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1  Introduction

 

The Functional Abstract Machine (Fam) is a stack machine designed to support
functional languages on large address space computers. It can be considered a SECD
machine [1] which has been optimized to allow very fast function application and the
use of true stacks (as opposed to linked lists).

The machine qualifies to be called functional because it supports functional objects
(closures, which are dynamically allocated and garbage collected), and aims to make
function application as fast as, say, taking the head of a list. All the optimization and
support techniques which make application slower are strictly avoided, while tail re-
cursion and pattern-matching calls are supported. Restricted side effects and arrays are
provided, but they are less efficient than one might expect. Moreover the performance
of the proposed garbage collector deteriorates in the presence of large numbers of up-
datable objects.

The machine is intended to make compilation from high level languages easy and
regular, by providing a rich and powerful set of operations and an open-ended collec-
tion of data types. This richness of types can also facilitate portability, because every
type can be independently implemented in different ways. However the number of
machine instructions tends to be high, and in general there is little concern for minimal-
ity.

The instructions of the machine are not supposed to be interpreted, but assembled
into machine code and then executed. This explains why no optimized special-case op-
erations are provided; special cases can be easily detected at assembly time.

For efficiency considerations, the abstract machine is not supposed to perform run-
time type checking (even if a hardware implementation of it might), and hence it is not
type-safe. Moreover, as a matter of principle, there is no primitive to test the type of an
object; the correct application of machine operations should be guaranteed by
typechecking in the source language. Where needed, the effect of run-time typecheck-
ing can be achieved by the use of 

 

variant 

 

(i.e. tagged) data types.

 

2  The State

 

The state of the abstract machine is determined by six pointers, together with their
denotations, and a set of memory locations. The pointers are the Argument Pointer, the
Frame Pointer, the Stack Pointer, the Trap Pointer, the Program Counter and the Envi-
ronment Pointer. They point to three independent stacks and, directly or indirectly, to
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the data heap. The memory takes care of side-effects in the heap and includes the file
system.

The 

 

Argument Pointer 

 

(AP) points to the top of the 

 

Argument Stack 

 

(AS), where ar-
guments are loaded to be passed to functions and results of functions are delivered.
This stack is also used to store local and temporary values. In all machine operations
which take displacements on AS, the first object on AS is at displacement zero.

The 

 

Frame Pointer 

 

(FP) points to the current closure (or frame) (FR) consisting of the
text of the currently executed program, and of an environment for the free variables of
the program.

The 

 

Program Counter 

 

(PC) points to the program to be executed (PR) (which is part
of the current closure).

The 

 

Stack Pointer 

 

(SP) points to the top of the 

 

Return Stack 

 

(RS), where program
counter and frame pointer are saved during function calls.

The 

 

Trap Pointer 

 

(TP) points to the 

 

Trap Stack 

 

(TS), where 

 

trap frames 

 

are stored. A
trap frame is a record of the state of the machine, which can be used to resume a previ-
ous machine state (side effects in the heap are not reverted).

The 

 

Environment Pointer

 

 (EP) also points to AS, and defines the top level environ-
ment of execution for use in interactive systems. At the beginning of execution, EP is
the same as AP, but it normally grows because of top level definitions.

The abstract machine assumes the existence of a memory of cells of different sizes.
Typical cell types are: 

 

triv

 

, containing the value triv; 

 

bool

 

, containing booleans; 

 

int

 

, con-
taining unbounded precision integers; 

 

string

 

, containing character strings; 

 

ref

 

, contain-
ing updatable pointers (the only updatable objects in the machine together with
arrays); 

 

pair

 

, a pair of cells; 

 

nil

 

, an empty-list cell; 

 

list

 

, a cell paired with a nil or list cell,
used to represent linear lists; 

 

record

 

, an n-tuple of cells; 

 

variant

 

, a tagged cell, used to
represent disjoint union types; 

 

text

 

, a cell containing executable code; 

 

closure

 

, a function
cell consisting of a text cell and a set of cells for the global variables of the text; 

 

array

 

, an
efficient representation of lists of refs.

The exact format of these cells is unessential, as long as the primitive operations on
them have the expected properties. The abstract machine does not assume these cells
to contain any information about the type; however the garbage collector will want to
know at least about the 

 

format 

 

of the cells (different types may have the same storage
format). This can be efficiently encoded in the address of a cell. The generic equality
operations use this information too.

The State
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Stacks and cells contain pointers to other cells, and this convention will be strictly
used in the pictures which follow. However in practice cells which are not bigger then
a pointer (e.g. bool or short integer) are stored directly, instead of storing pointers to
them. These are called 

 

unboxed 

 

cells, and it must be possible to distinguish them from
pointers for the sake of the garbage collector (e.g. by imposing that every pointer has a
value bigger then the value of any unboxed cell). Ref cells must always be 

 

boxed

 

, to
guarantee the sharing of side-effects.

 

3  Operational Semantics

 

The semantics of the abstract machine is given operationally by state transitions
[2]. A machine state is represented by a tuple:

some conditions must hold for a tuple to be a valid machine state, and these are men-
tioned below.

For any stack S (i.e. AS, RS, TS or ES) we write S.x:t for the operation of pushing a
cell x of type t on the top of S (t may contain type variables 

 

α

 

, 

 

β

 

, etc.). The empty stack
is <> and S.x:t is a stack iff S is a stack. Moreover S[n]x:t is a stack which is the same as
S, except that the n-th cell from the top contains x of type t; the top cell of S has displace-
ment 0. In case of conflicting substitutions, like S[n]x:t[n]xÕ:tÕ, the rightmost substitu-
tion is the valid one.

A tuple (AS, RS, FR, PR, TS, ES, M) is a machine state only if ES (pointed to by EP)
is equal to AS minus some of the top cells of AS.

The frame FR (pointed to by FP) has the form:

where c is a sequence of machine operations, l

 

i

 

 are 

 

literals 

 

of c and x

 

j

 

 are values for the
free variables of (the source program whose translation is) c. The literals of c are "big
constants" like strings and inner lambda expressions, which occur in (the program
whose translation is) c; they are taken out of the code so that the garbage collector can
access them easily. The code c together with its literals is a 

 

text 

 

(and a literal can be a
text). A text together with its free variables is a 

 

closure

 

. Every closure implements a
function having some type 

 

α→β

 

.
The program PR (pointed to by PC) is a string of abstract machine operations. The

empty program is <> and the initial instruction of PR is singled out by writing
op(x

 

1

 

:

 

α

 

1

 

,..,x

 

n

 

:

 

α

 

n

 

).PRÕ, where x

 

i

 

 are the parameters of op.
The 

 

memory 

 

M is a pair of functions:

where L are the 

 

locations 

 

and F is the 

 

file system

 

. A tuple (AS, RS, FR, PR, TS, ES, M) is a
machine state only if M defines all the addresses and file names mentioned by the other
elements of the tuple. Stream names are strings, and streams (which represent files) are

 (AS, RS, FR, PR, TS, ES, M)

 closure(text(c,l

 

0

 

,..,l

 

n

 

),x

 

0

 

,..,x

 

m

 

): 

 

α→β

 

 M = L,F: (address 

 

→

 

 value) 

 

× 

 

(streamname 

 

→

 

 stream)
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lists of characters (in terms of abstract machine data structures, characters are 1-char-
acter strings). For any stream q and character c, c.q is the result of prefixing c at the head
of q, and q.c is the result of appending c at the tail of q (we also use s.q and q.s for
strings s=c

 

1

 

..c

 

n

 

); <> is the empty stream. 
Addresses (the formal characterization of ref cells) are, say, integers; values are all

the abstract machine data types, including addresses and stream names but excluding
streams. Given an address a, M(a) = L(a) is the value contained at that address in L, and
M[v/a] = L[v/a] is the memory which is the same as M, except that L(a) is the value v.
Given a string s, M(s) = F(s) is the stream with stream name s in F, and M[q/s] = F[q/
s] is the memory which is the same as M, except that F(s) is the stream q. The conven-
tion about conflicting substitutions mentioned above applies.

Every machine operation op(..) implements a state transition, denoted by:

In order the make the operation more visible, we normally use the following
equivalent notation:

There may be several state transitions for the same operation, with different start-
ing states. This allows us to express operations which discriminate on some values
present on the stacks (e.g. conditional jumps). There may even be several state transi-
tions for the same operation and the same starting state, which expresses nondetermin-
istic behavior (e.g. a random number generator, or simply selecting a new unused
address). Conversely, there may be no state transition for some operation in some state:
this means that the machine reached an inconsistent state, and the result of the opera-
tion is unpredictable. Finally there may be no operation to execute (i.e. PR=<>), in
which case the machine stops.

Some operations may 

 

fail 

 

on some inputs (e.g. taking the head of an empty list).
This is a well defined situation, and we use the notation:

to indicate that we have a failure with reason 'op' (a string) when the predicate p is true
of the starting state (AS, RS, FR, ^.PR, TS, ES, M), otherwise the normal state transition
will happen. This is only an abbreviation for the following state transitions:

 (AS, RS, FR, op(x

 

1

 

:

 

α

 

1

 

,..,x

 

n

 

:

 

α

 

n

 

).PR, TS, ES, M) =>
          (ASÕ, RSÕ, FRÕ, PRÕ, TSÕ, ESÕ, MÕ)

 op(x

 

1

 

:

 

α

 

1

 

,..,x

 

n

 

:

 

α

 

n

 

)
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (ASÕ, RSÕ, FRÕ, PRÕ, TSÕ, ESÕ, MÕ)

 op(x

 

1

 

:

 

α

 

1

 

,..,x

 

n

 

:

 

α

 

n

 

)
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (ASÕ, RSÕ, FRÕ, PRÕ, TSÕ, ESÕ, MÕ)
       ? 'op' if p
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where the FailWith operation, which is executed next, is defined in the section on Trap
Operations.

