P’) andQ = P'{m~m’}.

4-5 Lemma (Fresh renaming preserves)
Consider any processand names, m’, with m’¢fn(P). For all
P’, if P{P’ thenm’¢fn(P’) andP{m—m}{P’{m—m’}. More-
over, for allQ, if P{m—m’}{Q then there is & with P{P’,
m'¢fn(P’) andQ =P’ {m~m’}.

O



4-6 Lemma (Fresh renaming preserves) (O) AssumeP{mm’} FE (VxA){m<m’}. Pick any namen. We
For all closed formulag?, processeR, and namem, m’, if m'¢ are to show tha® E $4{x~n}. We split the proof into three cases.
fn(P)Ofn(X) thenP E < = P{m—m’} FA{m-m’}. First, suppose@=m’. Pick a fresh namm” such tham” ¢fn(P)0

Proof fn(&@)0{mm’}. By assumption, we have{m—m’} £ %{m-m’}

The proof is by induction on the number of symbols in the closedX~M"}. We can calculate{m-m}{ x—m"} = SA{x-m"}

formula Z. Note that the number of symbols in a formula is un-{M«m’} since m#m". Then, sincem’¢fn(P)0fn({x-m"}), the

changed by substituting a name for a variable or another name. cdpduction hypothesis implieBF=7{x.-m"}. Again, sincem'¢fn(P)
sider an arbitrary proce$s and any names andm’. If m=m’ the ~ @nd m'¢fn(&{x—m"}), the induction hypothesis implieB{m”
lemma holds trivially, so we may assume tam'’. We show only <M} FA{xm"}{ m" —m’}. But because of the freshnessof,
the case for parallel composition and the case for universal quantiffis ISP F #{x—m?}. Therefore, since=m’, we have showi®

cation. {X—n}. .

Case for|: We prove each half of the following separately, wheresecond" taken;t’m’ but n=m. By assumptlon,P’{mkm’,} =

m'¢fn(P)0fn(Z | B). AHKme m H xe m’}. From mzm’, we get#m—m'}{ xe,m } =

PEZ|B - P{mem} E (F|B)fmem}. A x—mH m<_’ m'}. Mo’reover, we als_,o gem_ﬁfn(P{mhm }) _and_
m¢ fn(é x - m’{ m—m’}. Hence, the induction hypothesis implies

(0) AssumeP = 57| B. We are to show that there & Q" such  proy_m}{m'cm} £ Z{xem mem} m <m}. Since m'¢

thatP{m—m?} =Q"|Q", Q' FAm-m}, andQ” EB{m—m}.  fyp)Oin(e), we can calculateP{m—m{ m'—m} = P and

By assumption, there aR¢, P” such thaP =P’ |P", P'F 9, and gy m} {mem{m cm} = D{x—m}. Therefore, we have

P"E . LetQ =P {m-m}andQ” =P"{m-m’}. By Lemma 4-  ghownp £ F{xn}.

3, P =P | P" andm’¢fn(P) imply that m'¢fn(P’)Ofn(P”) and

P{m-m’} = Q' | Q". By induction hypothesian’¢fn(P’)0fn(4)

andP’ E & imply thatQ’ E 4{m~m’}, and alsom’¢fn(P”)Ofn(B)

andP” £ B imply thatQ” E B{mm'}.

(O) AssumeP{m-m’} E (4 | B){m-m’}. We are to show that

there areP’, P” such thaP = P’ |P", P’ E 4, andP” E B. By as-

sumption, there ar@’, Q" such thatP{m-m?} = Q' |Q", Q' E 4-7 Lemma (Fresh renaming preserves validity)

Third, supposen#m’ and n#m. By assumption,P{m-m’} E
Amem} x—n}. Since nzm we have F{m-mH x-n} =
K x—nH{ m—m’}. Sincenzm’, m’¢fn(P)Ofn(% x — n}). Hence, the
induction hypothesis implieB E ${x—n}.

