Computing with Taxonomies

Luca Cardelli

Bell Laboratories
Murray Hill, New Jersey 07974

It next will be right
To describe each particular batch:
Distinguishing those that have feathers, and bite,
From those that have whiskers, and scratch.
(Lewis Carroll)

1. Introduction

The notions of inheritance and object-oriented programming first appeared in Simula 67
[Dahl 66]. In Simula, objects can be grouped into classes and classes can be organized into a sub-
class hierarchy. Objects are similar to records with functional components, and elements of a class
can appear wherever elements of the respective superclasses are expected. Subclasses inherit all the
attributes of their superclasses. In Simula, the issues are somewhat complicated by the use of
objects as coroutines, so that communication between objects can be interpreted as "message-
passing" between processes.

Smalltalk [Goldberg 83] adopts and exploits the idea of inheritance, with some changes.
While stressing the message-passing paradigm, Smalltalk does not have coroutines. Message pass-
ing is just function call, although the association of message names to functions (called methods) is
not straightforward. With respect to Simula, Smalltalk also abandons static scoping, to gain flexi-
bility in interactive use, and strong typing, allowing it to implement system introspection and to
introduce the notion of meta-classes.

Inheritance can be single or multiple. In the case of single inheritance, as in Simula or
Smalltalk, the subclass hierarchy has the form of a tree, i.e. every class has a unique superclass.
Examples can be shown where a class can be indifferently considered a subclass of two incompati-
ble superclasses; then an arbitrary decision has to be made to determine which superclass to use.
This problem leads naturally to the idea of multiple inheritance.

Multiple inheritance occurs when an object can belong to several incomparable superclasses:
the subclass relation is no longer constrained to form a tree, but can form a dag. Multiple inheri-
tance is more elegant than simple inheritance, but more difficult to implement. So far, it has
mostly been considered in the context of type-free dynamically-scoped languages and implemented
as Lisp or Smalltalk extensions [Weinreb 81, Steels 83], or as part of knowledge representation
languages [Attardi 81].

The differences between Simula, Smalltalk and other languages suggest that inheritance is the
only notion critically associated with object-oriented programming. Coroutines, message-passing,
static/dynamic scoping, typechecking and single/multiple superclasses are all fairly independent
issues. Hence, a theory of object-oriented programming should first of all focus on the meaning of
inheritance.

The concept of inheritance has been used extensively in artificial intelligence to express taxo-
nomies of objects. It is also advocated as a natural way of organizing data schemas in database
applications [Borgida 82]. The motivation of this work is to estabilish formal foundations for the

<D -

Galileo database language [Albano 83] which uses multiple inheritance as a major data-structuring
facility.

The scope of this paper is to present a clean semantics of multiple inheritance in the context
of strongly-typed, statically-scoped languages. A sound typechecking algorithm is described in a
forthcoming paper. Multiple inheritance is interpreted in a broad sense: instead of being limited to
objects, it is extended in a natural way to union types and to higher functional types.

2. Objects as Records

There are several ways of thinking of what objects are. In the pure Smalltalk-like view,
objects recall physical entities, like boxes or cars. Physical entities are unfortunately not very useful
as semantic models of objects, because they are far too complicated to describe formally.

Two simpler interpretations of objects seem to emerge from the implementations of object-
oriented languages. The first interpretation derives from Simula, where objects are essentially
records with possibly functional components. Message passing is field selection and inheritance has
to do with the number and type of fields possessed by a record.

The second interpretation derives from Lisp. An object is a function which receives a mes-
sage (a string or an atom) and dispatches on the message to select the appropriate "method". Here
message-passing is function application and inheritance has to do with the way messages are
dispatched.

In some sense these two interpretations are equivalent because records can be represented as
functions from labels (messages) to values. However, to say that objects are functions is mislead-
ing, because we must qualify that objects are functions over messages. Instead we can safely assert
that objects are records, because labels are an essential part of records.

