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Abstract� The ambient calculus is a process calculus for describing mo�
bile computation� We develop a theory of Morris�style contextual equiv�
alence for proving properties of mobile ambients� We prove a context
lemma that allows derivation of contextual equivalences by considering
contexts of a particular limited form� rather than all arbitrary contexts�
We give an activity lemma that characterizes the possible interactions
between a process and a context� We prove several examples of contex�
tual equivalence� The proofs depend on characterizing reductions in the
ambient calculus in terms of a labelled transition system�

� Motivation

This paper develops tools for proving equations in the ambient calculus�
In earlier work ���� we introduced the ambient calculus by adding ambients�

mobile� hierarchical protection domains�to a framework for concurrency ex�
tracted from the ��calculus �	
�� The ambient calculus is an abstract model of
mobile computation� including both mobile software agents and mobile hardware
devices� The calculus models access control as well as mobility� For example� a
process may move into or out of a particular ambient only if it possesses the
appropriate capability�

This paper focuses on behavioural equivalence of mobile ambients� In par�
ticular� we study a form of Morris� contextual equivalence �	�� for ambients and
develop some proof techniques� Our motivation is to prove a variety of equations�
Some of these equations express and con
rm some of the informal principles we
had in mind when designing the calculus� As in other recent work �	� 
�� some
of the equations establish security properties of systems modelled within the
calculus�

The inclusion of primitives for mobility makes the theory of the ambient
calculus more complex than that of its ancestor� the ��calculus� The main con�
tribution of this paper is to demonstrate that some standard tools�a labelled
transition system� a context lemma� and an activity lemma�may be recast
in the setting of the ambient calculus� Moreover� the paper introduces a new
technique�based on what we call the hardening relation�for factoring the def�
inition of the labelled transition system into a set of rules that identify the
individual processes participating in a transition� and a set of rules that express
how the participant processes interact�



We begin� in Section 
� by reviewing the syntax and reduction semantics of
the ambient calculus� The semantics consists of a structural congruence relation
P � Q �which says that P may be structurally rearranged to yield Q� and
a reduction relation P � Q �which says that P may evolve in one step of
computation to yield Q��

We introduce contextual equivalence P � Q in Section �� We de
ne a pred�
icate� P � n� which means intuitively that an observer may eventually detect
an ambient named n at the top�level of the process P � Then we de
ne P � Q
to mean that� whenever P and Q are placed within an arbitrary context con�
structed from the syntax of the calculus� any observation made of P may also
be made of Q� and vice versa� We give examples of pairs of processes that are
equivalent and examples of pairs that are inequivalent�

In Section �� we describe some techniques for proving contextual equivalence�
We introduce a second operational semantics for the ambient calculus based on
a hardening relation and a labelled transition system� The hardening relation
identi
es the subprocesses of a process that may participate in a computation
step� We use the hardening relation both for de
ning the labelled transition sys�
tem and for characterizing whether an ambient of a particular name is present at
the top�level of a process� Our 
rst result� Theorem 	� asserts that the � �labelled
transition relation and the reduction relation are the same� up to structural con�
gruence� So our two operational semantics are equivalent� The labelled transition
system is useful for analyzing the possible evolution of a process� since we may
read o� the possible labelled transitions of a process by inspecting its syntactic
structure� Our second result� Theorem 
 is a context lemma that allows us to
prove contextual equivalence by considering a limited set of contexts� known
as harnesses� rather than all arbitrary contexts� A harness is a context with a
single hole that is enclosed only within parallel compositions� restrictions� and
ambients� The third result of this section� Theorem �� is an activity lemma that
elaborates the ways in which a reduction may be derived when a process is in�
serted into a harness� either the process reduces by itself� or the harness reduces
by itself� or there is an interaction between the harness and the process�

We exercise these proof techniques on examples in Section �� and conclude
in Section ��

� The Ambient Calculus �Review�

We brie�y describe the syntax and semantics of the calculus� We assume there
are in
nite sets of names and variables� ranged over by m� n� p� q� and x� y�
z� respectively� The syntax of the ambient calculus is based on categories of
expressions and processes� ranged over by M � N � and P � Q� R� respectively�
The calculus inherits a core of concurrency primitives from the ��calculus� a
restriction ��n�P creates a fresh name n whose scope is P � a composition P j Q
behaves as P and Q running in parallel� a replication �P behaves as unboundedly
many replicas of P running in parallel� and the inactive process � does nothing�
We augment these ��calculus processes with primitives for mobility�ambients�






n�P �� and the exercise of capabilities�M�P�and primitives for communication�
input� �x��P � and output� hMi�

Here is an example process that illustrates the new primitives for mobility
and communication�

m�p�out m�in n�hMi�� j n�open p��x��Q�

The e�ect of the mobility primitives in this example is to move the ambient p
out of m and into n� and then to open it up� The input �x��Q may then consume
the output hMi to leave the residue m�� j n�Qfx�Mg�� We may regard the
ambients m and n in this example as modelling two machines on a network� and
the ambient p as modelling a packet sent from m to n� Next� we describe the
semantics of the new primitives in more detail�

An ambient n�P � is a boundary� named n� around the process P � The bound�
ary prevents direct interactions between P and any processes running in parallel
with n�P �� but it does not prevent interactions within P � Ambients may be
nested� so they induce a hierarchy� For example� in the process displayed above�
the ambient named m is a parent of the ambient named p� and the ambients
named m and n are siblings�

An actionM�P exercises the capabilities represented byM � and then behaves
as P � The action either a�ects an enclosing ambient or one running in parallel� A
capability is an expression derived from the name of an ambient� The three basic
capabilities are in n� out n� and open n� An action in n�P moves its enclosing
ambient into a sibling ambient named n� An action out n�P moves its enclosing
ambient out of its parent ambient� named n� to become a sibling of the former
parent� An action open n�P dissolves the boundary of an ambient n�Q� running
in parallel� the outcome is that the residue P of the action and the residue Q
of the opened ambient run in parallel� In general� the expression M in M�P
may stand for a 
nite sequence of the basic capabilities� which are exercised one
by one� Finite sequences are built up using concatenation� written M�M �� The
empty sequence is written ��

The 
nal two process primitives allow communication of expressions� Ex�
pressions include names� variables� and capabilities� An output hMi outputs the
expression M � An input �x��P blocks until it may consume an output running
in parallel� Then it binds the expression being output to the variable x� and
runs P � In �x��P � the variable x is bound� its scope is P � Inputs and outputs
are local to the enclosing ambient� Inputs and outputs may not interact directly
through an ambient boundary� Hence we may think of there being an implicit
input�output channel associated with each ambient�

We formally specify the syntax of the calculus as follows�

Expressions and processes�

M�N ��� expressions P�Q�R ��� processes
x variable ��n�P restriction
n name � inactivity
in M can enter M P j Q composition
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out M can exit M �P replication
open M can open M M �P � ambient
� null M�P action
M�M � path �x��P input

hMi output

In situations where a process is expected� we often write just M as a short�
hand for the processM��� We often write just M �� as a shorthand for the process
M ���� We write ���p�P as a shorthand for ��p�� � � � ��pk�P where �p � p�� � � � � pk�

We let fn�M� and fv�M� be the sets of free names and free variables� re�
spectively� of an expression M � Similarly� fn�P � and fv�P � are the sets of free
names and free variables of a process P � If a phrase � is an expression or a
process� we write �fx�Mg and �fn�Mg for the outcomes of capture�avoiding
substitutions of the expression M for each free occurrence of the variable x and
the name n� respectively� in �� We identify processes up to consistent renaming
of bound names and variables�

We formally de
ne the operational semantics of ambient calculus in the chem�
ical style� using structural congruence and reduction relations�

Structural Congruence� P � Q

P j Q � Q j P P � P
�P j Q� j R � P j �Q j R� Q � P � P � Q
�P � P j �P P � Q�Q � R� P � R
��n���m�P � ��m���n�P
n 	� fn�P �� ��n��P j Q� � P j ��n�Q P � Q� ��n�P � ��n�Q
n 	� m� ��n�m�P � � m���n�P � P � Q� P j R � Q j R
P j � � P P � Q� �P � �Q
��n�� � � P � Q�M �P � �M �Q�
�� � � P � Q�M�P �M�Q
��P � P P � Q� �x��P � �x��Q
�M�M ���P �M�M ��P

Reduction� P � Q

n�in m�P j Q� j m�R�� m�n�P j Q� j R� P � Q� P j R� Q j R
m�n�out m�P j Q� j R�� n�P j Q� j m�R� P � Q� ��n�P � ��n�Q
open n�P j n�Q�� P j Q P � Q� n�P �� n�Q�
hMi j �x��P � Pfx�Mg P � � P� P � Q�Q � Q� � P � � Q�

For example� the process displayed earlier has the following reductions�

m�p�out m�in n�hMi�� j n�open p��x��P �� m�� j p�in n�hMi� j n�open p��x��P �

� m�� j n�p�hMi� j open p��x��P �

� m�� j n�hMi j �x��P �

� m�� j n�Pfx�Mg�

�



The syntax allows the formation of certain processes that may not participate
in any reductions� such as the action n�P and the ambient �inn��P �� The presence
of these nonsensical processes is harmless as far as the purposes of this paper
are concerned� They may be ruled out by a simple type system ����

This concludes our brief review of the calculus� An earlier paper ��� explains in
detail the motivation for our calculus� and gives several programming examples�

� Contextual Equivalence

Morris�style contextual equivalence �	�� �otherwise known as may�testing equiva�
lence ���� is a standard way of saying that two processes have the same behaviour�
two processes are contextually equivalent if and only if they admit the same ele�
mentary observations whenever they are inserted inside any arbitrary enclosing
process� In the setting of the ambient calculus� we shall de
ne contextual equiv�
alence in terms of observing the presence� at the top�level of a process� of an
ambient whose name is not restricted�

Let us say that a process P exhibits a name n just if P is a process with a
top�level ambient named n� that is not restricted�

Exhibition of a Name� P 
 n

P 
 n
�

� there are �m� P �� P �� with n 	� f�mg and P � �� �m��n�P �� j P ���

Let us say that a process P converges to a name n just if after some number
of reductions� P exhibits n�

Convergence to a Name� P � n

�Conv Exh�
P 
 n

P � n

�Conv Red�
P � Q Q � n

P � n

Next� let a context� C��� be a process containing zero or more holes� We write
a hole as ��� We write C�P � for the outcome of 
lling each of the holes in the
context C with the process P � Variables and names free in P may become bound
in C�P �� For example� if P � n�hxi� and C�� � ��n��x����� the variable x and the
name n have become bound in C�P � � ��n��x��n�hxi�� Hence� we do not identify
contexts up to renaming of bound variables and names�

Now� we can formally de
ne contextual equivalence of processes�

Contextual Equivalence� P � Q

P � Q
�

� for all contexts C�� and names n� C�P � � n� C�Q� � n

The following two propositions state some basic properties enjoyed by con�
textual equivalence� Let a relation R be a precongruence if and only if� for all
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P � Q� and C��� if P R Q then C�P � R C�Q�� If� in addition� R is re�exive�
symmetric� and transitive� we say it is a congruence� For example� the structural
congruence relation has these properties� Moreover� by a standard argument� so
has contextual equivalence�

Proposition �� Contextual equivalence is a congruence�

Structural congruence preserves exhibition of or convergence to a name� and
hence is included in contextual equivalence�

Lemma �� Suppose P � Q� If P 
 n then Q 
 n� Moreover� if P � n then
Q � n with the same depth of inference�

Proposition �� If P � Q then P � Q�

The following two examples illustrate that to show that two processes are
contextually inequivalent� it su�ces to 
nd a context that distinguishes them�

Example �� If m 	� n then m�� 	� n���

Proof� Consider the context C�� � ��� Since C�m��� � m��� we have C�m��� 

m� By �Conv Exh�� C�m��� � m� On the other hand� the process n�� has no
reductions� and does not exhibit m� Hence� we cannot derive C�n��� � m� ut

Example �� If m 	� n then open m�� 	� open n���

Proof� Let C�� � m�p��� j ��� Then C�openm��� � p but not C�open n��� � p� ut

On the other hand� it is harder to show that two processes are contextually
equivalent� since one must consider their behaviour when placed in an arbitrary
context� For example� consider the following contextual equivalence�

Example �� ��n��n�� j open n�P � � P if n 	� fn�P ��

The restriction of the name n in the process ��n��n�� j open n�P � implies that
no context may interact with this process until it has reduced to P � Therefore�
we would expect the equation to hold� But to prove this and other equations
formally we need some further techniques� which we develop in the next section�
We return to Example � in Section ��

� Tools for Proving Contextual Equivalence

The tools we introduce are relations and theorems that help prove contextual
equivalence�

�



��� A Hardening Relation

In this section� we de
ne a relation that explicitly identi
es the top�level sub�
processes of a process that may be involved in a reduction� This relation� the
hardening relation� takes the form�

P 
 ��p�� � � � � pk�hP
�iP ��

where the phrase ��p�� � � � � pk�hP
�iP �� is called a concretion� We say that P � is

the prime of the concretion� and that P �� is the residue of concretion� Both P �

and P �� lie in the scope of the restricted names p�� � � � � pk� The intuition is that
the process P � which may have many top�level subprocesses� may harden to a
concretion that singles out a prime subprocess P �� leaving behind the residue
P ��� By saying that P � has a top�level occurrence in P � we mean that P � is a
subprocess of P not enclosed within any ambient boundaries� In the next section�
we use the hardening relation to de
ne an operational semantics for the ambient
calculus in terms of interactions between top�level occurrences of processes�

Concretions were introduced by Milner in the context of the ��calculus �	���
For the ambient calculus� we specify them as follows� where the prime of the
concretion must be an action� an ambient� an input� or an output�

Concretions�

C�D ��� concretions
���p�hM�P iQ action� M � fin n� out n� open ng
���p�hn�P �iQ ambient
���p�h�x��P iQ input
���p�hhMiiQ output

The order of the bound names p�� � � � � pk in a concretion ��p�� � � � � pk�hP
�iP ��

does not matter and they may be renamed consistently� When k � �� we may
write the concretion as ���hP �iP ���

We now introduce the basic ideas of the hardening relation informally� If P
is an action in n�Q� out n�Q� open n�Q� an ambient n�Q�� an input �x��Q� or an
output hMi� then P hardens to ���hP i�� Consider two processes P and Q� If
either of these hardens to a concretion� then their composition P j Q may harden
to the same concretion� but with the other process included in the residue of the
concretion� For example� if P 
 ���hP�iP� then P j Q 
 ���hP�i�P� j Q�� If
a process P hardens to a concretion� then the replication �P may harden to
the same concretion� but with �P included in the residue of the concretion�a
replication is not consumed by hardening� Finally� if a process P hardens to a
concretion C� then the restriction ��n�P hardens to a concretion written ��n�C�
which is the same as C but with the restriction ��n� included either in the list
of bound names� the prime� or the residue of C� We de
ne ��n�C by�

Restricting a concretion� ��n�C where C � ���p�hP�iP� and n 	� f�pg

�	� If n � fn�P�� then�

�



�a� If P� � m�P �

�
�� m 	� n� and n 	� fn�P��� let ��n�C

�

� ���p�hm���n�P �

�
�iP��

�b� Otherwise� let ��n�C
�

� ��n� �p�hP�iP��

�
� If n 	� fn�P�� let ��n�C
�

� ���p�hP�i��n�P��

Next� we de
ne the hardening relation by the following�

Hardening� P 
 C

�Harden Action�
M � fin n� out n� open ng

M�P 
 ���hM�P i�

�Harden ��
P 
 C

��P 
 C

�Harden ��
M��N�P � 
 C

�M�N��P 
 C

�Harden Amb�

n�P � 
 ���hn�P �i�

�Harden Input�

�x��P 
 ���h�x��P i�

�Harden Output�

hMi 
 ���hhMii�

�Harden Par 	� �for f�pg � fn�Q� � ��
P 
 ���p�hP �iP ��

P j Q 
 ���p�hP �i�P �� j Q�

�Harden Par 
� �for f�qg � fn�P � � ��
Q 
 ���q�hQ�iQ��

P j Q 
 ���q�hQ�i�P j Q���

�Harden Repl�
P 
 ���p�hP �iP ��

�P 
 ���p�hP �i�P �� j �P �

�Harden Res�
P 
 C

��n�P 
 ��n�C

For example� the process P � ��p���q��n�p��� j q��� may harden in two ways�

P 
 ���hn���p�p���i��q��� j q���

P 
 ��q�hq��i��p��n�p��� j ��

The next two results relate hardening and structural congruence�

Lemma �� If P 
 ���p�hP �iP �� then P � ���p��P � j P ����

Proposition 	� If P � Q and Q 
 ���r�hQ�iQ�� and then there are P � and P ��

with P 
 ���r�hP �iP ��� P � � Q�� and P �� � Q���

These results follow from inductions on the derivations of P 
 ���p�hP �iP ��

and P � Q� respectively� Using them� we may characterize exhibition of a name
independently of structural congruence�

Proposition �� P 
 n if and only if P 
 ���p�hn�P ��iP �� and n 	� f�pg�

Now� we can show that the hardening relation is image�
nite�

Lemma 	� For all P � fC � P 
 Cg is �nite�

The proof of this lemma is by induction on the structure of P � and suggests
a procedure for the enumerating the set fC � P 
 Cg� Given Proposition �� it
follows that the predicate P 
 n is decidable�
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��� A Labelled Transition System

The labelled transition system presented in this section allows for an analysis
of the possible reductions from a process P in terms of the syntactic structure
of P � The de
nition of the reduction relation does not directly support such an
analysis� because of the rule P � � P� P � Q�Q � Q� � P � � Q�� which allows
for arbitrary structural rearrangements of a process during the derivation of a
reduction�

We de
ne a family of transition relations P
�

� Q� indexed by a set of labels�

ranged over by � ��� � j in n j out n j open n� An M �transition P
M

� Q means

that the process P has a top�level process exercising the capability M � these
transitions are de
ned by the rule �Trans Cap� below� A � �transition P

�

� Q

means that P evolves in one step to Q� these transitions are de
ned by the other
rules below�

Labelled transitions� P
�

� P � where � ��� � j in n j out n j open n

�Trans Amb�

P 
 ���p�hn�Q�iP � Q
�

� Q�

P
�

� ���p��n�Q�� j P ��

�Trans Cap�
P 
 ���p�hM�P �iP �� fn�M� � f�pg � �

P
M

� ���p��P � j P ���

�Trans In� �where f�rg � fn�n�Q�� � � and f�rg � f�pg � ��

P 
 ���p�hn�Q�iR Q
in m

� Q� R 
 ���r�hm�R��iR��

P
�

� ���p��r��m�n�Q�� j R�� j R���

�Trans Out� �where n 	� f�qg�

P 
 ���p�hn�Q�iP � Q 
 ���q�hm�R�iQ� R
out n

� R�

P
�

� ���p�����q��m�R�� j n�Q��� j P ��

�Trans Open�

P 
 ���p�hn�Q�iP � P �
open n

� P ��

P
�

� ���p��Q j P ���

�Trans I�O� �where f�qg � fn�hMi� � ��
P 
 ���p�hhMiiP � P � 
 ���q�h�x��P ��iP ���

P
�

� ���p��P � j ���q��P ��fx�Mg j P �����

The rules �Trans In�� �Trans Out�� and �Trans Open� derive a � �transition
from an M �transition� We introduced the M �transitions to simplify the state�
ment of these three rules� �Trans I�O� allows for exchange of messages� �Trans
Amb� is a congruence rule for � �transitions within ambients�

Given its de
nition in terms of the hardening relation� we may analyze the
transitions derivable from any process by inspection of its syntactic structure�
This allows a structural analysis of the possible reductions from a process� since
the � �transition relation corresponds to the reduction relation as in the following
theorem� where P

�

�� Q means there is R with P

�

� R and R � Q�

Theorem �� P � Q if and only if P
�

�� Q�

As corollaries of Theorem 	 and Lemma �� we get that the transition system
is image�
nite� and that the reduction relation is image�
nite up to structural
congruence�

�



Lemma �� For all P and �� the set fR � P
�

� Rg is �nite�

Lemma 
� For all P � the set ffR � Q � Rg � P � Qg is �nite�

��	 A Context Lemma

The context lemma presented in this section is a tool for proving contextual
equivalence by considering only a limited set of contexts� rather than all contexts�
Many context lemmas have been proved for a wide range of calculi� starting with
Milner�s context lemma for the combinatory logic form of PCF ����

Our context lemma is stated in terms of a notion of a harness �

Harnesses

H ��� harnesses

 process variable
��n�H restriction
P j H left composition
H j Q right composition
n�H � ambient

Harnesses are analogous to the evaluation contexts found in context lemmas
for some other calculi� Unlike the contexts of Section �� harnesses are identi
ed
up to consistent renaming of bound names� We let fn�H� and fv �H� be the
sets of names and variables� respectively� occurring free in a harness H � There
is exactly one occurrence of the process variable 
 in any harness� If H is an
harness� we write HfPg for the outcome of substituting the process P for the
single occurrence of the process variable 
� Names restricted in H are renamed
to avoid capture of free names of P � For example� if H � ��n��
 j open n� then
Hfn��g � ��n���n�� j open n�� for some n� 	� n�

Let a substitution� �� be a list x��M�� � � � � xk�Mk� where the variables x��
� � � � xk are pairwise distinct� and fv �Mi� � � for each i � 	��k� Let dom��� �
fx�� � � � � xkg� Let P� be the process Pfx��M�g � � � fxk�Mkg� Let a process or
a harness be closed if and only if it has no free variables �though it may have
free names��

Here is our context lemma�

Theorem � �Context�� For all processes P and Q� P � Q if and only if for
all substitutions � with dom��� � fv �P �� fv�Q�� and for all closed harnesses H
and names n� that HfP�g � n� HfQ�g � n�

A corollary is that for all closed processes P and Q� P � Q if and only if for
all closed harnesses H and names n� that HfPg � n� HfQg � n�

In general� however� we need to consider the arbitrary closing substitution �
when using Theorem 
� This is because a variable free in a process may become
bound to an expression once the process is placed in a context� For example� let
P � x�n��� j open y�� and Q � �� Consider the context C�� � hm�mi j �x� y�����

	�



We have C�P � � n but not C�Q� � n� So P and Q are not contextually equivalent
but they do satisfy HfPg � n� HfQg � n for all closed H and n�

Some process calculi enjoy stronger context lemmas� Let processes P and Q
be parallel testing equivalent if and only if for all processes R and names n� that
P j R � n� Q j R � n� We might like to show that any two closed processes are
contextually equivalent if and only if they are parallel testing equivalent� This
would be a stronger result than Theorem 
 because it would avoid considering
contexts that include ambients� Such a result is true for CCS ���� for example�
but it is false for the ambient calculus� To see this� let P � out p�� and Q � ��
We may show that P j R � n � Q j R � n for all n and R� Now� consider the
context C�� � p�m������ We have C�P � � m but not C��� � m� So P and Q are
parallel testing equivalent but not contextually equivalent�

��� An Activity Lemma

When we come to apply Theorem 
 we need to analyze judgments of the form
HfPg 
 n or HfPg � Q� In this section we formalize these analyses�

We begin by extending the structural congruence� hardening� and reduction
relations to harnesses as follows�

� Let H � H � hold if and only if HfPg � H �fPg for all P �
� Let H 
 ���p�hH �iQ hold if and only if HfPg 
 ���p�hH �fPgiQ for all P

such that f�pg � fn�P � � ��
� Let H 
 ���p�hQiH � hold if and only if HfPg 
 ���p�hQi�H �fPg� for all P

such that f�pg � fn�P � � ��
� Let H � H � hold if and only if� for all P � HfPg � H �fPg�

We need the following lemma about hardening�

Lemma �� If HfPg 
 C then either�

�	� H 
 ���r�hH �iR and C � ���r�hH �fPgiR� or
�
� H 
 ���r�hRiH � and C � ���r�hRi�H �fPg�� or
��� H 
 ���r�h
iR� P 
 ���p�hP �iP ��� C � ���r� �p�hP �iR� with R� � P �� j R�

where in each case f�rg � fn�P � � ��

Proposition 
� If HfPg 
 n then either 	�
 HfQg 
 n for all Q� or 	�
 P 
 n�
and for all Q� Q 
 n implies that HfQg 
 n�

Proof� By Proposition ��HfPg 
 n means there are �p� P �� P �� such that HfPg 

���p�hn�P ��iP �� with n 	� f�pg� Hence� the proposition follows from Lemma �� ut

Intuitively� there are two ways in which HfPg 
 n can arise� either the
process P exhibits the name by itself� or the harness H exhibits the name n
by itself� Proposition � formalizes this analysis� Similarly� there are three ways
in which a reduction HfPg � Q may arise� either �	� the process P reduces
by itself� or �
� the harness H reduces by itself� or ��� there is an interaction
between the process and the harness� Theorem � formalizes this analysis� Such
a result is sometimes known as an activity lemma �	���

		



Theorem 	 �Activity�� HfPg � R if and only if�

�Act Proc� there is a reduction P � P � with R � HfP �g� or
�Act Har� there is a reduction H � H � with R � H �fPg� or
�Act Inter� there are H � and �r with f�rg� fn�P � � �� and one of the following

holds�
�Inter In� H � ���r�H �fm�
 j R�� j n�R���g� P

in n

� P ��

and R � ���r�H �fn�m�P � j R�� j R���g

�Inter Out� H � ���r�H �fn�m�
 j R�� j R���g� P
out n

� P ��

and R � ���r�H �fm�P � j R�� j n�R���g

�Inter Open� H � ���r�H �f
 j n�R��g� P
open n

� P ��

and R � ���r�H �fP � j R�g
�Inter Input� H � ���r�H �f
 j hMig� P 
 ���p�h�x��P �iP ���

and R � ���r�H �f���p��P �fx�Mg j P ���g� with f�pg � fn�M� � �
�Inter Output� H � ���r�H �f
 j �x��R�g� P 
 ���p�hhMiiP ��

and R � ���r�H �f���p��P � j R�fx�Mg�g� with f�pg � fn�R�� � �
�Inter Amb� P 
 ���p�hn�Q�iP � and one of the following holds�

�	� Q
in m

� Q�� H � ���r�H �f
 j m�R��g� f�pg � fn�m�R��� � ��

and R � ���r�H �f���p��P � j m�n�Q�� j R���g

�
� Q
out m

� Q�� H � ���r�H �fm�
 j R��g� m 	� f�pg�

and R � ���r�H �f���p��n�Q�� j m�P � j R���g
��� H � ���r�H �fm�R� j in n�R��� j 
g� f�pg � fn�m�R� j in n�R���� � ��

and R � ���r�H �f���p��n�Q j m�R� j R���� j P ��g
��� H � ���r�H �f
 j open n�R�g� n 	� f�pg�

and R � ���r�H �f���p��Q j P �� j R�g

� Examples of Contextual Equivalence

In this section� two examples demonstrate how we may apply Theorem 
 and
Theorem � to establish contextual equivalence�


�� Opening an Ambient

We can now return to and prove Example � from Section ��

Lemma 
� If Hf��n��n�� j open n�P �g � m and n 	� fn�P � then HfPg � m�

Proof� By induction on the derivation of Hf��n��n�� j open n�P �g � m� with
appeal to Propositions � and �� and Theorems 	 and �� ut

Proof of Example 	 ��n��n�� j open n�P � � P if n 	� fn�P ��

Proof� By Theorem 
� it su�ces to prove Hf���n��n�� j open n�P ���g � m �
HfP�g � m for all closed harnesses H and names m and for all substitutions
� with dom��� � fv �P �� Since the name n is bound� we may assume that n 	�

	




fn���x�� for all x � dom���� Therefore� we are to prove that� Hf��n��n�� j
open n�P�g � m� HfP�g � m where n 	� fn�P���

We prove each direction separately� First� suppose that HfP�g � m� Since
��n��n�� j open n�P�� � P�� we get Hf��n��n�� j open n�P��g � HfP�g�
By �Exh Red�� we get Hf��n��n�� j open n�P��g � m� Second� suppose that
Hf��n��n�� j open n�P��g � m� By Lemma �� we get HfP�g � m� ut


�� The Perfect Firewall Equation

Consider a process ��n�n�P �� where n is not free in P � Since the name n is known
neither inside the ambient n�P �� nor outside it� the ambient n�P � is a �perfect

rewall� that neither allows another ambient to enter nor to exit� The following
two lemmas allow us to prove that ��n�n�P � is contextually equivalent to �� when
n 	� fn�P �� which is to say that no context can detect the presence of ��n�n�P ��

Lemma �� If Hf��n�n�P �g � m and n 	� fn�P � then Hf�g � m�

Proof� By induction on the derivation of Hf��n�n�P �g � m�

�Conv Exh� Here Hf��n�n�P �g 
 m� By Proposition �� either �	�� for all Q�
HfQg 
 m� or �
�� ��n�n�P � 
 m� In case �	�� we have� in particular� that
Hf�g 
 m� Hence� Hf�g � m� by �Conv Exh�� Case �
� cannot arise� since�
by Proposition �� ��n�n�P � 
 m implies that ��n�n�P � 
 ���p�hm�P ��iP �� with
m 	� f�pg� which is impossible�

�Conv Red� Here Hf��n�n�P �g � R and R � m� By Theorem �� one of three
cases pertains�
�Act Proc� Then ��n�n�P �� P �� with R � HfP ��g� By Theorem 	� there

is Q with ��n�n�P �
�

� Q and Q � P ��� Since ��n�n�P � 
 ��n�hn�P �i� is

the only hardening derivable from ��n�n�P �� the transition ��n�n�P �
�

�

Q can only be derived using �Trans Amb�� with P
�

� P � and Q �

��n��n�P �� j ��� Therefore� there is a reduction P � P � and P �� �
��n�n�P ��� We may show that P � P � implies fn�P �� � fn�P �� and so
n 	� fn�P ��� We have R � Hf��n�n�P ��g with n 	� fn�P ��� By Lemma 	�
we may derive Hf��n�n�P ��g � m by the same depth of inference as
R � m� By induction hypothesis� Hf�g � m�

�Act Har� Then H � H � with R � H �f��n�n�P �g� By Lemma 	� we may
derive H �f��n�n�P �g � m by the same depth of inference as R � m� By
induction hypothesis� H �f�g � m� From H � H � we obtain Hf�g �
H �f�g in particular� By �Conv Red�� we get Hf�g � m�

	�



�Act Inter� Then there are H � and �r with f�rg � fn�P � � � and one of
several conditions must hold� Since the only hardening or transition from
��n�n�P � is ��n�n�P � 
 ��n�hn�P �i�� only the rule �Inter Amb� applies�
According to Theorem �� there are four possibilities to consider�

�	� Here� P
in m

� P �� H � ���r�H �f
 j m�R��g� fng � fn�m�R��� � �� and

R � ���r�H �f��n��� j m�n�P �� j R���g� We have R � ���r�H �fm�R� j
��n�n�P ���g and that n 	� fn�P ��� By Lemma 	� we get ���r�H �fm�R� j
��n�n�P ���g � m with the same depth of inference as R � m� By
induction hypothesis� ���r�H �fm�R� j ��g � m� Moreover� Hf�g �
���r�H �fm�R� j ��g� and therefore Hf�g � m�

�
� Here� P
out m

� P �� H � ���r�H �fm�
 j R��g� m 	� fng� and also

R � ���r�H �f��n��n�P �� j m�� j R���g� We have R � ���r�H �fm�R�� j
��n�n�P ��g and that n 	� fn�P ��� By Lemma 	� we get ���r�H �fm�R�� j
��n�n�P ��g � m with the same depth of inference as R � m� By
induction hypothesis� ���r�H �fm�R�� j �g � m� Moreover� Hf�g �
���r�H �fm�R�� j �g and therefore Hf�g � m�

The other possibilities� ��� and ���� are ruled out because the name n is
restricted in the concretion ��n�hn�P �i�� ut

By a similar induction� we can also prove�

Lemma �� If Hf�g � m then HfPg � m�

By combining Theorem 
� Lemmas � and �� we get�

Example �� If n 	� fn�P � then ��n�n�P � � ��

Our 
rst proof of this equation �which was stated in an earlier paper ���� was
by a direct quanti
cation over all contexts� The proof above using the context
lemma is simpler�

� Conclusions

We developed a theory of Morris�style contextual equivalence for the ambient
calculus� We showed that standard tools such as a labelled transition system� a
context lemma� and an activity lemma� may be adapted to the ambient calculus�
We introduced a new technique� based on a hardening relation� for de
ning
the labelled transition system� We employed these tools to prove equational
properties of mobile ambients�

Our use of concretions to highlight those subprocesses of a process that may
participate in a computation follows Milner �	�� 		�� and is an alternative to the
use of membranes and airlocks in the chemical abstract machine of Berry and
Boudol ���� Unlike these authors� in the de
nition of our transition relation we
use the hardening relation� rather than the full structural congruence relation� to
choose subprocesses to participate in a transition� Hardening is more convenient
in some proofs� such as the proof that the labelled transition system is image�

nite� Lemma ��

	�



In the future� it would be of interest to study bisimulation of ambients�
Various techniques adopted for higher�order �	�� 	�� and distributed ��� �� 	��
variants of the ��calculus may be applicable to the ambient calculus�

Acknowledgement Comments by C edric Fournet� Georges Gonthier� and Tony
Hoare were helpful�

References

�� M� Abadi� C� Fournet� and G� Gonthier� Secure implementation of channel ab�
stractions� In Proceedings LICS���� pages ������	� �

��

�� M� Abadi and A� D� Gordon� A calculus for cryptographic protocols
 The spi cal�
culus� Information and Computation� To appear� An extended version appears as
Digital Equipment Corporation Systems Research Center report No� ��
� January
�

��

�� R� M� Amadio� An asynchronous model of locality� failure� and process mobility�
In Proceedings COORDINATION ��� volume ���� of Lecture Notes in Computer

Science� Springer�Verlag� �

��
�� R� M� Amadio and S� Prasad� Localities and failures� In Proceedings FST�TCS����

volume ��� of Lecture Notes in Computer Science� pages ������	� Springer�Verlag�
�

��

�� G� Berry and G� Boudol� The chemical abstract machine� Theoretical Computer

Science� 
	���
�������� April �

��
	� L� Cardelli and A� D� Gordon� Mobile ambients� In Proceedings FoSSaCS���� vol�

ume ���� of Lecture Notes in Computer Science� pages �������� Springer�Verlag�
�

��

�� L� Cardelli and A� D� Gordon� Types for mobile ambients� In Proceedings POPL����
�


� To appear�

�� R� De Nicola and M� C� B� Hennessy� Testing equivalences for processes� Theoretical
Computer Science� ��
������� �
���


� R� Milner� Fully abstract models of typed lambda�calculi� Theoretical Computer

Science� �
����� �
���
��� R� Milner� The polyadic ��calculus
 A tutorial� Technical Report ECS�LFCS�
��

���� Laboratory for Foundations of Computer Science� Department of Computer
Science� University of Edinburgh� October �

��

��� R� Milner� The ��calculus� Undergraduate lecture notes� Cambridge University�
�

��

��� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes� parts I and
II� Information and Computation� ���
���� and ������ �

��

��� R� Milner and D� Sangiorgi� Barbed bisimulation� In Proceedings ICALP����
volume 	�� of Lecture Notes in Computer Science� Springer�Verlag� �

��

��� J� H� Morris� Lambda	Calculus Models of Programming Languages� PhD thesis�
MIT� December �
	��

��� G� D� Plotkin� LCF considered as a programming language� Theoretical Computer

Science� �
�������� �
���
�	� J� Riely and M� Hennessy� A typed language for distributed mobile processes� In

Proceedings POPL���� pages �����
�� �

��
��� D� Sangiorgi� Expressing Mobility in Process Algebras
 First	Order and Higher	

Order Paradigms� PhD thesis� University of Edinburgh� �

�� Available as Techni�
cal Report CST�

�
�� Computer Science Department� University of Edinburgh�

	�


