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Abstract We define the calculus LK - a variant of the calculus X - that enjoys the Curry-

Howard correspondence for Gentzen’s calculus LK; the variant consists of allowing arbitrary

progress of cut over cut. We study the π-calculus enriched with pairing, for which we define

a notion of implicative type assignment. We translate the terms of LK into this variant of

π, and show that reduction and assignable types are preserved. This implies that all proofs

in LK have a representation in π, and that cut-elimination is effectively simulated by π’s

synchronisation, congruence, and bisimilarity between processes.

We present two interpretations for which we show soundness results (but with respect to

different notions of reduction), as well as type preservation. Using the second interpretation,

we show that we preserve Gentzen’s Hauptsatz result, and prove completeness.

We then enrich the logic with the connector ¬ (negation), and show that this also can be

represented in π, whilst preserving the results.

Keywords classical logic, sequent calculus, pi calculus, translation, type assignment

Introduction

In this paper we present two translations of proofs of Gentzen’s (implicative) proof calcu-

lus for Classical Logic LK [27] into the π-calculus [41] that respect cut-elimination. These

translations are attained through using the intuition of the calculus X , which gives a com-

putational content to LK (a first version of this calculus was proposed in [45,47,46]; the

implicative fragment of X was studied in [9]). We will here use a variant of X , called LK
– obtained by not using X ’s activated cuts but allowing arbitrary cut-over-cut reduction –
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which satisfies most properties shown to hold for X (with the exception of strong normali-

sation, but this is as expected for any calculus that models full cut-elimination).

LK enjoys the Curry-Howard isomorphism for LK, which it achieves by inhabiting the

inference rules with term information, constructing witnesses for derivable sequents. Terms

in LK are different from those in other calculi used for logic in that they have multiple

named inputs and multiple named outputs, that are collectively called connectors. Reduction

in LK is expressed via a set of rewrite rules that represent/correspond to cut-elimination in

LK; reducing a term using these rules eventually leads to renaming of connectors and gives

computational meaning to classical (sequent) proof reduction. It is well known that cut-

elimination in LK is not confluent, and, since LK is Curry-Howard for LK and its reduction

respects cut-elimination, neither is reduction in LK.

These two main features of X –non-confluence and reduction as (re-)connection of

terms via the exchange of names– are also manifest in the π-calculus, an observation which

inspired us to consider the π-calculus as a means to model cut-elimination and proofs in LK.

The aim of this paper is to link LK and π via LK; we achieve this through the definition of

two different translations that map (untyped) LK-terms to π-processes: a natural translation

that respects a notion of head reduction through synchronisation, and a semantic translation

that respects weak bisimilarity in full. Although the origin of terms in LK are the proofs in

LK, these translations in no way depend on type information, but map type-free terms (so

also terms that do not correspond to proofs) to type-free processes. The translations focus,

as is usual in semantics, on observable behaviour, and we will show that, if P reduces to Q,

then the observable behaviour of Q is included in that of P1 and that individual reduction

steps are preserved.

However, we not only link LK and the π-calculus as systems of reduction, but also a

systems of proofs. To that effect, we establish a relation between Classical Logic and the

π-calculus by defining a notion of implicative type assignment for the latter, and show that

the translations also preserve types, i.e. the image of a typeable term gives a process that is a

witness to the same judgement; to achieve this result, the π-calculus is extended with pairing

[2]. We thereby establish that the π-calculus has a strong link to functional languages with

control and is thereby inherently more expressive than just the λ-calculus.

There are many more properties that one could demand to hold for these translations,

like preservation of compositions, of termination, of simulations, of equivalences, full ab-

straction, etc. It is not immediately clear if checking these properties, or even aiming for

them, makes sense in the context of the translations of LK we define here. After all, we are

not interpreting one model of computation into another, but rather study the relation between

cut-elimination in classical logic proofs and communication in a process calculus. The cal-

culus LK we present here has not been proposed as a calculus to represent computation, is

not a programming language and should not be treated as such, so it seems unreasonable to

demand that the criteria we set on models of computation should also hold for LK.

We will see that, for the kind of cut-elimination for LK as we consider in this paper, when

allowing cut-over-cut reduction, cut-elimination is highly non-terminating, even looping for

terms that intuitively should not; since for many terms that have a finite reduction path also a

looping reduction path exists and our translations respect single reduction steps, we cannot

hope to show that termination is preserved by our translations. However, this does not imply

that no termination results can be shown; in fact, for the semantic translation we will show

1 Since reduction is not confluent, it is not possible to show that P and Q have the same observable

behaviour.



Classical Cut-elimination in the π-calculus 3

that Gentzen’s Hauptsatz result (i.e. every provable judgement Γ ⊢ ∆ has a cut-free proof)

is preserved.

Classical sequents

The sequent calculus LK, introduced by Gentzen in [27], is a logical system in which the

rules only introduce connectives (but on either side of a sequent), in contrast to natural

deduction (also introduced in [27]) which uses rules that introduce or eliminate connec-

tives in the logical formulae. Natural deduction normally derives statements with a sin-

gle conclusion, whereas LK allows for multiple conclusions, deriving sequents of the form

A1, . . . , An ⊢ B1, . . . , Bm, where A1, . . . , An is to be understood as A1∧ . . . ∧An and B1,

. . . , Bm is to be understood as B1∨ . . . ∨Bm. Kleene’s version G3 [38], with implicit weak-

ening and contraction, of Implicative LK has four rules: axiom, left introduction of the arrow,

right introduction, and cut:

(Ax) :
Γ, A ⊢LK A, ∆

(cut) :
Γ ⊢LK A, ∆ Γ, A ⊢LK ∆

Γ ⊢LK ∆

(⇒R) :
Γ, A ⊢LK B, ∆

Γ ⊢LK A⇒B, ∆
(⇒L) :

Γ ⊢LK A, ∆ Γ, B ⊢LK ∆

Γ, A⇒B ⊢LK ∆

Since LK has no elimination rules, the only way to eliminate a connective is to eliminate

the whole formula in which it appears via an application of the (cut)-rule. Gentzen defined

a procedure that eliminates all applications of the (cut)-rule from a proof of a sequent using

an innermost strategy, defined via local reductions of the proof-tree, which has –with some

discrepancies– the flavour of term rewriting [39] or the evaluation of explicit substitutions

[18,1]. His Hauptsatz result expresses that this kind of proof reduction is normalising.

The calculus LK2 achieves a Curry-Howard isomorphism - first discovered for Combi-

natory Logic [26] - for the proofs in LK by constructing witnesses for derivable sequents.

This is established by, similar to calculi like Parigot’s λµ [42] and Curien and Herbelin’s

λµµ̃ [25], attaching Roman names to formulae in the left context, and Greek names to those

on the right, and to associate syntactic structure to the rules. Names on the left can be seen

as inputs to the term, and names to the right as outputs; since multiple formulae can appear

on both sides, this implies that a term can not only have more than one input, but also more

than one output. There are two kinds of names (connectors) in LK: sockets (inputs, with

Roman names) and plugs (outputs, with Greek names), that correspond to variables and

co-variables, respectively, in [48], or to Parigot’s λ and µ-variables (see also [25]).

In the construction of the witness, when in applying a rule, a premise or conclusion

disappears from the sequent and the corresponding name gets bound in the term that is

constructed; when a premise or conclusion gets created, a different free (often, but not nec-

essarily, new) name is associated to it. For example, in the creation of the term for right-

introduction of the arrow
P ··· Γ, x:A ⊢ α:B, ∆

x̂ P α̂ ·β ··· Γ ⊢ β:A→B, ∆

the input x and the output α are bound, and β is free. This case is interesting in that it

highlights a special feature of LK, not found in other calculi, which is the simultaneous

2 Since the main difference between X [8,9] and LK is in the reduction rules, the observations in this

section are true also for X .
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binding of two free names. Since in LK a term P can have many inputs and outputs, it is

unsound to consider P a function per se; however, fixing one input x and one output α, we

can see P as a function ‘from x to α’. We make this limited view of P available via the

output β, thereby exporting via β that ‘P can be used as a function from x to α’. The types

given to the connectors confirm this view.

Gentzen’s proof reductions by cut-elimination3 become the fundamental principle of

computation in LK. Cuts in proofs are witnessed by P α̂ † x̂ Q (called the cut of P and

Q via α and x), and the reduction rules specify how to remove them: a term is in normal

form if and only if it has no sub-term of this shape. The intuition behind reduction is: the

cut P α̂ † x̂ Q expresses the intention to connect all occurrences of α in P and x in Q, and

reduction will realise this by either connecting all αs to all xs (if x does not exist in Q, P will

disappear), or all xs to all αs (if α does not exist in P, Q will disappear). Note that reduction

in LK is not confluent; for example, as suggested above, when P does not contain α and Q
does not contain x, reducing P α̂ † x̂ Q can lead to both P and Q, two different terms.

Capturing LK in π

LK’s notion of multiple inputs and outputs is also found in π, and was the original inspi-

ration for our research. Our aim is to find a natural and intuitive translation of LK-proofs in

π, and to devise a notion of type assignment for π so that the types in LK are preserved in

π via this translation. In this precise sense we view processes in π as giving an alternative

(computational) meaning to proofs in classical logic. To achieve this goal, we had to define

a notion of type assignment that uses the type constructor → for π, and this is one of the

contributions of this paper; we managed this without having to linearise the calculus as done

in [37].

Although the calculi LK and π are, of course, fundamentally different, the similarities

go beyond the correspondence of inputs and output between terms in LK and processes in π.

Like LK, π is application free, and substitution only takes place on channel names, similar

to the connector-renaming feature of LK, so cut-elimination is similar to synchronisation.

The only dissimilarity lies in the fact that LK has explicit duplication of terms through

reduction rules, whereas in the π-calculus this can only be achieved through replication,

effectively “flooding the system.” A cut P α̂ † x̂ Q in LK expresses two terms that need to

be connected via α and x. If we model P and Q in π through · , then we obtain one process

sending on α, and one receiving on x (we can link these via α(w).x〈w〉). Since each output

on α in P takes place only once, and Q might want to receive in more than one x, we

need to replicate the sending; likewise, since each input x in Q takes place only once, and

P might have more than one send operation on α, Q needs to be replicated. However,

there is no notion of erasure in the π-calculus, so these replicated terms are always present

during the running of a process, giving rise to non-termination; we investigated placing

guards on our translation to block replication (as used by Milner [41]), but found that this

severely hampers its efficiency as well as provable results.

As discussed above, when creating a witness for (⇒R) (the term x̂ P α̂·β, called an

export ), the exported interface of P is the functionality of ‘receiving on x, sending on α’,

which is made available on β. When interpreting this behaviour in π, we are faced with a

problem. It is clearly not sufficient to limit communication to the exchange of single names,

3 In his original paper [27], Gentzen never considered progressing a cut over a cut. In that sense, reduction

in LK as we consider it here is much more ‘liberal’; this comes at the price of losing strong normalisation.
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since then we would have to separately send x and α, breaking perhaps the exported func-

tionality, and certainly disabling the possibility of assigning arrow types. We overcome this

problem by sending out a pair of names, as in a〈 v,d 〉. Similarly, when interpreting a wit-

ness for (⇒L) (the term P α̂ [x] ŷQ, called an import ), the term that is to be connected to x
is ideally a function whose input will be connected to α, and its output to y. This means that

we need to receive a pair of names over x.

Related work

Logic and computation

The relation between logic and computation hinges around the Curry-Howard isomorphism

(also attributed to de Bruijn), which expresses the fact that, for certain calculi with a notion

of types, there exists a corresponding logic such that it becomes possible to associate terms

with proofs, thus linking the term’s type to the proposition shown by the proof, and proof

contractions become term reductions. This phenomenon was first discovered for Combina-

tory Logic [26], and played an important part in de Bruijn’s Automath.4

Before Herbelin’s PhD [32] and Urban’s PhD [45], the study of the relation between

computation, programming languages and logic has concentrated mainly on natural deduc-

tion systems (of course, exceptions exist [29,30]). In fact, these carry the predicate ‘natural’

deservedly; in comparison with, for example, sequent style systems, natural deduction sys-

tems are easy to understand and reason about. This holds most strongly in the context of

non-classical logics; for example, the Curry-Howard relation between Intuitionistic Logic

and the Lambda Calculus with types – of which the basic system is formulated by:

(Ax) :
Γ, x:A ⊢ x : A

(→I) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

– is well studied and understood, and has resulted in a vast and well-investigated area of re-

search, resulting in, amongst others, functional programming languages and much further to

system F [28] and the Calculus of Constructions [23]. In fact, all these calculi are applicative

in that abstraction and application (corresponding to arrow introduction and elimination) are

the main constructors in the syntax.

The link between Classical Logic and continuations and control was first established by

Griffin for the λC-Calculus [31] (where C stands for Felleisen’s C operator). Not much later,

Parigot presented his λµ-calculus [42], an approach for representing classical proofs via a

natural deduction system in which there is one main conclusion that is being manipulated,

and possibly several alternative ones; the corresponding logic is one with focus. The λµ-

calculus is presented as an extension of the λ-calculus, by extending the syntax with two

new constructs that act as witness to the rules that deal with conflict (⊥):

(⊥) :
Γ ⊢ M : A | α:A, ∆

Γ ⊢ [α]M : ⊥ | α:A, ∆
(µ) :

Γ ⊢ M :⊥ | α:A, ∆

Γ ⊢ µα.M : A | ∆

It uses two disjoint sets of variables (Roman and Greek characters). The sequents typing

terms are of the form Γ ⊢ A | ∆ , marking the conclusion A as active. That control can be

expressed in the lazy variant of λµ was shown in [24].

4 http://www.win.tue.nl/automath

http://www.win.tue.nl/automath
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The introduction-elimination approach is easy to understand and convenient to use, but

is also rather restrictive: for example, the handling of negation is not as nicely balanced,

as is the treatment of contradiction (for a detailed discussion, see [44]). This imbalance

can be observed in the λµ-calculus: adding ⊥ as pseudo-type (only negation, or A→⊥, is

expressed; ⊥→A is not a type), the λµ-calculus corresponds to minimal classical logic [5].

Herbelin has studied the calculus λµµ̃ as an extension of λµ without application, which

gives a fine-grained account of manipulation of sequents [32,25,33]. The relation between

call-by-name and call-by-value in the fragment of LK with negation and conjunction is stud-

ied in Wadler’s Dual Calculus [48]; as in calculi like λµ and λµµ̃, that calculus considers a

logic with active formulae, so these calculi do not achieve a direct Curry-Howard isomor-

phism with LK. The relation between X and λµµ̃ has been investigated in [8,9]; there it was

shown that it is straightforward to map λµµ̃-terms into X whilst preserving reduction, but

that it is only partially possible to do the converse.

π-calculus and logic

In the past, there have been several investigations of translations from various calculi (or

logics) into the π-calculus [41], starting with Milner’s seminal paper, presenting his input-

based translation of the λ-calculus [13] into the π-calculus, and showing that the translation

of closed λ-terms respects lazy reduction to normal form up to substitution. Many papers

have been published in that area; here we concentrate on a review of the literature on the

relationship between logic and the π-calculus.

The original idea of giving a computational translation of the cut as a communication

primitive that we propose in this paper is also used by Abramsky in [4]; that paper was

more a philosophical exposition of ideas, rather than a detailed presentation of an encoding

with proofs. Abramsky’s ideas were taken further by Bellin and Scott [16] and later by

Bruscali and Gugliemi [20,19]. On the relation between Girard’s linear logic [29] and the

π-calculus, Bellin and Scott [16] give a treatment of information flow in proof-nets; only

a small fragment of Linear Logic was considered, and the translation between proofs and

π-calculus was left rather implicit as also noted by [21].

To illustrate this, notice that [16] uses the standard syntax for the polyadic π-calculus

P , Q ::= 0 | P | Q | !P | (νa) P | a(x).P | a〈c〉.P

similar to the one we use here (see Definition 15) but for the fact that for us output is not

synchronous, and there the let-construct is not used. However, the encoding of a ‘cut’ in

linear logic

⊢ x:A ⊗ B, y:(A ⊗ B)⊥

⊢ n:A, m:A⊥ ⊢ z:B, w:B⊥

⊢ m:A⊥, w:B⊥, v:A ⊗ B

⊢ x:A ⊗ B, m:A⊥, w:B⊥

i.e. the ‘term’ x:A ⊗ B, m:A⊥, w:B⊥, gets translated in [16] into a ‘language of proofs’

which looks like:

Cutk(I,

n,z⊗

v

(I, I)mwz)x, (m, w) = (νk)
(

I[k/y] |
n,z⊗

v

(I, I)mwz[k/v]
)

where the terms Cut and I are (rather loosely) defined. Notice the use of arbitrary application

of processes to channel names, and the operation of pairing; the authors of [16] do not

specify how to relate this notation to the above syntax of processes they consider.
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However, even if this relationship is made explicit, even then a different π-calculus is

needed to make the encoding work. To clarify this point, consider the translation in the

π-calculus of the term above, which according to the definition given in [16] becomes:

(νk)
(

x(a).k(a) | (νnz)(k(n, z).
(
n(b).m(b) | z(b).w(b)

)
)).