We also want to regard objects as records for typechecking purposes. While a (character
string) message can be the result of an arbitrary computation, a record selection usually requires
the selection label to be known at compile-time. In the latter case it is possible to statically deter-
mine the set of messages supported by an object, and a compile-time type error can be reported on
any attempt to send unsupported messages. This property is true for Simula, but has been lost in
all the succeeding languages.

We shall show how records can account for all the basic features of objects, provided that the
surrounding language is rich enough. The features we consider are multiple inheritance, message-
passing, private instance variables and the concept of "self". The duality between records and func-
tions however remains: in our language objects are records, but in the semantics records are func-
tions.

3. Records
A record is a finite association of values to labels, for example:
(a =3,b = true, c = "abc")
is a record with three fields a, b and ¢ having as values an integer 3, a boolean true and a string
"abc" respectively. The labels a, b and ¢ belong to a separate domain of labels; they are not iden-

tifiers or strings, and cannot be computed as the result of expressions. Records are unordered and
cannot contain the same label twice.

The basic operation on records is field selection, denoted by the usual dot notation:
(a=3,b=true,c = "abc") .a = 3
An expression can have one or more types; we write
e:r
to indicate that expression e has type 7.
Records have record types which are labeled sets of types with distinct labels, for example

we have:
(@ =3,b = true) : (a :int, b : bool)
In general, we can write the following informal typing rule for records:
[Rulel] if ey:7y and .. and e,:7, then (a;=-ey, .., a, = €):(a;: 1, .. , @y Ts)

This is the first of a series of informal rules which are only meant to capture our initial intuitions
about typing. They are not supposed to form a complete set or to be independent of each other.

There is a subtype relation on record types which corresponds to the subclass relation of
Simula and Smalltalk. For example we may define the following types:

tpe any = 0

type object = (age: int)

type vehicle = (age: int, speed: int)

type machine = (age: int, fuel: string)

type car = (age: int, speed: int, fuel: string)

Intuitively a vehicle is an object, a machine is an object and a car is a vehicle and a machine
(and therefore an object). We say that car is a subtype of machine and vehicle; machine is a sub-
type of object; etc. In general a record type 7 is a subtype (written <) of a record type 7' if 7 has
all the fields of 7', and possibly more, and the common fields of v and +' are in the < relation.
Moreover, all the basic types (like inr and bool) are subtypes of themselves:

[Rule2] o v=. (v a basic type)
o =1y =1, = (a7, Gim Tntm) = (@271, oo, @0 T')
Let us consider a particular car (value definitions are prefixed by the keyword val):
val mycar = (age = 4, speed = 140, fuel = "gasoline")
Of course mycar: car (mycar has type car), but we might also want to assert mycar: object. To

obtain this, we say that when a value has a type 7, then it has also all the types 7' such that 7 is a
subtype of 7'. This leads to our third informal type rule:

[Ruled] if a:r and 1=1' then a:1'

If we define the function:
val age(x: object): int = x.age
we can meaningfully compute age(mycar) as, by [Rule3] mycar has the type required by age.

Indeed mycar has the types car, vehicle, machine, object, the empty record type and many other
ones.

When is it meaningful to apply a function to an argument? This is determined by the follow-
ing rules:

[Ruled] if fro—=1r and a:o then f(a)is meaningful, and f(a): 7
[RuleS] if f:o -7 and a:o', where o' = o then f(a) is meaningful, and f(a): 7

[Rule5] is just a consequence of [Rule3] and [Rule4]. From [Rule3] we can deduce that a : o; than
it is certainly meaningful to compute f(a) as f: o - 7.

The conventional subclass relation is usually only defined on objects or classes. Our subtype
relation also extends naturally to functional types. Consider the function

serial_number: int = car

We can argue that serial_number returns vehicles, as all cars are vehicles. In general, all car-

=8

valued function are also vehicle-valued functions, so that for any domain type : we can say that
t = car (an appropriate domain of functions from ¢ to car) is a subtype of ¢ - vehicle:

t = car = t - vehicle because car = vehicle

Now consider the function:

speed: vehicle — int

As all cars are vehicles, we can use this function to compute the speed of a car. Hence speed is
also a function from car to integer. In general every function on vehicles is also a function on
cars, and we can say that vehicle - int is a subtype of car - int:

vehicle >t = car -t because car < vehicle

Something interesting is happening here: note how the subtype relation is inverted on the left
hand side of the arrow. This happens because of the particular meaning we are giving to the —
operator, as explained formally in the following sections. We are assuming a universal value
domain V of all computable values. Every function f is a function from V to V, written
f:V —=>V, where "—>" is the conventional continuous function space. By f: o = 1 we indicate a
function f: V —> V which whenever given an element of ¢ C V returns an element of 1 C V
(nothing is asserted about the behavior of f outside o).

Given any function f: o - v from some domain o to some codomain 7, we can always con-
sider it as a function from some smaller domain o' C o to some bigger codomain ' 2 1. For
example a function f: vehicle = vehicle can be used in the context age(f(mycar)), where it is used
as a function f: car - object (the application f(mycar) makes sense because every car is a vehicle;
v=f(mycar) is a vehicle; hence it makes sense to compute age(v) as every vehicle is an object).

The general rule of subtyping among functional types can be expressed as follows:

[Rule6] if o¢'=o0 and 1=7' then o7 =< ¢ -7

As we said, the subtype relation extends to higher types. For example, the following is a
definition of a function mycar_artribute which takes any integer-valued function on cars and applies
it to my car.

val mycar_atribute(f: car = int): int = f(mycar)

We can then apply it to functions of any type which is a subtype of car —int, e.g.,
age: object —» int. (Why? Because car is a subtype of object, hence object -> int is a subtype of
car = int, [Rule6] hence (mycar_amnribute: (car - int) = int)(age: object - int) makes sense

[Rules)).
mycar_attribute (age) = 4

mycar_attribute (speed) = 140

Up to now we proceeded by assigning certain types to certain values. However the subtype
relation has a very strong intuitive flavor of inclusion of types considered as sets of objects, and we
want justify our type assignments on semantic grounds.

Semantically we could regard the type vehicle as the set of all the records with a field age
and a field speed having the appropriate types, but then cars would not belong to the set of vehi-
cles as they have three fields while vehicles have two. To obtain the inclusion that we intuitively
expect, we must say that the type vehicle is the set of all records which have at least two fields as
above, but may have other fields. In this sense a car is a vehicle, and the set of all cars is included
in the set of all vehicles, as we might expect. Some care is however needed to define these "sets",
and this will be done formally in the following sections.

Record types can have a large number of fields, hence we need some notation for quickly
defining a subtype of some record type, without having to list again all the fields of the record

=15 .o

type. The following three sets of definitions are equivalent:
- type object = (age: int)
type vehicle (age: int, speed: int)

type machine = (age: int, fuel: string)
type car = (age: int, speed: int, fuel: string)
type object = (age: int)

type vehicle
type machine

object and (speed: int)
object and (fuel: string)

type car = vehicle and machine

type object = (age: int)

type car = object and (speed: int, fuel: string)
type vehicle = car ignoring fuel

type machine = car ignoring speed

The and operator forms the union of the fields of two record types; if two record types have
some labels in common (like in vehicle and machine), then the corresponding types must match. At
this point we do not specify exactly what "match" means, except that in the example above "match-
ing" is equivalent to "being the same". In its full generality, and corresponds to a join operation on
type expressions, as explained in a later section.

The ignoring operator simply eliminates a component from a record type; it is undefined on
other types.

4. Variants

The two basic non-functional data type constructions in denotational semantics are cartesian
products and disjoint sums. We have seen that inheritance can be expressed as a subtype relation
on record types, which then extends to higher types. Record types are just labeled cartesian pro-
ducts, and by analogy we can ask whether there is some similar notion deriving from labeled dis-
joint sums.

A labeled disjoint sum is called here a variant. A variant type looks very much like a record
type: it is an unordered set of label-type pairs:

type int_or_bool = [a:int, b: bool]
An element of a variant type is a labeled value, where the label is one of the labels in the

variant type, and the value has a type matching the type associated to that label. A element of
int_or_bool is either an integer labeled int or a boolean labeled bool.

[a
[b

3] : int_or_bool

it

true) : int_or_bool

The basic operations on variants are is, which tests whether a variant object has a particular
label, and as, which extracts the contents of a variant object having a particular label:

[a=3]isa = rrue
[a=3]ish = false
[a=3]asa =3

[a=3]asb fails

A variant type o is a subtype of a variant type 7 (written o = 7) if v has all the labels of o
and correspondingly matching types. Hence int_or_bool is a subtype of [a = int, b = bool,

¢ = string].

When the type associated to a label is uniz (the trivial type, whose only defined element is
nil), we can omit the type altogether; a variant type where all fields have unit type is also called an
enumeration type. The following examples deal with enumeration types.

type precious_metal [gold, silver] (i-e. [gold: unit, silver: unit])

type metal [gold, silver, steel]

An object of an enumeration type, e.g. [gold = nil], can similarly be abbreviated by omitting
the "=nil" part, e.g. [gold].

A function returning a precious metal is also a function returning a metal, hence:

t = precious_metal = t - metal because precious_metal = metal

A function working on metals will also work on precious metals, hence:

metal =t = precious_metal =t because precious_metal < metal

It is evident that [Rule6] holds unchanged for variant types. This justifies the use of the sym-
bol = for both record and variant subtyping. Semantically the subtype relation on variants is
mapped to set inclusion, just as in the case of records: meral is a set with three defined elements
[gold], [silver] and [steel], and precious_metal is a set with two defined elements [gold] and [silver].

There are two ways of deriving variant types from previously defined variant types. We
could have defined meral and precious_metal as:

type precious_metal = [gold, silver]

type metal = precious_metal or [steel]

or as:
type metal = [gold, silver, steel]

type precious_metal = metal dropping steel

The or operator makes a union of the cases of two variant types, and the dropping operator
removes a case from a variant type. The precise definition of these operators is contained in a later
section.

5. Multiple Inheritance

In the framework described so far, we can recognize some of the features of what is called
multiple inheritance between objects, e.g. a car has (inherits) all the attributes of vehicle and of
machine. Some aspects are however unusual; for example the inheritance relation only depends on
the structure of types and need not be declared explicitly.

Moreover, we are not aware of any other language where typechecking coexists with multiple
inheritance. Typechecking provides compile-time protection against obvious bugs (like applying the
speed function to a machine which is not a vehicle), and other less obvious mistakes. Complex type
hierarchies can be built where "everything is also something else”, and it can be difficult to
remember which objects support which messages.

The subtype relation only holds on types, and there is no similar relation on objects. Thus we
cannot model directly the subobject relation used by, for example, Omega [Attardi 81], where we
could define the class of gasoline cars as the cars with fuel equal to "gasoline".

However, in simple cases we can achieve the same effect by turning certain sets of values
into variant types. For example, instead of having the fuel field of a machine to be a string, we
could redefine:

type fueltype = [coal, gasoline, electricity)]

=

I

type machine = (age: int, fuel: fueltype)
type car (age: int, speed: int, fuel: fueltype)

Now we can have:
type gasoline_car = (age: int, speed: int, fuel: [gasoline])

type combustion_car = (age: int, speed: int, fuel: [gasoline, coal])

and we have gasoline_car < combustion_car = car. Hence a function over combustion cars, for
example, will accept a gasoline car as a parameter, but will give a compile-time type error on
electrical cars.

It is often the case that a function which is a field of a record has to refer to other com-
ponents of the same record. In Smalltalk this is done by referring to the whole record (i.e. object)
as self, and then selecting the desired components out of that. In Simula there is a similar concept
called this.

