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Introduction
Polymorphic means to have many forms. As related to programming languages, it refers

to data or programs which have many types, or which operate on many types. There are

several arbitrary ways in which programs can have many types; we are mostly interested in a

particularly orderly form of polymorphism called parametric polymorphism. This is a

property of programs which are parametric with respect to the type of some of their

identifiers. There are two major ways of achieving parametric polymorphism which are

conceptually related but pragmatically very different: explicit and implicit polymorphism.

Parametric polymorphism is called explicit  when parametrization is obtained by explicit

type parameters in procedure headings, and corresponding explicit applications of type

arguments when procedures are called. In this case, parametric polymorphism reduces to the

notion of having parameters of type type (without necessarily adopting the notion that type

has itself type type). Here is a definition of the polymorphic identity with explicit type

parameters (where fun stands for λ-abstraction) and its application to an integer and a

boolean:

let id = fun(t: type) fun(a: t) a
id(int)(3)
id(bool)(true)

Parametric polymorphism is called implicit when the above type parameters and type

applications are not admitted, but types can contain type variables which are unknown, yet to

be determined, types. If a procedure parameter has a type variable or a term containing type

variables as its type, then that procedure can be applied to arguments of many different types.

Here is the implicit version of the polymorphic identity (where α is a type variable), and its

application to an integer and a boolean.

let id =  fun(a: α) a
id(3)
id(true)
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There is considerable interplay, both theoretical and practical, between explicit and

implicit polymorphism, and understanding either one can help understanding the other. This

paper is largely concerned with implicit polymorphism; it is nonetheless important to

dedicate the rest of this section to the relationships between the two kinds of parametric

polymorphism.

Implicit polymorphism can be considered as an abbreviated form of explicit

polymorphism, where the type parameters and applications have been omitted and must be

rediscovered by the language processor. Omitting type parameters leaves some type-denoting

identifiers unbound; and these are precisely the type variables. Omitting type arguments

requires type inference to recover the lost information.

In fact, in implicit polymorphism one can totally omit type information by interpreting the

resulting programs as having type variables associated to parameters and identifiers. The

programs then appears to be type-free, but rigorous type-checking can still be performed.

This is one of the most appealing properties of implicit polymorphism, which makes it

particularly appealing for interactive systems and for naïve users. Here is the type-free

definition of the polymorphic identity, where all the type information has been omitted.

let id =  fun(a) a

Explicit polymorphism is more expressive, in that it can type programs which cannot be

typed by implicit polymorphism, but it is more verbose. In practice, even in explicit

polymorphism one may want to omit some type information, and this creates a grey region

between fully explicit and fully implicit polymorphism. In this grey region, the type-inference

techniques used for implicit polymorphism can be useful, and this is a good reason for

studying implicit polymorphism even in the context of explicit polymorphism. For example, a

reasonable compromise could be to adopt explicit-style function declarations, but then use

implicit-style function applications, using inference to recover the missing information:

let id = fun(t: type) fun(a: t) a
id(3)
id(true)

Implicit polymorphism can be understood in its own right, both at the semantic and type-

inference levels. But it is, in a sense, ambiguous: the same implicitly polymorphic program

may correspond to different explicitly polymorphic programs. This ambiguity can be critical

in some extensions of the basic type system, noticeably in presence of side-effects. Although

no critical ambiguities will arise in the context of this paper, an understanding of the relations

between implicit and explicit polymorphism may be necessary when extending implicit

polymorphic systems in certain ways.
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A bit of history
Polymorphic typing of programs was envisioned by Strachey; his lecture notes on

fundamental concepts in programming languages [Strachey 67] already contains much of the

notation and terminology used today.

Polymorphic types were already known as type schemas in combinatory logic [Curry 58].

Extending Curry's work, and collaborating with him, Hindley introduced the idea of a

principal type schema, which is the most general polymorphic type of an expression, and

showed that if a combinatorial term has a type, then it has a principal type [Hindley 69]. In

doing so, he used a result by Robinson about the existence of most general unifiers in the

unification algorithm [Robinson 64]. These results contained all the germs of polymorphic

typechecking, including the basic algorithms. The existence of principal types means that a

type inference algorithm will always compute a unique ‘best’ type for a program; moreover,

unification can be used to perform this computation. However, these results did not

immediately influence the programming language community, because of their theoretical

setting.

Influenced by Strachey, and independently from Hindley, Milner rediscovered many of

these ideas in the context of the LCF proof generation system [Gordon 79], which included

the first version of the ML language [Milner 84]. He introduced a crucial extension to

Hindley's work: the notion of generic and non-generic type variables, which is essential for

handling declarations of polymorphic functions. Milner implemented the first practical

polymorphic typechecker, and showed that the type system is sound [Milner 78]. More

recently, Milner and Damas proved the principal-type property for the extended system

[Damas 82] which implies that the type system is decidable. With minor refinements, this is

the state of the art exposed in the rest of this paper. This style of polymorphic typechecking

was soon adopted by Hope [Burstall 80], and more recently has been incorporated in other

functional languages.

During that initial development of ML, it was found that the introduction of side-effects

made the type system unsafe [Gordon 79, p. 52]. This was resolved in a rather ad-hoc way;

the situation was later improved by Damas, but the smooth merging of side-effects and

implicit polymorphic typechecking should still be considered an open problem.

Much theoretical work has followed. Coppo showed how to define a coherent type system

which is more flexible than ML's [Coppo 80], although the type system is undecidable. The

ideal model of types [MacQueen 84] is the model which more directly embodies the idea of

implicit polymorphic types, and has its roots in Scott, and in Milner's original paper.

Explicit polymorphism has also its own story, see [Bruce 84] for an extensive treatment

and references, and [Cardelli 86] for examples. The relations between implicit and explicit

polymorphism are actively being investigated, see for example [McCracken 84].
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Pragmatic motivation
Parametric polymorphic type systems share with Algol 68 properties of compile-time

checking, static typing and treatment of higher-order functions, but are more flexible in their

ability to define functions which work uniformly on arguments of many types.

Polymorphism in languages comes from the interaction of two contrasting programming

language design goals: static typing and reusability. Static typing is the ability to determine

the absence of certain classes of run-time faults by static inspection of a program. Static

typing is firmly established as a fundamental tool in building large, highly structured and

reliable software systems. Reusability is the ability to write routines for and open-ended

collection of applications; in particular, we may want to write routines which can be reused

when new data types are defined. Reusability is also an important aid in building large

programs, as it helps in defining abstractions and leads to better system structuring.

These design goals are in contrast as static typing tends to prevent reusability, and

reusable programs are not easy to check statically. A Pascal routine to sort integers cannot be

generalized to sort strings and other ordered sets, as the Pascal type system will not allow to

parametrize on the type of ordered sets. On the other hand, a Lisp routine to sort integers can

be reused on many different kinds of ordered sets, but can also be misused on just about any

data structure, with unpredictable results.