Although intended, no communication is possible in this term. We have underlined the de-

sired communication which is impossible, as the arity of the channel k does not match. To

overcome this kind of problem, Bellin and Scott would need the let -construct with use of

pairs of names as we have introduced in this paper in Definition 15. Moreover, there is no

relation between the interpreted terms and proofs stated in [16] in terms of logic, types, or

provable statements; here, we make a clear link between interpreted proofs and the logic

through our notion of type assignment for the π-calculus.

Honda and Laurent [34] studied a typed π-calculus and show that a specific form of

polarised linear logic [40] and a typed version of the asynchronous π-calculus [37] are es-

sentially different ways of presenting the same structure. In contrast, our translations are

very natural and intuitive by interpreting the cut operationally as a synchronisation in the

basic, untyped π-calculus. Honda, Yoshida, and Berger [37] study a relation between a

typed (i.e. types are part of the syntax of a term) Call-by-Value λµ and a linear π-calculus;

the translation they present is type dependent, in that, for each term, there are different

π-processes assigned, depending on the original type; this makes the translation quite cum-

bersome. That paper achieves a full abstraction result, but at the price of considering only an

explicitly typed version of λµ, restricted to CBV, and then only the lazy version of that, since

it is essentially based on Milner’s translation, i.e. does not model reduction in the right-hand

side of an application; expressiveness of the results is obtained by changing the reduction

strategy of the π-calculus by allowing synchronisations also under guard and under repli-

cation. So the results of [37] and our paper cannot really be compared; we just remark that

our translation is type-free, maps onto a version of the π-calculus that does not allow for

reduction to take place under replication or guard, deals with untypeable terms as well, and

our semantic translation deals with reduction in a sequent calculus.

An accurate and elegant result on the relationship between π-calculus and linear logic is

achieved by Beffara [14,15]. In particular, in [15] various mappings of the λµ-calculus with

linear logic types are encoded into synchronous π-calculus with forwarders. Observe that

λµ encodes a ‘natural deduction’ style of reasoning, while in this paper we are considering a

sequent calculus kind of reasoning for classical logic in general, and not just for the fragment

of linear logic.

In [12], two of the authors presented a compositional output -based translation for the

Λµ-calculus (a variant of λµ with separate naming and µ-binding operations) extended

with explicit substitution, into the π-calculus with pairing, and showed that this translation

preserves single-step explicit head reduction with respect to contextual equivalence. Since

Λµ is a λ-calculus, where reduction is confluent, the result of [12] is only partial with respect

to the results we present here.

A result on the relation between classical logic and the π-calculus has appeared as [22],

but for the fact that there a relation is established between the λµµ̃-calculus and the π-

calculus; since the focus for the translation as defined there is termination, it preserves only

outermost reduction, which does not get formally motivated as a significant restriction of

(proof)-reduction. Also, since in that approach all communication takes place via channels

named λ, µ and µ̃, it is not immediately clear that a natural notion of type assignment exists

for π so that also type assignment is preserved.
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Main results

In this paper, we will show results for two interpretations of LK into the π-calculus, each

with their own strengths and provable properties.

The first translation · N we define here is called natural since it closely follows the

nature and structure of proofs in LK, and is, in approach, closely related to Milner’s encoding

and the output-based spine translation of [11]. The results we will show for this translation

are:

Soundness : (Theorems 28 and 56) If P reduces to Q using head reduction, then the obser-

vational behaviour of P N contains that of Q N (as we will see in Remark 12, given the

non-confluent nature of both LK and the π-calculus, we cannot show that P N = Q N)

and if all head-reduction paths from P contain an infinite number of (exp-imp) steps,

then P N diverges.

Preservation of types : (Theorems 44 and 58) If P is a witness for the judgement Γ ⊢ ∆,

then so is P N, effectively showing that all proofs in LK have a representation in the

π-calculus.

It is possible to show that these results lead to soundness and preservation result for the

encoding of the λ-calculus into the π-calculus via the encoding · S ·, i.e. the spine translation

defined in [11] (essentially built out of the interpretation of λ-terms into LK and · N), or

for the encoding · · of λµ-terms of [12], but we consider that out of scope for this paper.

These results show that the natural translation is strong, but as translation of full cut-

elimination it falls short: not all reductions are modelled, and the translation is not complete

(see Example 31). The first is almost standard in the literature: for example, [41,43] can

only model lazy reduction, and, as argued in [11], only explicit lazy reduction in a step-

by-step fashion. That last paper only manages to model spine-reduction (also known as

head-reduction).

We will show here that we can overcome this (normal) restriction by presenting a sec-

ond translation, · S, that we call semantical; it interprets terms as infinite resources, and is

capable of representing cut-elimination in full, albeit not through mimicking reduction, but

through bisimilarity (hence the moniker “semantical”). It is a generalisation of the natural

translation in that it treats the interaction between a term and a context not through an input

over the translation of the latter, as the natural translation does. For this second translation,

we will show:

Operational Soundness : (Theorems 35 and 56) If P reduces to Q in LK’s full reduction,

then the observational behaviour of P S contains that of Q S, and if all reduction paths

from P contain an infinite number of (exp-imp) steps, then P S diverges.

Preservation of types : (Theorems 45 and 59) If P is a witness for the judgement Γ ⊢ ∆, so

is P S.

Operational completeness : (Theorem 37) If P S can be executed, then so can P, and these

executions are related via · S by: if P S →π Q then there exists P′ ∈ LK, R such that

Q →∗
π R , !R ≈ P′

S, and P →∗ P′.

Preservation of typeable termination : (Corollary 41) If P is typeable, then P S is bisimilar

to a process in normal form; we hereby emulate Gentzen’s Hauptsatz result.

In [7], we first presented our results on the translation of LK-terms into the π-calculus;

that paper also presented the notion of type assignment as defined here, as well as a proof

that type assignment and cut-elimination are preserved by the translation. Since some details

of the translations differ, we repeat these results here, with all particulars of the proofs;
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moreover, here we define head reduction ‘→H’ for LK, and show that the translation · N

respects →H; we also add the semantic translation · S and show that this is faithful with

respect to LK’s full reduction. In addition to [7] (and [9]), we treat the connective ¬ as

well.

Overview of this paper

In Section 1, we give the definition of (implicative) LK, followed by the notion of type

assignment which establishes the Curry-Howard isomorphism. In Section 2, we show how

to rewrite LK-terms, and show the relation with LK’s cut-elimination. The π-calculus with

pairing is presented in Section 3. Section 4 defines the natural translation · N of LK-terms

into π-processes that closely follows the intuition of LK, and shows a soundness and type-

preservation result. In Section 5 we will modify the natural translation to represent LK’s

reduction in full, via the semantic translation · S and show soundness, type-preservation,

and completeness. We will use this translation to show that every typeable term corresponds

to a process in normal form, which emulates Gentzen’s Hauptsatz result. In Section 6, we

define a notion of type assignment for the π-calculus, and show that, under the two inter-

pretations, typeable terms translate to processes that are typeable in the same way. Then, in

Section 7 we look at how to represent negation in LK, and study the relation between that

representation and reduction. We conclude by representing negation directly in π, and show

that type assignment is preserved also here.

1 The calculus LK

In this section and the next we will give the definition of LK, a variant of the calculus X
which has been proven to be a fine-grained implementation model for various well-known

calculi [8], like the λ-calculus, λµ, and λµµ̃. As discussed in the introduction, the calcu-

lus LK is linked to Gentzen’s sequent calculus LK; the system we will consider in this

section has only implication, no structural rules and a changed axiom. LK features two sep-

arate categories of ‘connectors’, plugs and sockets, that act as output and input channels,

respectively, and is defined without any notion of substitution or application. For the sake

of clarity, we will develop our results first just for the implicative fragment of LK; we will

consider negation in Section 7.

We would like to stress that the calculus LK we define here is not proposed as an

abstract machine to model computation (X and λµµ̃ are better suited for that), but just as a

language that allows us to treat Gentzen’s cut-elimination in a syntactical manner; we will

see that reduction is highly inefficient, since looping on normalisable terms.

Definition 1 (Syntax) The terms of the LK-calculus are defined by the following syntax,

where the Roman characters x, y range over the infinite set of sockets, and the Greek char-

acters α, β over the infinite set of plugs.

P, Q ::= 〈x·β〉 capsule

| ẑ P α̂ ·β export

| P α̂ [x] ẑQ import

| P α̂ † ẑQ cut

The ·̂ symbolises that the socket or plug underneath is bound in the term.
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We can represent these terms via the following diagrams (given just as a visual aid).

-
x β

-

-̂z P -̂α -
β

P -̂α [ ] ẑ- Q-
x P -̂α ẑ Q

As an aid to intuition, ignoring the explicitly named outputs, we can see these terms

with the view of other calculi:

LK λx Λµ λµµ̃
〈x·β〉 x [β]x 〈x |β〉

ẑ P α̂·β λz.P [β]µα.λz.P 〈λz.µα.P |β〉

P α̂ [x] ẑ Q xPQ1· · ·Qn [ω](µα.P)(λv.[ω]xvλz.Q) 〈x |µα.P · µ̃z.Q〉

P α̂ † ẑQ Q 〈z := P〉 [ω](µα.P)(λz.Q) 〈µα.P | µ̃z.Q〉

(where λx is Bloo and Rose’s λ-calculus with explicit substitution [17], and in the third case

Q is seen as a context, acting as a stack of terms Q1, . . . , Qn; for details, see [6] and [9]).

The encoding of the λ-calculus, λx, and λµ into LK are defined in [9] through:

x α =∆ 〈x·α〉

λx.M α =∆ x̂ M β β̂·α

MN α =∆ M γ γ̂ † x̂( N β β̂ [x] ŷ〈y·α〉)

M 〈x := N〉 α =∆ N β β̂ † x̂ M α

µδ.[γ]M α =∆ M γ δ̂ † x̂ 〈x·α〉

Notice that terms are defined ‘under output’. That paper also defines an interpretation of

λµµ̃ into LK:

〈v | e〉 =∆ v α α̂ † x̂ e x

x α =∆ 〈x·α〉

λx.v α =∆ x̂ v β β̂ ·α

µβ.c α =∆ c β̂ † x̂ 〈x·α〉

α x =∆ 〈x·α〉

v·e x =∆ v α α̂ [x] ŷ e y

µ̃y.c x =∆ 〈x·β〉 β̂ † ŷ c

Here terms are interpreted under output, and contexts under input.

Definition 2 1. The bound sockets and bound plugs in a term are defined by:

bs (〈x·α〉) = ∅

bs (ẑ P α̂ ·β) = bs (P) ∪ {z}
bs (P α̂ [x] ẑQ) = bs (P) ∪ bs (Q) ∪ {z}
bs (P α̂ † ẑQ) = bs (P) ∪ bs (Q) ∪ {z}

bp (〈x·α〉) = ∅

bp (ẑ P α̂·β) = bp (P) ∪ {α}
bp (P α̂ [x] ẑQ) = bp (P) ∪ {α} ∪ bp (Q)
bp (P α̂ † ẑQ) = bp (P) ∪ {α} ∪ bp (Q)

2. The set of bound connectors of P is defined by: bc(P) = bs (P) ∪ bp (P).
3. A socket x or plug α occurring in P which is not bound is called free, written x ∈ fs(P)

and α ∈ fp(P).
We will identify terms that only differ in the names of bound connectors, as usual, and write

x 6∈ fs(P, Q) for x 6∈ fs(P) and x 6∈ fs(Q), etc.
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Notice that each term in LK has at least one free plug.

We accept Barendregt’s convention on names, which states that no name can occur both

free and bound in a context; α-conversion is supposed to take place silently, whenever nec-

essary.

In order to come to a notion of type (or better: context) assignment for LK, we define

types and contexts.

Definition 3 (Types and Contexts)

1. The set of (implicative) types is defined by the grammar:

A, B ::= ϕ | A→B

where ϕ is a basic type of which there are countably many.5

2. A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of

statements x:A such that the subject of the statements (x) are distinct. We write Γ1, Γ2

for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2 then A1 = A2),

and write Γ, x:A for Γ, {x:A}.

3. Contexts of plugs ∆, and the notions ∆1, ∆2 and α:A, ∆ are defined in a similar way.

So, when writing a context as Γ, x:A, this implies that x:A ∈ Γ, or Γ is not defined on x.

The notion of type assignment on LK that we present in this section is Kleene’s ba-

sic implicative system for Classical Logic (Gentzen’s system LK) as described above. The

Curry-Howard property is easily achieved by erasing all term-information.

Definition 4 (Typing for LK)

1. Type judgements6 for LK are expressed via a ternary relation P : Γ ⊢LK ∆, where Γ is

a context of sockets and ∆ is a context of plugs, and P is a term. We say that P is the

witness of this judgement.

2. Type assignment for LK is defined by the following rules:

(cap) : 〈x·β〉 ··· Γ, x:A ⊢ β:A, ∆
(cut) :

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, z:A ⊢ ∆

P α̂ † ẑQ ··· Γ ⊢ ∆

(exp) :
P ··· Γ, z:A ⊢ α:B, ∆

ẑP α̂ ·β ··· Γ ⊢ β:A→B, ∆
(imp) :

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, z:B ⊢ ∆

P α̂ [x] ẑ Q ··· Γ, x:A→B ⊢ ∆

We write P ··· Γ ⊢ ∆ if there exists a derivation using these rules that has this judgement

in the bottom line.

It is easy to show that weakening is admissible.

Notice that each term in LK has at least one free plug, so it is impossible to derive a

statement like P : Γ ⊢LK ∅
7 and that Γ and ∆ carry the types of the free connectors in P, as

unordered sets. There is no notion of type for P itself, instead the derivable statement shows

how P is connectable.

5 These types are normally known as natural (or Curry) types.
6 We use the notation of [9].
7 This is possible in the extended system we will consider in Section 7.
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Example 5 (A proof of Peirce’s Law) The following is a proof for Peirce’s Law in LK:

(Ax)
A ⊢ A, B

(⇒R)
⊢ A⇒B, A

(Ax)
A ⊢ A

(⇒L)
(A⇒B)⇒A ⊢ A

(⇒R)
⊢ ((A⇒B)⇒A)⇒A

and its inhabitation in LK:

(cap)
〈y·δ〉 ··· y:A ⊢ δ:A, η:B

(exp)
ŷ 〈y·δ〉 η̂ ·α ··· ⊢ α:A→B, δ:A

(cap)
〈w·δ〉 ··· w:A ⊢ δ:A

(imp)
(ŷ 〈y·δ〉 η̂ ·α) α̂ [z] v̂ 〈v·δ〉 ··· z:(A→B)→A ⊢ δ:A

(exp)
ẑ((ŷ 〈y·δ〉 η̂ ·α) α̂ [z] v̂ 〈v·δ〉) δ̂ ·γ ··· ⊢ γ:((A→B)→A)→A

2 Reduction on LK

The reduction rules for the calculus LK are directly inspired by the cut-elimination rules in

LK. It is possible to define proof reduction in many ways; Gentzen decided to consider the

simplest contractions, and considered only the last rule applied in the two sub-derivations of

cuts:

(r)
Γ ⊢LK A, ∆

(l)
Γ, A ⊢LK ∆

(cut)
Γ ⊢LK ∆

In case the formula A is introduced in both these sub-derivations (i.e. either (⇒R) and

(⇒L), or (Ax) and (⇒L), or (⇒R) and (Ax), or (Ax) and (Ax)) the cut can be contracted

directly; otherwise, a sub-proof gets ‘pushed’ into the one does not introduce the formula,

one proof-step at the time; notice that this might apply to both, so a choice might have to be

made, which in itself might lead to different results.

We model these proof-contraction steps via term rewriting rules for LK. For example,

since

D1

Γ, A ⊢LK B, ∆

(⇒R)
Γ ⊢LK A⇒B, ∆

D2

Γ ⊢LK A, ∆

D3

Γ, B ⊢LK ∆

(⇒L)
Γ, A⇒B ⊢LK ∆

(cut)
Γ ⊢LK ∆

contracts to both:

D2

Γ ⊢LK A, ∆

(W )
Γ ⊢LK A, B, ∆

D1

Γ, A ⊢LK B, ∆

(cut)
Γ ⊢LK B, ∆

D3

Γ, B ⊢LK ∆

(cut)
Γ ⊢LK ∆
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and

D2

Γ ⊢LK A, ∆

D1

Γ, A ⊢LK B, ∆

D3

Γ, B ⊢LK ∆

(W)
Γ, A, B ⊢LK ∆

(cut)
Γ, A ⊢LK ∆

(cut)
Γ ⊢LK ∆

the witness for the first proof, (ŷP α̂ ·β) β̂ † x̂(Q γ̂ [x] ẑ R)

-̂
y P -̂α -

β
-̂β x̂ Q -̂

γ [ ] ẑ- R-
x

reduces to both Q γ̂ † ŷ(P α̂ † ẑ R) and (Q γ̂ † ŷ P) α̂ † ẑ R

Q -̂
γ ŷ P -̂α ẑ R Q -̂

γ ŷ P -̂α ẑ R

being the witnesses for the two resulting proofs; also this might lead to different results

(i.e. cut-free proofs).

This behaviour is reflected in rule (exp-imp), as presented in Definition 7. We can see

the cut (ŷ P β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) as a function ŷ P β̂·α (with body P, that takes input

on y and outputs on β) interacting with a context Q γ̂ [x] ẑ R (consisting of the function’s

argument Q, x as the hole that the function should occupy, and R the context of the ‘explicit

substitution’ of P in Q). The contraction of the cut expresses (in the left-hand diagram) that

the body of the function (which represents the result of the function, but with the substitution

of the argument still pending) interacts with the context before using the argument; the other

contraction first uses the argument, before interacting with the context, which corresponds

to the standard way.8

Following Gentzen’s approach, LK’s term rules explain in detail how cuts are propa-

gated through terms to be eventually evaluated at the level of capsules, where renaming takes

place. Reduction is defined by specifying both the interaction between well-connected basic

syntactic structures, and how to deal with propagating nodes to points in the term where they

can interact. For this, it is important to know when a connector is introduced, i.e. is exposed

and unique; informally, a term P introduces a socket x if P contains x and is constructed

from sub-terms which do not contain x as free socket, so x only occurs at the ‘top level.’

This means that P is either an import with a middle connector [x] or a capsule with left part

x. Similarly, a term introduces a plug α if it is an export that ‘creates’ α or a capsule with

right part α.

Definition 6 (Introduction)

P introduces α : Either P = x̂ Q β̂ ·α and α 6∈ fp(Q), or P = 〈x·α〉.

P introduces x : Either P = Q β̂ [x] ŷR with x 6∈ fs(Q, R), or P = 〈x·α〉.

The logical reduction rules specify how to reduce a term that cuts sub-terms which

introduce connectors. These rules are naturally divided in four categories: when a capsule

is cut with a capsule, an export with a capsule, a capsule with an import or an export with

an import . There is no other pattern in which a plug is introduced on the left of a ‘†’ and a

socket is introduced on the right.

8 In fact, in λµµ̃ only the second alternative is represented.
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Definition 7 (Logical rules) Let α and x be introduced in, respectively, the left and right-

hand side of the main cuts below.

(cap) : 〈y·α〉 α̂ † x̂ 〈x·β〉 → 〈y·β〉

(exp) : (ŷ P β̂·α) α̂ † x̂ 〈x·γ〉 → ŷP β̂ ·γ

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R

(exp-imp) : (ŷ P β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →

{
Q γ̂ † ŷ(P β̂ † ẑ R)

(Q γ̂ † ŷP) β̂ † ẑ R

The first three logical rules above specify a renaming procedure, whereas the last rule

specifies the basic computational step: it links the export of a function, available on the plug

α, to an adjacent import via the socket x. The effect of the reduction will be that the exported

function is placed in-between the two sub-terms of the import , acting as interface. Notice

that two cuts are created in the result, that can be grouped in two ways; these alternatives do

not necessarily have the same normal forms (since reduction is not confluent, normal forms

are not unique).

We now define how to reduce a cut when one of its sub-terms does not introduce a

connector mentioned in the cut. This will involve moving the cut inwards, towards a position

where the connector is introduced. In case both connectors are not introduced, this search

can start in either direction, giving another source of non-confluence.

Similarly to the reasoning above, also the rules dealing with propagating cuts are in-

spired by Gentzen’s cut-elimination rules. Take

D1

Γ, A ⊢LK A⇒B, B, ∆

(⇒R)
Γ ⊢LK A⇒B, ∆

D2

Γ, A⇒B ⊢LK ∆

(cut)
Γ ⊢LK ∆

(notice the contraction towards A⇒B in the left-hand sub-derivation, so the plug associated

to this formula would not be introduced in the witness for Γ ⊢LK A⇒B, ∆) which reduces to

D1

Γ, A ⊢LK A⇒B, B, ∆

D2

Γ, A⇒B ⊢LK ∆

(cut)
Γ, A ⊢LK B, ∆

(⇒R)
Γ ⊢LK A⇒B, ∆

D2

Γ, A⇒B ⊢LK ∆

(cut)
Γ ⊢LK ∆

Notice that now in the conclusion of the left-hand sub-derivation, the formula A⇒B is not

contracted: therefore, in the witness for this proof, this is represented by an introduced plug;

in fact, the witness for the first proof, the term (ŷQ β̂ ·α) α̂ † x̂ P, reduces to the witness for

the second proof (ŷ(Q α̂ † x̂ P) β̂ ·γ) γ̂ † x̂ P where now γ is introduced,9 as reflected in

rule (exp-outs†) below. So the diagram

-̂
y Q -̂β -

α
-̂α x̂ P

with α free in Q, reduces to:

9 We rename the outermost α to γ in order to adhere to Barendregt’s convention.
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-̂
y Q -̂α x̂ P -̂β -

γ
-̂
γ x̂ P

Also, since

D1

Γ ⊢LK A⇒B, ∆

D2

Γ, A⇒B ⊢LK A, ∆

D3

Γ, A⇒B, B ⊢LK ∆

(⇒L)
Γ, A⇒B ⊢LK ∆

(cut)
Γ ⊢LK ∆

(again, notice the contraction) reduces to

D1

Γ ⊢LK A⇒B, ∆

D1

Γ ⊢LK A⇒B, ∆

D2

Γ, A⇒B ⊢LK A, ∆

(cut)
Γ ⊢LK A, ∆

D1

Γ ⊢LK A⇒B, ∆

D3

Γ, A⇒B, B ⊢LK ∆

(cut)
Γ, B ⊢LK ∆

(⇒L)
Γ, A⇒B ⊢LK ∆

(cut)
Γ ⊢LK ∆

the term P α̂ † x̂(Q β̂ [x] ŷ R) reduces to P α̂ † ẑ((P α̂ † x̂ Q) β̂ [z] ŷ(P α̂ † x̂ R)), or:

P -̂α x̂ Q -̂β [ ] ŷ
- R-

x

(where x occurs free in Q or R) reduces to

P -̂α ẑ P -̂α x̂ Q -̂β [ ] ŷ
- P -̂α x̂ R-

z

as reflected in rule (†imp-outs).
This leads to the next set of rules that deal with cuts that do not have both connectors

introduced, and define how to move that cut inwards.

Definition 8 (Propagation rules) Left propagation:

(cap†) : 〈y·β〉 α̂ † x̂ P → 〈y·β〉 (β 6= α)

(exp-outs†) : (ŷQ β̂ ·α) α̂ † x̂ P → (ŷ(Q α̂ † x̂ P) β̂ ·γ) γ̂ † x̂ P
(γ fresh, α not introduced)

(exp-ins†) : (ŷQ β̂ ·γ) α̂ † x̂ P → ŷ(Q α̂ † x̂ P) β̂ ·γ (γ 6= α)

(imp†) : (Q β̂ [z] ŷ R) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ [z] ŷ(R α̂ † x̂ P)

(cut†) : (Q β̂ † ŷ R) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂ P)

Right propagation:

(†cap) : P α̂ † x̂ 〈y·β〉 → 〈y·β〉 (y 6= x)

(†exp) : P α̂ † x̂(ŷQ β̂ ·γ) → ŷ(P α̂ † x̂ Q) β̂ ·γ

(†imp-outs) : P α̂ † x̂(Q β̂ [x] ŷ R) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)),
(z fresh, x not introduced)

(†imp-ins) : P α̂ † x̂(Q β̂ [z] ŷR) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R) (z 6= x)

(†cut) : P α̂ † x̂(Q β̂ † ŷ R) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R)
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(ẑ P δ̂ ·γ) γ̂ † û (Q τ̂ [u] x̂ R) →LK (†imp-outs)

(ẑ P δ̂ ·γ) γ̂ † ŷ(((ẑP δ̂ ·γ) γ̂ † û Q) τ̂ [y] x̂ ((ẑP δ̂ ·γ) γ̂ † û R)) →LK (†cap)

(ẑ P δ̂ ·γ) γ̂ † ŷ(((ẑP δ̂ ·γ) γ̂ † û Q) τ̂ [y] x̂ R) →LK (exp),=α

(v̂〈v·ρ〉 ρ̂ ·γ) γ̂ † ŷ((ẑ P δ̂ ·τ) τ̂ [y] x̂ R) →LK (exp-imp)

(ẑ P δ̂ ·τ) τ̂ † v̂(〈v·ρ〉 ρ̂ † x̂ R) →LK (†cut)

((ẑP δ̂ ·τ) τ̂ † v̂〈v·ρ〉) ρ̂ † x̂ ((ẑP δ̂ ·τ) τ̂ † v̂ R) →LK (exp, †cap)

(ẑ P δ̂ ·ρ) ρ̂ † x̂ R →LK (exp) ẑ P δ̂ ·σ

Fig. 1 Running (ẑ P δ̂ ·γ) γ̂ † û (Q τ̂ [u] x̂ R) of Example 10.

Definition 9 (Reduction)

1. We write →∗
LK for the reduction relation defined as the smallest pre-order that includes

the logical and propagation rules, extended with the contextual rules10

P → Q ⇒





x̂ P α̂·β → x̂ Q α̂ ·β
P α̂ [x] ŷR → Q α̂ [x] ŷR
R α̂ [x] ŷ P → R α̂ [x] ŷQ
P α̂ † ŷR → Q α̂ † ŷR
R α̂ † ŷ P → R α̂ † ŷQ

2. We define the notion of head reduction, →H, by excluding reductions in and toward im-

port , via the elimination of the propagation rules that move into an import (i.e. (imp†),
(†imp-outs), and (†imp-ins), as well as the second and third contextual rule).

3. We defined innermost reduction →I by allowing the rules to be applied only to cuts

composed out of terms in normal form (i.e. that contain no cuts).

4. We write P↑ (and say that P diverges) if all reduction paths starting from P contain an

infinite number of (exp-imp) steps.

Notice that this notion of reduction has many critical pairs, making reduction highly non-

confluent.

The main difference between this reduction and that of X is that, essentially, in X ac-

tivated cuts P α̂ † x̂Q and P α̂ † x̂ Q are added to the syntax, and only those are allowed

to propagate over non-activated cuts; this is crucial for the Strong Normalisation result as

shown by Urban for a syntactic variant of X . Instead, the rewriting we consider here corre-

sponds more closely to free cut-elimination.

Example 10 Taking P = 〈z·δ〉, Q = 〈u·τ〉 and R = 〈x·σ〉 (notice that then u is not

introduced in Q τ̂ [u] x̂ R), we can reduce (ẑ P δ̂·γ) γ̂ † û(Q τ̂ [u] x̂ R) as in Figure 1 (notice

that we have marked the cut that gets contracted).

Unlike a similar notion for the λ-calculus, our notion of head reduction is not determin-

istic: notice that

(ŷ((v̂P δ̂ ·σ) σ̂ † ẑ 〈z·γ〉) γ̂ ·α) α̂ † x̂ 〈x·β〉 →H

{
(ŷ(v̂P δ̂ ·γ) γ̂·α) α̂ † x̂ 〈x·β〉

ŷ((v̂P δ̂ ·σ) σ̂ † ẑ〈z·γ〉) γ̂ ·β

so both cuts can be contracted under →H.

10 Reduction in LK is defined as a term rewriting system, where the contextual rules are normally left

implicit; we mention them here because we define a restriction of reduction that also limits the contextual

rules.
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Notice that our cut-elimination is different from Gentzen’s original (implicit) definition:

he in fact did not consider a cut-over-cut step, and used innermost reduction for his Haupt-

satz result (see Proposition 38).

The soundness result of type assignment with respect to reduction is stated as usual:

Theorem 11 (Witness Reduction for LK [9]) If P ··· Γ ⊢ ∆, and P →∗
LK Q, then Q ··· Γ ⊢

∆.

Although the reduction rules of LK are different from those of X , since activated cuts are

no longer used, given that activated cuts are typed in the same way as normal cuts the proof

is almost identical to that presented in [9], and we will omit it here.

Remark 12 (On non-confluence) We have already remarked that the reduction relation is

not confluent. In fact, let P and Q be such that α is not free in P and x is not free in Q, then

we can show both P α̂ † x̂Q →∗
LK P and P α̂ † x̂ Q →∗

LK Q. So, in particular, a term P can

have more than one normal form. Now when interpreting a term through its set of normal

forms via · NF, it is easy to show that, if P →∗
LK Q, then Q NF ⊆ P NF; so picking

one reduction from P can then exclude the reachability of some of the other normal forms,

and the set of reachable normal forms decreases during reduction. Something similar also

holds for our translations into the π-calculus: if P →∗
LK Q, then P has more observable

behaviour than Q , expressed via P ⊒π Q .

In [9,10] some basic properties are shown for X , which essentially show that the calcu-

lus is well behaved, as well as the relation between X and a number of other calculi. These

results are valid also for LK, and motivate the formulation of admissible rules:

Lemma 13 (Garbage Collection and Renaming [10])

(†gc) : P α̂ † x̂ Q →LK Q if x 6∈ fs(Q)
(gc†) : P α̂ † x̂ Q →LK P if α 6∈ fp(P)

(†ren) : 〈z·α〉 α̂ † x̂ P →LK P[z/x]

(ren†) : P β̂ † ẑ〈z·α〉 →LK P[α/β]

The activated cuts of the original presentation of X were introduced by Urban with the

main purpose of giving enough control over cut-elimination to prove strong normalisation,

without sacrificing expressivity. The idea is that, once activated, a cut has to run to comple-

tion, and cannot be ‘crossed’ with another cut. Since we are here not dealing with strong

normalisation, but with full proof contraction in LK, we do without activated cuts, but at the

price of looping reduction.

Example 14 As an example of a looping reduction, take:

P α̂ † x̂(〈x·β〉 β̂ † ẑQ) →LK (†cut)

(P α̂ † x̂ 〈x·β〉) β̂ † ẑ(P α̂ † x̂Q) →LK (†gc) (x 6∈ fs(Q))

(P α̂ † x̂ 〈x·β〉) β̂ † ẑ Q →LK (cut†)

(P β̂ † ẑQ) α̂ † x̂(〈x·β〉 β̂ † ẑQ) →LK (gc†) (β 6∈ fp(P))

P α̂ † x̂(〈x·β〉 β̂ † ẑ Q)

Moreover, assuming P ··· Γ ⊢ α:A, ∆ and Q ··· Γ, z:A ⊢ ∆, we can construct a derivation

for P α̂ † x̂(〈x·β〉 β̂ † ẑQ) ··· Γ ⊢ ∆ and all the intermediate terms in the reduction above

are typeable by the Witness Reduction result: so also cut-elimination does not terminate and

typeability does not guarantee termination.

Notice that, following the innermost reduction path, this loop is immediately broken:

P α̂ † x̂(〈x·β〉 β̂ † ẑQ) →LK (†ren) P α̂ † x̂ Q[x/z] =α P α̂ † ẑQ

We hazard a guess that this is why Gentzen considers only innermost reduction.
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3 The asynchronous π-calculus with pairing

The notion of asynchronous π-calculus that we consider in this paper is different from the

standard system defined by Honda and Tokoro in [35]. One reason for the change we make

lies directly in the calculus that is going to be interpreted, LK, in which a term can be

constructed binding two connectors simultaneously. We will model function and context

interaction into processes communication by sending data over channels, i.e. not just names,

but also pairs of names, so, inspired by [2], add pairing: we introduce a structure over names,

such that a channel may pass along not only names but also pairs of names (but not a pair

of pairs). This does not imply that the calculus we consider is polyadic, however: always

only one item can be sent, which is either a name of a pair of names. We also introduce the

let -construct to deal with inputs of pairs of names that get distributed over the continuation.

To ease this definition, we deviate slightly from the normal practice, and write either

Greek characters α, β, υ, . . . or Roman characters x, y, z, . . . for channel names; we use

a, b, c, n for either a Greek or a Roman name.

The reason we use the asynchronous π-calculus rather than the normal synchronous

variant will become clear after Definition 21; notice that this choice is not a restrictive one,

since the asynchronous π-calculus is included in the synchronous one.

Definition 15 (π : the asynchronous π-calculus with pairing)

1. Channel names and data are defined by:

a, b, c, d ::= x | α names

p ::= a | a,b data

Notice that pairing is not recursive.

2. Processes are defined by the grammar:

P , Q ::= 0 nil

| P | Q composition

| !P replication

| (νa) P restriction

| a(x).P input

| a〈p〉 (asynchronous) output

| let x,y = p in P let construct

3. We consider n bound in (νn) P , x bound in a(x).P , and x and y to be bound in the

let-construct let x,y = p in P . We call n free in P if it occurs in P and is not bound; we

write fn(P) for the set of free names in P , and write fn(P , Q) for fn(P) ∪ fn(Q).
4. We abbreviate a(x).let y,z =x in P by a(y,z).P , and (νm) (νn) P by (νmn) P , and

write a〈c,d〉 rather than a〈 c,d 〉.
5. We write a b for the forwarder [36] a(w).b〈w〉 (called a wire in [43]).

6. A (process) context is simply a term with a hole [·].

Some remarks on the structure of processes should be made. Notice that data occurs

only in two cases: a〈p〉 and let x,y = p in P , and that then p is either a single name, or a

pair of names. This implies that we do not allow a,b .P , nor a( b,c ).P , nor a〈 b,c ,d 〉, nor

(ν a,b ) P , nor let a,b ,y = p in P , etc. Therefore substitution P [p/x] is a partial operation,

which depends on the places in P where x occurs.
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Definition 16 (Congruence) The structural congruence is the smallest equivalence relation

closed under contexts defined by the following rules:

P | 0 ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
(νn) 0 ≡ 0

(νm) (νn) P ≡ (νn) (νm) P

(νn) (P | Q) ≡ P | (νn)Q (n 6∈ fn(P))
!P ≡ P | !P ≡ !P | !P ≡ ! !P

let x,y = a,b in P ≡ P [a/x, b/y]

Because of the last clause, we will not treat let x,y = a,b in P as syntactic representa-

tion of a process; this implies, for example, that we do not deal explicitly with the process

let x,y = a,b in P in our type assignment system.

As usual, we will consider processes modulo congruence. Because of rule (P | Q) |R ≡
P | (Q | R), we will normally not write brackets in a parallel composition of more than two

processes.

Definition 17 (Reduction)

1. The reduction relation →π over the processes of the π -calculus is defined by following

(elementary) rules:

a〈b〉 | a(x).Q → Q [b/x]
synchronisation

a〈b,c〉 | a(x).Q → Q [ a,b /x], if well defined

P → Q
′ ⇒ (νn) P → (νn)Q binding

P → Q ⇒ (νn) P → (νn)Q binding

P → Q ⇒ P | R → Q | R composition

P ≡ Q & Q → Q
′ & Q

′ ≡ P
′ ⇒ P → P

′ congruence

2. We write →+
π for the transitive closure of →π , →∗

π for its reflexive and transitive clo-

sure; we write →π (a) if we want to point out that a synchronisation took place over

channel a, and write (=α) if we want to point out that α-conversion has taken place.

The following is easy to show.

Proposition 18 Let P , Q not contain a and a 6= b, then

(νa) (a〈b〉.P | a(x).Q) ≈ P | Q [b/x]

(νa) (! a〈b〉.P | a(x).Q) ≈ P | Q [b/x]

As remarked above, Q [p/x] as used in the synchronisation rule needs to be well defined

for the synchronisation to take place; this implies that, for example, a synchronisation like

a〈p〉 | a(z).z〈c〉 is stuck, as is a〈p〉 | a(z).b〈z,v〉, etc. Note that

a〈b,c〉 | a(x,y).P =∆ a〈b,c〉 | a(z).let x,y =z in P

→π let x,y = b,c in P

≡ P [b/x, c/y]

exactly as intended.

There are several notion of equivalence defined for the π-calculus: the one we consider

here, and will show is related to our encodings, is that of weak bisimilarity.

Definition 19 (Weak bisimilarity)
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1. We write P ↓ n (and say that P outputs on n) if P ≡ (νb1 . . . bm) (n〈p〉 | Q) for some

Q , where n 6= b1 . . . bm. We write P ⇓ n (P will output on n) if there exists Q such that

P →∗
π Q and Q ↓ n.

P ↓ n (P inputs on n) and P ⇓ n (P will input on n) are defined similarly.

2. A barbed bisimilarity ≈· is the largest symmetric relation such that P ≈· Q satisfies the

following clauses:

(a) if for each name n: if P ↓ n then Q ⇓ n, and if P ↓ n then Q ⇓ n;

(b) for all P
′, if P →∗

π P
′, then there exists Q

′ such that Q →∗
π Q

′ and P
′ ≈· Q

′.

3. Weak-bisimilarity is the largest relation ≈ defined by: P ≈ Q if and only if C[P ] ≈·

C[Q ] for any context C[·].
4. We write P ⊑π Q if and only if there exists an R such that Q ≡ P |R , and write P ⊏∼π Q

if and only if there exists R such that R ≈ Q and P ⊑π R (so Q ≈ P | R
′ for some R

′).

To illustrate ⊏∼π, we can show that P ⊏∼π !P and P ⊏∼π P | Q ; clearly ≈ ⊂ ⊏∼π .

When we write P ⊏∼π Q , we wish to express that that Q has more behaviour than P .

Differently from a simulation definition, ⊏∼π determines exactly the extra behaviour in Q .

This yield a clearer statement on the correctness of the encodings.

We will need the following property:

Lemma 20 Let a be at most only used as output channel in P and as input channel in Q ,

then: (νa) (!P | !Q) ≈ ! (νa) (!P | !Q).

Proof (Sketch) We build the following symmetric relation:

R = {〈(νa) (!P | !Q), (νa) (!P | !Q) | ! (νa) (!P | !Q)〉} ∪
{〈(νa) (P’ | !P | !Q), (νa) (P’ | !P | !Q) | !(νa) (! P | !Q)〉 : ∀P’ , P →∗

π P’} ∪
{〈(νa) (Q’ | !P | !Q), (νa) (Q’ | !P | !Q) | !(νa) (!P | !Q)〉 : ∀Q’ , P →∗

π Q’} ∪
{〈(νa) (R’ | !P | !Q), (νa) (R’ | !P | !Q) | !(νa) (!P | !Q)〉 : ∀R’ , P | Q →∗

π R’}.

R is a a barbed bisimilarity, as the seemly apparent extra behaviour coming from the extra

! on the left-hand term is in fact already present in the term on the right-hand side. For

exactly the same reason any context will not distinguish the terms in R, hence R is a weak-

bisimilarity.

4 A natural translation for LK into π that respects head reduction

In this section we will present a first translation · N of LK into π ; it is called natural

since it will create processes that output on names that are associated to plugs, and input on

names that are associated to sockets, and tries as much as possible to encode the joining of

connectors through substitution, following the syntactic structure of terms. Also, it is natural

since we can show that head reduction LK is implemented through synchronisation in π
(see Theorem 28); for the semantic translation of the next section we can show that reduction

in LK is represented through weak bisimilarity (see Theorem 35).

Our translation is based on the intuition formulated above: the cut P α̂ † x̂Q expresses

the intention to connect all αs in P and xs in Q. Translated into π , this results in seeing

P as trying to send at least as many times over α as Q is willing to receive over x, and Q
trying to receive at least as many times over x as P is ready to send over α.

The main aim of the natural translation is to represent reduction, i.e. to be able to show

that, if P →LK Q, then P N and Q N are weakly bisimilar (which includes synchronisation
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over private channels). In view of the fact that some rules duplicate terms (as in (exp-outs†)
and (†imp-outs)), we need to use replication; since the cut P α̂ † x̂ Q can be seen as both

the distribution of P into Q and Q into P, in the last alternative we need to replicate both

components, which because of rule (exp-imp) forces us to use replication in the second and

third case as well.

Although departing from LK it is natural to use Greek names for outputs and Roman

names for inputs, by the very nature of the communication of the π-calculus (it is only

possible to communicate using the same channel for in and output), in the implementation

we are forced to use Greek names also for inputs, and Roman names for outputs.

We will first give the definition of the natural translation, and then explain the details.

Definition 21 (Natural translation of LK in π ) The natural translation is defined by:

〈x·β〉 N = x(w).β〈w〉

ẑ P α̂ ·β N = (νzα)(! P N | β〈z,α〉)

P α̂ [x] ẑ Q N = x(α, z).(! P N | ! Q N)

P α̂ † ẑ Q N = (νz) (! P[z/α] N | ! Q N)

Let us investigate the intuition behind this definition for a moment. The interpretation

of P α̂ † ẑQ will generate a process P N that (possibly) outputs on α, and Q that inputs

on z; since the intention of the cut is that α and z are connected, we realise this directly by

renaming α by z:11

P α̂ † ẑQ N = (νz) (! P[z/α] N | ! Q N)

Since z (and α) are bound in P α̂ † ẑQ, z is restricted.

Likewise, when constructing the process that represents the term P α̂ [x] ẑQ, we will

generate a process P N that outputs on α, and Q N that inputs on z. Notice that when that

term is placed in a cut with an export

(ŷR β̂·γ) γ̂ † x̂(P α̂ [x] ẑQ)

a reduction step can be made that generates the term P α̂ † ŷ(R β̂ † ẑQ). Therefore, we can

see the synchronisation over x as enabling the connection of α to y and β to z. So, in effect,

then the synchronisation over x exchanges two names (hence the need for pairing), and we

can see x in P α̂ [x] ẑQ N as an input that receives the names (here y and β) that will be

connected to the names α and z; we can achieve that naturally ‘in one go’ by treating α and

z as variables. We place the interpretations of P and Q in parallel and introduce a guard

using x, that receives on x the channel names that are going to be substituted for α and z:

P α̂ [x] ẑQ N = x(α, z).(! P N | ! Q N)

This then causes the use of pairing in the interpretation of the export ẑ P α̂·β as well.

When we see R N as a process that can input on z and output on α, then ẑ P α̂·β N is the

process that communicates that fact over β, by sending the two names:

ẑ P α̂·β N = (νzα)(! P N | β〈z,α〉)

since z and α are bound in ẑ P α̂·β, they are restricted.

11 Notice that (νz) (! P[z/α] N | ! Q N) =α (να) (! P N | ! Q[α/z] N) since z does not occur free in P
and α not in Q; we will not distinguish these and swap between them whenever convenient.
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Remark 22 We can now better illustrate why we need to use the asynchronous π-calculus.

Take the term (ŷ P β̂·α) α̂ † x̂ 〈x·γ〉, which by rule (exp) reduces to ŷ P β̂·γ. We now want

the interpretation of the first term to at least include (in terms of ⊐∼π) that of the second.

Assume we would have defined

ŷ P β̂·α = (νyβ) (α〈y,β〉.! P )

then we can only show:

(ŷ P β̂·α) α̂ † x̂ 〈x·γ〉 =∆

(νx) (! (νyβ) (α〈y,β〉.! P ) | ! x(w).γ〈w〉) ≡,=∆

(νx)((νyβ) (x〈y,β〉.! P ) | x(w).γ〈w〉) | (ŷP β̂·α) α̂ † x̂ 〈x·γ〉 →π (x)

(νyβ)(! P | γ〈y,β〉) | (ŷ P β̂·α) α̂ † x̂ 〈x·γ〉

Notice that this last process then does not include ŷ P β̂·γ ; in fact, (νyβ) (γ〈y,β〉.! P )
and (νyβ)(! P | γ〈y,β〉) are not even weakly bisimilar. So we are forced to place the

output γ〈y,β〉 in parallel to the interpretation of P.

Remark 23 (On confluence and ⊐∼π) As observed in Remark 12, the cut P α̂ † x̂Q – with α
not in P and x not in Q – in LK runs via erasure to either P or Q, and reducing it decreases

the set of reachable normal forms. Observe that in the image of LK in π, being built without

using ‘choice’, there is no notion of erasure of processes; this implies that, using reduction

in the π-calculus, we cannot model P α̂ † x̂ Q →LK P; we can at most show:

P α̂ † x̂ Q N =∆ (νx) (! P[x/α] N | ! Q N) ≡ ! P N | ! Q N

assuming α 6∈ fp(P) and x 6∈ fs(Q). Now all reductions will take place in either P N or

Q N, and both parts will remain under reduction. This implies that, in this case, it is clear

that the interpreted cut P α̂ † x̂ Q N must contain the behaviour of either its contractea, so,

evidently, has more behaviour than both P N and Q N separately. As stated in Remark 12,

this is natural for translations of non-confluent calculi, since there P →LK Q implies Q ⊆
P . We see this return in the formulation of the correctness result (Theorem 28) for the

natural translation, which is formulated through the relation ⊐∼π .

Since in this translation some sub-terms are placed under input , a full representation

of reduction in LK cannot be achieved: it is not possible to reduce the (interpreted) terms

that appear under an input . To accommodate for this shortcoming, to achieve a simulation

result using this first translation, we have to restrict the notion of reduction on LK to that

of head reduction. In view of the literature that exists on translations into the π-calculus,

this is unfortunate but standard: the encoding forces a restriction on the modelled reduction

rules. A similar limitation was already evident for Milner’s encoding of the λ-calculus in

[41], which manages only to show a preservation result for (large step) lazy reduction [3]

for the λ-calculus, and is thereby also present in all research that is based on that approach;

also [11] has to limit the notion of reduction to spine reduction, and [12] to head reduction.

As can be seen in Definition 21, input is used for the translation of import , so the restric-

tion will consist of removing the rules that reduce under import ; notice that this forces the

exclusion of the second and third contextual rule, as well as the propagation rules (imp†),
(†imp-outs), and (†imp-ins).
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The choice for the terminology head-reduction can be motivated as follows. The only

remaining reduction rules that deal with imports are:

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →

{
Q γ̂ † ŷ(P β̂ † ẑ R)

(Q γ̂ † ŷ P) β̂ † ẑ R

The restriction we put on the rewriting system in head-reduction implies that we can

only contract a cut T α̂ † x̂(Q γ̂ [x] ẑ R) if T is a term with α introduced; as observed above,

we can compare this term, with discrepancies, to TQRi (where R is the context [ ]Ri). In

particular, under head-reduction, in the term T α̂ † x̂(Q γ̂ [x] ẑ R) all reduction takes place

exclusively inside T (so in the head of the term TQRi), and the cut mentioned explicitly

will only be contracted after that reduction produces a term that introduces α in an export .

Moreover, even when T α̂ † x̂(Q γ̂ [x] ẑ R) reduces to (ŷP β̂ ·α) α̂ † x̂(Q γ̂ [x] ẑ R), we can

continue running inside P. In any case, the contraction of this cut is postponed (for an

introduced x; if x is not introduced, it will always be blocked, since propagation into an

import is no longer allowed) until the head introduces α. Notice that head reduction in

LK models more than just what we suggest here: continuing on the metaphor of the λ-

calculus, the cut P α̂ † x̂Q corresponds to Q 〈x := P〉; head reduction allows reduction in

both components of the cut, so allows for reduction during substitution.

Following on from these observations, it is clear that in terms of the representation of

computable functions, head reduction is still fully expressive. In fact, the spine translation of

[11] is a combination of the mapping of the λ-calculus into X (or of natural deduction into

the sequent calculus) and the natural translation we define here. In that paper it is shown that

explicit λ-spine reduction is preserved step-by-step by the induced combination of LK’s

head reduction and π’s synchronisation; it also shows that typeability is preserved.

Remark 24 We can make the following observations:

– The synchronisations generated by the natural translation only involve processes of the

shape:

x(w).α〈w〉 β〈x,α〉 z(β, y).(P | Q)

so in particular, substitution P [p/x] is always well defined. These synchronisations are

of the shape:

– (νx) ((νyβ) (P | x〈y,β〉) | x(α, z).(R | Q)) →π (νyβ) (P | R [y/α] | Q [β/z]), and

after the synchronisation over x, P can receive over y from R [y/α] and send over β
to Q [β/z]; or

– (νx) ((νyβ) (P | x〈y,β〉) | x(w).α〈w〉) →π (νyβ) (P | α〈y,β〉).

– All synchronisation takes place only over channels whose names are bound connectors

in the terms that are interpreted. In particular,

– no synchronisation is possible in P α̂ † x̂ Q N =∆ (νx) (! P[x/α] N | ! Q N) between

and P[x/α] N and Q N but over channel x; and

– no direct synchronisation is possible in P α̂ [x] ŷQ N =∆ x(α, y).(! P N | ! Q N) be-

tween P N and Q N, even after input has been received over x.

– The translation is not trivial, since

ŷ(ẑ〈y·β〉 β̂·γ) γ̂·α N = (νyγ)(!(νzβ)(! y(w).β〈w〉 | γ〈z,β〉) | α〈y,γ〉)

x̂ 〈x·δ〉 δ̂ ·α N = (νxδ)(! x(w).δ〈w〉 | α〈x,δ〉)

(witnesses of, respectively, ⊢ A→B→A and ⊢C→C) yielding processes that differ un-

der ≈.
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As mentioned in the introduction, we added pairing to the π-calculus in order to be able

to deal with arrow types. Notice that using the polyadic π-calculus instead would not be

sufficient: since we would like the translation to respect reduction, in particular we need

to be able to reduce the translation of (x̂ P α̂·β) β̂ † ẑ 〈z·γ〉 to that of x̂ P α̂ ·γ (when β not

free in P). So, choosing to interpret the export of x and α over β as β〈x,α〉 would force the

translation of 〈z·γ〉 to always receive a pair of names. But requiring for the translation of a

capsule to always deal with pairs of names is too restrictive: we will see that then only arrow

types could be assigned, so it is desirable to allow those to deal with single names as well.