This behavior can be obtained as a special case of the rec operator which we are about to
introduce. rec is used to define recursive functions and data. For example, recursive factorial func-
tion can be written as:

rec fact: int = int. \n: int. if n=0 then 1 else n*fact(n—1)

(This is an expression, not a declaration.)

In order to prevent looping in case of call-by-value evaluations, the body of rec is restricted
to be a constant, a record, a variant or a function (or, in general, any data constructor present in
the language) [Schwarz 80].

Examples of circular data definitions are extremely common in object-oriented programming.
In the following example, a functional component of a record refers to "its" other components. The
functional component d, below, is supposed to compute the distance of "this" active_point from any
other point (or any other active_point, etc.).

type point = (x: real, y: real)
type active_point = point and (d: point = real)
val make_active_point(px: real, py: real): active_point =
rec self: active_point.
(x = px,y = py,
d = A\p: point. sqrt(p.x*self.x + p.y*self.y))
Objects often have private variables, which are useful to maintain and update the local state
of an object while preventing arbitrary external interference. Here is a counter object which starts

from some fixed number and can only be incremented one step at a time. cell n is an updatable
cell whose initial content is n; a cell can be updated by := and its contents can be extracted by get.

type counter = (increment: int = unit, fetch: unit - int)

val make_counter(n: int) =
let count = cell n
in (increment = \n: int. count := (get count)+1,
fetch = \nil: unit. get count)

Private variable are obtained in full generality by the above well known static scoping technique.

6. Expressions

We now begin the formal treatment of multiple inheritance. First, we define a simple applica-
tive language supporting inheritance (side effects could be treated without introducing any new
concept, but they make the formal treatment more complicated). Then a denotational semantics is
presented, in a domain of values V. Certain subsets of V are regarded as types, and inheritance
corresponds directly to set inclusion among types. A type inference system and a typechecking
algorithm are then presented. The soundness of the algorithm is proved by showing that the algo-
rithm is consistent with the inference system, and that the inference system is in turn consistent
with the semantics.

Our language is typed lambda calculus with records and variants. The following notation is
often used for records (and similarly for record and variant types):

(a1=e1, ... ,a,=e,) = (q;=¢;) i€ 1l.n
(a1=ey, ... , ap=ey, a'1=€'y, ... ,a'p=€'y) = (q;=¢;, a';=e') i€l.n, j€l.m

Here is the syntax of expressions and type expressions:

e u= expressions
x| identifiers
b | constants
if e then e else e | conditionals
(@i =¢) | ea | records (i €l.n,n=0)
[a=¢] | eisa | easa | variants
Aeit.e | ee | functions
rec xi1.e | recursive data
ert | type specs
(e)
Tou= type expressions
v type constants
(ai:) | record types (i€l.n,n=0)
lai: 7] | variant types (i€l.n,n=0)
o1 | function types
©)
where i#j = aq#aq
take Y = unit, i = bool, v, = int, etc.

Syntactic restriction: the body e of rec x: 1. e can only be a constant, a record, a variant, a lambda
expression, or another rec obeying this restriction.

Labels a, and identifiers x have the same syntax, but are distinguishable by the syntactic con-
text. Among the type constants we have unit (the domain with one defined element) bool and int.
Among the constants we have nil (of type unit), booleans (true, false) and numbers (0, 1, ...).

Global definitions of values and types are introduced by the syntax:
d =
valx = e |
ypex = T
where the type definitions are meant as simple abbreviations.
Standard abbreviations are:

letx:t=ceine for (Ax:t.e')e

-9.

flxrr)e' = e for f

rec f(x:1):1' = e for f

AxiT.o(ern')

rec fra=1' A x:T. €
(the last two abbreviations can only appear after a let or a val).
Record and variant type expressions are unordered, so for any permutation m, of 1..n, we
identify:
(a{: ‘T,') = (a'n'.(i): T‘"n(i)) i€l.n
[a,-: T,-] = [a,,_(,-): ‘Tﬂ.‘(,-)] lEln

7. The Semantic Domain

The semantics of expressions is given in the recursively defined domain V of values. The
domain operators used below are coalesced sum (+), cartesian product (X), continuous function
space (—>) and finite functions (—>,, explained later).