Polymorphic type systems try to reconcile these two goals by providing all the safety of

statically typed languages, and most (but not all) the flexibility of untyped languages. In this

paper we discuss Milner's polymorphic typechecking algorithm, which has proved very

successful: it is sound, efficient, and supports a very rich and flexible type system.

Great progress has been made recently in polymorphic languages, but one feature remains

unique to Milner's algorithm: its ability to infer types in the absence of type declarations. This

feature comes for free. In the attempt to deal with programs which can be reused on many

types, the algorithm searches for the best (most abstract) type of a program. Such best type is

independent of type declarations, which can only be used to reduce the generality of the most

abstract type.

This property makes Milner's algorithm particularly suitable for interactive languages

(ML itself is an interactive compiled language). Interactive users rarely have to bother writing

down type information, which is automatically inferred and checked. This strongly

contributes to ML's feel of care-free, quick-turnaround language, which is wrongly associated

only with interpretive, untyped languages.

The pragmatics of polymorphic typechecking has so far been restricted to a small group

of people. The only published description of the algorithm is the one in [Milner 78] which is

rather technical, and mostly oriented towards the theoretical background. In the hope of

making the algorithm accessible to a larger group of people, we present an implementation

(in the form of a Modula-2 program) which is very close to the one used in LCF, Hope and
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ML [Gordon 79, Burstall 80, Milner 84]. Although clarity has sometimes been preferred to

efficiency, this implementation is reasonably efficient and quite usable in practice for

typechecking large programs.

Only the basic cases of typechecking are considered, and many extensions to common

programming language constructs are fairly obvious. The major non-trivial extensions which

are known so far (and not discussed here) concern overloading, abstract data types, exception

handling, updatable data, and labeled record and union types. Many other extensions are

being studied.

We present two views of typing, as a system of type equations and as a type inference

system, and attempt to relate them informally to the implementation.

A simple applicative language
We do not deal here with ML directly, which is a full-size programming language;

instead we considered a simple typed λ-calculus with constants, constituting what can be

considered the kernel of the ML language. (The evaluation mechanism (call-by-name or call-

by-value) is immaterial for the purpose of typechecking.)

The concrete syntax of expressions is given below, where Ide are identifiers, Exp are

expressions, Decl are declarations and fun stands for λ . All identifiers declared in the same

Decl must be distinct. The corresponding abstract syntax is given by the types Exp and Decl

in the program in appendix (parsers and printers are not provided).

Exp ::=
 Ide |
"if" Exp "then" Exp "else" Exp |
"fun" "(" Ide ")" Exp |
Exp "(" Exp ")" |
 "let" Decl "in" Exp |
 "(" Exp ")"

Decl ::=
Ide "=" Exp |
Decl "then" Decl |
 "rec" Decl |
"(" Decl ")"

Data types can be introduced into the language simply by having a predefined set of

identifiers in the initial environment; this way there is no need to change the syntax or, more

importantly, the typechecking program when extending the language.

As an example, the following program defines the factorial function and applies it to zero,

assuming that the initial environment contains integer constants and operations:
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let rec factorial =
fun(n)

if zero(n)
then succ(0)
else times(n)(factorial(pred(n)))

in factorial(0)

Types
A type can be either a type variable α , β, etc., standing for an arbitrary type, or a type

operator. Operators like int (integer type) and bool (boolean type) are nullary type operators.

Parametric type operators like → (function type) or × (cartesian product type) take one or

more types as arguments. The most general forms of the above operators are α → β (the type

of any function) and α  × β, (the type of any pair of values); α  and β can be replaced by

arbitrary types to give more specialized function and pair types. Types containing type

variables are called polymorphic, while types not containing type variables are monomorphic.

All the types found in conventional programming languages, like Pascal, Algol 68 etc. are

monomorphic.

Expressions containing several occurrences of the same type variable, like in α → α,

express contextual dependencies, in this case between the domain and the codomain of a

function type. The typechecking process consists in matching type operators and instantiating

type variables. Whenever an occurrence of a type variable is instantiated, all the other

occurrences of the same variable must be instantiated to the same value: legal instantiations

of α → α are int → int, bool → bool, (β × γ) → (β × γ), etc. This contextual instantiation process is

performed by unification, [Robinson 65] and is at the basis of polymorphic typechecking.

Unification fails when trying to match two different type operators (like int and bool) or when

trying to instantiate a variable to a term containing that variable (like α  and α → β, where a

circular structure would be built). The latter situation arises in typechecking self-application

(e.g. fun(x) x(x)), which is therefore considered illegal.

Here is a trivial example of typechecking. The identity function Id = fun(x) x has type α →

α because it maps any type onto itself. In the expression Id(0) the type of 0 (i.e. int) is matched

to the domain of the type of Id, yielding int → int, as the specialized type of Id in that context.

Hence the type of Id(0) is the codomain of the type of Id, which is int in this context.

In general, the type of an expression is determined by a set of type combination rules for

the language constructs, and by the types of the primitive operators. The initial type

environment could contain the following primitives for booleans, integers, pairs and lists

(where → is the function type operator, × is cartesian product, and list is the list operator):

true, false : bool
0, 1, … : int

succ, pred : int → int
zero : int → bool

 pair : α → (β → (α × β))
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 fst : (α × β) → α
 snd : (α × β) → β
 nil : α list

cons : (α × α  list) → α list
hd : α list → α
 tl : α list → α list

 null : α list → bool

The type α  list is the type of homogeneous list, whose elements all have type α.

The type of length
Before describing the typechecking algorithm, let us discuss the type of a simple

recursive program which computes the length of a list:

let rec length =
fun(l)

if null(l)
then 0
else succ(length(tl(l)))

in ...

The type of length is α  list → int; this is a polymorphic type as length can work on lists of

any kind. The way we deduce this type can be described in two ways. In principle,

typechecking is done by setting up a system of type constraints, and then solving it with

respect to the type variables. In practice, typechecking is done by a bottom-up inspection of

the program, matching and synthesizing types while proceeding towards the root; the type of

an expression is computed from the type of its subexpressions and the type constraints

imposed by the context, while the type of the predefined identifiers is already known and

contained in the initial environment. It is a deep property of the type system and of the

typechecking algorithm that the order in which we examine programs and carry out the

matching does not affect the final result and solves the system of type constraints.