So, rather than moving towards the polyadic π-calculus, we opt for letting communication

send a single item, which is either a name or a pair of names.

Example 25 The translation of ẑ((ŷ〈y·δ〉 η̂ ·α) α̂ [z] v̂ 〈v·δ〉) δ̂ ·γ N, the witness of Peirce’s

law of Example 5, becomes:

(νzδ)(z(α, v).(!(νyη)(!y(w).δ〈w〉 | α〈y,η〉) | !v(w).δ〈w〉) | γ〈z,δ〉)

That this process is a witness of ⊢ ((A→B)→A)→A is a straightforward application of

Theorem 44.

The following is straightforward:

Proposition 26 (Free name preservation) α, x 6∈ fc(P), if and only if α, x 6∈ fn( P N).

We will show in Theorem 28 that we can mimic LK’s head reduction in π : if P →H Q,

the image of the LK-term P under the translation in π reduces to some π -process that

contains the behaviour of Q, but might have some extra behaviour as well. As will become

clear also in the proofs below, this is in part due to the presence of replicated processes in

the translation of the cut, but also comes from the fact that reduction in LK is not confluent,

as discussed in Remark 23.

First we need to show the following:

Lemma 27 1. Assume γ does not occur free in P[α/x], and x can only be a free socket in

P, then:

(να) (! (νyβ)(! Q N | γ〈y,β〉) | ! P[α/x] N) ⊐∼π

(νyβ)(!(να) (! Q N | ! P[α/x] N) | γ〈y,β〉)
2. Assume α can only be a plug in Q, and x can only be a socket in P, then:

(νx) (! (νyβ)(! Q[x/α] N | x〈y,β〉) | ! P N) ≈
(νγ) (! (νyβ)(!(νx) (! Q[x/α] N | ! P N) | γ〈y,β〉) | ! P[γ/x] N)

3. Assume x can only be a socket in P, and α is only a plug in Q or R, then:

(να) (! (νy) (! Q[y/β] N | ! R N) | ! P[α/x] N) ≈
(νy) (! (να) (! Q[y/β] N | ! P[α/x] N) | !(να) (! R N | ! P[α/x] N))

Proof 1. Notice that γ and y do not occur in P[α/x] N. Therefore

(να) (! (νyβ)(! Q N | γ〈y,β〉) | ! P[α/x] N) ⊐∼π

(να) ((νyβ) (! Q N | γ〈y,β〉) | ! P[α/x] N) ≡ (α 6= γ, y, β 6∈ P[α/x] N)
(νyβ) ((να) (! Q N | ! P[α/x] N)) | γ〈y,β〉 ≈ (20)
(νyβ)(! (να) (! Q N | ! P[α/x] N) | γ〈y,β〉)

2. Notice that x does not occur in Q, might occur as socket in P, and that α is a plug in Q;

therefore x is only used for output in Q[x/α] N. We observe that

(νx) (! (νyβ) (! Q[x/α] N | x〈y,β〉) | ! P N | ! P N)
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and

(νγ) ((νx) (! (νyβ) (! Q[x/α] N | γ〈y,β〉) | ! P N) | ! P[γ/x] N)

are weakly bisimilar since the substitution of γ for x does not introduce any transition

in the term (x〈y,β〉 and γ〈y,β〉 could communicate only with ! P N and ! P[γ/x] N re-

spectively) and is not restricting other transitions (! Q[x/α] N can only communicate

with ! P N). Therefore:

(νx) (! (νyβ)(! Q[x/α] N | x〈y,β〉) | ! P N) ≡
(νx) (! (νyβ) (! Q[x/α] N | x〈y,β〉) | ! P N | ! P N) ≈ (=α, γ fresh)
(νγ) ((νx) (! (νyβ) (! Q[x/α] N | γ〈y,β〉) | ! P N) | ! P[γ/x] N) ≈ (as in 1)
(νγ) (! (νyβ)(! (νx) (! Q[x/α] N | ! P N) | γ〈y,β〉) | ! P[γ/x] N)

3. Notice that α is not used for input in either R N or Q[y/β] N. The processes

(να) (! (νy) (! Q[y/β] N | ! R N) | ! P[α/x] N | ! P[α/x] N)

and

(νy) (! (να) (! Q[y/β] N | ! P[α/x] N) | !(να) (! R N | ! P[α/x] N))

are weakly bisimilar for a reasoning similar to the one above. Therefore:

(να) (! (νy) (! Q[y/β] N | ! R N) | ! P[α/x] N) ≡
(να) (! (νy) (! Q[y/β] N | ! R N) | ! P[α/x] N | ! P[α/x] N) ≈
(νy) (! (να) (! Q[y/β] N | ! P[α/x] N) | ! (να) (! R N | ! P[α/x] N))

We can show the following correctness result for head reduction, →H:

Theorem 28 (Operational Soundness of · N with respect to →H) If P →∗
H Q, then there

exists R such that P N →∗
π R with R ⊐∼π Q N.

Proof By induction on the definition of reduction. We only show the more illustrative cases,

and deal with the rules in the order they were presented in Section 2.

Logical rules: (cap) : 〈y·α〉 α̂ † x̂ 〈x·γ〉 → 〈y·γ〉 :

〈y·α〉 α̂ † x̂ 〈x·γ〉
N =∆ (νx) (! y(w).x〈w〉 | ! x(w).γ〈w〉) ≈ ! y(w).γ〈w〉 =∆

! 〈y·γ〉
N

⊐∼π 〈y·γ〉
N

(exp) : (ŷP β̂ ·α) α̂ † x̂ 〈x·γ〉 → ŷ P β̂·γ :

(ŷP β̂ ·α) α̂ † x̂ 〈x·γ〉
N =∆

(νx) (! (νyβ)(! P N | x〈y,β〉) | ! x(w).γ〈w〉) ≡
(νx)((νyβ)(! P N | x〈y,β〉) | x(w).γ〈w〉 |

! (νyβ)(! P N | x〈y,β〉) | ! x(w).γ〈w〉) →π (x)

(νyβ)(! P N | γ〈y,β〉) | (ŷP β̂·α) α̂ † x̂ 〈x·γ〉
N =∆

ŷP β̂ ·γ N | (ŷ P β̂·α) α̂ † x̂ 〈x·γ〉
N

⊐∼π ŷ P β̂·γ N

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R :

〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ P) N =∆ (νx) (! y(w).x〈w〉 | ! x(β, z).(! Q N | ! R N)) ≈

! y(β, z).(! Q N | ! R N) =∆ ! Q β̂ [y] ẑ R N
⊐∼π Q β̂ [y] ẑ R N

(exp-imp) : (ŷP β̂ ·α) α̂ † x̂(Q γ̂ [x] ẑ R) → Q γ̂ † ŷ(P β̂ † ẑ R) :
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(ŷP β̂ ·α) α̂ † x̂(Q γ̂ [x] ẑ R) N =∆

(νx) (! (νyβ)(! P N | x〈y,β〉) | ! x(γ, z).(! Q N | ! R N)) ≡,=∆

(νx)((νyβ)(! P N | x〈y,β〉) | x(γ, z).(! Q N | ! R N) |

(ŷP β̂ ·α) α̂ † x̂(Q γ̂ [x] ẑ R) N) →π (x),≡,⊐∼π

(νy) (! Q[y/γ] N | (νβ) (! P N | ! R[β/z] N)) ≈ (20)
(νy) (! Q[y/γ] N | ! (νβ) (! P N | ! R[β/z] N)) =∆

(νy) (! Q[y/γ] N | ! P β̂ † ẑ R N) =∆

Q γ̂ † ŷ(P β̂ † ẑ R) N

For (ŷP β̂ ·α) α̂ † x̂(Q γ̂ [x] ẑ R) → (Q γ̂ † ŷ P) β̂ † ẑ R the proof is similar, since

(νyβ) (! P N | ! Q[y/γ] N | ! R[β/z] N) ≡
(νβ) ((νy) (! Q[y/γ] N | ! P N) | ! R[β/z]N) ≈ (20)
(νβ) (!(νy) (! Q[y/γ] N | ! P N) | ! R[β/z] N) =∆

(νβ) (! Q γ̂ † ŷ P N | ! R[β/z] N) =∆ (Q γ̂ † ŷP) β̂ † ẑ R N

Left propagation: (cap†) : 〈y·β〉 α̂ † x̂ P → 〈y·β〉, β 6= α :

〈y·β〉 α̂ † x̂ P N =∆ (νx) (! 〈y·β〉 N | ! P N) ≡
! 〈y·β〉 N | (νx) (! P N) ⊐∼π 〈y·β〉 N

(exp-outs†) : (ŷQ β̂·α) α̂ † x̂ P → (ŷ(Q α̂ † x̂ P) β̂ ·γ) γ̂ † x̂ P, γ fresh :

(ŷQ β̂ ·α) α̂ † x̂ P N =∆

(νx) (! (νyβ)(! Q[x/α] N | x〈y,β〉) | ! P N) ≈ (27 2)
(νγ) (! (νyβ)(! (νx) (! Q[x/α] N | ! P N) | γ〈y,β〉) | ! P[γ/x] N) =∆

(ŷ(Q α̂ † x̂ P) β̂ ·γ) γ̂ † x̂ P N

(exp-ins†) : (ŷQ β̂ ·γ) α̂ † x̂ P → ŷ(Q α̂ † x̂ P) β̂ ·γ, γ 6= α.

(ŷQ β̂ ·γ) α̂ † x̂ P N =∆

(να) (! (νyβ)(! Q N | γ〈y,β〉) | ! P[α/x] N) ⊐∼π (271)
(νyβ)(! (να) (! Q N | ! P[α/x] N) | γ〈y,β〉) =∆

(νyβ)(! Q α̂ † x̂ P N | γ〈y,β〉) =∆ ŷ(Q α̂ † x̂ P) β̂ ·γ N

(imp†) : Excluded from →H.

(cut†) : (Q β̂ † ŷ R) α̂ † x̂ P → (Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂ P) :

(Q β̂ † ŷ R) α̂ † x̂ P N =∆

(να) (! (νy) (! Q[y/β] N | ! R N) | ! P[α/x] N) ≈ (273)
(νy) (! (να) (! Q[y/β] N | ! P[α/x] N) | ! (να) (! R N | ! P[α/x] N)) =∆

(Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂ P) N

Right propagation: (†cap) : P α̂ † x̂ 〈y·β〉 → 〈y·β〉, y 6= x :

P α̂ † x̂ 〈y·β〉 N =∆ (να) (! P N | ! 〈y·β〉 N) ≡
(να) (! P N) | ! 〈y·β〉 N

⊐∼π P N

(†exp) : P α̂ † x̂(ŷQ β̂·γ) → ŷ(P α̂ † x̂ Q) β̂ ·γ. : Like (exp-ins†).

(†imp-outs), (†imp-ins) : Excluded from →H.

(†cut) : P α̂ † x̂(Q β̂ † ŷR) →LK (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R) :

P α̂ † x̂(Q β̂ † ŷR) N =∆

(νx) (! P[x/α] N | !(νy) (! Q[y/β] N | ! R N)) ≈ (20)
! (νx) (! P[x/α] N | !(νy) (! Q[y/β] N | ! R N)) ≈ (273)
! (νy) (! (νx) (! P[x/α] N | ! Q[y/β] N) | ! (νx) (! P[x/α] N | ! R N)) =∆

! (P α̂ † x̂ Q) β̂ † ŷ(P α̂ † x̂ R) N
⊐∼π

(P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂ R) N
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P α̂ † x̂ (〈x·β〉 β̂ † ẑ Q) N =∆

(να) (! P N | ! (νz) (! 〈α·z〉 N | ! Q N)) ≈ (273)
(νz) (! (να) (! P N | ! 〈α·z〉 N) | ! (να) (! P N | ! Q N)) ≡ α 6∈ fp(Q), z 6∈ fs(P)
(νz) (! (να) (! P N | ! 〈α·z〉 N) | ! Q N) | ! (να) ! P N ⊒π

(νz) (! (να) (! P N | ! 〈α·z〉 N) | ! Q N) =∆

(P α̂ † x̂ 〈x·z〉) β̂ † ẑ Q N ≈ (27)
(να) (! (νz) (! P N | ! Q N) | ! (νz) (! 〈α·z〉 N | ! Q N)) ≡ z 6∈ fs(P), α 6∈ fp(Q)
! (νz) ! Q N | (να) (! P N | ! (νz) (! 〈α·z〉 N | ! Q N)) ⊒π

(να) (! P N | ! (νz) (! 〈α·z〉 N | ! Q N)) =∆ P α̂ † x̂ (〈x·z〉 β̂ † ẑ Q) N

Fig. 2 Translation of the looping reduction

Contextual rules: By induction. ⊓⊔

Notice that, in this proof, the only place where reduction plays a role is in the logical

rules (exp) and (exp-imp). All other steps are dealt with by equivalence and replication.

Moreover, notice that in the formulation of this result, through ⊏∼π essentially we remove a

replication or remove a larger process in rules (cap†) and (†cap); it is in the latter two cases

that we restrict the set of reachable normal forms.

Moreover, since all reductions in the translation in the cases (exp) and (exp-imp) satisfy

the condition of Proposition 18, the above result can be restated as:

Corollary 29 If P →∗
H Q, then P N

⊐∼π Q N.

Example 30 Since all reduction steps in Example 14 are steps not involving imports, the

interpretation of the first and last terms there are related via ⊒π , and no reduction takes place

in the simulation of the LK-reduction, as illustrated in Figure 2. Notice that this shows that

there exists R such that

P α̂ † x̂(〈x·β〉 β̂ † ẑQ) N ≈ P α̂ † x̂(〈x·β〉 β̂ † ẑQ) N | R

so there the processes ignored through ⊐∼π do not contribute to the observable behaviour.

Example 31 (On completeness) We cannot show that the interpretation is complete, since

not all reductions in the image of the interpretation correspond to reduction in LK. Consider

the term (ẑ P δ̂ ·γ) γ̂ † û(Q τ̂ [u] x̂ R), and assume that u is not introduced in Q τ̂ [u] x̂ R.

Observe that this term is in →H-normal form.

However, notice that, since

(ẑ P δ̂ ·γ) γ̂ † û(Q τ̂ [u] x̂ R) N =∆

(νu) (! (νzδ)(! P N | u〈z,δ〉) | !u(τ, x).(! Q N | ! R N))

the translation builds a communication for the top-most cut γ † u, which can run:

(νu) (!(νzδ)(! P N | u〈z,δ〉) | !u(τ, x).(! Q N | ! R N)) →π (u)

(νu)(!(νzδ)(! P N | u〈z,δ〉) |

(νzδ) (! P N | ! Q[z/τ] N | ! R[δ/w] N) |

!u(τ, x).(! Q N | ! R N))

This is caused by the fact that, in the π-calculus the ‘connections’ between γ and u are all

established ‘individually’, rather than all ‘in one go’ as they are in LK.

So in the translation we can perform synchronisations, whereas the translated term is in

normal form, therefore we cannot show a completeness result for head reduction.
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5 A semantic translation

In this section, we define a translation from terms in LK onto processes in π that fully

respects reduction in LK, modulo bisimulation, as a variant of the natural translation pre-

sented above.

In the approach of · N, the import P α̂ [x] ŷQ is expressed using x(α, y).(! P N | ! Q N),
where the plug α and the socket x become variables that will be replaced by, respectively, an

output and input name of the communicating process. We will now modify that definition to

make also reduction inside the translation of an import possible; for that, we need to revert

to a previous version of the natural translation.

The original approach of [7] was, essentially following the translation of X into λµµ̃,

to interpret P α̂ [x] ŷQ via

x(v,d).((να) (! P | ! α v) | (νy) (! d y | ! Q ))

so, rather than seeing α as an input variable, it sees α as the name of an output channel, and

send its output to the input name that will be received in the variable v using the forwarder

α v; similarly, y is seen as an input channel, and the output from the channel which name

will arrive in d is redirected to y via d y. Since output on α might be generated more than

once inside P , as well as input might be called for more than once on y inside Q ,

both forwarders are replicated. However, using this approach the variables v and d appear

only in the redirections, not in P or Q , so these two processes appear unnecessarily

under input in the translation. This is what the new translation · S fixes: we build what we

call a communication cell in x(v,d).(!α v | ! d y), which deals with the redirections of the

received mediator’s interface, which we put in parallel with the translations of P S and Q S.

We also choose to see terms as infinite resources rather than using replication to model

substitution, so use inherent replication for all synchronisation. This is achieved by repli-

cating all communication, i.e. all input and output actions. This replicated translation is

easier to understand, but differs from the natural one in that it does not model reduction via

reduction, but via bisimilarity (so does not really constitute an interpretation, but more a

semantics), whereas the natural translation truly uses π ’s reduction in the proofs.