V = B, +B + - +R+U+F+ W
R L —>5 V

U = L XYV

F = V->V

w o= {L,w}

where L is a countable flat domain of character strings, called /abels, and B; are flat domains of
basic values. We take:

By, = 0 = {J_, ml}
B, =T {1, true, false}
B, = N = {L,0,1, -}

W is a domain which contains a single defined element w, the wrong value. The value w is used
to model run-time type errors (e.g. trying to apply an integer as it were a function) which we want
a compiler to trap before execution. It is not used to model run-time exceptions (like trying to
extract the head of an empty list); in our context these can only be generated by the as operator.
Run-time exceptions should be modeled by an extra summand of V, but for simplicity we shall
instead use the undefined element L. The name wrong is used to denote w as a member of V
(instead of simply a member of W).

R =L —->4V is the domain of records, which are associations of values to labels. We are only
interested in finite associations, so we define L =>4, V = {r € L=>V | {a | r(a) # wrong}
is finite}.

U= L XV isthe domain of variants which are pairs </, v> with a label / and a value v.

F =V —>V are the continuous functions from V to V, used to give semantics to lambda expres-
sions.

8. Semantics of Expressions

The semantic function is € € Exp —> Env —> V, where Exp are syntactic expressions
according to our grammar, and Env = Id —> V are environments for identifiers. The semantics of
basic values is given by 3 € Exp —> V, whose obvious definition is omitted; b;; is the j-th element
of the basic domain B;.

Elxlv = v[x]
%Hbij]]v = %Hbuﬂ
€lif e then e else e"Jv =
if €le]v € T then (if (€le]v | T) then €[e'lv else €[e"]v) else wrong

-10 -

Elar=ey, ...,a,=e)]v =

if €le]Jve Wor - - or $e,Jv e W then wrong
else (\l. if I=ay then €[eqlv else - - - if I=a, then €[e,]v else wrong) in V
¢le.alv = if €lelv € R then (¥[e]v | R)(a) else wrong
Ella=e]lv = if €le]v e W then wrong else <a,é[e]v> in V
Ele is alv = if €lelv € U then fst(¥€le]v | U) = a else wrong
¢le as alv =

if €le]v € U then (let <b,v> be (€[e]v | U) in if b=a then v else 1) else wrong
Ex: 1. elv = (. Ble]v{v/[x]}) in V
Ele e'lv =

if €[e]v € F then (if €e'lv € W then wrong else (€[e]v | F)(¥€[e'[v)) else wrong
Elrec x: 1. eJv = Y((\v. €le]v{v/[x]}) in V)
Ele: 1lv = €lelv

Comments on the equations:

® d in V (where d € D and D is a summand of V) is the injection of d in the appropriate summand
of V. Hence d in V € V and Lin V = L. This is not to be confused with the ler...be...in... nota-
tion for local variables.

® veD (where v € V and D is a summand of V) is a function yielding: L if v = 1; true if
= d in V for some d € D; false otherwise.

@ v | D (where D is a summand of V) is a function yielding: d if v = d in V for some d € D; L
otherwise.

@ i1 extracts the first element of a pair, snd extracts the second one.
® ¢ defines a call by value semantics.

Intuitively, a well-typed program will never return the wrong value at run-time. For example,
consider the second occurrence of wrong in the semantics of records. The typechecker will make
sure that any record selection will operate on records having the appropriate field, hence that
instance of wrong will never be returned. A similar reasoning applies to all the instances of wrong
in the semantics: wrong is a run-time type error which can be detected at compile-time. Run-time
exceptions which cannot be detected are represented as L; the only instance of this in the above
semantics is in the equation for e as a.

Formally, we proceed by defining € (so that it satisfies the above intuitions about run-time
errors), then we define "e is semantically well-typed" to mean "€[e]v # wrong", and later we give
an algorithm which statically checks well-typing.