Z{m<m?}, andQ” E B{m<m?}. By Lemma 4-3P{m—m’} = Q' | If Zis closed and valid and’¢fn(%9) thensZ{m m’} is closed
Q" andm’¢fn(P) imply there iRwith P= R, m’¢fn(R) andQ’ | Q” and valid.
=R{m~m’}, and hence that there aPe, P” such thaR=P’ | P", Proof

m'¢fn(P’), m'¢fn(P"), Q' =P'{m-m?}, andQ” =P"{m-m’}. By  we can assume thatzm. Take anyP and two distinct namesn’¢
induction hypothesisn'¢fn(P")0fn(#) andQ’ F A{m—m}imply  in(P)On(A0{mm?}. SinceZ is valid we have, in particular, that
thatP’ F &2, and alsan’¢ fn(P”)Ofn(‘3) andQ” F B{m—m}imply  p{m_n{ m' m} £ 4. By Lemma 4-6, sincen’¢fn(P{m«—n}

thatP” E B. {m’ «m}) Ofn(%), we obtairP{m—n}{ m « m{ mem’} = %{m—

Case forV: We prove each direction of the following separately, m’}. This is the same a@B{m«<n} E %{m-m’}. Again by Lemma

wherem’¢fn(P)Ofn(Vx.4). 4-6, sincem¢fn(P{m«n}) Ofn(%{ m—m’}), we obtain P{mn}
PE VXA = P{mem?} E (VXA){m-m'}. {nem} E A memH n—m}. This is the same &B F A{m-m'}.

(O) AssumeP E Vx4. Pick any namen. We are to show that Hence{m.m?} is valid. Since7 is closed, so iS{m-m?}.

P{m<m’} £ m—m}{ x—n}. We split the proof into three cases.

First, suppose that=n. Pick a fresh nam@” such tham” ¢ fn(P)0 4-8 Lemma (Injective complete renaming preserves validity)
(@ 0{mm’}. By assumptionP F %{xm"}. Since m’¢fn(P)0 If Zis closed and valid aqk fn(%4) - A is an injective renaming,
fn(¢{x - m"}), the induction hypothesis implies thBf m—m’} E then%4, is closed and valid.

A xem"{ mem’}. Recall that m#m’. Then, sincemg¢fn(P{m
«m’}) and m¢fn(AH{ x—m"{ m-m), we get thatP{m-m’?}
{m” cm} E A xm"{ mcm{ m” -« m} by a second application
of the induction hypothesis. But because of the freshness,ofie
have Pim—m{ m” «m} = P{m<m’} and %{x-m"{ m-m’}
{m”cm} = Zmem}{ x—m}. Since m=n, we have shown
P{mem} E{mem}{ x—n}

Second, suppose thagn andm’=n. By assumption? £ &{x « m}.

In general we know tha'¢ fn(P)0fn(%4) andm#zm’. Therefore, we
can apply the induction hypothesis to obf&fm m'} & %{x— m}
{m<m?}. We have’{x - m{ m—m’} = A m—m'}{ x—m’}. Since
m’=n, we have showR{mm’} E {m-mH{ x—n}.

Third, suppose that#n andm’zn. By assumptionP £ Z{x—n}.  4-9 Proposition (Lifting propositional validity)

Proof

Letp ={my—ny, ...,m<ny}, where {m, ...,m} = fn(%) and all the
n; are distinct. Take fregh, ...,px ¢ {My, Ny, ..., My, N}. By induc-
tion oni ranging from 1 tok, since%? is closed and valid and
pi¢ fn(S{ my — p}..{ m.1 < p.1}), by using Lemma 4-7 at each step,
we obtain thaf?’ 2 S my — pi}...{ my—py} is closed and valid. Note
thatfn(%2) = {py, ...,p}- Then again, by induction drranging from
1 tok, sinceni¢ fn(A{ py  na}...{ pi.1 = Ni-1}), by using Lemma 4-7 at
each step, we obtain that' £ F{p; — ng}...{ pc— Ny} is closed and
valid. Sincepy, ..., pcare freshy?” = 4,

O

We have tham'¢fn(P)Ofn(&) and in this case we know thatzn. If Sis closed and valid, then for any injective miggin(¢4) - &
Therefore, we can apply the induction hypothesis to obtain from names to variables, the formuldfr($2)0 %), is valid,
P{m—m} E Zx—n{m-m?}. Since n¥n we haveZ{xn} wheredfn(%9) is the conjunction of all inequalitiesn=m such
{mem? = {mem{ x-n}. So we have showP{m—m?} E thatn,m are distinct names im(<).