We define:

Definition 32 (Semantic translation of LK into π )

〈x·α〉 S = ! x(w).α〈w〉

ŷQ β̂ ·α S = (νyβ) ( Q S | !α〈y,β〉)
P α̂ [x] ŷQ S = (ναy)( P S | ! x(v,d).(!α v | ! d y) | Q S)
P α̂ † x̂Q S = (ναx)( P S | !α x | Q S)

Notice that (for technical reasons) we also choose to use the forwarder in the translation of

the cut, rather than using the renaming mechanism of Definition 21.

Remark 33 The encoding · S generates a flat parallel composition of processes of the shape

! x(w).a〈w〉 ! α〈y,γ〉 ! x(v,d).(!α v | ! d y) ! α x

where all channel names (so not the variables) are coming from the interpreted LK-terms.

Synchronisation over these channel names is possible only if generated by the interpretation

of cuts.

For this translation, we can show that replication is implicit for encoded terms:
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Lemma 34 P S ≈ ! P S.

Proof By induction on the structure of terms.

P = 〈x·α〉 : 〈x·α〉 S =
∆ ! x(w).α〈w〉 ≡ ! ! x(w).α〈w〉 =∆ ! 〈x·α〉 S.

P = x̂ Q α̂ ·β : x̂ Q α̂ ·β S =∆ (νxα) ( Q S | ! β〈x,α〉) ≈ (IH) (νxα) (! Q S | ! β〈x,α〉)
≈ (20) !(νxα) (! Q S | ! β〈x,α〉) ≈ (IH) !(νxα) ( Q S | ! β〈x,α〉) =∆ ! x̂Q α̂ ·β S

P = Q α̂ [y] x̂ R : Q α̂ [y] x̂ R S =∆

(ναx)( Q S | ! y(v,d).(!α v | !d x) | R S) ≈ (IH)
(νxα) (! Q S | !y(v,d).(!α v | !d x) | ! R S) ≈ (20)
! (νxα) (! Q S | !y(v,d).(!α v | ! d x) | ! R S) ≈ (IH)
! (ναx)( Q S | !y(v,d).(!α v | !d x) | R S) =∆ ! Q α̂ [y] x̂ R S

P = Q α̂ † x̂ R : Q α̂ † x̂ R S =∆ (ναx)( Q S | !α x | R S) ≈ (IH)
(νxα) (! Q S | !α x | ! R S) ≈ (20) !(νxα) (! Q S | !α x | ! R S) ≈ (IH)
! (ναx)( Q S | !α x | R S) =∆ ! Q α̂ † x̂ R S

Notice that this lemma implies that we cannot model reduction in LK via synchronisa-

tion; however, as above (Theorem 28), we can show a preservation result for this translation

modulo weak bisimilarity.

Theorem 35 (Operational soundness for · S with respect to →LK)

If P →∗
LK Q, then P S

⊐∼π Q S.

Proof By induction on the definition of reduction in LK: again we only show the interesting

cases.

Logical rules: (exp) : (ŷP β̂·α) α̂ † x̂ 〈x·γ〉
S =∆

(ναx)( ŷP β̂ ·α S | ! α x | 〈x·γ〉
S) =∆

(ναx)((νyβ) ( P S | ! α〈y,β〉) | !α x | ! x(w).γ〈w〉) ≈ (α, x)

(νyβ) ( P S | !γ〈y,β〉) =∆ ŷP β̂ ·γ S

(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ P) S =∆

(ναx)(! y(w).α〈w〉 | !α x | (νβz)( Q S | ! x(v,d).(! β v | ! d z) | P S)) ≈ (α, x)

(νβz)( Q S | !y(v,d).(! β v | ! d z) | P S) =∆ Q β̂ [y] ẑ P S

(exp-imp) : (ŷ P β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) S =∆

(ναx) ((νyβ) ( P S | !α〈y,β〉) | !α x |
(νγz)( Q S | ! x(v,d).(!γ v | ! d z) | R S)) ≈ (α, x)

(νyβγz) ( P S | Q S | ! γ y | ! β z | R S) ≡

(νγy)( Q S | !γ y | (νβz)( P S | ! β z | R S)) =∆ Q γ̂ † ŷ(P β̂ † ẑ R) S

For the second alternative of this rule, the proof is similar.

Left propagation: (cap†) : 〈y·β〉 α̂ † x̂ P S =∆

(ναx)( 〈y·β〉 S | !α x | P S) ≡ (β 6= α)
〈y·β〉 S | (ναx) (! α x | P S) ⊐∼π 〈y·β〉 S

(exp-outs†) : (ŷQ β̂ ·α) α̂ † x̂ P S =∆

(ναx)((νyβ) ( Q S | !α〈y,β〉) | !α x | P S) ≡,≈ (34)
(ναx) ((νyβ) ( Q S | !α〈y,β〉) | !α x | P S | !α x | P S) =α

(νγx)((νyβ) ((ναx)( Q S | ! α x | P S) | !γ〈y,β〉) | !γ x | P S) =∆

(ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂ P S
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(imp†) : (Q β̂ [z] ŷR) α̂ † x̂ P S =∆

(ναx)((νβy)( Q S | !z(v,d).(! β v | !d y) | R S) | !α x | P S) ≡,≈ (34)
(ναx) ((νβy)( Q S | !z(v,d).(! β v | !d y) | R S) |

!α x | P S | !α x | P S) =α

(νβy)((ναx)( Q S | !α x | P S) |
! z(v,d).(! β v | ! d y) | (ναx)( R S | !α x | P S)) =∆

(νβy)( Q α̂ † x̂ P S | !z(v,d).(! β v | !d y) | R α̂ † x̂ P S) =∆

(Q α̂ † x̂ P) β̂ [z] ŷ(R α̂ † x̂ P) S

Right propagation: (†exp) : P α̂ † x̂(ŷQ β̂ ·γ) S =∆

(ναx)( P S | !α x | (νyβ) ( Q S | !γ〈y,β〉)) ≡
(νyβ) ((ναx)( P S | ! α x | Q S) | !γ〈y,β〉) =∆

(νyβ) ( P α̂ † x̂ Q S | !γ〈y,β〉) =∆ ŷ(P α̂ † x̂ Q) β̂·γ S

(†imp-outs) : P α̂ † x̂(Q β̂ [x] ŷ R) S =∆

(ναx)( P S | !α x | (νβy)( Q S | ! x(v,d).(! β v | !d y) | R S)) ≡,≈ (34)
(ναx) ( P S | !α x | P S | !α x | P S | !α x |

(νβy)( Q S | ! x(v,d).(! β v | !d y) | R S)) =α

(ναz) ( P S | ! α z | (νβy)((ναx)( P S | ! α x | Q S) |
!z(v,d).(! β v | !d y) | (ναx)( P S | ! α x | R S))) =∆

P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)) S

(†imp-ins) : P α̂ † x̂(Q β̂ [z] ŷR) S =∆

(ναx)( P S | !α x | (νβy)( Q S | !z(v,d).(! β v | !d y) | R S)) ≡,≈ (34)
(ναx) ( P S | !α x | P S | !α x |

(νβy)( Q S | !z(v,d).(! β v | !d y) | R S)) ≡
(νβy)((ναx)( P S | !α x | Q S) |

! z(v,d).(! β v | ! d y) | (ναx)( P S | !α x | R S)) =∆

(P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R) S

The contextual rules, as well as the transitive closure, follow by induction. ⊓⊔

Notice that in this proof ⊐∼π is only needed in part (cap†) and (†cap), where we eliminate

part of a process, otherwise the images of the terms are congruent or bisimilar. This particu-

lar observation is relevant for the proof of Theorem 40; remark that it does not hold for the

proof of Theorem 28, where ⊐∼π is also used for !P ⊐∼π P.

Example 36 Simulating the reduction of Example 10, using the semantic translation, runs

as in Figure 3. As suggested by the proof of Theorem 35, the ⊐∼π steps correspond to (cap†)
and (†cap).

This observation leads to:

Theorem 37 (Operational completeness for · S with respect to →LK) If P S →π Q then

there exists P′ ∈ LK, R such that Q →∗
π R , !R ≈ P′

S, and P →∗
LK P′.

Proof From Remark 33 we know that the encoding · S generates a flat parallel composition

of processes of the shape

! x(w).a〈w〉 ! α〈y,γ〉 ! x(v,d).(!α v | ! d y) ! α x

where all channel names are coming from the interpreted LK-terms, and synchronisation

over these channel names is possible only if generated by the interpretation of cuts. By
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(ẑ P δ̂ ·γ) γ̂ † û (Q τ̂ [u] ŵ R) S =∆

(νγu) ( ẑ P δ̂ ·γ S | ! γ u | Q τ̂ [u] ŵ R S) =∆

(νγu) ( ẑ P δ̂ ·γ S | ! γ u | (ντw) ( Q S | ! u(v,d).(!τ v | ! d w) | R S)) ≈ (34)

(νγy) ( ẑ P δ̂ ·γ S | ! γ y | (ντw) ((νγu) ( ẑ P δ̂ ·γ S | ! γ u | Q S) |

! y(v,d).(!τ v | ! d w) | (νγu) ( ẑ P δ̂ ·γ S | ! γ u | R S))) ⊒π,=∆ (=α)

(νγy) ( x̂ P ρ̂ ·γ S | ! γ y | (ντw) ((νγu) ((νzδ) ( 〈x·ρ〉 S | ! γ〈z,δ〉) | ! γ u |

! u(w).τ〈w〉) | ! y(v,d).(!τ v | ! d w) | R S)) ≈ (γ, u)

(νγy) ( x̂ P ρ̂ ·γ S | ! γ y | (ντw) ((νzδ) ( 〈x·ρ〉 S | ! τ〈z,δ〉) |

! y(v,d).(!τ v | ! d w) | R S)) =∆

(νγy) ((νxρ) ( 〈x·ρ〉 S | ! γ〈x,ρ〉) | ! γ y |

(ντw) ( ẑ P δ̂ ·τ S | ! y(v,d).(!τ v | ! d w) | R S)) ≈ (γ, y)

(νγy) ((νxρ) ( 〈x·ρ〉 S | (ντw) ( ẑ P δ̂ ·γ S | ! τ x | ! ρ w | ! R S))) ≡

(ντx) ( ẑ P δ̂ ·τ S | ! τ x | (νρw) (! x(w).ρ〈w〉 | ! ρ w | R S)) =∆

(ẑ P δ̂ ·τ) τ̂ † x̂(〈x·ρ〉 ρ̂ † ŵ R) S ≈ (34)

(νρw) ((ντx) ( ẑ P δ̂ ·τ S | ! τ x | ! x(w).ρ〈w〉) | ! ρ w |

(ντz) ( ẑ P δ̂ ·τ S | ! τ z | R S)) ⊒π,=∆

(νρw) ((ντx) ((νzδ) ( P S | ! τ〈z,δ〉) | ! τ x | ! x(w).ρ〈w〉) | ! ρ w | R S) ≈ (τ, x, ρ, w)

(νzδ) ( P S | ! σ〈z,δ〉)

Fig. 3 Running the semantic translation of the term of Example 10

Theorem 35, all synchronisations that become possible later correspond to interpreted cuts

as well. ⊓⊔

As mentioned in Section 2, Gentzen has shown that the innermost reduction strategy on

cut-elimination for LK is normalising; in the context of LK, this corresponds to showing

that the innermost reduction strategy →I on LK is normalising for typeable terms.

Proposition 38 (Gentzen’s Hauptsatz Result for LK) If P ··· Γ ⊢ ∆ (so P is typeable), then

there exists Q in normal form such that P →∗
I Q.

We will show the equivalent of this result in the setting of the semantic interpretation.

We first show:

Lemma 39 If P is in normal form, then so is P S.

Proof First, notice that in P, the alphabets of sockets and plugs are distinct, and so are

the names of input and output channels in P S. The only exceptions are when P is a cut

Q α̂ † ẑ R and Q α̂ † ẑ R S = (ναz)( Q S | ! α z | R S) where the forwarder !α z =
α(w).z〈w〉 is added; notice that here the output α is used as input, and the input z as

output. Also in the synchronisation cell inside the interpretation of the import Q α̂ [x] ẑ R,

(ναz)( Q S | ! x(v,d).(!α v | ! d z) | R S), this reversal is there. However, since in both

cases α and z are restricted, these are not ‘reachable’ from outside, so can be ignored in this

reasoning.

We continue by induction on the structure of terms; notice that P cannot be a cut.

P = 〈x·α〉 : Since 〈x·α〉 S = ! x(w).α〈w〉, this is immediate.

P = x̂ Q α̂ ·β : x̂Q α̂ ·β S = (νxα) ( Q S | ! β〈x,α〉), and by induction, Q S is in nor-

mal form. Since β is not used inside Q S as input, no synchronisation is possible in

(νxα) ( Q S | ! β〈x,α〉) over β and also x̂ Q α̂ ·β S is in normal form.
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P = Q α̂ [x] ẑ R : Q α̂ [x] ẑ R S = (ναz)( Q S | ! x(v,d).(!α v | !d z) | R S), and by in-

duction, Q S and R S are in normal form. Since x is not an output in either Q S or

R S, and input and output names are distinct, no synchronisation is possible between

Q S and R S, so also Q α̂ [x] ẑ R S is in normal form. ⊓⊔

Now for termination, we can show:

Theorem 40 If P →∗
I Q, and Q is in normal from, then there exists an R in normal form

such that P S ≈ R and R ⊒π Q S.

Proof By Lemma 39, Q S is in normal form. By Theorem 35, there exists R such that

P S ≈ R and R ⊒π Q S. By the proof of that theorem, ⊒π is only needed in part (cap†)
and (†cap), where we eliminate part of a process, otherwise the images of the terms are con-

gruent or bisimilar. Since now only innermost reduction steps in P →∗
I Q are simulated, ≈

deals with communications between processes in normal form, so by Lemma 39, whenever

(cap†) or (†cap) are simulated, the ‘discarded’ term corresponds to a process in normal

form. So when reaching Q S, the whole process R is in normal form. ⊓⊔

Combining this with Gentzen’s Hauptsatz result, we get:

Theorem 41 (Preservation of typeable termination) Let P be a typeable term, then there

exists R in normal form such that P S ≈ R .

Proof If P is typeable, then by Gentzen’s result, innermost reduction terminates, so there

exists Q in normal form such that P →∗
I Q; then, by Theorem 40, there exists an R in normal

form such that P S ≈ R . ⊓⊔

Notice that we cannot show this result for the natural translation this way, since by Exam-

ple 31 not every term in →H normal form is interpreted by a process in normal form.

6 Type assignment

In this section, we discuss a notion of type assignment ⊢π for processes in π , as first

presented in [7], that describes the ‘input-output interface’ of a process. Typeability of a

process is expressed via the ternary relation

P : Γ ⊢π ∆

(so almost identical to that for LK), where P is a process that is said to be the witness to

the judgement Γ ⊢ ∆, the left context Γ contains pairs of channel names and types for all

the input channels of P , and the right context ∆ for its output channels; since in P a channel

can be used for both, it can appear in both contexts. Our system thereby gives an abstract

functional translation of processes by stating the connectability of a process via giving the

names of the available (connectable) channels and their types.

We will show that, if P is a witness to a judgement (in ⊢LK), then its translations via

· N and · S are as well. Together with the preservation results we have shown above, this

implies that we can not only interpret reduction in LK through synchronisation (similarly

to what was done, for example, in [41] for the lazy λ-calculus), but actually show that the

processes we create through our interpretations accurately represent the actual proofs, so

our synchronisations correctly model cut-elimination, and transforms a proof into a proof.
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Definition 42 (Implicative type assignment for π [7])

1. The types and contexts we consider for π are defined like those of Definition 3, gen-

eralised to names, but allowing both Roman and Greek names on both sides of the

turnstyle.

2. Type assignment for π-calculus is defined by the following sequent system:

(0) :
0 : ⊢

(!) :
P : Γ ⊢ ∆

!P : Γ ⊢ ∆

(ν) :
P : Γ, a:A ⊢ a:A, ∆

(νa)P : Γ ⊢ ∆

(|) :
P 1 : Γ ⊢ ∆ · · · P n : Γ ⊢ ∆

P 1 | · · · | P n : Γ ⊢ ∆

(W) :
P : Γ ⊢ ∆

(Γ′ ⊇ Γ, ∆′ ⊇ ∆)
P : Γ

′ ⊢ ∆
′

(out) : (a 6= b)
a〈b〉 : b:A ⊢ a:A, b:A

(pair-out) : (b 6= a, c)
a〈b,c〉 : b:A ⊢ a:A→B, c:B

(in) :
P : Γ, x:A ⊢ x:A, ∆

a(x).P : Γ, a:A ⊢ ∆

(let) :
P : Γ, y:B ⊢ x:A, ∆

(y, z 6∈ ∆; x 6∈ Γ)
let x,y = z in P : Γ, z:A→B ⊢ ∆

3. As usual, we write P : Γ ⊢π ∆ if there exists a derivation using these rules that has the

expression P : Γ ⊢ ∆ in the conclusion.