9. Semantics of Type Expressions
The semantics of types is given in the weak ideal niodel [MacQueen 84] $(V) (the set of

non-empty weak ideals which are subset of V and do not contain wrong). $(V) is a lattice of
domains, where the ordering is set inclusion. $(V) is closed under union and intersection, as well
as the usual domain operations.

%[Il‘il] = B,’ inV

Dl(a;:)] = My {r € R|r(a) € D0} in V (where we take 2[()] = R in V)

e)] = Ui{<a,v> €U|v €l inV (where we take 2[[]] = {L})

Qo =»1] = {f€F|veQo]=>fv)€n]}inV

where @in V=1{dinV|d € D}

=11 =

The wrong value is deliberately left out of the type domains so that if a value has a type,
then that value is not a run-time type error. Another way of saying this is that wrong has no type.

10. Type Inclusion

A subtyping relation can be defined syntactically on the structure of type expressions. This
definition formalizes our initial discussion of subtyping for records, variants and functions.

Ly =y

(a2 0y, @52 05) < (@ 0';) <=> 0, < o'; (i€l..n, n=0; j€l..m, m=0)
lai o] = [ai: o'y, 050 0] <=> o; < o'; (i€l..n, n=0; je€l..m, m=0)
c—-1 = ¢ -1 <=> oc'<c and 7=’

no other type expressions are in the = relation

As we said, the ordering of domains in the $(V) model is set inclusion. This allows us to
give a very direct semantics to subtyping, as simple set inclusion of domains.

THeoreM (Semantic Subtyping)
r=1 = 9] C ']

The proof is by induction on the structure of = and 7'.

11. References

[Ait-Kaci 83] H.Ait-Kaci: "Outline of a calculus of type subsumptions", Technical report MS-
CIS-83-34, Dept of Computer and Information Science, The Moore School of Electrical Engineer-
ing, University of Pennsylvania, August 1983.

[Albano 83] A.Albano, L.Cardelli, R.Orsini: "Galileo: a strongly typed, interactive conceptual
language", Technical Memorandum TM-83-11271-2, Bell Labs, 1983.

[Attardi 81] G.Attardi, M.Simi: "Semantics of inheritance and attributions in the description
system Omega", M.I.T. A.I. Memo 642, August 81.

[Borgida 82] A.T.Borgida, J.Mylopulos, H.K.T.Wong: "Methodological and computer aids for
interactive information systems design", Automated Tools for Information System Design,
H.J.Schneider and A.Wasserman (eds), North-Holland, Amsterdam, 1982.

[Dahl 66] O.Dahl, K.Nygaard: "Simula, an Algol-based simulation language", Comm. ACM, Vol
9, pp. 671-678, 1966.

[Deutsch 84] P.Deutsch: "An efficient implementation of Smalltalk-80", Proc. Popl 84.

[Goldberg 83] A.Goldberg, D.Robson: "Smalltalk-80. The language and its implementation”,
Addison-Wesley, 1983.

[Krasner 83] G.Krasner(Ed.): "Smalltalk-80. Bits of history, words of advice", Addison-
Wesley, 1983.

[MacQueen 84] D.B.MacQueen, R.Seti, G.D.Plotkin: "An ideal model for recursive polymorphic
types", Proc. Popl 84.

[Milner 78] R.Milner: "A theory of type polymorphism in programming", Journal of Computer and
System Science 17, pp. 348-375, 1978.

[Mitchell 84] J.C.Mitchell: "Coercion and type inference", Proc. Popl 84.

[Steels 83] L.Steels: "Orbit: an applicative view of object-oriented programming”, in: Integrated

Interactive Computing Systems, pp. 193-205, P.Degano and E.Sandewall editors, North-Holland
1983.

[Weinreb 81] D.Weinreb, D.Moon: "Lisp machine manual”, Fourth Edition, Chapter 20:
"Objects, Message Passing, and Flavors", Symbolics Inc., 1981.