 

4  Data Operations

 

These are operations which transfer data back and forth between the Argument
Stack and data cells. In general they take n arguments (n

 

≥

 

0) from the top of AS popping
the stack n times, and push back m results (m

 

≥

 

1).

Data operations may 

 

fail

 

, and these failures can be trapped. Abstract machine fail-
ures are indistinguishable from user defined failures (see sections on failures).

The set of abstract machine data types is open ended, and so is the set of data op-
erations. The rest of this section describes data types and operations which are thought
to be commonly useful, but are often meant as simple suggestions. Some data types are
used as arguments to basic machine operations, and hence must be present in every im-
plementation. They include triv, bool, (short) int, string, list and closure. Closures are
treated in a separate section. 

 

4.1  Triv Operations

 

Triv is the type containing the single object triv. There is only one operation on this
type, which constructs and pushes a triv cell on AS.

 op(x

 

1

 

:

 

α

 

1

 

,..,x

 

n

 

:

 

α

 

n

 

)
       (AS, RS, FR, ^.PR, TS, ES, M) =>                    (if not p)
            (ASÕ, RSÕ, FRÕ, PRÕ, TSÕ, ESÕ, MÕ)

op(x

 

1

 

:

 

α

 

1

 

,..,x

 

n

 

:

 

α

 

n

 

)
       (AS, RS, FR, ^.PR, TS, ES, M) =>                    (if p)
            (AS.'op', RS, FR, FailWith( ).PR, TS, ES, M)

 Triv ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.triv, RS, FR, PR, TS, ES, M)

Data Operations
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4.2  Boolean Operations

 

Boolean operations construct and manipulate booleans in the usual ways. Condi-
tional branches could also be considered boolean operations, but they are described
among the control operations.

 

4.3  Integer Operations

 

Unbounded precision integers are the standard. The operation Divide fails with
string 'divide' when the denominator is zero, and Modulo fails with string 'modulo'
when the second argument is zero. All the other operations are always defined (actu-
ally a 'collect' failure is generated when the result of an integer operation overflows the
available memory). Short integers are acceptable as a partial implementation; over-
flows should then produce failures with strings 'minus', 'plus', 'diff' and 'times'. Real
numbers, if implemented, should be a different data type.

 True ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.true, RS, FR, PR, TS, ES, M)

False ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.false, RS, FR, PR, TS, ES, M)

Not ( )
       (AS.b:bool, RS, FR, ^.PR, TS, ES, M) =>
            (AS.not(b), RS, FR, PR, TS, ES, M)

And ( )
       (AS.b:bool.bÕ:bool, RS, FR, ^.PR, TS, ES, M) =>
            (AS.and(b,bÕ), RS, FR, PR, TS, ES, M)

Or ( )
       (AS.b:bool.bÕ:bool, RS, FR, ^.PR, TS, ES, M) =>
            (AS.or(b,bÕ), RS, FR, PR, TS, ES, M)

BoolEq ( )
       (AS.b:bool.bÕ:bool, RS, FR, ^.PR, TS, ES, M) =>
            (AS.b=bÕ, RS, FR, PR, TS, ES, M)

Int (n: int)
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n, RS, FR, PR, TS, ES, M)

Minus ( )
       (AS.n:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.Ðn, RS, FR, PR, TS, ES, M)
       ? 'minus' on overflow
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Plus ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n+m, RS, FR, PR, TS, ES, M)
       ? 'plus' on overflow

Diff ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.nÐm, RS, FR, PR, TS, ES, M)
       ? 'diff' on overflow

Times ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n

 

×

 

m, RS, FR, PR, TS, ES, M)
       ? 'times' on overflow

Divide ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n/m, RS, FR, PR, TS, ES, M)
       ? 'divide' if m=0

Modulo ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.mod(n,m), RS, FR, PR, TS, ES, M)
       ? 'modulo' if m=0

Greater ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n>m, RS, FR, PR, TS, ES, M)

Less ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n<m, RS, FR, PR, TS, ES, M)

GreaterEq ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n

 

≥

 

m, RS, FR, PR, TS, ES, M)

LessEq ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n

 

≤

 

m, RS, FR, PR, TS, ES, M)

IntEq ( )
       (AS.n:int.m:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n=m, RS, FR, PR, TS, ES, M)
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4.4  String Operations

 

Strings are ordered sequences of Ascii characters. There is no limitation on their
length apart from the size of the memory, and the 

 

Length

 

 operation is assumed to take
constant time. 