This notion is novel in that it assigns to channels the type of the input or output that is

sent over the channel; in that it differs from normal notions, that would state:

a〈b〉 : Γ, b:A ⊢ a:ch(A), ∆
or a〈b〉 : Γ, b:A ⊢π a:[A], ∆

In order to be able to interpret LK, types in our system need not be decorated with channel

information, but will express functionality instead.

This notion is a true type assignment system which does not (directly) relate back to

LK.12 For example, rule (0) makes 0 a witness to an unprovable judgement, and rules

(|) and (!) do not change the contexts, so do not correspond to any rule in the logic, not

even to a λµ-style [42] activation step. Moreover, rule (ν) just removes a formula, and

rule (pair-out) is clearly not an instance of an axiom in LK; notice that that rule does not

directly correspond to the logical rule (⇒R), as that (pair-in) does not directly correspond

to (⇒L). However, in view of the intended property - preservation of context assignment -

this is not problematic, since we will not map rules to rules, but proofs to type derivations.

This apparent discrepancy is solved by Theorem 44.

The presence of weakening allows us to be a little less precise when we construct deriva-

tions, and allow for rules to join contexts, by using, for example, the rule

(|) :
P : Γ1 ⊢π ∆1 Q : Γ2 ⊢π ∆2

P | Q : Γ1, Γ2 ⊢π ∆1, ∆2

so switching, without any scruples, to multiplicative style, whenever convenient.

Notice that rule (let) is formulated with a single name z; as we pointed out above, the

process let x,y = a,b in P is congruent to P [a/x, b/y], and since we consider processes

modulo congruence, we do not need a rule that types the former. Notice that the ‘input-

output interface of a π-process’ property is nicely preserved by all the rules; it also explains

how the handling of pairs is restricted by the type system to the rules (let) and (pair-out).

12 We leave the exploration of the logical contents of this system for future work.
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Example 43 We can derive

P : Γ, y:B ⊢π x:A, ∆

(let )
let x,y = z in P : Γ, z:A→B ⊢π ∆

(in)
a(z).let x,y = z in P : Γ, a:A→B ⊢π ∆

so the following rule is derivable:

(pair-in) :
P : Γ, y:B ⊢ x:A, ∆

(y, a 6∈ ∆, x 6∈ Γ)
a(x,y).P : Γ, a:A→B ⊢ ∆

We now come to the main soundness result for our notion of type assignment for π .

Since in the synchronisation step a〈b,c〉 | a(x,y).Q →π Q [b/x, c/y], in a〈b,c〉 the name b
is used for input, and c for output whereas their role is reversed in Q [b/x, c/y], we cannot

show a straightforward witness reduction result.13

The following theorem shows that the natural translation · N preserves assignable types.

Theorem 44 (Type preservation for the natural interpretation) If P ··· Γ ⊢ ∆, then

P N : Γ ⊢π ∆.

Proof By induction on the structure of terms in LK.

〈x·α〉 : Then 〈x·α〉 N = x(w).α〈w〉, and the LK-derivation is shaped like:

(cap)
〈x·α〉 ··· Γ, x:A ⊢ α:A, ∆

Notice that
(out)

α〈w〉 : w:A ⊢π α:A, w:A
(in)

x(w).α〈w〉 : x:A ⊢π α:A
(W)

x(w).α〈w〉 : Γ, x:A ⊢π α:A, ∆

and 〈x·α〉 N = x(w).α〈w〉.

x̂ P α̂·β : Then the LK-derivation is shaped like:

P ··· Γ, x:A ⊢ α:B, ∆

(exp)
x̂ P α̂ ·β ··· Γ ⊢ β:A→B, ∆

Then, by induction, P N : Γ, x:A ⊢π α:B, ∆, and we can construct:

P
N

: Γ, x:A ⊢π α:B, ∆

(!)
! P

N
: Γ, x:A ⊢π α:B, ∆

(pair-out)
β〈x,α〉 : x:A ⊢π α:B, β:A→B

(|)
! P

N
| β〈x,α〉 : Γ, x:A ⊢π α:B, β:A→B, ∆

(ν)
(να) (! P

N
| β〈x,α〉) : Γ, x:A ⊢π β:A→B, ∆

(ν)
(νxα) (! P

N
| β〈x,α〉) : Γ ⊢π β:A→B, ∆

and x̂ P α̂ ·β N = (νxα) (! P N | β〈x,α〉).

13 We could show it for a notion of type assignment that no longer separates inputs from outputs (so with

judgements like Γ, ∆ ⊢ P rather than P : Γ ⊢π ∆), but consider this out of scope for this paper.
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P α̂ [y] x̂ Q : Then the LK-derivation is shaped like:

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, x:B ⊢ ∆

(imp)
P α̂ [y] x̂ Q ··· Γ, y:A→B ⊢ ∆

Then, by induction, we have derivations for P N : Γ ⊢π α:A, ∆ and Q N : Γ, x:B ⊢π ∆,

and we can construct:

P
N

: Γ ⊢π α:A, ∆

(!)
! P

N
: Γ ⊢π α:A, ∆

Q
N

: Γ, x:B ⊢π ∆

(!)
! Q

N
: Γ, x:B ⊢π ∆

(|)
! P

N
| ! Q

N
: Γ, x:B ⊢π α:A, ∆

(in)
y(α, x).(! P

N
| ! Q

N
) : Γ, y:A→B ⊢π ∆

and P α̂ [y] x̂ Q N = y(α, x).(! P N | ! Q N).

P α̂ † x̂ Q : Then the LK-derivation is shaped like:

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, x:A ⊢ ∆

(cut)
P α̂ † x̂ Q ··· Γ ⊢ ∆

By induction, we have derivations for both P N : Γ ⊢π α:A, ∆ - and since x does not

occur in P , also for P[x/α] N : Γ ⊢π x:A, ∆ - and Q N : Γ, x:A ⊢π ∆. Then we can

construct:

P[x/α]
N

: Γ ⊢π x:A, ∆

(!)
! P[x/α]

N
: Γ ⊢π x:A, ∆

Q
N

: Γ, x:A ⊢π ∆

(!)
! Q

N
: Γ, x:A ⊢π ∆

(|)
! P[x/α]

N
| ! Q

N
: Γ, x:A ⊢π x:A, ∆

(ν)
(νx) (! P[x/α]

N
| ! Q

N
) : Γ ⊢π ∆

and P α̂ † x̂ Q N = (νx) (! P[x/α] N | ! Q N). ⊓⊔

We can also show that the semantic translation · S preserves assignable types.

Theorem 45 (Type preservation for the semantic interpretation) If P ··· Γ ⊢ ∆, then

P S : Γ ⊢π ∆.

Proof By induction on the structure of terms in LK.

〈x·α〉 : Then the LK-derivation is shaped like:

(Ax)
〈x·α〉 ··· Γ, x:A ⊢ α:A, ∆

Notice that
(out)

α〈w〉 : w:A ⊢π α:A, w:A
(in)

x(w).α〈w〉 : x:A ⊢π α:A
(!)

! x(w).α〈w〉 : x:A ⊢π α:A
(W)

! x(w).α〈w〉 : Γ, x:A ⊢π α:A, ∆

and 〈x·α〉 S = ! x(w).α〈w〉.
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x̂ P α̂·β : Then the LK-derivation is shaped like:

P ··· Γ, x:A ⊢ α:B, ∆

(exp)
x̂ P α̂ ·β ··· Γ ⊢ β:A→B, ∆

Then, by induction, P S : Γ, x:A ⊢π α:B, ∆, and we can construct:

P
S

: Γ, x:A ⊢π α:B, ∆

(pair-out)
β〈x,α〉 : x:A ⊢π α:B, β:A→B

(!)
! β〈x,α〉 : x:A ⊢π α:B, β:A→B

(|)
P

S
| ! β〈x,α〉 : Γ, x:A ⊢π α:B, β:A→B, ∆

(ν)
(να) ( P

S
| ! β〈x,α〉) : Γ, x:A ⊢π β:A→B, ∆

(ν)
(νxα) ( P

S
| ! β〈x,α〉) : Γ ⊢π β:A→B, ∆

and x̂ P α̂ ·β S = (νxα) ( P S | ! β〈x,α〉)

P α̂ [y] x̂ Q : Then the LK-derivation is shaped like:

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, x:B ⊢ ∆

(imp)
P α̂ [y] x̂ Q ··· Γ, y:A→B ⊢ ∆

Then, by induction, we have derivations for P S : Γ ⊢π α:A, ∆ and Q S : Γ, x:B ⊢π ∆,

and we can construct:

P
S

: Γ ⊢π α:A, ∆

(out)
v〈w〉 : w:A ⊢π v:A, w:A

(in)
α v : α:A ⊢π v:A

(!)
!α v : α:A ⊢π v:A

(out)
x〈w〉 : w:B ⊢π x:B, w:B

(in)
d x : d:B ⊢π x:B

(!)
!d x : d:B ⊢π x:B

(|)
! α v | ! d x : α:A, d:B ⊢π x:B, v:A

(in)
y(v,d).(!α v | ! d x) : α:A, y:A→B ⊢π x:B

(!)
! y(v,d).(!α v | ! d x) : α:A, y:A→B ⊢π x:B Q

S
: Γ, x:B ⊢π ∆

(|)
P

S
| ! y(v,d).(!α v | ! d x) | Q

S
: Γ, x:B, α:A, y:A→B ⊢π x:B, α:A, ∆

(ν)
(νx) ( P

S
| !y(v,d).(!α v | ! d x) | Q

S
) : Γ, α:A, y:A→B ⊢π α:A, ∆

(ν)
(ναx) ( P

S
| ! y(v,d).(!α v | !d x) | Q

S
) : Γ, y:A→B ⊢π ∆

Notice that P α̂ [y] x̂ Q S = (ναx)( P S | !y(v,d).(!α v | ! d x) | Q S).

P α̂ † x̂ Q : Then the LK-derivation is shaped like:

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, x:A ⊢ ∆

(cut)
P α̂ † x̂ Q ··· Γ ⊢ ∆
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By induction, we have derivations for both P S : Γ ⊢π α:A, ∆ and Q S : Γ, x:A ⊢π ∆.

Then we can construct:

P
S

: Γ ⊢π α:A, ∆

(out)
x〈w〉 : w:A ⊢π x:A, w:A

(in)
α x : α:A ⊢π x:A

(!)
! α x : α:A ⊢π x:A Q

S
: Γ, x:A ⊢π ∆

(|)
P

S
| ! α x | Q

S
: Γ, α:A, x:A ⊢π α:A, x:A, ∆

(ν)
(νx) ( P

S
| ! α x | Q

S
) : Γ, α:A ⊢π α:A, ∆

(ν)
(ναx) ( P

S
| ! α x | Q

S
) : Γ ⊢π ∆

and P α̂ † x̂ Q S = (ναx)( P S | !α x | Q S). ⊓⊔

The following is a direct result of the last two theorems:

Proposition 46 (Simulation of cut-elimination) Assume P →LK Q, then :

1. if P N : Γ ⊢π ∆, then Q N : Γ ⊢π ∆.

2. if P S : Γ ⊢π ∆, then Q S : Γ ⊢π ∆.

Proof By Theorem 11, 44, and 45. ⊓⊔

We will show that our notion of type assignment is preserved for reductions in the image

of our translations, for which we first show a contraction result.

Lemma 47 (Contraction)

1. If a does not occur in Q , a 6= b, and (νb) a〈b〉 | a(x).Q : Γ, a:C ⊢π a:C, ∆, then

(νb) (Q [b/x]) : Γ ⊢π ∆.

2. If a does not occur in P , a 6= e, and (νbc) (P | a〈b,c〉) | a(x).e〈x〉 : Γ, a:C ⊢π a:C, ∆,

then (νbc) (P | e〈b,c〉) : Γ ⊢π ∆.

3. If a does not occur in P and Q and (νbc) (P | a〈b,c〉) | a(x,y).Q : Γ, a:C ⊢π a:C, ∆, then

(νbc) (P | Q [b/x, c/y]) : Γ ⊢π ∆.

4. If a does not occur in P and (νbc) (P | a〈b,c〉) | a(v,d).(! x v | !d y) : Γ, a:C ⊢π

a:C, ∆, then (νbc) (P | ! x b | !c y) : Γ ⊢π ∆.

Proof 1. Then the derivation is shaped like:

(out)
a〈b〉 : b:A ⊢π a:A, b:A

(ν)
(νb) a〈b〉 : ⊢π a:A

Q : Γ′, x:A ⊢π x:A, ∆′

(in)
a(x).Q : Γ

′, a:A ⊢π ∆
′

(|)
(νb) a〈b〉 | a(x).Q : Γ

′, a:A ⊢π a:A, ∆
′

Since b is restricted, it does not occur in Q , also Q [b/x] : Γ, b:A ⊢π b:A, ∆, and we can

construct:

Q [b/x] : Γ
′, b:A ⊢π b:A, ∆

′

(ν)
(νb)Q [b/x] : Γ

′ ⊢π ∆
′
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2. Then the derivation is shaped like:

P : Γ′ ⊢π ∆′
(pair-out)

a〈b,c〉 : b:A ⊢π a:A→B, c:B
(|)

P | a〈b,c〉 : Γ
′, b:A ⊢π a:A→B, c:B, ∆

′

(ν)
(νc) (P | a〈b,c〉) : Γ

′, b:A ⊢π a:A→B, ∆
′

(ν)
(νbc) (P | a〈b,c〉) : Γ

′ ⊢π a:A→B, ∆
′

(out)
e〈x〉 : x:A→B ⊢π e:A→B, x:A→B

(in)
a(x).e〈x〉 : a:A→B ⊢π e:A→B

(|)
(νbc) (P | a〈b,c〉) | a(x).e〈x〉 : Γ

′, a:A→B ⊢π a:A→B, e:A→B, ∆
′

Since b and c are restricted, they are different from e and we can construct:

P : Γ′ ⊢π ∆′
(pair-out)

e〈b,c〉 : b:A ⊢π e:A→B, c:B
(|)

P | e〈b,c〉 : Γ
′ , b:A ⊢π e:A→B, c:B, ∆

′

(ν)
(νc) (P | e〈b,c〉) : Γ

′ , b:A ⊢π e:A→B, ∆
′

(ν)
(νbc) (P | e〈b,c〉) : Γ

′ ⊢π e:A→B, ∆
′

3. Since a(x,y).Q is short for a(z).let x,y =z in Q , we have in fact a derivation of the

shape

P : Γ ⊢π ∆
(pair-out)

a〈b,c〉 : Γ, b:A ⊢π a:A→B, c:B, ∆
(|)

P | a〈b,c〉 : Γ, b:A ⊢π a:A→B, ∆
(ν)

(νc) (P | a〈b,c〉) : Γ, b:A ⊢π a:A→B, ∆
(ν)

(νbc) (P | a〈b,c〉) : Γ ⊢π a:A→B, ∆

Q : Γ, y:B ⊢π x:A, ∆

(let)
let x,y = z in Q : Γ, z:A→B ⊢π ∆

(in)
a(z).let x,y = z in Q : Γ, a:A→B ⊢π ∆

(|)
(νbc) (P | a〈b,c〉) | a(z).let x,y = z in Q : Γ, a:A→B ⊢π a:A→B, ∆

Since b and c are restricted, they do not occur in Q , so also Q [b/x, c/y] : Γ, c:B ⊢π

b:A, ∆ and we can construct:

P : Γ ⊢π ∆ Q [b/x, c/y] : Γ, c:B ⊢π b:A, ∆

(|)
P | Q [b/x, c/y] : Γ ⊢π b:A, ∆

(ν)
(νc) (P | Q [b/x, c/y]) : Γ ⊢π b:A, ∆

(ν)
(νbc) (P | Q [b/x, c/y]) : Γ ⊢π ∆

4. Then the derivation is of the shape

P : Γ′ ⊢π ∆′
(pair-out)

a〈b,c〉 : b:A ⊢π a:A→B, c:B
(|)

P | a〈b,c〉 : Γ
′, b:A ⊢π a:A→B, ∆

′

(ν)
(νc) (P | a〈b,c〉) : Γ

′, b:A ⊢π a:A→B, ∆
′

(ν)
(νbc) (P | a〈b,c〉) : Γ

′ ⊢π a:A→B, ∆
′

.

.

.

.

.

.

.

(out)
v〈w〉 : w:A ⊢π v:A, w:A

(in)
x v : x:A ⊢π v:A

(!)
! x v : x:A ⊢π v:A

(out)
y〈w〉 : w:B ⊢π y:B, w:B

(in)
d y : d:B ⊢π y:B

(!)
!d y : d:B ⊢π y:B

(|)
! x v | ! d y : x:A, d:B ⊢π y:B, v:A

(in)
a(v,d).(!x v | ! d y) : x:A, a:A→B ⊢π y:B

(|)
(νbc) (P | a〈b,c〉) | a(v,d).(! x v | !d y) : Γ

′, x:A, a:A→B ⊢π a:A→B, y:B, ∆
′
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Since b and c are restricted, they are different from x and y and we can construct:

P : Γ′ ⊢π ∆′

(out)
b〈w〉 : w:A ⊢π b:A, w:A

(in)
x b : x:A ⊢π b:A

(!)
! x b : x:A ⊢π b:A

(out)
y〈w〉 : w:B ⊢π y:B, w:B

(in)
c y : c:B ⊢π y:B

(!)
! c y : c:B ⊢π y:B

(|)
P | ! x b | ! c y : Γ

′, x:A, c:B ⊢π b:A, y:B, ∆
′

(ν)
(νc) (P | ! x b | ! c y) : Γ

′, x:A ⊢π b:A, y:B, ∆
′

(ν)
(νbc) (P | ! x b | ! c y) : Γ

′, x:A ⊢π y:B, ∆
′ ⊓⊔

Using this result, we can also show a witness reduction result:

Theorem 48 1. If P N : Γ ⊢π ∆, and P N →∗
π Q , then Q : Γ ⊢π ∆.

2. If P S : Γ ⊢π ∆, and P S →
∗
π Q , then Q : Γ ⊢π ∆.

Proof By Remark 24 and 33, Theorem 44 and 45, and Lemma 47. ⊓⊔

7 Expressing Negation

In this section we will look at the logical connective ¬, how it is dealt with within LK,14

and how to interpret it in the π-calculus. Together with the treatment of implication it is then

possible to also express all other first-order logical connectives, but we will not deal with

those explicitly here.

Definition 49 The sequent rules that correspond to negation are as follows:

(¬R) :
Γ, x:A ⊢ ∆

Γ ⊢ α:¬A, ∆
(¬L) :

Γ ⊢ α:A, ∆

Γ, x:¬A ⊢ ∆

To extend the Curry-Howard isomorphism of LK also to negation, we follow the same

approach as used for the arrow: a disappearing formula in a context corresponds to a con-

nector that gets bound, and a formula that appears in a context corresponds to a connector

that is introduced.

Definition 50 1. We extend LK’s syntax with the following constructs:

P ::= . . . | x ·P α̂ left inversion

| x̂ P·α right inversion

2. We extend the set of types by

A, B ::= · · · | ¬A

(as usual, ¬A→B stands for (¬A)→B).

3. We add the type assignment rules:

(r-inv) :
P ··· Γ, x:A ⊢ ∆

x̂ P ·α ··· Γ ⊢ α:¬A, ∆
(l-inv) :

P ··· Γ ⊢ α:A, ∆

x ·P α̂ ··· Γ, x:¬A ⊢ ∆

14 An alternative way of treating negation is to add the type ⊥, but in arrow types only on the right-hand

side, and let export and import deal with it, but this would need separate constructs to introduce ⊥ on either

the right or the left; we feel our present approach is more clear.
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Example 51 We can inhabit ¬¬A→A:

(cap)
〈y·α〉 ··· y:A ⊢ α:A

(r-inv)
ŷ 〈y·α〉·γ ··· ⊢ γ:¬A, α:A

(l-inv)
x · (ŷ 〈y·α〉·γ) γ̂ ··· x:¬¬A ⊢ α:A

(exp)
x̂ (x · (ŷ 〈y·α〉·γ) γ̂) α̂ ·β ··· ⊢ β:¬¬A→A

The notion of reduction is extended naturally by adding the following rules.

Definition 52 We extend the notion of introduced connector by saying that also P = x ·Q α̂
with x 6∈ fs(Q) introduces x, and P = x̂Q·α with α 6∈ fp(Q) introduces α.

The logical reduction rule for negation is (with β and x introduced):

(ŷ P·β) β̂ † x̂ (x ·Q α̂) → Q α̂ † ŷP

We add the propagation rules:

(y·Q β̂) α̂ † x̂ P → y·(Q α̂ † x̂ P) β̂
(ŷQ·β) α̂ † x̂ P → ŷ(Q α̂ † x̂ P) ·β (α 6= β)

(ŷQ·α) α̂ † x̂ P → (ŷ(Q α̂ † x̂ P)·β) β̂ † x̂ P (β fresh, α not introduced)

P α̂ † x̂ (y·Q β̂) → y·(P α̂ † x̂Q) β̂ (x 6= y)

P α̂ † x̂ (x ·Q β̂) → P α̂ † ŷ (y·(P α̂ † x̂ Q) β̂) (y fresh, x not introduced)
P α̂ † x̂ (ŷQ·β) → ŷ(P α̂ † x̂Q) ·β

and the contextual rules

P → Q ⇒

{
y·P α̂ → y·Q α̂
ŷP·α → ŷQ·α

Notice that now we have cuts that do not contract, as

(ŷQ γ̂ ·α) α̂ † x̂ (x ·P β̂)

where α 6∈ fp(Q), and x 6∈ fs(P), since none of the rules are applicable; however, typeable

cuts do contract:

Theorem 53 If P α̂ † x̂ Q ··· Γ ⊢ ∆, then P α̂ † x̂Q can be contracted.

Proof Easy. ⊓⊔

We can show:

Theorem 54 (Witness reduction) If P : Γ ⊢LK ∆ and P →π Q, then Q : Γ ⊢LK ∆.

Proof We just show the cases for some of the added rules; as mentioned above, the proof

for the other rules can be found in [9].
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(ŷ P·β) β̂ † x̂ (x ·Q α̂) → Q α̂ † ŷP : If (ŷ P·β) β̂ † x̂ (x ·Q α̂) : Γ ⊢LK ∆, then the deriva-

tion is shaped like:

P ··· Γ, y:A ⊢ ∆

(r-inv)
ŷP ·β ··· Γ ⊢ β:¬A, ∆

Q ··· Γ ⊢ α:A, ∆

(l-inv)
x ·Q α̂ ··· Γ, x:¬A ⊢ ∆

(cut)
(ŷ P ·β) β̂ † x̂ (x ·Q α̂) ··· Γ ⊢ ∆

Then we can construct:

Q ··· Γ ⊢ α:A, ∆ P ··· Γ, y:A ⊢ ∆

(cut)
Q β̂ † x̂ P ··· Γ ⊢ ∆

(ŷQ·α) α̂ † x̂ P → (ŷ(Q α̂ † x̂ P) ·β) β̂ † x̂ P (β fresh, α not introduced) : The derivation for

the left-hand side is shaped like:

Q ··· Γ, y:A ⊢ α:¬A, ∆

(r-inv)
ŷ Q ·α ··· Γ ⊢ α:¬A, ∆ P ··· Γ, x:¬A ⊢ ∆

(cut)
(ŷ Q ·α) α̂ † x̂ P ··· Γ ⊢ ∆

Then we can construct:

Q ··· Γ, y:A ⊢ α:¬A, ∆

P, x:¬A ··· Γ ⊢ ∆

(W)
P ··· Γ, x:¬A, y:A ⊢ ∆

(cut)
Q α̂ † x̂ P ··· Γ, y:A ⊢ ∆

(r-inv)
ŷ(Q α̂ † x̂ P) ·β ··· Γ ⊢ β:¬A, ∆ P ··· Γ, x:¬A ⊢ ∆

(cut)
(ŷ (Q α̂ † x̂ P) ·β) β̂ † x̂ P ··· Γ ⊢ ∆

P α̂ † x̂ (y·Q β̂) → y·(P α̂ † x̂ Q) β̂ (x 6= y) : The derivation for the left-hand side is shaped

like:

P ··· Γ, y:¬B ⊢ α:A, ∆

Q ··· Γ, x:A ⊢ β:B, ∆

(l-inv)
y ·Q β̂ ··· Γ, x:A, y:¬B ⊢ ∆

(cut)
P α̂ † x̂ (y ·Q β̂) ··· Γ, y:¬B ⊢ ∆

and we can construct:

P ··· Γ, y:¬B ⊢ α:A, ∆

(W)
P ··· Γ, y:¬B ⊢ α:A, β:B, ∆

Q ··· Γ, x:A ⊢ β:B, ∆

(W)
Q ··· Γ, y:¬B, x:A ⊢ β:B, ∆

(cut)
P α̂ † x̂ Q ··· Γ, y:¬B ⊢ β:B, ∆

(l-inv)
y ·(P α̂ † x̂ Q) β̂ ··· Γ, y:¬B ⊢ ∆

The other cases are similar. ⊓⊔
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We will now extend the two translations so that we deal with the added connective as

well.

Definition 55 (Negation) Negation gets represented in the π-calculus via the natural trans-

lation as:
x ·P α̂ N = x(α).! P N

x̂ P·α N = (νx) (! P N | α〈x〉)

via the semantic translation as:

x ·P α̂ S = (να) ( P S | ! x(z).!α z)
x̂ P·α S = (νx) ( P S | ! α〈x〉)

This translation of inversion explains the role of negation in detail. If P is outputting on

α, but no connection to α is available, input is needed from a process Q that will send one

of its input names z. Once received, P can output on α which gets connected to z; so Q will

provide a means for P to continue, and is therefore aptly called a continuation.

The natural and semantic translations of the witness for ¬¬A→A now become:

x̂ (x · (ŷ 〈y·α〉·γ) γ̂) α̂ ·β N = (νxα)(! x(γ).!(νy) (! y(w).α〈w〉 | γ〈y〉) | β〈x,α〉)

x̂ (x · (ŷ 〈y·α〉·γ) γ̂) α̂ ·β S =
(νxα) ((νγ) ((νy) (! y(w).α〈w〉 | !γ〈y〉) | ! x(z).!γ z) | ! β〈x,α〉)

The following consistency results are easy to prove.

Theorem 56 Let (ŷ P·β) β̂ † x̂ (x ·Q α̂) be such that β, x are introduced. Then

1. (ŷ P·β) β̂ † x̂ (x ·Q α̂) N
⊐∼π Q α̂ † ŷ P N

.

2. (ŷ P·β) β̂ † x̂ (x ·Q α̂) S ≈ Q α̂ † ŷP S
.

Proof 1. (ŷ P·β) β̂ † x̂ (x ·Q α̂) N =∆

(νx) (! (νy) (! P N | x〈y〉) | ! x(α).! Q N) →π (x)
(νy) (! Q[y/α] N | ! P N) | (νx) (! (νy) (! P N | x〈y〉) | ! x(α).! Q N) =∆

Q α̂ † ŷ P N | (ŷ P·β) β̂ † x̂ (x ·Q α̂) N
⊐∼π Q α̂ † ŷP N

.

2. (ŷ P·β) β̂ † x̂ (x ·Q α̂) S =∆

(νβx)((νy) ( P S | ! β〈y〉) | ! β x | (να) ( Q S | ! x(z).!α z)) ≈ (β, x)
(ναy)( Q S | ! α y | P S) =∆ Q α̂ † ŷ P S
⊓⊔

We add the following type assignment rules for negation:

Definition 57 (Type assignment rules in ⊢π for ¬)

(inv-r) : a〈x〉 : x:A ⊢ a:¬A (inv-l) :
P : Γ ⊢ x:A, ∆

(a 6∈ Γ)
a(x).P : Γ, a:¬A ⊢ ∆

The correctness of the propagation rules follows as above in Theorems 28 and 35; notice

that, since negation gets interpreted in the natural translation using input, the first contextual

rule has to be excluded from →H .

We can now check that the extended translation preserves assignable types as well.

Theorem 58 If P ··· Γ ⊢ ∆, then P N : Γ ⊢π ∆.

Proof By induction on the structure of of terms in LK; we only show the two added cases.
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x ·P α̂ : Then the last rule applied in the LK-derivation is (l-inv):

P ··· Γ ⊢ α:A, ∆

(l-inv)
x ·P α̂ ··· Γ, x:¬A ⊢ ∆

and, by induction, P N : Γ ⊢π α:A, ∆, and we can construct:

P
N

: Γ ⊢π α:A, ∆

(!)
! P

N
: Γ ⊢π α:A, ∆

(inv-l)
x(α).! P

N
: Γ, x:¬A ⊢π ∆

and x ·P α̂ N = x(α).! P N.

x̂ P·α : Then the derivation is shaped like:

P ··· Γ, x:A ⊢ ∆

(r-inv)
x̂ P ·α ··· Γ ⊢ α:¬A, ∆

and, by induction, P N : Γ, x:A ⊢π ∆, and we can construct:

P
N

: Γ, x:A ⊢π ∆

(!)
! P

N
: Γ, x:A ⊢π ∆

(inv-r)
α〈x〉 : x:A ⊢π α:¬A

(|)
! P

N
| α〈x〉 : Γ, x:A ⊢π α:¬A, ∆

(ν)
(νx) (! P

N
| α〈x〉) : Γ ⊢π α:¬A, ∆

and x̂ P·α N = (νx) (! P N | α〈x〉). ⊓⊔

Similarly, we can show:

Theorem 59 If P ··· Γ ⊢ ∆, then P S : Γ ⊢π ∆.

Proof By induction on the structure of of terms in LK; as above, we only show the two

added cases to the proof of Theorem 44.

x ·P α̂ : Then the derivation is shaped like:

P ··· Γ ⊢ α:A, ∆

(l-inv)
x ·P α̂ ··· Γ, x:¬A ⊢ ∆

and, by induction, P S : Γ ⊢π α:A, ∆, and we can construct:

P
S

: Γ ⊢π α:A, ∆

(out)
z〈w〉 : w:A ⊢π z:A, w:A

(in)
α z : α:A ⊢π z:A

(!)
! α z : α:A ⊢π z:A

(inv-l)
x(z).(!α z) : α:A, x:¬A ⊢π

(!)
! x(z).(!α z) : α:A, x:¬A ⊢π

(|)
P

S
| ! x(z).(!α z) : Γ, α:A, x:¬A ⊢π α:A, ∆

(ν)
(να) ( P

S
| ! x(z).!α z) : Γ, x:¬A ⊢π ∆
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and x ·P α̂ S = (να) ( P S | ! x(z).!α z).
x̂ P·α : Then the derivation is shaped like:

P ··· Γ, x:A ⊢ ∆

(r-inv)
x̂ P ·α ··· Γ ⊢ α:¬A, ∆

and, by induction, P S : Γ, x:A ⊢π ∆, and we can construct:

P
S

: Γ, x:A ⊢π ∆

(out)
α〈x〉 : x:A ⊢π α:¬A

(inv-r)
! α〈x〉 : x:A ⊢π α:¬A

(|)
P

S
| !α〈x〉 : Γ, x:A ⊢π α:¬A, ∆

(ν)
(νx) ( P

S
| !α〈x〉) : Γ ⊢π α:¬A, ∆

and x̂ P·α S = (νx) ( P S | ! α〈x〉). ⊓⊔

So our extended translations respect the classical sequent logic rules.

Conclusions

In this paper we have bridged the gap between classical cut-elimination and the semantics of

concurrent calculi, by presenting translations of Gentzen’s classical sequent calculus LK to

the π-calculus that preserve cut-elimination. This was achieved through an embedding of the

calculus LK into the π-calculus that translates a cut as synchronisation. LK’s terms directly

represent proofs in LK, by naming assumptions with Roman characters, and conclusions

with Greek characters, and seeing these as input and output , respectively, but terms in LK
can also not correspond to proofs.

LK introduces a natural concept of input and output that naturally translates into the

input and output primitives of the π-calculus. We presented two different translations, each

with specific interesting properties. We first presented the natural translation, and showed

that it preserves LK’s head-reduction; in this translation we cannot represent full cut-elimi-

nation because we place some interpreted terms under input , in particular when interpreting

the witness for (→L). This seems to be a natural consequence, and is a feature also in the

various translations of the λ-calculus.

We then went on to show that the limitation of input can easily be avoided. To that

purpose, we introduced the concept of synchronisation cell, and managed to show that, by

slightly modifying our translation and interpreting terms as infinite resources, we can repre-

sent full cut-elimination, but not through synchronisation, but rather weak bisimilarity. We

have seen that this translation successfully represents Gentzen’s Hauptsatz result, in that

innermost reduction on typeable terms terminates.

The variant of the π-calculus we considered uses a pairing facility which enables the

definition of a notion of implicative type assignment on processes. Using this notion, we

proved that proofs in LK have a representation in π; our cut-elimination results then show

that not only do we correctly represent reduction on the calculus LK, but also can model

proofs in LK in all detail in such a way that cut-elimination is preserved by weak bisim-

ilarity. We also represented negation in LK by extending the syntax and reduction rules,

and extended our translations to deal with the added construct. We have shown that all rep-

resentation results still hold; since we have successfully represented both implication and

negation, this implies that this can then easily be extended to the other logical connectives.
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