The system of type constraints for length is:

[1] null : α list → bool
[2] tl : β list → β list
[3] 0 : int
[4] succ : int → int

[5] null(l) : bool
[6] 0 : γ
[7] succ(length(tl(l))) : γ
[8] if null(l) then 0 else succ(length(tl(l))) : γ

[9] null : δ → ε
[10] l : δ
[11] null(l) : ε
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[12] tl : φ → χ
[13] l : φ
[14] tl(l) : χ

[15] length : η → ι
[16] tl(l) : η
[17] length(tl(l)) : ι

[18] succ : κ → λ
[19] length(tl(l)) : κ
[20] succ(length(tl(l))) : λ

[21] l : µ
[22] if null(l) then 0 else succ(length(tl(l))) : ν
[23] fun(l)  if null(l) then 0 else succ(length(tl(l))) : µ → ν

[24] length : π
[25] fun(l)  if null(l) then 0 else succ(length(tl(l))) : π

Lines [1-4] express the constraints for the predefined global identifiers, which are already

known. The conditional construct imposes ([5-8]) that the result of a test must be boolean, and

the two branches of the conditional must have the same type γ, which is also the type of the

whole conditional expression. The four function applications in this program determine [9-20];

in each case the function symbol must have a functional type (e.g. δ → ε  in [9]); its argument

must have the same type as the domain of the function (e.g. δ  in [10]), and the result must

have the same type as the codomain of the function (e.g. ε in [11]). The fun expression [23] has

a type µ → ν, given that its parameter has type µ [21] and its body has type ν [22]. Finally the

definition construct imposes that the variable being defined (length [24]) has the same type as

its definition [25].

Typechecking length consists in (i) verifying that the above system of constraints is

consistent (e.g. it does not imply int = bool), and (ii) solving the constraints with respect to π.

The expected type of length (π = β list → int) can be inferred as follows:

π = µ → ν by [25, 23]
µ = φ = β list by [21, 13, 12, 2]

 ν = γ = int by [22, 8, 6, 3]

Considerably more work is needed to show that β is completely unconstrained, and that

the whole system is consistent. The typechecking algorithm described in the next section

systematically performs this work, functioning as a simple deterministic theorem prover for

systems of type constraints.

Here is a bottom-up derivation of the type of length which is closer to what the

typechecking algorithm really does; the consistency of the constraints (i.e. the absence of

type errors) is also checked in the process:

[26] l : δ by [10]
[27] null(l) : bool

ε = bool; δ = α list; by [11, 9, 1]
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[28] 0 : int
 γ = int; by [6, 3]

[29] tl(l) : β list
φ = β list; χ = β list; β = α; by [26, 27, 12-14, 2]

[30] length(tl(l)) : ι
η = β list; by [15-17, 29]

[31] succ(length(tl(l))) : int
ι  = κ = int; by [18-20, 4, 30]

[32] if null(l) then 0 else succ(length(tl(l))) : int by [5-8, 27, 28, 31]
[33] fun(l) if null(l) then 0 else succ(length(tl(l))) : β list→ int

µ = β list; ν = int; by [21-23, 26, 27, 32]
[34] length : β list → int

 π = β list→ int; by [24-25, 33, 15, 30,
31]

Note that recursion is taken care of: the types of the two instances of length in the program

(the definition and the recursive function call) are compared in [34].

Typechecking
The basic algorithm can be described as follows.

Case 1. When a new variable x is introduced by a fun binder, it is assigned a new type

variable α  meaning that its type must be further determined by the context of its

occurrences. The pair <x,α> is stored in an environment which is searched every time an

occurrence of x, is found, yielding α (or any intervening instantiation of it) as the type of

that occurrence.

Case 2. In a conditional, the if component is matched to bool, and the then and else

branches are unified in order to determine a unique type for the whole expression.

Case 3. In an abstraction fun(x) e the type of e is inferred in a context where x is associated

to a new type variable.

Case 4. In an application f(a), the type of f is unified against a type A → β, where A is the

type of a and β is a new type variable. This implies that the type of f must be a function

type whose domain is unifiable to A; β (or any instantiation of it) is returned as the type of

the whole application.

In order to describe the typechecking of let expressions, and of variables introduced by let

binders, we need to introduce the notion of generic type variables. Consider the following

expression:

fun(f) pair(f(3))(f(true)) [Ex1]

In Milner's type system this expression cannot be typed, and the algorithm described

above will produce a type error. In fact, the first occurrence of f determines a type int → β for
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f, and the second occurrence determines a type bool → β for f, which cannot be unified with

the first one.

Type variables appearing in the type of a fun-bound identifier like f are called non-generic

because, as in this example, they are shared among all the occurrences of f and their

instantiations may conflict.

One could try to find a typing for Ex1, for example by somehow assigning it (α  → β) → (β

×  β); this would compute correctly in situations like Ex1(fun(a) 0) whose result would be

pair(0)(0). However this typing is unsound in general: for example succ has a type that

matches α → β and it would be accepted as an argument to Ex1 and wrongly applied to true.

There are sound extensions of Milner's type system which can type Ex1, but they are beyond

the scope of this discussion.

Hence there is a basic problem in typing heterogeneous occurrences of fun-bound

identifiers. Forbidding such occurrences turns out to be tolerable in practice because

expressions like Ex1 are not extremely useful or necessary and because a different mechanism

is provided. We are going to try and do better in typing heterogeneous occurrences of let-

bound identifiers. Consider:

let f = fun(a)  a [Ex2]
in pair(f(3))(f(true))

It is essential to be able to type the previous expression, otherwise no polymorphic

function could be applied to distinct types in the same context, making polymorphism quite

useless. Here we are in a better position than Ex1, because we know exactly what f is, and we

can use this information to deal separately with its occurrences.

In this case f has type α → α; type variables which, like α, occur in the type of let-bound

identifiers (and that moreover do not occur in the type of enclosing fun-bound identifiers) are

called generic, and they have the property of being able to assume different values for

different instantiations of the let-bound identifier. This is achieved operationally by making a

copy of the type of f for every distinct occurrence of f.

In making a copy of a type, however, we must be careful not to make a copy of non-

generic variables, which must be shared. The following expression for example is as illegal as

Ex1, and  g has a non-generic type which propagates to f:

fun(g) [Ex3]
let f = g
in pair(f(3))(f(true))

Again, it would be unsound to accept this expression with a type like (α  → β) → (β × β)

(consider applying succ so that it is bound to g).

The definition of generic variables is:
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A type variable occurring in the type of an expression e  is generic

(with respect to e) iff it does not occur in the type of the binder of any

fun expression enclosing e.

Note that a type variable which is found to be non-generic while typechecking within a fun

expression may become generic outside it. This is the case in Ex2 where a is assigned a non-

generic α  , and f is assigned α → α where α  is now generic.

To determine when a variable is generic we maintain a list of the non-generic variables at

any point in the program: when a type variable is not in the list it is generic. The list is

augmented when entering a fun; when leaving the fun the old list automatically becomes the

current one, so that that type variable becomes generic. In copying a type, we must only copy

the generic variables, while the non-generic variables must be shared. In unifying a non-

generic variable to a term, all the type variables contained in that term become non-generic.

Finally we have to consider recursive declarations:

let rec f = ... f ...   in ... f ...

which are treated as if the rec were expanded using a fixpoint operator Y (of type (α  → α) →

α):

let f = Y(fun(f) ... f ... )
in ... f ...

it is now evident that the instances of (the type variables in the type of) f in the recursive

definition must be non-generic, while the instances following in are generic.

Case 5. Hence, to typecheck a let we typecheck its declaration part, obtaining an

environment of identifiers and types which is used in the typechecking of the body of the

let.

Case 6. A declaration is treated by checking all its definitions x i = ti, each of which

introduces a pair <xi,Ti> in the environment, where Ti is the type of ti. In case of (mutually)

recursive declarations xi = ti we first create an environment containing pairs <xi, αi> for all

the xi being defined, and where the α i are new non-generic type variables (they are

inserted in the list of non-generic variables for the scope of the declaration). Then all the ti
are typechecked in that environment, and their types Ti are again matched against the αi

(or their instantiations).

A digression on models, inference systems and algorithms
There are two basic approaches to the formal semantics of types. The most fundamental

one is concerned with devising mathematical models for types, normally by mapping every
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type expression into a set of values (the values having that type); the basic difficulty here is in

finding a mathematical meaning for the → operator [Scott 76] [Milner 78] [MacQueen 84].

The other, complementary, approach is to define a formal system of axioms and inference

rules, in which it is possible to prove that an expression has some type. The relationship

between models and formal systems is very strong. A semantic model is often a guide in

defining a formal system, and every formal system should be self-consistent, which is often

shown by exhibiting a model for it.

A good formal system is one in which we can prove nearly everything we know is true

(according to intuition, or because it is true in a model). Once a good formal system has been

found, we can almost forget the models, and work in the usually simpler, syntactic

framework of the system.

Typechecking is more strictly related to formal systems than to models, because of its

syntactic nature. A typechecking algorithm, in some sense, implements a formal system, by

providing a procedure for proving theorems in that system. The formal system is essentially

simpler and more fundamental than any algorithm, so that the simplest presentation of a

typechecking algorithm is the formal system it implements. Also, when looking for a

typechecking algorithm, it is better to first define a formal system for it.

Not all formal type systems admit typechecking algorithms. If a formal system is too

powerful (i.e. if we can prove many things in it), then it is likely to be undecidable, and no

decision procedure can be found for it. Typechecking is usually restricted to decidable type

systems, for which typechecking algorithms can be found. However in some cases

undecidable systems could be treated by incomplete typechecking heuristics (this has never

been done in practice, so far), which only attempt to prove theorems in that system, but may

at some point give up. This could be acceptable in practice because there are limits to the

complexity of a program: its meaning could get out of hand long before the limits of the

typechecking heuristics are reached.

Even for decidable type systems, all the typechecking algorithms could be exponential,

again requiring heuristics to deal with them. This has been successfully attempted in Hope

[Burstall 80] for the treatment of overloading in the presence of polymorphism.

The following section presents an inference system for the kind of polymorphic

typechecking we have described. We have now two distinct views of typechecking: one is

solving a system of type equations, as we have seen in the previous sections, and the other is

proving theorems in a formal system, as we are going to see now. These views are

interchangeable, but the latter one seems to provide more insights because of its connection

with type semantics on one side and algorithms on the other.
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An inference system
In the following inference system, the syntax of types is extended to type quantifiers ∀α .

τ. In Milner's type system, all the type variables occurring in a type are intended to be

implicitly quantified at the top level. For example, α → β is really ∀α . ∀β . α  → β. However,

quantifiers cannot be nested inside type expressions.

A type is called shallow if it has the form ∀α 1. ...∀α n. τ where n ≥ 0 and no quantifiers

occur in τ. Our inference system allows the construction of non-shallow types: unfortunately

we do not have typechecking algorithms able to cope with them. Hence, we are only

interested in inferences which involve only shallow types. We have chosen to use type

quantifiers in the inference system because this helps explain the behavior of generic/non-

generic type variables, which correspond exactly to free/quantified type variables. For a

slightly different inference system which avoids non-shallow types, see [Damas 82].

Here is the set of inference rules. [IDE] is an axiom scheme, while the other rules are

proper inferences. The horizontal bar reads implies. An assumption x:τ is the association of a

variable x with a type τ. If A is a set of assumptions (uniquely mapping variables to types),

then A.x:τ  is the same as A except that x is associated with τ . If A and B are sets of

assumptions, and B is x1:τ1. ... . xn:τn, then A.B is the set of assumptions A.x1:τ1. ... . xn:τn. The

notation A ∫ e: τ means that given a set of assumptions A, we can deduce that the expression e

has type τ. The notation A ∫ d:: B means that given a set of assumptions A, we can deduce that

the declaration d (introducing variables x1 ... xn) determines a set of assumptions B (of the

form  x1:τ1. ... . xn:τn ). Finally, the expression τ[σ/α] is the result of substituting σ for all the

free occurrences of α in τ.

[IDE]  A.x: τ  ∫  x: τ

A  ∫  e: bool      A  ∫  e': τ      A  ∫  e": τ
[COND] 

A  ∫  (if e then e' else e"): τ

A.x: σ  ∫  e: τ
[ABS] 

 A  ∫  (fun(x) e): σ → τ

A  ∫  e: σ → τ      A  ∫  e': σ
[COMB] 

A  ∫  e(e'): τ

A  ∫  d:: B     A.B  ∫  e: τ
[LET] 

A  ∫  (let d in e): τ

A  ∫  e: τ
[GEN]  (α  not free in A)

A  ∫  e: ∀α . τ
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A  ∫  e: ∀α . τ
[SPEC] 

A  ∫  e: τ[σ/α]

A  ∫  e: τ
[BIND] 

A  ∫  (x = e) ::  (x: τ )

A  ∫  d:: B     A.B  ∫  d':: B'
[THEN] 

A  ∫ (d then d') :: B.B'

A.B  ∫  d:: B
[REC] 

A  ∫  (rec d) :: B

As a first example, we can deduce the most general type of the identity function:

(fun(x) x): ∀α . α →  α

x: α  ∫  x: α [IDE]

∫  (fun(x) x): α →  α [ABS]


∫  (fun(x) x): ∀α . α →  α [GEN]

A specialized type for the identity function can be deduced either from the general type:

∫  (fun(x) x): ∀α . α →  α


∫  (fun(x) x): int→  int [SPEC]

or more directly:

x: int  ∫  x: int [IDE]

∫  (fun(x) x): int→  int [ABS]

We can extend the above inference to show (fun(x) x)(3): int:

   3: int, x: int  ∫  x: int [IDE]

3: int  ∫  (fun(x) x): int→  int [ABS] 3: int  ∫  3: int [IDE]


3: int  ∫  (fun(x) x)(3): int [COMB]

Here is an example of a forbidden derivation using non-shallow types, which can be used

to give a type to fun(x) x(x), which our algorithm is not able to type (here φ =∀α . α → α ):

    x: φ  ∫  x: φ [IDE]

x: φ  ∫ x: φ →  φ [SPEC]  x: φ  ∫  x: φ [IDE]


x: φ  ∫  x(x): φ [COMB]
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
∫  (fun(x) x(x)): φ →  φ [ABS]

Note how ∀α . α → α  gets instantiated to (∀α . α → α ) → (∀α . α → α ) by [SPEC], substituting ∀α .

α → α for α.

We want to show now that (let f = fun(x) x in pair(f(3))(f(true))): int × bool. Take A = : int, true:

bool, pair: ∀α .∀β . α → (β → (α  × β)) and φ =∀α . α → α .

       A.f: φ  ∫  f: φ [IDE]


 A.f: φ  ∫ f: int →  int [SPEC] A.f: φ  ∫  3: int [IDE]


A.f: φ  ∫  f(3): int [COMB]

       A.f: φ  ∫  f: φ [IDE]

  A.f: φ  ∫ f: bool →  bool [SPEC]  A.f: φ  ∫  true: bool [IDE]


A.f: φ  ∫  f(true): bool [COMB]

 A.f: φ  ∫  pair: ∀α .∀β . α → (β → (α × β)) [IDE]
 
  A.f: φ  ∫  pair: ∀β . int → (β → (int × β)) [SPEC]

A.f: φ  ∫  pair: int → (bool → (int × bool)) [SPEC]

 A.f: φ  ∫  pair: int → (bool → (int × bool)) .f: φ  ∫  f(3): int


A.f: φ  ∫  pair(f(3)): bool → (int × bool) [COMB] A.f: φ  ∫  f(true): bool


A.f: φ  ∫  pair(f(3))(f(true)):  int × bool
[COMB]

A  ∫  (fun(x) x): φ A.f: φ  ∫  pair(f(3))(f(true)):  int × bool


A  ∫   (let f = fun(x) x in pair(f(3))(f(true))):  int × bool [BIND] [LET]

Note that from the assumption f: ∀α . α →  α, we can independently instantiate α to int and

bool; i.e., f has a generic type. Instead, in (fun(f) pair(f(3))(f(true))) (fun(x) x), which is the

function- application version of the above let expression, no shallow type can be deduced for

fun(f) pair(f(3))(f(true)).

A variable is generic if it does not appear in the type of the variables of any enclosing fun-

binder. Those binders must occur in the set of assumptions, so that they can be later discarded

by [ABS] to create those enclosing fun's. Hence a variable is generic if it does not appear in the

set of assumptions. Therefore, if a variable is generic, we can apply [GEN] and introduce a

quantifier. This determines a precise relation between generic variables and quantifiers.
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There is a formal way of relating the above inference system to the typechecking

algorithm presented in the previous sections. It can be shown that if the algorithm succeeds in

producing a type for an expression, then that type can be deduced from the inference system

(see [Milner 78] for a result involving a closely related inference system). We are now going

to take a different, informal approach to intuitively justify the typechecking algorithm. We

are going the show how an algorithm can be extracted from an inference system. In this view

a typechecking algorithm is a proof heuristic; i.e. it is a strategy to determine the order in

which the inference rules should be applied. If the proof heuristic succeeds, we have

determined that a type can be inferred. If it fails, however, it may still be possible to infer a

type. In particular our heuristic will be unable to cope with expressions which require some

non-shallow type manipulation, like in the deduction of (fun(x) x(x))(fun(x) x): ∀α . α →  α. In

fact, the heuristic will simply ignore type quantifier and treat all the type variables as free

variables.

There are two aspects to the heuristic. The first one is how to determine the sets of

assumptions, and the second is the order in which to apply the inference rules. If a language

requires type declarations for all identifiers, it is trivial to obtain the sets of assumptions,

otherwise we have to do type inference.

In carrying out type inference, fun-bound identifiers are initially associated with type

variables, and information is gathered during the typechecking process to determine what the

type of the identifier should have been in the first place. Hence, we start with these initial

broad assumptions, and we build the proof by applying the inference rules in some order.

Some of the rules require the types of two subexpressions to be equal. This will not usually

be the case, so we make them equal by unifying the respective types. This results in

specializing some of the types of the identifiers. At this point we can imagine repeating the

same proof, but starting with the more refined set of assumptions we have just determined:

this time the types of the two subexpressions mentioned above will come out equal, and we

can proceed.

The inference rules should be applied in an order which allows us to build the expression

we are trying to type from left to right and from the bottom up. For example, earlier we

wanted to show that (fun(x) x):∀α . α →  α . Take x:α as our set of assumptions. To deduce the

type of (fun(x) x) bottom-up we start with the type of x, which we can obtain by [IDE], and then

we build up (fun(x) x) by [ABS].

If we proceed left to right and bottom-up then, with the exception of [GEN] and [SPEC], at

any point only one rule can be applied, depending on the syntactic construct we are trying to

obtain next. Hence the problem reduces to choosing when to use [GEN] and [SPEC]; this is

done in conjunction with the [LET] rule. To simplify the discussion, we only consider the

following special case which can be derived by combining the [LET] and [BIND] rules.
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A  ∫  e': σ      A.x: σ  ∫  e: τ
[LETBIND] 

A  ∫  (let x = e' in e): τ

Before applying [LETBIND], we derive A  ∫  e': σ' for some σ' (refer to the [LETBIND] rule),

and then we apply all the possible [GEN] rules, obtaining A  ∫  e': σ , where σ can be a

quantified type. Now we can start deriving A.x: σ  ∫  e: τ, and every time we need to use [IDE]

for x and σ is quantified, we immediately use [SPEC] to strip all the quantifiers, replacing the

quantifier variable by a fresh type variable. These new variables are then subject to

instantiation, as discussed above, which determines more refined ways of using [SPEC].

As an exercise, one could try to apply the above heuristic to infer the type of length, and

observe how this corresponds to what the typechecking algorithm does in that case. Note how

the list of non-generic variables corresponds to the set of assumptions and the application of

[GEN] and [SPEC] rules.
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Appendix: The program
The following Modula-2 program implements the polymorphic typechecking algorithm

The types Exp and Decl form the abstract syntax of our language. A type expressions

TypeExp can be a type variable or a type operator. A type variable, is uninstantiated when

its instance field is NIL, or instantiated otherwise. An instantiated type variable behaves

like its instantiation. A type operator (like bool or →) has a name and a list of type arguments

(none for  bool, two for →).

The function Prune is used whenever a type expression has to be inspected: it will

always return a type expression which is either an uninstantiated type variable or a type

operator; i.e. it will skip instantiated variables, and will actually prune them from expressions

to remove long chains of instantiated variables.

The function OccursInType  checks whether a type variable occurs in a type

expression.

The type NonGenericVars is the type of lists of non-generic variables. FreshType

makes a copy of a type expression, duplicating the generic variables and sharing the non-

generic ones.

The function IsGeneric checks whether a given variable occurs in a list of non-generic

variables. Note that a variables in such a list may bec instantiated to a type term, in which

case the variables contained in the type term are considered non-generic.

Type unification is now easily defined. Remember that when unifying a non-generic

variable to a term, all the variables in that term must become non-generic. This is handled

automatically by the lists of non-generic variables, as explained above. Hence, no special

code is needed in the unification routine.

Type environments are then defined. Note that RetrieveTypeEnv always creates

fresh types; some of this copying is unnecessary and could be eliminated.

Finally we have the typechecking routine, which maintains a type environment and a list

of non-generic variables. Recursive declarations are handled in two passes. The first pass

AnalyzeRecDeclBind simply creates a new set of non-generic type variables and

associates them with identifiers. The second pass AnalyzeRecDecl analyzes the

declarations and makes calls to UnifyType to ensure the recursive type constraints.

The implementation modules for ErrorMod, SymbolMod and ParseTreeMod are

not provided.
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(***************************************************************************)

(**************************** DEFINITION MODULES ***************************)

(***************************************************************************)

(***************************************************************************)

DEFINITION MODULE ErrorMod;

PROCEDURE Msg(msg: ARRAY OF CHAR);

(* Print an error message *)

END ErrorMod.

(***************************************************************************)

DEFINITION MODULE SymbolMod;

TYPE

  Ide;

PROCEDURE New(string: ARRAY OF CHAR): Ide;

(* Create a new identifier from a string *)

PROCEDURE Equal(ide1, ide2: Ide): BOOLEAN;

(* Compare two identifiers *)

END SymbolMod.

(***************************************************************************)

DEFINITION MODULE ParseTreeMod;

IMPORT SymbolMod;

FROM SymbolMod IMPORT Ide;

TYPE

  Exp = POINTER TO ExpBase;

  (* Parse tree for expressions *)

  Decl = POINTER TO DeclBase;

  (* Parse tree for declarations *)

  ExpClass = (IdeClass, CondClass, LambClass, ApplClass, BlockClass);

  ExpBase = RECORD

    CASE class: ExpClass OF

    | IdeClass: ide: Ide;

    | CondClass: test, ifTrue, ifFalse: Exp;

    | LambClass: binder: Ide; body: Exp;

    | ApplClass: fun, arg: Exp;

    | BlockClass: decl: Decl; scope: Exp;

    END;

  END;

  DeclClass = (DefClass, SeqClass, RecClass);

  DeclBase = RECORD

    CASE class: DeclClass OF

    | DefClass: binder: Ide; def: Exp;

    | SeqClass: first, second: Decl;

    | RecClass: rec: Decl;

    END;

  END;

(* Allocation routines for Exp and Decl *)

PROCEDURE NewIdeExp(ide: Ide): Exp;

PROCEDURE NewCondExp(test, ifTrue, ifFalse: Exp): Exp;

PROCEDURE NewLambExp(binder: Ide; body: Exp): Exp;
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PROCEDURE NewApplExp(fun, arg: Exp): Exp;

PROCEDURE NewBlockExp(decl: Decl; scope: Exp): Exp;

PROCEDURE NewDefDecl(binder: Ide; def: Exp): Decl;

PROCEDURE NewSeqDecl(first, second: Decl): Decl;

PROCEDURE NewRecDecl(rec: Decl): Decl;

END ParseTreeMod.

(***************************************************************************)

DEFINITION MODULE TypeMod;

IMPORT SymbolMod;

FROM SymbolMod IMPORT Ide;

TYPE

  TypeExp = POINTER TO TypeExpBase;

  (* The internal representation of type expressions *)

  TypeClass = (VarType, OperType);

  TypeExpBase = RECORD

    CASE class: TypeClass OF

    | VarType: instance: TypeExp;

    | OperType: ide: Ide; args: TypeList;

    END;

  END;

  TypeList = POINTER TO TypeListBase;

  TypeListBase = RECORD head: TypeExp; tail: TypeList; END;

PROCEDURE NewTypeVar(): TypeExp;

(* Allocate a new type variable *)

PROCEDURE NewTypeOper(ide: Ide; args: TypeList): TypeExp;

(* Allocate a new type operator *)

VAR

  Empty: TypeList;

  (* The empty type list *)

PROCEDURE Extend(head: TypeExp; tail: TypeList): TypeList;

(* Allocate a new type list *)

PROCEDURE SameType(typeExp1, typeExp2: TypeExp): BOOLEAN;

(* Compare two types for identity (pointer equality) *)

PROCEDURE Prune(typeExp: TypeExp): TypeExp;

(* Eliminate redundant instantiated variables at the top of "typeExp";

   The result of Prune is always a non-instantiated type variable or a

   type operator *)

PROCEDURE OccursInType(typeVar: TypeExp; typeExp: TypeExp): BOOLEAN;

(* Whether an uninstantiated type variable occurs in a type expression *)

PROCEDURE OccursInTypeList(typeVar: TypeExp; list: TypeList): BOOLEAN;

(* Whether an uninstantiated type variable occurs in a list *)

PROCEDURE UnifyType(typeExp1, typeExp2: TypeExp);

(* Unify two type expressions *)

PROCEDURE UnifyArgs(list1, list2: TypeList);

(* Unify two lists of type expressions *)

END TypeMod.

(***************************************************************************)

DEFINITION MODULE GenericVarMod;
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IMPORT TypeMod;

FROM TypeMod IMPORT TypeExp;

TYPE

  NonGenericVars;

  (* Lists of non-generic type variables and their instantiations *)

VAR

  Empty: NonGenericVars;

  (* The empty list *)

PROCEDURE Extend(head: TypeExp; tail: NonGenericVars): NonGenericVars;

(* Extend a list *)

PROCEDURE IsGeneric(typeVar: TypeExp; list: NonGenericVars): BOOLEAN;

(* Whether an uninstantiated type variable is generic w.r.t. a list of

   non-generic type variables *)

PROCEDURE FreshType(typeExp: TypeExp; list: NonGenericVars): TypeExp;

(* Make a copy of a type expression; the generic varibles are copied, while

   the non-generic variables are shared *)

END GenericVarMod.

(***************************************************************************)

DEFINITION MODULE EnvMod;

IMPORT SymbolMod, TypeMod, GenericVarMod;

FROM SymbolMod IMPORT Ide;

FROM TypeMod IMPORT TypeExp;

FROM GenericVarMod IMPORT NonGenericVars;

TYPE

  Env;

  (* Environments associating type expressions to identifiers *)

VAR

  Empty: Env;

  (* The empty environment *)

PROCEDURE Extend(ide: Ide; typeExp: TypeExp; tail: Env): Env;

(* Extend an environment with an identifier-type pair *)

PROCEDURE Retrieve(ide: Ide; env: Env; list: NonGenericVars): TypeExp;

(* Search for an identifier in an environment and return a "fresh" copy of

   the associated type (using GenericVar.FreshType). The identifier must be

   bound in the environment *)

END EnvMod.

(***************************************************************************)

DEFINITION MODULE TypecheckMod;

IMPORT ParseTreeMod, TypeMod, EnvMod, GenericVarMod;

FROM ParseTreeMod IMPORT Exp, Decl;

FROM TypeMod IMPORT TypeExp;

FROM EnvMod IMPORT Env;

FROM GenericVarMod IMPORT NonGenericVars;

PROCEDURE AnalyzeExp(exp: Exp; env: Env; list: NonGenericVars): TypeExp;

(* Typecheck an expression w.r.t. an environment, and return its type *)

PROCEDURE AnalyzeDecl(decl: Decl; env: Env; list: NonGenericVars): Env;

(* Typecheck a declaration w.r.t an environment, and return an extended

   environment containing the types of the identifiers introduced by the

   declaration *)
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END TypecheckMod.
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(***************************************************************************)

(************************* IMPLEMENTATION MODULES **************************)

(***************************************************************************)

(***************************************************************************)

IMPLEMENTATION MODULE TypeMod;

IMPORT ErrorMod;

PROCEDURE NewTypeVar(): TypeExp;

  VAR r: TypeExp;

  BEGIN

    NEW(r, VarType); r^.class := VarType; r^.instance := NIL; RETURN r;

  END NewTypeVar;

PROCEDURE NewTypeOper(ide: Ide; args: TypeList): TypeExp;

  VAR r: TypeExp;

  BEGIN

    NEW(r, OperType); r^.class := OperType; r^.ide := ide; r^.args := args;  RETURN

r;

  END NewTypeOper;

PROCEDURE Extend(head: TypeExp; tail: TypeList): TypeList;

  VAR r: TypeList;

  BEGIN

    NEW(r); r^.head := head; r^.tail := tail; RETURN r;

  END Extend;

PROCEDURE SameType(typeExp1, typeExp2: TypeExp): BOOLEAN;

  BEGIN RETURN typeExp1 = typeExp2; END SameType;

PROCEDURE Prune(typeExp: TypeExp): TypeExp;

  BEGIN

    CASE typeExp^.class OF

    | VarType:

        IF typeExp^.instance = NIL THEN

          RETURN typeExp;

        ELSE

          typeExp^.instance := Prune(typeExp^.instance);

          RETURN typeExp^.instance;

        END;

    | OperType: RETURN typeExp;

    END;

  END Prune;

PROCEDURE OccursInType(typeVar: TypeExp; typeExp: TypeExp): BOOLEAN;

  BEGIN

    typeExp := Prune(typeExp);

    CASE typeExp^.class OF

    | VarType: RETURN SameType(typeVar, typeExp);

    | OperType: RETURN OccursInTypeList(typeVar, typeExp^.args);

    END;

  END OccursInType;

PROCEDURE OccursInTypeList(typeVar: TypeExp; list: TypeList): BOOLEAN;

  BEGIN

    IF list = NIL THEN RETURN FALSE END;

    IF OccursInType(typeVar, list^.head) THEN RETURN TRUE END;

    RETURN OccursInTypeList(typeVar, list^.tail);
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  END OccursInTypeList;

PROCEDURE UnifyType(typeExp1, typeExp2: TypeExp);

  BEGIN

    typeExp1 := Prune(typeExp1);

    typeExp2 := Prune(typeExp2);

    CASE typeExp1^.class OF

    | VarType:

        IF OccursInType(typeExp1, typeExp2) THEN

          IF NOT SameType(typeExp1, typeExp2) THEN

            ErrorMod.Msg("Type clash");

          END;

        ELSE

          typeExp1^.instance := typeExp2;

        END;

    | OperType:

        CASE typeExp2^.class OF

        | VarType: UnifyType(typeExp2, typeExp1);

        | OperType:

            IF SymbolMod.Equal(typeExp1^.ide, typeExp2^.ide) THEN

              UnifyArgs(typeExp1^.args, typeExp2^.args);

            ELSE

              ErrorMod.Msg("Type clash");

            END;

        END;

    END;

  END UnifyType;

PROCEDURE UnifyArgs(list1, list2: TypeList);

  BEGIN

    IF (list1 = Empty) AND (list2 = Empty) THEN RETURN; END;

    IF (list1 = Empty) OR (list2 = Empty) THEN

      ErrorMod.Msg("Type clash");

    ELSE

      UnifyType(list1^.head, list2^.head);

      UnifyArgs(list1^.tail, list2^.tail);

    END;

  END UnifyArgs;

BEGIN

  Empty := NIL;

END TypeMod.

(***************************************************************************)

IMPLEMENTATION MODULE GenericVarMod;

FROM TypeMod IMPORT TypeClass, TypeList;

TYPE

  NonGenericVars = TypeList;

PROCEDURE Extend(head: TypeExp; tail: NonGenericVars): NonGenericVars;

  BEGIN RETURN TypeMod.Extend(head, tail); END Extend;

PROCEDURE IsGeneric(typeVar: TypeExp; list: NonGenericVars): BOOLEAN;

  BEGIN RETURN NOT TypeMod.OccursInTypeList(typeVar, list); END IsGeneric;

TYPE

  CopyEnv = POINTER TO CopyEnvBase;
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  CopyEnvBase = RECORD old, new: TypeExp; tail: CopyEnv; END;

PROCEDURE ExtendCopyEnv(old, new: TypeExp; tail: CopyEnv): CopyEnv;

  VAR r: CopyEnv;

  BEGIN

    NEW(r); r^.old := old; r^.new := new; r^.tail := tail; RETURN r;

  END ExtendCopyEnv;

PROCEDURE FreshVar(typeVar: TypeExp; scan: CopyEnv; VAR env: CopyEnv): TypeExp;

  VAR newTypeVar: TypeExp;

  BEGIN

    IF scan = NIL THEN

      newTypeVar := TypeMod.NewTypeVar();

      env := ExtendCopyEnv(typeVar, newTypeVar, env);

      RETURN newTypeVar;

    ELSIF TypeMod.SameType(typeVar, scan^.old) THEN

      RETURN scan^.new

    ELSE

      RETURN FreshVar(typeVar, scan^.tail, (*VAR*) env);

    END;

  END FreshVar;

PROCEDURE Fresh(typeExp: TypeExp; list: NonGenericVars; VAR env: CopyEnv): TypeExp;

  BEGIN

    typeExp := TypeMod.Prune(typeExp);

    CASE typeExp^.class OF

    | VarType:

        IF IsGeneric(typeExp, list) THEN

          RETURN FreshVar(typeExp, env, (*VAR*) env)

        ELSE

          RETURN typeExp

        END;

    | OperType:

        RETURN

          TypeMod.NewTypeOper(typeExp^.ide,

            FreshList(typeExp^.args, list, (*VAR*) env));

    END;

  END Fresh;

PROCEDURE FreshList(args: TypeList; list: NonGenericVars; VAR env: CopyEnv):

TypeList;

  BEGIN

    IF args = TypeMod.Empty THEN RETURN TypeMod.Empty END;

    RETURN

      TypeMod.Extend(Fresh(args^.head, list, (*VAR*) env),

        FreshList(args^.tail, list, (*VAR*) env));

  END FreshList;

PROCEDURE FreshType(typeExp: TypeExp; list: NonGenericVars): TypeExp;

  VAR env: CopyEnv;

  BEGIN env := NIL; RETURN Fresh(typeExp, list, (*VAR*) env); END FreshType;

BEGIN

  Empty := TypeMod.Empty;

END GenericVarMod.

(***************************************************************************)

IMPLEMENTATION MODULE EnvMod;
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IMPORT ErrorMod;

TYPE

  Env = POINTER TO EnvBase;

  EnvBase = RECORD ide: Ide; typeExp: TypeExp; tail: Env; END;

PROCEDURE Extend(ide: Ide; typeExp: TypeExp; tail: Env): Env;

  VAR r: Env;

  BEGIN

    NEW(r); r^.ide := ide; r^.typeExp := typeExp; r^.tail := tail; RETURN r;

  END Extend;

PROCEDURE Retrieve(ide: Ide; env: Env; list: NonGenericVars): TypeExp;

  BEGIN

    IF env = EnvMod.Empty THEN

      ErrorMod.Msg("Unbound ide");

      RETURN NIL;

    ELSIF SymbolMod.Equal(ide, env^.ide) THEN

      RETURN GenericVarMod.FreshType(env^.typeExp, list);

    ELSE

      RETURN Retrieve(ide, env^.tail, list);

    END;

  END Retrieve;

BEGIN

  Empty := NIL;

END EnvMod.

(***************************************************************************)

IMPLEMENTATION MODULE TypecheckMod;

IMPORT SymbolMod;

FROM ParseTreeMod IMPORT ExpClass, DeclClass;

FROM TypeMod IMPORT NewTypeVar, NewTypeOper, UnifyType, UnifyArgs;

VAR

  BoolType: TypeExp;

PROCEDURE FunType(dom, cod: TypeExp): TypeExp;

  BEGIN

    RETURN

      NewTypeOper(SymbolMod.New("->"),

        TypeMod.Extend(dom, TypeMod.Extend(cod, TypeMod.Empty)))

  END FunType;

PROCEDURE AnalyzeExp(exp: Exp; env: Env; list: NonGenericVars): TypeExp;

  VAR

    typeOfThen, typeOfElse, typeOfBinder, typeOfBody, typeOfFun, typeOfArg,

    typeOfRes: TypeExp;

    bodyEnv, declEnv: Env;

    bodyList: NonGenericVars;

  BEGIN

    CASE exp^.class OF

    | IdeClass: RETURN EnvMod.Retrieve(exp^.ide, env, list);

    | CondClass:

        UnifyType(AnalyzeExp(exp^.test, env, list), BoolType);

        typeOfThen := AnalyzeExp(exp^.ifTrue, env, list);

        typeOfElse := AnalyzeExp(exp^.ifFalse, env, list);

        UnifyType(typeOfThen, typeOfElse);
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        RETURN typeOfThen;

    | LambClass:

        typeOfBinder := NewTypeVar();

        bodyEnv := EnvMod.Extend(exp^.binder, typeOfBinder, env);

        bodyList := GenericVarMod.Extend(typeOfBinder, list);

        typeOfBody := AnalyzeExp(exp^.body, bodyEnv, bodyList);

        RETURN FunType(typeOfBinder, typeOfBody);

    | ApplClass:

        typeOfFun := AnalyzeExp(exp^.fun, env, list);

        typeOfArg := AnalyzeExp(exp^.arg, env, list);

        typeOfRes := NewTypeVar();

        UnifyType(typeOfFun, FunType(typeOfArg, typeOfRes));

        RETURN typeOfRes;

    | BlockClass:

        declEnv := AnalyzeDecl(exp^.decl, env, list);

        RETURN AnalyzeExp(exp^.scope, declEnv, list);

    END;

  END AnalyzeExp;

PROCEDURE AnalyzeDecl(decl: Decl; env: Env; list: NonGenericVars): Env;

  BEGIN

    CASE decl^.class OF

    | DefClass:

        RETURN

          EnvMod.Extend(decl^.binder, AnalyzeExp(decl^.def, env, list), env);

    | SeqClass:

        RETURN

          AnalyzeDecl(decl^.second, AnalyzeDecl(decl^.first, env, list), list);

    | RecClass:

        AnalyzeRecDeclBind(decl^.rec, (*VAR*) env, (*VAR*) list);

        AnalyzeRecDecl(decl^.rec, env, list);

        RETURN env;

    END;

  END AnalyzeDecl;

PROCEDURE AnalyzeRecDeclBind(decl: Decl; VAR env: Env; VAR list: NonGenericVars);

  VAR newTypeVar: TypeExp;

  BEGIN

    CASE decl^.class OF

    | DefClass:

        newTypeVar := NewTypeVar();

        env := EnvMod.Extend(decl^.binder, newTypeVar, env);

        list := GenericVarMod.Extend(newTypeVar, list);

    | SeqClass:

        AnalyzeRecDeclBind(decl^.first, (*VAR) env, (*VAR*) list);

        AnalyzeRecDeclBind(decl^.second, (*VAR) env, (*VAR*) list);

    | RecClass: AnalyzeRecDeclBind(decl^.rec, (*VAR) env, (*VAR*) list);

    END;

  END AnalyzeRecDeclBind;

PROCEDURE AnalyzeRecDecl(decl: Decl; env: Env; list: NonGenericVars);

  BEGIN

    CASE decl^.class OF

    | DefClass:

        UnifyType(EnvMod.Retrieve(decl^.binder, env, list),

          AnalyzeExp(decl^.def, env, list));

    | SeqClass:

        AnalyzeRecDecl(decl^.first, env, list);
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        AnalyzeRecDecl(decl^.second, env, list);

    | RecClass: AnalyzeRecDecl(decl^.rec, env, list);

    END;

  END AnalyzeRecDecl;

BEGIN

  BoolType := NewTypeOper(SymbolMod.New("bool"), TypeMod.Empty);

END TypecheckMod.