A mem x—n}.



Proof
Assume tha# is closed and valid and thaefn(%d) - 9 is injective.
By construction, we also have thifh(59)0 4 is closed and valid.
Take anypefv((dfn($2)0 A)y) - A (with rng(p)=dom($)) and con-
sidergo. There are two cases difis not injective thefn(%)¢.y is
equivalent td=, and thereforedfn($4)0 A)4.y is valid. Otherwise, if
¢ is injective, thenpo is also injective wittdon(¢o.P) = fn(4) =
fn(dfn($9)0 $4). By Lemma 4-8, sincdfn($7)0 S is closed and valid,
we have thatdfn(2)0 A)s.y is closed and valid. We have shown
that Vd efv((dfin($2) 0 Q)y) -~ A. VP:M. P E (dfin(A) 0 A)g.y; that is,
vid((dfn(&)0 SA)y).
O

For example, the valid propositionfT] O -m[T] is trans-
formed into the valid predicatex=y O (X[T] O =y[T]). However,
without the assumptionx=y, the predicatg[T] O -y[T]is not val-

namedq are locked and immobile, that is, they cannot be moved by
in or out nor dissolved byopen We can prove that ifE,
q:AmB[YST], E'+P: T, thenPEo(q[T]? O og[T]?). This expresses
that in a well-typed process, once a locked, immobile ambient ap-
pears at the top-level of the process, it will stay there ever after.
Moreover, we can prove thatlf p:AmB[S, gAmB[YS), E’'+ P :

T, thenP E o(<(p[A[T]7]?) O o<-(p[o[T17]?)). This expresses that

in a well-typed process, once a locked, immobile ambient ngmed
is somewhere a child of a locked ambient namezlrer after there

will somewhere be g child of p.

4.4 An Example

In this example we use the laws®f | , and>, to analyze the con-
sequences of composing two logical specifications.
The specifications describe two subsystemShapperand a

id: for predicate validity one must consider also the substitutions thathief and focus on what happens to the shopper’s wallet. The wallet

mapx andy to the same name.

4.2.9 Case Analysis Principle

is described simply by the formula Wallg}[ leaving the contents
of the wallet unspecified. The absence of a wallet in a given location
is described by the formuloWallet defined as:(Wallet[T] | T),

When reasoning about equality, it is often convenient to reason bj€aning tha_t i_t is not possible to decompose the current location into
cases on whether the equality is true or false. To this end, we intrg-part containing a wallet and some other part.

duce a case analysis principle.

4-10 Definition (Classical Predicates)
Ais classical iftvpefv(A) - A. {PIPF A} € {1, g}.
|
The predicate¥, F, andn= are classical. So is the disjunction
and negation of classical predicates.

4-11 Proposition (Case Analysis Principle)
Let S{-} be a sequent with a set of formula holes, &hle a
classical predicate. The¥{{T} OS{F} O S{%4}.

Proof

TakingS{-} = B{-} - B{-tandB{-} £ B{-} O B'{-},itis
sufficient to show thatld(B{T}) OvId(B{F}) O vIid(B{%2}). As-
sumevld(B{T}) OvId(B{F}). Take anyd efv(B{}) - A andP:.
By assumption we haver By{ T} and P F By{ F}. SinceXZis clas-
sical, we have also tha@Q{] Q F %y} € {1, g}. Consider the case
where Q] QF %} = M so that for any, PE 9, iff PET. By Lem-
ma 4-1,P E By{ A} iff PFE By{T}, hence we obtai® F By{ Ay}.
Consider the case wher@{ Q F %} = ¢ so that for any, P £ %,
iff PEF. By Lemma 4-1P F By{ Ay} iff P E By{ F}, hence we have
P E Bp{Ay}. In both cases, we have shown thate fv(B{}) - A.
VP:M. P E By{ Ay}, that is,vId(B{}).

O

4.3 Logical Properties of Type Systems

A thief is somebody who, in the direct presence of a wallet, can
make the wallet disappear. Its specification is Wadlletp
<ONoWallet and its implementation in the Ambient Calculus could
simply be given bypenWallet.

A shopper is, initially, a person with a walletl{@ke) who is
later likely to become Buyer A buyer is a person who has pulled
out the wallet, presumably to buy something. When a wallet has
been pulled out, it becomes vulnerable to a nearby thief.

In the following derivation, we show that the interaction of a
shopper with a thief (possibly in some larger context) may result in
aCrimeScengwhich is a situation in which the shopper has no wal-
let, and also there is no wallet to be found nearby.

NoWallet& - (Wallet[T] | T)

Looker 2 Person[Wallef[] | T]

Buyer £ PersonfNoWallet | Wallet[T]
Shopper4 Lookerd GBuyer

Thief & Wallet[T] > OGNoWallet
CrimeScenet PersonNoWallef | NoWallet

We begin with the systeBuyer| Thief using the rulesX | ) and (|
) we obtain:
Buyer| Thief
= PersoniNoWalle} | Wallet[T] | (Wallet[T] > ©NoWalle}
 PersonNoWallef | ©NoWallet
From the rules®T) 09+ ¢4, (Id), and () we obtain, in general,

In this section we briefly discuss applications of our logic to expres& | (OB) - (04) | (0B). Then, by ¢ | )T () | (OB) - &(A| D)
properties guaranteed by type systems, beyond the standard staagd transitivity (derivable from (Cut)) we obtain| (O8) - (4 |
ments of subject reduction. This section assumes knowledge of typ®. Using this fact in our example we obtain, by transitivity:

systems for the Ambient Calculus [5].

Consider the system of locking and mobility types for the Am-

Buyer| Thiefi- &(PersonNoWallet | NoWalle)
= &CrimeScene

bient Calculus [5], recast for the calculus of this paper. The assumpsing the rules® F) Z+ B OCA F OB, and © 4) DOOA - O,

tion p:AmB[Y ensures that ambients namedre locked, that is,
they cannot be dissolved by apen We can prove that iE,
p:AmB[S, E'+ P : T, thenPE o(<-(p[T1?) O o< (p[T])). This ex-

we derive:
<(Buyer| Thief) - &OCrimeScene
O<OCrimeSceng ©CrimeScene

presses that in a well-typed process, once a locked ambient pamegds pefore, we can derive@) | B+ (| B); therefore:
somewhere comes into being, ever after there will somewhere be an  (¢Buyej | Thief- ¢(Buyer| Thief)

ambient nameg.
Moreover, the assumptiapAmB[YS] ensures that ambients

and, by transitivity from above:



(¢Buye) | Thiefr ¢CrimeScene Next, we define our model checking algorithm, and state its
then, by weakening (W-L): correctness property, Proposition 5-4, together with the main lem-
(Looker| Thief) O ((¢Buye) | Thief) - ©CrimeScene mas used in its proof.
Now let’s consider the syste@hoppel Thief By the distribution of  Checking Whether Proces$ Satisfies Closed FormulgZ
overQd , from section 4.2.2) we have: f !
| Sh(g(plp(De)ﬂ Thief= (Looker[] <>)Buyet) | Thief CheckP, T) 2T
- (Looker| Thief 0 ((0Buye) | Thie CheckP, ~4) 2 - CheckP, <)
and finally, by transitivity from above, we obtain: CheckP, QD_%) £ CheckP, %) L CheckP, B)
ChecKP, 0) £ if Norm(P) = [] thenT elseF

Shoppet Thieft GCrimeScene CheckP, n[<]) &
) ) if Norm(P) = [n[Q]] for someQ, thenChecKQ, %), elseF
5 A Decidable Sublogic CheckP, 7| B) &
A model checker is an algorithm that determines the truth of an as- let Norm(P) = [, ..., T4
sertionP £ 9, given procesP and formuld&4 as input. We describe in31,J.10J=1.kOlnJ=g O
a model checker for the case whEris replication-free an& is >>- ChecKMie, 71, 9) OChecKMics T, B)

free. The model checker depends on putting any replication-freeCheCKP Vx.Z) &
process into a normal form, given by a finite product of prime pro- let {,ml mJ= fn(P)Ofn(%4) andmpg{my, ...,m¢

cesses. in Vie0.k. CheckP, Z{x—m})
IProducts, Primes, and Normal Forms CheckP, ©9) 2
Mic1xkPi 2 P1]...|Pc]0 product let [Py, ...,P] = ReachabléP) in die 1. k. CheckP;, %)
m:=M[P] [n.P]in M.P]out MP | open MP  prime process CheckP, <9) &
1 (n).P] (M) let [Py, ...,P] = SubLocation&) in Jie 1. k. ChecKP;, $9)
Mic1 x TS normal form ChecKP, @n) £ ChecKn[P], 9)

L | L

The following recursive algorithm maps any replication-free5-3 Lemmas
process to a list of prime processes representing a normal form stryd) For all replication-free processBsandQ, and all replication-
turally congruent to the original process. We write lists of processes free primesy, ...,Tk, P | Q = M1« T if and only if there are sets

in the notation®y, ..., Py. I andJ such that0J= 1.k, 1nJ=¢g, P= i 15, andQ = M;¢, .
Normal Form for a Replication-Free Process (2) For all replication-free process& and all replication-free
f Norm0) & [] primesty, ..., T, N[P] = Mic1.x TG if and only ifk = 1 and there is

Q with g = n[Q] andP = Q.
(3) For all replication-free processesand>-free closed formulas

Vx4, if {my, ...,m¢ = fn(P)Ofn(%4) andmog¢{my, ...,my}, then: P
E Vx4 if and only ifVie0.k. P E %{x—m}.

NO”T’(PIP,) = [T[l! conn Ty T[’ll ---1T['|<']

if Norm(P) = [ry, ..., 7] andNorm(P") = [1T 4, ..., TTk]
NormM[P]) 2 [M[P]]
Norm(M.P) £ [M.P]if M e {n,in N, out N,open N

O
Norme.P) 2 Norm(P)
Norm((M.N).P) 2 Norm(M.(N.P)) 5-4 Proposition
Norm((n).P) 2 [(n).P] For all replication-free processeand>-free closed formulag,
Norm((My) 2 [(M)] - PE 4 if and only ifCheckP, $9) =T.
L

Since all the recursive calls are on subformulas of the original
>-1 Lemma formula, the algorithm always terminates. When computing
If Norm(P) = [, ..., 7] thenP = IT; . ' . ) .

MP) = [, -... 7 le1kTh ChecKP, Z | B) with Norm(P) = [m, ..., Ti] there are Rdifferent

sgbsets of 1, and so Bdifferent choices of the sets&ndJ. There-

t To Chf_Ck ;ge sohmﬁltlmedgn(lj)I:somiwher:etmpdalltles, We;;epe@ re, in general the time complexity 6heckP, %) is at least expo-
on two routineskeachabl@ndsublocationshat given a proce nential in the size d?. (The practical performance of this algorithm

compute a representgtion of the gets of prog@mh thaP ._).*. can be greatly improved by special-casing and heuristics.)
QandP |" Q, respectively. We omit the straightforward definitions Examples: defin@n n n[T]%, andp parents & p[o[T]3?
of these routines. Instead, we state their desired properties, which ALY letP = a[pfout ainb (r_n)]] | b[’open b (). X[II, as in Sectic;n

proved using techniques developed previously [12]. 2.2. The algorithm returns the following results on various example
5-2 Lemma formulas:
If ReachabléP) = [Py, ...,Py] then for allie 1. k, P —* P;, and for

O

i P ot _p : CheckP,an g =T CheckP, o-anm =T
ﬁ‘”SQYbeLP ti © thfng " ;Ortiom?ﬂ-ﬁ- 1.k Pl P and CheckP,an b =T CheckP, a parents p=T
for :II QoicfaFlOJ/rl@g tEFEnB:P.k]]‘or :Qm(gealli o hen CheckP,anp =F CheckP, b parents p=F

