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Abstract 

A frequent dilemma in the design of a database programming language 
is the choice between a language with a rich set of tailored notations 
for schema definitions, query expressions, etc., and a small, simple core 
language. We address this dilemma by proposing extensible grammars, 

a syntax-definition formalism for incremental language extensions and 
restrictions based on an initial core language. 

The translation of programs written in rich object languages into a 

small core language is defined via syntax-directed patterns. In contrast to 
macro-expansion and program-rewriting tools, our extensible grammars 
respect scoping rules. Therefore, we can introduce binding constructs 
while avoiding problems with unwanted name clashes. 

We develop extensible grammars and illustrate their use by extend- 

ing the lambda calculus with let-bindings, conditionals, and SQL-style 
query expressions. We then give a formal description of the underlying 

parsing, transformat,ion, and substitution rules. Finally, we sketch how 
these rules are exploit,ed in the implementation of a generic, extensible 
parser package. 

1 Introduction 

A frequent dilemma in the design of a database programming language is the 

choice between a user-friendly language with a rich set of tailored notations for 

schema definitions, query expressions, etc., and a small, conceptually simple 

core language. We address this dilemma by proposing extensible grammars, a 
synt,ax-definition formalism for incremental, problemspecific language exten- 

s~ons and restrictions based on an initial core language. 

The translation of programs writtell in rich, user-friendly object languages 

into a small core language is defined via syntax-directed patterns. In contrast to 

traditional macro-expansion and program-rewriting tools, our extensible gram- 

mars respect scoping rules. Therefore, we can introduce new binding constructs 

like quantifiers. iterators, and type declarat8ions. while avoiding problems with 

unwanted name clashes (“variable captures”). 

*The second author was supported by the European Commission, ESPRIT, EC/US-FIDE 
Collaborative Activity, 0069829. 
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Syntax extensions provide syntactic sugar for common problem-specific 
abstractions. For example, embedded query notations like the relational cal- 
culus, the relational algebra, iteration statements, or set comprehensions can 
be introduced as abstractions defined from more primitive iteration constructs 
[OBBT89, BTBN91, Tri91, MS91]. T ransactions can be introduced as styl- 
ized patterns for side-effect control and exception handling. Similarly, struc- 
tured form definitions in user interface code can be represented as abstrac- 
tions over low-level routines for data formatting, input, and validation. At 
the type level, data modeling constructs like classes, objects, and binary rela- 
tionships can be viewed as syntactic suga,r for more complex type expressions 
involving recursive types, record types, funct,ion types, or abstract data types 
[SSS+92, SSS88, PT93]. 

Syntax restrictions introduce intentional limitations on the expressive- 
ness or orthogonality of a core language. The rationale behind restrictions is 
to facilitate meta-level reasoning and optimizations tailored to a particular ap- 
plication domain. While ad-hoc syntax restrictions are generally considered 
harmful in programming language design (from a pragmatic and a semantic 
perspective), they are common pract,ice in database models and database lan- 
guages. For example, many schema definition languages disallow nested decla- 
rations (nested sets, nested classes) or limit recursive declarations to top-level 
class or type definitions. Furthermore, user-defined types frequently do not 
have first-class status, e.g., they may not appear as argumems to collection- 
type constructors. Similarly, query languages typically impose restrictions to 
rule out side-effecting operations or calls to user-defined functions in select#ion 
and join predicates [SQL87]. S ome query languages require static bindings 
to function identifiers (disallowing higher-order functions or dynamic method 
dispatch) [SFL83], and some disallow lambda abstractions within quantified 
expressions [BTBNSl]. Finally, recursive queries or views are often subject to 
stratification constraints [Naq89]. 

The form of extensible grammars discussed in this paper was invented during 
the implementation of a polymorphically t,yped lambda calculus [Car93]. Here, 
we develop extensible grammars in a more general context and describe them 
in more detail. Section 2 gives a concept,ual overview of the issues that must, be 
addressed by a syntax-extension formalism. In section 3 we introduce extensible 
grammars by examples. An initial grammar for the lambda calculus is extended 
incrementally with new syntactic forms like let-bindings, conditionals, as well as 
algebraic and calculus-style query notations. In section 5 the static type rules 
for grammar definitions and the semantics of parsers generated from extensible 
grammars are defined. We also present a soundness result for the type system 
with respect to the evaluation semantics. The impact of these foundations on 
the implementation of an extensible parser module for the Tycoon database 
environment [Mat931 is highlighted in section 5. Finally, section 6 compares 
our concept of extensible grammars with other approaches to syntax extension. 

2 Overview 

The syntax extension formalism described in this paper assumes the scenario 
depicted in figure 1. Given the abstract syntax and the scoping structure of 
a target language TL, a new object language OLO can be defined by giving 
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Figure 1: The syntax-extension scenario 

its cont,ext,-free grammar and the rewrite rules that map O&J terms into TL 
terms. The mapping also defines the scoping structure of O&. Our formalism 
is incremental since it allows also the definition of an object language OLn by 
a translation (rewriting) into another object language OL,-1. 

For example, assuming TL to be a functional language, the object language 
OLCJ could have either a Lisp-like list notation or an Algol-like keyword-based 
notation: 

(defn succ(x> (plus x I>> 
function succ (x) ; begin return plus(x, I> ; end succ; 

Both syntactic forms translate into the same abstract syntax tree in the target 
language TL that is passed to the TL type checker and code generator: 

Abs(x App(App(plus x> 1)) 

Section 3.1 gives a complete example of the target-language and the object- 
language definition for an untyped lambda calculus. 

A simple example of an incremental syntax definition is the definition of a 
language with infix function application (0~51) as an extension of a language 
with only prefix application (0~50). The notation A 3 B is used to indicate 
that the input A in an extended language is equivalent to the input B in a 
non-extended language: 

function succ (x) ; function succ (x) ; 

begin return x + 1 end succ; j begin return plus(x, 1) end succ; 

In a database programming setting, OL, could be a language with SQL- 
like query notations that is translated into a lambda calculus, O&-l, with 
primitive operations on a collection type (nil, cons, iter) [TriSl]: 
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select x.a itero() (nil) (fun(x) 

from x in X =k if p(x) then cons(x. a) (2) else 2) 
where p(x) 

Incremental grammar definit8ions are discussed in more detail in section 3.2 
and 3.3. The definit,ion of an SQL-like grammar in our formalism is given in 
section 3.4. 

Extensible grammars require extensible parsers. That, is, a parser cannot, 
be generated once for a given t#arget language, but has to be extended dynami- 
cally t,o handle programmer-defined object, languages. New grammar definitions 
should be checked to avoid problems t,ypical of macro definitions [MR77]: such 
as grammar ambiguity, non-termination of macro expansion, and generation of 
illegal syntax t,rees. Our checking is performed already at grammar-definition 
Gme and includes standard grammar analysis [ASU87] to avoid the first t,wo 
problems. To a.ddress the third problem, we develop a sorting discipline on 
productions (see section 4.1). 

A more subtle source of difficulties associated with incremental grammar 
definition is the binding structure of the t,arget language. The rewriting of 
object-language expressions into target-language expressions must be sensitive 
to the scoping rules of the target language and may require renaming operations 
to avoid name clashes (“variable captures”). A small example using C and the 
C preprocessor illustrates the issue in a familiar setting: 

#define swap(x,y) {int z; z = x; y = x; x = z;} 

ljni a, b; swap(a,b);} /* ok */ 
111 z, y; swap(z,y);} /* name clash */ 

The expansion of swap(z, y) leads to the program fragment {int z; z = z; 

y = z; z = z}, where the local declaration of z hides the variable z tha.t is 
passed as an argument to the macro. Removing the curly brackets in t,he 
macro definition does not solve the problem but yields a name clash between 
two declarations of the variable z in the same scope. 

A solution of the scoping issues associated with rewriting inside binding 
st,ructures requires a formalization of the scoping rules of a specific target lan- 
guage. To adapt our grammar formalism easily to several target languages, 
we divide the scoping problem into a generic bookkeeping task for the exten- 
sible parser and a parameterized language-specific renaming operation. This 
conceptual division of labor is exploited in the implementation of the exten- 
sible grammar package to factor out, t,arget-language dependencies. Scoping 
problems are avoided by distinguishing between binding and applied identifier 
occurrences, and by renaming when name clashes between identifiers in input 
programs and in rewrite rules could occur. Note that this solution is not an 
option for a simple token-based preprocessor. Section 4.2 describes the parsing 
and renaming rules of our formahsm (for initial as well as incremental gram- 
mar definitions). We are also able to prove that these dynamic parse rules are 
consistent with the static type rules given in section 4.1. 

3 Grammar Definitions 

In this section we introduce our extensible grammar formalism by examples. 
\$‘c st,art with a small initial grammar for an untyped lambda calculus that is 

A 



15 

ext,ended incrementally to support, database programming language constructs. 

grammar 
simpleTerm:Term == 

x=ide 
I “C” a=t erm “> ” 
1 “fun” “(” x=ide 1’) ‘1 a=term 

I”{” f=fields “}” 
I a=pIde : Term 

fields:Fields == 
x=ide 1’~” a=term f  =f ields 

I 
If=pIde:Fields 

term:Term == 
a=simpleTerm b=termIter(a) 

termIter(a:Term):Term == 
“(1’ b=term “)” 

I ” . ” x=ide 
I 

end 

=> mkTermVar (x> 
=> a 
=> mkTermFun(x a> 
=> mkTermRcd(f) 
=> a 

=> mkFieldCons(x a f  > 
=> mkFieldNil() 
=> f  

=> b 

=> termIter(mkTermApp(a b)) 
=> termIter(mkTermDot(a x>> 
=> a 

Figure 2: Definition of a concrete syntax for the lambda calculus 

3.1 Initial Grammar Definitions 

This section explains how to define the abstract syntax and the scoping rules 
of a particular target language TL as well as the syntax for an initial object 
language OLo (see the oval boxes in figure 1). This information is validat,ed 
by the grammar checker and then used to generate an initial parser for OLO 
programs. 

We use an untyped lambda calculus with records as the target language for 
our examples. Given a set of identifiers 2, the sets of terms (u, b) and fields (f) 
are recursively defined as follows: 

a, b ::= x 1 Xz.a 1 a(b) 1 {f} 1 a.2 
f ::= 0 1 z=u f 

The first step in the definition of an extensible grammar is to define the 
names of the sorts and the signatures of the constructors available for the 
construction of target-language terms. Our example uses the following target,- 
language-specific sorts: 

Term terms of the lambda calculus 
Fields ordered associations bet,ween field names and terms 
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Since identifiers require particular attention during expression rewriting, there 
are three predefined sorts t,o distinguish the binding properties of ident,ifiers: 

Binder identifiers appearing in binding positions 
Var identifiers appearing as variables inside the scope of a. binder 
Label identifiers that are not subject to scoping 

These sort names appear in the signatures of the term constructors for the 
lambda calculus: 

mkTermVar(x:Var):Term 
mkTermFun(x:Binder a:Term):Term 
mkTermApp(a:Term b:Term):Term 
mkTermRcd(f:Fields):Term 
mkTermDot(a:Term x:Label) 
mkFieldNil():Fields 
mkFieldCons(x:Label a:Term f:Fields):Fields 

Lambda abstractions (mkTermFun) introduce identifiers in binding positions, 
while other identifiers inside terms (mkTermVar) appear in non-binding posi- 
tions. In our example, field labels (mkTermDot, mkFieldCons) are not subject 
to block-structured scoping rules and are therefore defined to be of sort Label. 
For the purpose of grammar definitions it is not necessary to present the binding 
rules of the target language in more detail. 

Given a target-language description in terms of constructors and sorts, a. 
context-free grammar is defined as a collection of productions that translate 
phrases in an input stream into terms of the target language. A concrete 
syntax for the lambda calculus with records is defined in figure 2. The notation 
used is explained in the rest of this section. 

This grammar consists of four mutually recursive productions that define 
precedence of applications over abstractions and left-associativity of applica- 
tions. Here are examples of input phrases parsed according to the root produc- 
tion term: 

peter mkTermVar(peter) 
peter.age mkTermDothkTermVar(peter) age) 
fun(p)p(b) mkTermFun(p mkTermApp(mkTermVar(p) mkTermVar(b))) 

The result of parsing is a structured term of the target language. This term 
can be viewed as a tree in which the inner nodes correspond to term constructor 
applications and the leaves correspond to identifiers (or literals) extracted from 
the source text. A token sequence to which no production applies is rejected 
by the parser with an error message. 

A grammar introduces a set of non-terminals (simpleTerm, term, . ..) as 
identifiers for productions. Productions can be parameterized by terms of the 
target language (see, e.g., termIter). The signature of a non-terminal defines 
its parameter names and sorts as well as the sort of terms returned by the 
production. 

Each production consists of n > 1 expression sequences separated from each 
other by a vertical bar (I). Each ex p ression specifies an input syntax and a 
result expression (following the => symbol) to construct a term of the target 
language. Based on the token sequence encountered during parsing, one of 

A 
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the alternative expression sequences is selected and its corresponding result 
expression is evaluated in an environment that contains the actual parameter 
bindings and local bindings introduced on the left of the => symbol. 

The input, synt,ax accepted by an alternative is defined using the following 
notation: 

"X" accept t,he keyword x 

ide accept any non-keyword identifier 
X accept, the input specified by the production identified by the non- 

terminal x 

x(y) accept the input specified by the parameterized production iden- 
tified by the non-terminal x with the argument y  

x=y bind the term defined by y  to a local variable x 
pIde:S accept a pattern variable of sort S (see section 3.3) 

Each grammar det,ermines a set of keywords reachable from productions of 
the grammar. The set, of identifiers accepted by ide in a given grammar g 
excludes the keywords of g. Therefore, synt,ax extensions may introduce new 
keywords while syntax restrictions may change existing keywords into identi- 
fiers. 

The binding structure of the concrete syntax is defined implicitly by pass- 
ing identifier tokens from the input as arguments to term constructors. For 
example, the variable x in the grammar definition 

“fun” I’(” x=ide ‘1) ‘1 a=term => mkTermFun(x a) 

appears in a Binder posit,ion of t,he term const,ructor mkTermFun. Therefore, it 
can be deduced that the variable person in the source text fun(person) 
appears in a binding position. 

The recursive production fields in figure 2 genera.tes right-associative syn- 
tax trees for field lists while the production termIter generates left-associative 
syntax trees for function applications. Because we use an LL(l) parser, left.- 
associative grammars are handled in our grammar formalism by passing the 
syntax tree for the left context of a phrase as a production argument for the 
recursive invocation of a production (e.g., a:Term in production termIter in 
figure 2). 

3.2 Incremental Grammar Definitions 

This section explains how to define the syntax of a new object, language OLc, 
as an extension or a restriction of an existing object language OL,,-1. Such a 
syntax redefinition is validated by the grammar checker and used to derive a 
parser for OL,, from an existing parser for O1;,-1. 

A grammar defines a mapping from non-terminals (e.g., simpleTerm, term) 
to variables that are initialized with productions. Inside a production, each 
non-terminal denotes the production identified by its variable. Three incre- 
mental grammar operations are available: addition, extension, and update. 
The rationale behind these operations is to allow update and re-use of existing 
non-terminal definitions, preserving the recursive structure of the grammar. 

A grammar addition (==) defines a mapping from a non-terminal to a newly 
created variable initialized with a production. For example, we could use the 
standard encoding of let bindings: 
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let x=a in b + (fun(x) b)(a) 

t,o add the new non-terminal toplevel: 

grammar 
topLevel:Term == 

a=t erm 
1 “let” x=ide 11~” a=term 

“in” b=topLevel 
end 

=> a 

=> mkTermApp(mkTermFun(x b) a> 

The non-terminal topLevel is mapped to a newly created variable initialized 
with a production that accepts terms of the base language and (nested) let 
bindings at the top level, but not inside terms. 

A grammar extension (I==) d es t ructively updates the variable identified by 
a non-terminal with a new production. The new production extends the old 
production with additional alternat,ives. For example, to extend simpleTerm, 
we could write: 

grammar 
s impleTerm : Term I== 

“unit” 
1 *‘let” x=ide ‘1~” a=term 

” in” b=t erm 
end 

=> mkTermRcd(mkFieldNil()) 

=> mkTermApp(mkTermFun(x b) a) 

This grammar extension affects all productions referring to term, allowing unit 
and nested let bindings within terms. 

A grammar update (: ==) destructively updates the contents of a variable 
identified by a non-terminal with a new production that has the same signature, 
t,hereby affecting all product,ions referring to that non-terminal. For example, 
t,he definition of term could be updated as follows: 

grammar 
term:Term :== 

x=ide 

I ” ( ” a=term b=term “>” 
I”{” f  =f ields “}” 

end 

=> mkTermVar (x> 
=> mkTermApp(a b) 
=> mkTermRcd(f) 

This redefinition affects all productions referring to term (simpleTerm, fields, 
termIter), thereby restricting the expressiveness of the original language by 
disallowing abst,ractions. 

3.3 Pattern-based Action Definitions 

In the previous section, abstract syntax trees produced by actions are specified 
with explicit constructor applications. In this section we introduce patterns 
which allow us to write grammars more conveniently by using the existing 
target language. For example, the syntax for let and where bindings could be 
written more clearly using a pattern: 
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grammar 
simpleTerm:Term I== 

“let” x=ide 1’~” a=term 

“in” b=t erm 
end 

=> term<<(fun(x) b) (a>>> 

Inside the pattern term<<(fun(x> b) (a>>>, t,he variables x, a, and b. int,ro- 
duced on t,he left-hand side of the production, act, as placeholders (patt,ern 
variables) of sort Binder, Term, and Term, respectively. A pattern p<<s>> 

in a grammar g is translated into constructor applications by parsing the in- 
put token stream s starting with t,he production p. For example, the pattern 
term<< (fun( y) b) (a) >> yields the nested constructor application mkTermApp( 
mkTermFun(y b) a) when the token stream (fun(y) b)(a) is parsed as a 
term. 

The keyword pIde followed by a sort identifier is used in the initial grammar 
definition (see section 3.1) to indicates those positions in the input synt,ax where 
pattern identifiers may appear. Pattern variables of the sorts Binder, Var. and 
Label may appear also at those places in the input, synt,ax where the keyword 
ide is used t,o accept identifier tokens of the appropriate sort’. 

Many patt,ern-based syntax extensions require the introduction of fresh 
identifiers, i.e.. ident,ifiers distinct from ot,her identifiers appearing in Binding 
and Var positions, t,o avoid variable captures and name clashes. For example, 
the syntax for functional composition (f * g) could be defined as: 

grammar 
termIter(a:Term):Term I== 

“*” b=term x=local => termIter(term<<fun(x)a(b(x))>>) 
end 

The notation x=local guarantees that a fresh identifier is bound to x for ev- 
ery instantiation of this production during parsing. For example, f*g*h is 
expanded to fun(x2) (f (fun(xl)g(h(xl))) (x2)), and x*y is expanded t’o 
fun(xi) (x(y(x~))), avoiding a variable capture of t,he input, variable x by a 
binder introduced in the pat,tern. 

Since grammar definitions can be interspersed with object-language expres- 
sions, it is desirable to allow patterns to cont,ain variables that refer to global 
hindings. For example, the boolean constants true and false are sometimes 
represent,ed by the following funct.ions which, when applied to two argument)s, 
return one of them: 

let T = fun(x)fun(y)x 
let F = fun(x)fun(y)y 

In t,he scope of these definitions, the following grammar could be defined to 
replace the keywords true and false by the variables T and F, respect,ively. 

grammar 
simpleTerm:Term I== 

“true” => term<<T>> 
I “false” => term<<F>> 

I “if” a=term “then” b=term 
“else” c=term => term<<a(b) (c>>> 

end 
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During expansion of a pattern with free variables (T and F in the example 
above), unwanted variable captures must be avoided. For example, a naive 
macro expansion of the term fun(T) T(true) would yield the term fun(T) 
T(T) where t,he expansion of t#he keyword true is bound incorrectly. Therefore, 
free variables in extensible grammars are handled as follows: Each occurrence 
of a free variable x in a grammar definition is replaced by a fresh variable 
x’ During parsing, these modified pat,terns generate expansions that contain 
unbound variables (T’ and F’). For example, T(fun(T) T(true)) is expanded 
to T(fun(T) T(T’)). After the full input, has been parsed, a. target,-language- 
specific renaming function is applied to the parsed term. It replaces t,he binder 
T and its bound variables by T’ ) and T’ by T. The result,ing term T(fun(T’ ’ ) 
T’ J (T)) is then submitted to the type checker and code generator. 

3.4 Further Examples: Query Notations 

In this section we show how some typical database query notations can be 
viewed as mere “syntactic sugar” for the application of a single higher-order 
iterator function. The reduction of query notations into a single canonical iter- 
ation construct has been exploited in the literat,ure to simplify the type check- 
ing of database programming languages [OBBT89], the code generation for 
query expressions [Tri!31], and the verification of functional database programs 
[SS91, sssss]. Tl le o owing examples demonstrate t,hat extensible grammars f  11 
provide sufficient, expressive power to define the synt,ax of typical dat,abase 
query languages as well a.s t,heir translation into lambda calculus. This trans- 
lat,ion preserves the usual scoping rules defined for these query languages. 

We assume the grammar extension for booleans defined above and the fol- 
lowing global definit,ions that provide a standard encoding of the list, construc- 
t#ors nil and cons and a list iterator iter: 

let nil = fun(x)fun(n)fun(c) n 
let cons = fun(hd)fun(tl)fun(n)fun(c) c(M) (tl(n) (c)) 
let iter = fun(l)fun(n)fun(c) l(n)(c) 

The syntax of a “list, algebra” with selection, projection, and bina.ry join can 
then be defined as follows: 

grammar 
simpleTerm:Term I== 

“select” x=ide “in” a=term “where” b=term y=local 

=> term<<iter(a) (nil) (fun(x)fun(y)if b then cons(x)(y) else y)>> 
1 "project" x=ide “in” a=term “onto” f=f ieldList(x) y=local 

=> term<<iter(a) (nil) (fun(x)fun(y)cons({f}) (y))>> 
1 $1 join” x=ide “in” a=term ‘1, ” y=ide “in” b=term 

“where” c=term x2=local y2=local 
=> term<<iter(a) (nil) (fun(x)fun(x2)iter(b) (x2) (fun(y)fun(y2) 

if c then cons({fst=x snd=y})(y2)eIse y2))>> 
fieldList(x:Var):Fields == 

y=ide ” , ” f  =f ieldList (x) => fields<<y=x.y f>> 

I => fields<<>> 
end 
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For example, a selection expression with a variable identifier x, a range expres- 
sion a, and a selection predicate b is translated into an iterative loop. This 
loop over a has x as its loop variable and starting with the empty list nil it 
adds those elements that satisfy the selection predicate b: 

iter(a) (nil) (fun(x)fun(y)if b then cons(x)(y) else y) 

In this expression, y  is a fresh local variable which is bound during iteration 
to the result of the previous iteration step. This translation correctly captures 
the scoping rules for the list algebra, since the variable x is visible only in b 
and not in a. Furthermore, global identifiers are visible in a and b. 

The parameterized production f  ieldList demonstrates how parameters 
may be used to distribute terms (in this case a variable identifier x) into mul- 
tiple subterms. Using the extended grammar one can write, for example, the 
following queries that use global identifiers Persons, thirty, and equal: 

select p in Persons where greater(p.age)(thirty) 
project p in Persons onto name, age 
.join p in Persons, s in Students where equal(p.name) (s .name) 

Furthermore, it is possible to nest queries and to paramet#erize queries: 

fun( limit) select p in 
select p in Persons where greater(p. salary) (limit) 

where greater (p. age) (thirty) 

Note that the identifier p in the subquery will be correctly bound t,o the inner 
p in t,he generated lambda term. 

Simulating SQL expressions is slightly more complicated, since SQL allows 
the repetition of range expressions to express selections, projections, and n-way 

joins using a uniform notation: 

select target(x) from x in a where predicate(x) 
select target(x)(y) from x in a, y  in b where predicate(x)(y) 
select target(x) (y) (z) from x in a, y  in b, z in c 
where predicate(x)(y)(z) 

Therefore, the rewrite rules have to ensure that the target and the selection 
expressions appear in the scope of n (n > 1) fun binders in the generated 
lambda term. The following grammar uses a recursive, parameterized produc- 
tion rangeIter to achieve the desired rewriting: 

grammar 
simpleTerm:Term I== 

“select” a=term “from” x=ide “in” b=term c=rangeIter(a) 
=> term<<iter(b) (nil) (fun(x)c)>> 
rangeIter(a:Term):Term == 

0’ ‘1 x=ide “in” b=term c=rangeIter(a) y=local 
=> tkm<<fun(y)iter(b)(y)(fun(x)c)>> 

1 “where” b=term y=local 
=> term<<fun(y)if b then cons(a)(y) eke y>> 

end 
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For example, a two-way join would be expanded as follows: 

select {~.a y.b} iter(X)(nil)(fun(x) 

from x in X, y in Y j fun(zl) iter(Y)(zl)(fun(y) 

w11ere p(x.c)(y.c) fun(z2) if p(x.c)(y.c) then 

cons({x.a y.b})(zr?) else ~‘2)) 

4 Formalizing Grammars and Parsers 

In se&on 4.1 we describe t,he rules t,hat, are USNI in the grammar checker (see 
figure 1) to statically decide whether a sequence of grammar definit,ions and 
grammar extensions is well-formed. In section 4.2 we formalize the parse rules 
t,hat. define the mapping from an input, stream into a constructed term of the 
t#arget language. WC also present. a soundness result of the dynamic parse rules 
with respect to the static type rules of section 4.1 which guarantees t,hat parsers 
derived from well-typed grammars return well-formed parse trees. This result, is 
generalized in the full paper t,o parsers derived from incremental pattern-based 
grammar definitions. 

4.1 Static Typing of Grammar Definitions 

‘I’o describe the type rules for grammar definit,ions and ext.ensions, we first, 
define the relevant, synt,act,ic objects (sorts. signat,ures. productions, grammars, 
grammar sequences). 

The synt,ax for term sort,s B and signat#ures S is defined as follows: 

R ::= Unit, 1 Var 1 Binder 1 Label predefined t,erm sorts 

1 B1 1 1 B” t,arget-language-specific sort,s (71 > 0) 
s ::= (Bl, , L&p production signatures (k > 0) 

The abstract syntax of productions is slightly more orthogonal than the con- 
crete syntax we have used in the examples. In part,icular, terminal produc- 
tions like ide(B) or “x” may appear nested within constructor and production 
argument lists. Furthermore, the synt,actic separation of productions into a 
binding sequence and a construct,or applicat,ion (t,o the right, and left of t,he 
=>, respectively) is no longer enforced. For example, t,he product,ion x=ide 
=> mkTermVar(x) in t,he concrete syntax is tra.nslat,ed into a simple sequential 
composition z = ide( Va.r) mkTermVar( x). 

y ::= unit 
” 2” 

I global(z) 

I x 

I Pl I Yz 

unit production 

keyword token production 
variable token production (of sort B) 
fresh obje&language variable 
global object-language variable 
term variable 
sequential composition 
pattern variable binding 
choice 
non-t,erminal application (/c > 0) 
sorted constructor application (Ic > 0) 

A 
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The set of const,ructors c(B,, ,Bk)B with argument sorts Bi and result sort B 

contains the target-language-specific constructors (e.g., mkTermVar, mkTerm- 
Fun). 

A grammar consists of a list of noii-terminal definitions that define a signa- 
ture, a. modification operator, and a production. 

g ::= [I empty grammar 
1 g 11: : (zl:B1,. _, zk:Bk)B a y  non-terminal definition 

a ::= =z grammar addition 
1 :z= grammar update 
I I== grammar extension 

Each grammar is defined in the scope of it,s preceding grammar definitions: 

gseq ::= empty grammar sequence 
I gseq g grammar composition 

A global environment E assigns signatures to non-terminals: 

E::= @ empty environment 
1 E,.c:S non-terminal CC has signature S 

A local environment L assigns signatures to term variables: 

L::= @ empty environment 
I L,z:B variable x has sort B 

Environment concatenation is written as E, E’. The domain of an environment, 
denot,ed by Dam(E), is the set of variables x defined in E. A variable name x 
may occur more than once in an environment. In this case, the type rules for 
variables retrieve the rightmost sort or signature assigned to X. 

The st,at,ic semantics of grammars involves the following judgements: 

E; L F p : B production JI has sort B assuming E and L 
Etg::E’ grammar g defines signatures E’ consistent with E 
Etgok grammar g defines productions consistent wit811 E 
t gseq =S E grammar sequence gseq defines a final environment, E 

The structure of the sort, rules for productions p resembles the structure of 
t,yping rules for terms in a simply-typed lambda calculus: 

E; L F unit : ITnit, 

E; L F “z” : Unit 
E; L t pl : B E; L, z : B b pz : B’ 

E; L k .r = pl p2 : B’ 
E; L F ide(B) : B E; L t pl : B E; L t p2 : B 

E; L F local : Binder E; L k p1 1 pl : B 
E; L t global(z) : Var E; L k p, : B, I<;</; 

.r 51 Dom(L’) E; L k C(B~,. ..Bk)&l,. >pk) : B 

E; L, z : B, L’ t z : B E;L’rpp,:B, l<i<k z e Dom(E’) 
E; L k pz : B’ 1 E; L k pl : B E, z : (BI,. , Bk)B, E’; L k z(pl,. ,pr;) : B 

E; L t- p1 p2 : B’ 

Since non-terminal definitions can be recursive, the type checking of a gram- 
mar g is performed in two passes. A first pass (E I- g :: E’) collects the signa- 
t,ures E’ of all non-terminals in g, verifies that each non-terminal is defined at 
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most, once in g, and asserts that all grammar updates (x : S:==p) and gram- 
mar extensions (.z : S(==I) f  t 1 re er o non-terminals with matching signatures in 
the scope E of g: 

Et-[::@ 

Etg::E’ x $ Dom(E’) 
Et g x : (xl:B1, _. .,zk:Bk)B == p :: E’,x : (BI,. ., &)B 

Etg::E’ x $ Donz(E’) a E {:==, I==} 
Etx:(B1,...,Bk)B 

E t g z : (xl:B1,. ,G~:L&)B a p :: E’, z : (&, _, &)I? 

In a second pass (E t- g ok), the bodies p of all non-terminal definitions in 
g a.re checked t,o match their signatures in E. The rules for parameterized 
non-t,erminal definitions resemble t#he type rules for lambda abstract,ions: 

E t [] ok 

Etgok E;@,xl:B1 ,..., xk:Bktp:B aE{==,:==,I==} 
Etgx:(zl:B1,...,;e~:Bk)Bupok 

A sequence of grammars is verified by performing the above two passes on each 
grammar in t,he sequence using the environment est,a.blished by it)s preceding 
grammars: 

t* @ 
t gseq =S E Etgz::E’ E, E’ t g ok 

t gseq g + E, E’ 

It is possible to derive a simple consistency-checking algorithm from t,hese 
inference rules as follows: Starting with the proof goal l- gseq + E’, the in- 
ference rules have to be applied “backwards” (from the conclusions to the as- 
sumptions). Since for each syntactic construct there is exactly one applicable 
inference rule, the derivation either rea.ches the axioms (in time proportional 
to the size of the grammar) or gets stuck in a configuration where no inference 
rule can be applied. In the latter case the grammar sequence is rejected as 
ill-typed. In the next section we prove that parsers derived from well-typed 
grammars never generate ill-formed syntax trees. 

4.2 Parsing and Term Construction 

Each non-terminal ;7: in a grammar serves a dual purpose. On the one hand. 
it, det,ermines how t,o parse an input token stream and how to construct a cor- 
responding term of t)he target language. On the other hand, it defines how t.o 
transform a patt,ern (a token stream inside <<>> brackets) occurring in an in- 
cremental grammar definition into an equivalent production. In this section we 
describe the parsing of input token streams, while pattern parsing is described 
in the full paper. 

For the purpose of parsing it is convenient to rewrite a grammar sequence 
gseq into a single grammar g of the form [], Xl : Sl==p1,. ,Xk : Sk==pk 
(Ic > 0) such that xi # xj for i # j. We use the notation: 

wq - 9 grammar sequence gseq normalizes to g 

A 
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g; M t (s, i) unit =+ (s, i) unit 

g; M 1 (cz :: s, ;) “1” =$ (s, ;) unit 

g; M t (x :: s, i) ide(B) + (s, ;) zg z @ l<(g) B E {Binder,Var,Label} 

g; M k (s, i) local =k- (s, i + 1) xL,,~~~ 

g; M 1 (s, i) global(z) + (s, ;) xvar 

g; h,f, x = t. hf’ t (s, i) x =+ (s, z) t x @ Dom(M’) 

9; M k (s, i) .r * (s, 2) wrong 5 @ DOT/,(M) 

9; M t (3, QPl =+ (s’, 2) t t # wroq 

9; M F- (s’, 2’) p2 =2- (s”, 2’) t’ 9; M k (s, i) pl G- (s’, i’) wrong 
Y: M t (s, q PI p2 * (s”, i”) f’ g; M t (S, i)Pl p2 * (S”, i”) wrong 

g; M k (33 2)Pl =+- (s’, 2’) t t # wrong 

!I; M, x = t k (s’, 2) pz *  (g”, ;“) f,’ 

g; M k (s, i) x = 1’1 pa j (s”, ;“) f’ 

9; M k (.c i)p, + (s’, i’) wrong 

9; M k (,9, 2) X = 111 p2 * (S’, i’) wrong 

9; M k (s, i)Pl =+- (s’, i’) t .Y; M k (s, i) p2 =k (s’, I’) t 

9; M t (3, 2) PI I p2 * (s’, 2) t 9; M b (s> i) ~1 / pz =+ (s’, ;‘) t 

Y; M t (+1,i,-l)P, * (S3,i3)f3 1 < j < I; 
Y; M t (SO> io) C(B,,. .,Bk)B(Pl, ,Pk) * (Sk, ik) C(B,, ,Bk)B(tl..~..tk) 

g;Mk(s,-I,$-l)p, *(s,,i,)f, l<J<k 

(x : (s1:B1,. ) xk:Bk)B)=‘p E g 

g; 0 Xl = t1 . Xk = tk 1 (Sk) p * (s’, i’) t 

!I; M i- (so, io) L(Pl, ,Pk) * (s’, i’) t 

%Mt(s,-l,i,-l)P, =F(s,,i,)t, 
(x : (x1:&, , xk:Bk)B==p) @ g 

g; 8 xl = fl xk = tk k (Sk) p j (S’, i’) t 

io)X(p~,...,pk) * (s’,i’)wrong 

Figure 3: Parse rules for terms 



In this rewrik process, grammar updates (x : S:==p) and grammar ex- 
t8ensions (r : Sl==p) are eliminat~ed by changing t,heir corresponding original 
definitions (x : S==$) into E : S==p and E : S==y 1 p’, respectively. Name 
conflict,s between grammar additions z : S== p and II: : S’==p’ (17 # 17’) in 

t,wo grammars of gseq are resolved by consistently renaming one of t,he non- 
terminals t,o a fresh non-t,erminal r’ within in it,s local scope. It, is easy t,o see 
that, normalizat,ion preserves typing, t,hat is, if gsrq- Q and F gseq + E, then 
t- g ti E’, where E’ is equal to E up to duplicak elimmation. 

We use the following notation t,o describe how a product,ion of a grammar 
g applied t,o an input stream const’ruck a term t of the t,arget’ language: 

It, st,ates t,hat production 1) executed in environment g; M starting in the initial 
configuration (s% i) ret,urns a term t and a final configurat8ion (s’, i’). A dynamic 
environment M conkins local t,erm variable bindings. A configurat)ion (s, i) 
consists of t,he input st,ream s and an int,eger counter i to generat,e uuique fresh 
ideluifiers .rB dist,inct from user-defined identifiers of the form 2~. 

The parsing rules are given in figure 3. These rules involve synt,actic objects 
of t,he following cat,egories: 

s ::= 
* 
x :: 5 

b ::= 
unit 

J-BZll&T 

*~l’ar 

XLnbel 

input streams 
empty input st,ream 
identifier token 
terms 
trivial term 
binder identifier 
variable ident,ifirr 
label identifier 

fresh identifier of sort B (i > 0) 
R E {Binder, Va.r, T,abel} 
construct8ed t,erm (k > 0) 
parse results 
term 
type error 
dynamic environments 
empty environment, 
term binding 

An input8 st,ream is a sequence of identifiers. some of which may have been 

declared to be keywords (e.g., "if") in g. We use the notation Ii(g) to denotes 
t,he set of keywords defined in productions of g. The pa,rsing rules for terminals 
use K(g) t,o distinguish bet#ween keywords and ident,ifiers appearing in t,he input. 
&ream. 

The sort, of a krm can be determined without, reference to an environment8: 

unit : Unit, XB : B XL : R 
bl : B1 b,, : Bk 

c(B1,. ,Bk;)B(ht.. > hc) : B 

A dynamic enviromnent M is said t,o mat~ch a st#at,ic environment, L (written 
as M b I,) if it,s t,erm bindings have names and sort,s compatible with the names 
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and sorts in 1,. 

The following t,heorem relat,es the dynamic parse rules in figure 3 with the 
static type rules presented in se&on 4.1. 

Tluzortlm 1 ($ar.srng respeci.s typzng) For all g, E, L,y, Ad, s, s’? i and i’ such 
that 

1. @ t g :: E 
2. Q t g ok 
3. E; I! t p : B 
4. n/l b L 
5. !I; Af t (s, i) p =+ (S’? i’) t 

t : R h,olds. 

The proof of t,his theorem can be found in t,he full paper. In part,icular, if a non- 
parameterizcd (L = 114 = 0) parser with result, sort, B for a root, production l’n 
defined in a type-correct’ grammar g consumes the full input stream s (returning 
t’he empt,y input, stream c)~ the parse result t is guaranteed t,o be of sort, B: 

Corollary 1 If 

l 12 t g :: E 

. @tgok. 

. E;;gt ~0 : B, and 

l g; (2, t (s, 1) PO =+ (*, i’) t 

then t : B avd t # wrong. 

5 An Extensible Parser Package 

Ext,ensible grammars as described in this paper were developed in the cont,ext) of 
the Tycoon dat,abase programming environment [MatSIS]. However, as sket,ched 
in figure 1, the extensible grammar package was implement.ed in a way t)hat 
fact,ors out all target-language dependencies (t)he base sorts Bi, the abst#ract, 
syntax t,rcc constructors c(B~,,, ,B~)B) and the renaming operat,ion on abst.ract, 

syntax t,rees) from the package implement.ation. 
A t,oken &ream s is represented as an object with a local state and met)hods 

lo inspect the current input t,oken and to advance t,o the next input t,oken. 
A parser for terms of a sort, B is represented as a function that t,akes a 

scanner object and returns a typed abstract, synt)ax tree, modifying the state of 
the scanner object and a variable counter to generate fresh variable identifiers. 

A grammar gi is represented as an object, of an abstract data type encapsu- 
la.ting information about) the target’ language TL and t,he object, language OLi 
accepted by g,. ‘Jhe implementor of a compiler for a language with an exten- 
sible grammar links the parser package into the compiler. A grammar for t,he 
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t,arget language at hand is generated via calls to the parser interface. Finally, 
a parser for this grammar is generated which in t#urn is used t,o parse actual 
program input. 

The following st.eps have to be taken to generate the grammar go and a 
parser for the initial object language OLO. Each of these steps is implemented 
by a funct,ion call to the parser package that, passes the grammar as an explicit. 
argument. 

1. Creation of an initial (empty) grammar go. Arguments to this operation 
provide information to the parser package about the tokens returned by 
t,he scanner and funct,ions to create fresh identifiers. An initial grammar 
already contains the names of the builtin sorts Label, Var, and Binder. 

2. Addition of named sorts to go. These sorts correspond to abstract-syntax- 
t,ree types in the target,-language compiler. For each newly defined sort, 
an AST copy routine, an AST renaming routine, and a distinguished 
error value have to be supplied. The error value is generated by the 

parser package in case of parse errors. 

3, Addition of named constructors to go. Constructors correspond to func- 
tions in the target-language compiler that take Ic >_ 0 typed abstract 
synt,ax t,rees and return an aggregated syntax tree. For each constructor, 
the list of it#s argument sorts and its result sort have to be specified. 

4. Addition of a concrete syntax for grammar definitions to go. Target,- 
language implementors can adopt, either the concrete syntax used in this 
paper (grammar end) or t,hey can define their own tailored syntax 
for the definition of productions p that match the abstract syntax given 
in section 4.1. 

5. Generation of a parser for go. Parser generation involves the calculation 
of director sets to support efficient LL(l) p arsing. Furthermore, variable 
and non-t,erminal references are resolved into direct, table indices. 

6. Parsing of a grammar extension g using the parser generated in the previ- 
ous st#ep. The grammar extension g defines the mapping from 0~50 terms 
to TL terms. 

7. Ext,ension of go by g. 

S. Generation of a parser for the extended go. 

A pa,rser for OLi derived from a grammar gi returns either a term of the 
target, language proper, or an abstract syntax tree for an increment,al syntax 
extension ga. In the latt,er case the parser package is invoked to check the 
type correctness of gA in the scope of the environment E, established by the 
current grammar gi. I f  this check succeeds, the extended grammar is obtained 
by normalizing the grammar sequence g;, gA - gi+l. Finally, a new parser is 
generated for gi+l; this parser can t#hen be used t,o parse further input in the 
extended languageOLi+l. 

I f  t,he parsing result is a term t of the target language, the parser package 
also returns a list of variable renamings. These renamings have to be performed 
by t#he target-language compiler in t to establish bindings to global variable 
ident,ifiers (see se&on 3.3). 
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6 Comparison with Related Work 

Syntactic extensibility has been studied previously in the context of program- 
ming languages and theorem provers. 

Linguistic reflection [SMMSl, SSS+92, SSF92, Kir92] in persistent program- 
ming languages has been used to add high-level (query) notations to strongly- 
typed programming languages. These extensions are achieved by executing 
user-defined code at compile time to transform syntax trees returned from the 
parser prior to further processing by the type checker and code generator. Our 
approach differs from this work since we are able to guarantee the termination of 
compilation, even when our transformation operations are defined recursively. 
Furthermore, we are not aware of work in the context of linguistic reflection to 
handle correct,ly the problematic binding situations sketched in section 3.3. 

Some non-persistent language implementations, like CAML and SML, inte- 

grate YACC or a similar parser generator that allows them to introduce new 
syntax [MR92]. I f  the new syntax is to be mixed with the old one, the new 
syntax must be quoted in some way. Instead, we can freely intermix new and 
old syntax without special quotations. 

Hygienic macros [KFFD92, Koh86] 1 lave goals similar to those of our ex- 
tensible grammars; these macros also work on the abstract syntax and avoid 
binding anomalies. However, these macros account only for explicit (parame- 
terized) macro calls and not for more liberal keyword-based syntax ext,ensions. 
Hygienic macros employ a multi-pass time-stamping algorithm to prevent vari- 
able capture; this algorithm is different from our one-pass renaming algorithm. 
Furt,hermore, we do not handle quotation and ant#iquotation in the style of Lisp. 

Griffin [Gri88] h as enumerated desirable properties of notational definitions 
and has studied their formalization. Unlike Griffin who translates notations to 
combinator form, we are able to handle variables bound to non-local binders 
in patterns. Moreover, while Griffin discusses abstract translations, we pro- 
vide a specific grammar definition technique and an efficient parsing algorit,hm. 
Parsing is efficient because it is LL( 1) and because it avoids the creation of 
intermediat)e parse trees, producing abstract, synt)ax trees that do not, require 
normalization. 

Bove and Arbilla [BA92] d’ ISCUSS how to use explicit substit,utions t,o im- 
plement syntax extensions. Theirs is an elegant idea that may be exploited in 
syst,ems where the target compiler support,s explicitf substitut8ions. As in the 
previous case, their work does not describe a parsing algorit(hm, but presents 
an interesting theory. 

7 Concluding Remarks 

Extensible grammars avoid many of the problems associated with traditional 
macro-expansion or program-rewrite tools by sort constraints at grammar- 
definition time and by a careful handling of identifiers in binding constructs. 
Furthermore, since our work extends the well-undrrstood parser t,echnology by 
a small set of concepts, extensible parsers can be integrated wit,h little overhead 
in today’s compilation environments. 

Traditional database programming languages have a bias t.owa.rds a specific 

dat,a model by providing built,-in syntactic support t,ailored t#o the st8ructures 
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and operations of t,hat data model. In a programming enviromnent equipped 
with ext,ensible grammars, such syntact,ic forms can be eliminated from t)hc 
core language definit,ion and can be int.roduced in application libraries shared 
by larger user comniunities. 
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