) =P LK. CheCKP, <-an @ =T CheCKP, Ob parents D): T

In summary, Proposition 5-4 shows that the model checking
problem for the sublogic withott and the subcalculus withouis
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decidable. It is not clear in general how to extend this algorithm tdILL cut rule) are interderivable. However, this precise match is
include eitherl or >, because in principle an unbounded number ofobtained by paring down both linear logic and our logic. We can go
processes needs to be considered. For example, checking the truttiwther and draw a connection with full intuitionistic linear logic,

P E T>% in principle requires showing for all proces§€ghatP | both syntactically and semantically.
P’ E 4. Similarly, checking the truth dP £ = (% | T) in principle First, syntactically, intuitionistic linear logic (ILL) [13,16,8]
requires showing that neithd? = % nor PXk & for allk = 0. can be embedded in our logic by the mapping:

. . . 0B & 40P L, 2 0
6 Connections with Other Logics T8 B L FOPB L A F
In this final section we compare our logic with well known substruc- F0B & A3 T
tural logics. A—oB &2 I>B O 2 F

g A oO@OO AF

6.1 Relevant Logic

The shape of our definition of the satisfaction relation turns out to b&NiS mapping is such that the rules of ILL can be derived within our
very similar to Urquhart's semantics of relevant logic [19]. (Thankg©9iC; S04, .. % ki B implies<y| .| %y + B. In particular, we

to Peter O'Hearn and David Pym for pointing this out.) In particulaica" derive the “strong” rules ftf# that correspond to an interpreta-
| B is similar tointensional conjunctionand >3 is similar o toN of! as a maximal fixpoint [13,16,8]:

relevant implicationin that semantics. The main difference with (1 11) [, 19 1,

stanfjard f(.)rmulat.ions of relevant logic is that we do not have con- (L2) Ou '9ru 9

tragtlon: this rule |sbr|10t sogno: for process calculi, becBliBez P (L3) Ou D 19019

under any reasonable equivalence. ) .

Moreover, we use an equivaleneg,instead of a Kripke-style (R Bh o B A B BODB L Bhu 19
partial order as in Urquhart’s general case. If we were to adopt a paie omit the proof of correctness of the embedding; this is not hard,
tial order (perhaps some asymmetric form of structural congruenceut it requires gradual build-up and some experience with our logic.
then the classical fragment of our logic would have to be replaced by = The semantic connection is made through quantales [8]. We re-
an intuitionistic fragment, in order to maintain the analogue of Propeall that a (commutative) quantale is a structure SSet, <:
osition 3-1. This seems to be the deep reason why we can get by wih- Bool, \/:2(9 - S, 0:$ - S, 1:S> such thak and\/ form a com-

classical implication. plete join semilattice,] and 1 form a commutative monoid, gnd
) VQ = \{pUqglge Q}forall pe SandQ O S It is folklore that
6.2 Bunched Logic quantales are sound and complete models of intuitionistic linear log-

Peter O’'Hearn and David Pym stuolynched logic§18], where se-  i¢, according to the following interpretati@®]o (we omit the sub-
quents have two structural combinators, instead of the standard si#£ript when? is unambiguous):

w

gle “,” combinator (usually meaning or O on the left) found in 20 B] & I Bl
_most prese_ntatlons of logic. Thus, sequgnmanehesnf formul_as, _ [Z& B] 2 {C]C<[Z] OC<[B]}
instead of lists of formulas. Correspondingly, there are two implica- 20D 2 [2]0[2]
tions that arise as the adjuncts of the two structural combinators. A
[A—B] & V{CICOA<IBN}

The situation is very similar to our combinators | &hdhich K
can combine to irreducible bunches of formulas in sequents, andto  ['4] £ UX. [l & A & (XOX)]

our two implications] and>. However, we have a classical and a L] 2 1
linear implication, while bunched logics have so far had an intuition- [L] £ any element o8
istic and a linear implication. [Tl &2 VS

Owl 2 Vg

6.3 Linear Logic wherevX. A{X} 2 \/{C]C<A{C}

We now relate a fragment of our logic to intuitionistic linear logic. .
Although the connections with some parts of linear logic are slightlyf N€ Validity of ILL sequents and the soundness and completeness
degenerate, we can make them quite precise. properties are stated as follows:
First note that, when considering | as a structural connective, we  vid, (%4, ... % FiL B)g &
must reject weakening, which ent&@— 0, and contraction, which Do Og ... Og [Frlo <o [Blo
entails?? F 97| 42: both are unsound in our process model. Therefore, D, Db, B
we are at least somewhat close in spirit to linear logic. Our sequents
are linear in the sense that we must have the same number of process
components on the left and righttafin other words, space cannot Now, sets of Ambient Calculus processes closed under struc-
be instantaneously created or destroyed. Consequently, the implidaral congruence form a quantale. More precisely, the stru@tére
tion > arising as an adjunct of | is a linear implication: note that ir<®, 0, |, O, 1> is a quantale, where, fafBO I, and forA= £ {P
the definition ofZ>B the attacker that satisfié®is used exactly [3Q € A. P=Q}, we taked £ {AS[ATN}, AOBA{P|Q[PeA
once in the system that satisfiés 0Q e B}=, and 12 {0}~. Our logic is interpreted as followgz] &
Multiplicative intuitionistic linear logic (MILL) can be cap- {Pel [ PE $}; note that, by Proposition 3-14] = [<]".
tured faithfully by identifying-eyi =, Owie =1, andly, =0: 6-1 Proposition (Soundness of the ILL interpretation)

the rulef of M”‘IL and éhe_ sut?lset OI oulr rt;les that mvolvedqnly :hotshe The syntactically defined ILL constants and operators correspond
connectives (plus a derivable cut rule for | corresponding to the to their quantale definitions i@.

=3

for all quantale®), vid L (A1, .... Zn FiLL B)g
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Proof

We detail the most interesting cases,doro, and!.

Case for(: [(2 0 B] =[4] O [B].

Pe@UB]) = (Pe[A|DB]) = (PELA|DB) = @AP,P":MN.P=
P |P"OPEAOP EB) = Pe{P|P" [P FLAOP" EB}5
= Pe{P|P" [P e[AOP" e[B}7) = (Pe[AO[B])
Case for—o: [4 — B] =[4] — [DB].

LetA=[A]andB=[B]. Pe[A] = [B]) = Pe A—=B) = (Pe
({CI|COADOB}) =« (3C.Pe COCOADUB) = (3C. Pe CO
VQ.(AQ.Q.Q=Q|Q 0Q eCUQ e AU QeB) = (VQ".
Q" € A0 P| Q" € B). The last step is derived as follows:

1) AssumedC. Pe COVQ.(AQ,Q". Q=Q' | Q" IQ e COQ”
€ A) 0 Qe B. Take anyRand assumRB € A. Instantiate the assump-
tion with P | Rfor Q and takeQ’'=P andQ” =R; we obtairP | Re B.
2) Conversely, assum#¥R. Re A P | Re B. TakeC={P}~, take
anyQ, and assumelQ’,Q". Q=Q' | Q" UQ e {P}=1Q" € A).
Instantiating the assumption wi@’ for R, we obtainP | Q" € B.
Now, Q' = P by assumption, hendé| Q" = Q' | Q" = Q. SinceB
is =-closed, we obtai@ € B.

Hence, P € [A] = [B]) = (VQ". Q" e A P|Q" € B) = (VQ".
QEAIP|IQEB) = (PEADPB) = Pe[A>DB]) = (Pe
(42 — BI).

Case for :['99] = [4].

First we show thatP.0F % - PE((OO 9"

Take anyP; by definition oft>, we haveP = (00 9%)°F = (VQ. Q
E0O %). Then,¥Q.QF00 9) = (VQ.QF0O QE%) = 0
F 4. The last step is by instantiation @fwith 0, in one direction,
and by Proposition 3-1, in the other direction.

Then we computeP(e [!9]) = (Pe[00(00 9 = (P=00
PEOO A7) - (P=000F%).

Now, in a quantaleA =uvX. 1 & A & (XOX), which in® meanX.
{0} n An (X|X).1f0¢ Athen {0}~ n A=g¢, and!A =g. If instead
0€ A then 0}~ n A={0}~, and'A=uX. {0}~ n (X|X). We have
that {0}~ is a fixpoint ofAX. {0}~ n (X | X); moreover, ifB = {0}~
n (B|B) thenB O {0}, hence 0}~ is the greatest fixpoint, ané
= {0}=. In conclusion: if0 ¢ A then!A =g else if0 € Athen!A =
{0}~ and, by contrapositive, iA # g then0 € A.

HenceP e I[4] O [A#¢ O 0e[A] O A ={0}- 0O Pe
{0} thatisP e ![%] O P=000k 4. Conversely, iP=000E
A, then0 e [F] O [F]={0} O P e [4].

In conclusiorP e I[49] « P=000EY - Pe[49].

O

Moreover, in our model the linear notion of validity matches (4]

our notion of validity:
6-2 Proposition
Let4, ..., Fn, B be formulas in ILL.
VIdiLL (A1, oo Dbl Blo = VIAHL ... [Fn+ B)
(Forn=0 this meansild,_ (FiL. B)e = VIdOF B).)
Proof
(VP.PEAL | ... |0 B) = (VP.PEA]|...|%9 0 PEDB)
= (VP.Pe[S|.. |90 Pe[B]) = [Fi]..|%n O[]
= [¢4] 0 ...0[%] O[3
The last step is as in thecase of Proposition 6-1.

O
The discrepancies with ILL are as follows. We identify.

derived rule). The semantic interpretationdfis rather degenerate;
in particular)$4 — <3 does not seem to have an interesting meaning.

Conclusions and Further Work

We have introduced an expressive logic that can describe properties
of spatial configurations and of mobile computation, including secu-
rity properties. Although some attack scenarios can already be de-
scribed, many interesting security properties require the use of name
restriction (which is already present in our full Ambient Calculus):
we intend to study extensions of our logic in that direction. We also
intend to study recursive modal formulas. Finally, we should consid-
er issues of logical completeness: these have not been looked at be-
cause our focus has been on studying properties of the model. The
only sense in which we feel we have a “large enough” set of rules is
that we can logically derive the rules of intuitionistic linear logic.

We have previously developed type systems for mobility; now
we have a model-checking algorithm for a decidable sublogic, and a
more complete logic of mobility. These can be seen as three progres-
sive stages in the screening of mobile code, corresponding to byte-
code verification by type checking, by model checking, and by proof
checking (as in proof-carrying code). In all these cases, it is possible
to express and verify properties of mobile code that allow the code
to move around after verification, safely removing the constraints of
rigid sandboxing policies.
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This appendix collects information already presented in the paper(o T) OoA+%

Sequents:  AFDB
Rules: DBy oDk By OF - B (n=0) (T) 0T+l

(@4) 0 o9+ oo9

@or)  FA+B 0o4r-oB

Abbreviations:-- means- in both directions{TImeansdin both
directions. (%) O A- - 0=

Propositional Rules

(xK) Ox&0 Br=A0 =B
(XT) Ox9+9

(A-L) AOCOD)F B M (AX)TODF B (x4) OxF+nuxg
(A-R) A+ (COD)OB M A CHDOB) (xT) OTF=ET

(X-L) “AC+B OCHARDB (XF) A-3 0x=A- =B
(X-R) G+COB ODF BIC

CL) 9B OD-B (Onl) O[] - O[]
(CR) rB0B DI B (©]) DOF|OBFO(EA|B)
(W-L) SAr3 0DALCHSB (+n) On<9+g
(W-R) F+B OFFCOB (+1) O<+F|Br+@|T)
(Id) 099

Cuty D COB; AP 09 + BOB (+0) D ¢0AF 0>

m AT +PB 0GB

(F) A+-FOB 0L+ B

(--l) 9+COB DAHCHDB

(--R) FCFB OAr~COB

13