 

SubString 

 

extracts a substring from a string, given a starting position
(where the first character is position 1) and a substring size (may fail with 'substring').

 

Search 

 

searches a pattern in a string; when given a string pattern 'p' as argument it re-
turns a function which acts as a matching machine 'm' for 'p'. The machine 'm' can be
applied to pairs string-integer 's,i' to search the longest leftmost substring 's1' of 's' start-
ing at or after position 'i' in 's' and matching 'p'. If 's1' exists, the result is a pair of inte-
gers 'j,l' where 'j' is the starting position of 's1' in 's' and 'l' is its length. The tuple 's,j,l'
can be passed to SubString to obtain the matching substring. Search fails with string
'search' if the pattern 'p' is malformed; a matching machine 'm' fails with string 'match'
when 'i' is out of bounds, or when there is no match. The syntax and semantics of pat-
terns is described in section "String Patterns". 

 

Explode 

 

converts a string into a list of 1-
character strings which are its characters. 

 

Implode 

 

concatenates a list of strings into a
single string. 

 

ExplodeAscii 

 

converts a string into a list of numbers which are the Ascii
codes for the characters of the string. 

 

ImplodeAscii 

 

converts a list of numbers (Ascii
codes) into the corresponding string (may fail with 'implodeascii'). 

 

IntToString

 

 converts
an integer into its string representation ('Ð' is used for negative numbers). 

 

StringToInt

 

converts a string representing a number into that number; 'Ð' is accepted for negative
numbers, blanks are ignored everywhere except between digits. 

 

StringEq 

 

compares
two strings: they are equal if their length is the same and they contain the same char-
acters.

Length ( )
       (AS.s:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.length(s), RS, FR, PR, TS, ES, M)

 SubString ( )
       (AS.s:string.from:int.size:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.substring(s,from,size), RS, FR, PR, TS, ES, M)
       ? 'substring' if from<1 or size<0 or from+sizeÐ1>length(s)

Search ( )
       (AS.p:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.matchingmachine(p):string

 

×

 

int

 

→

 

int

 

×

 

int, RS, FR, PR, TS, ES, M)
       ? 'search' if p is malformed

 Explode ( )
       (AS.s:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.sl:string list, RS, FR, PR, TS, ES, M)

 Implode ( )
       (AS.sl:string list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.s:string, RS, FR, PR, TS, ES, M)
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4.5  Reference Operations

 

Reference is the basic updatable type, to be used to implement assignable vari-
ables, updatable structures, circular data, call-by-reference, call-by-need, etc. Note that
data like pairs, lists etc. are 

 

not 

 

assignable: this fact is crucially used by the garbage col-
lector.

A reference is simply an assignable pointer to another cell. 

 

Ref 

 

builds a reference
to an existing object. 

 

At 

 

extracts the contents of a reference. 

 

Assign 

 

takes a reference and
a value, and assigns the value as the new content of the reference; the result of the as-
signment operation is triv. DestRef is like At, but takes two AS displacements: the first
one is where the reference is, and the second one is where the content of the reference
is stored.

 ExplodeAscii ( )
       (AS.s:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.nl:int list, RS, FR, PR, TS, ES, M)

 ImplodeAscii ( )
       (AS.nl:int list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.s:string, RS, FR, PR, TS, ES, M)
       ? 'implodeascii' if nl contains some n<0 or n>127

 IntToString ( )
       (AS.n:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.s:string, RS, FR, PR, TS, ES, M)

 StringToInt ( )
       (AS.s:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.n:it, RS, FR, PR, TS, ES, M)
       ? 'stringtoint' if s is not a valid int representation

 StringEq ( )
       (AS.s:string.sÕ:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.s=sÕ, RS, FR, PR, TS, ES, M)

Ref ( )
       (AS.x:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.l:address, RS, FR, PR, TS, ES, M[x/l])
            where l is a new address.

 At ( )
       (AS.l:address, RS, FR, ^.PR, TS, ES, M) =>
            (AS.M(l), RS, FR, PR, TS, ER, M)
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Note that, according to the convention on conflicting indexing (see the section on
Operational Semantics), if n=m then the address l in AS is overwritten by its contents.

4.6  Pair Operations

A pair cell (x,y) is simply a pair of cells x and y, with a left and a right component.

4.7  List Operations

A list cell can be a Nil cell or a Cons cell containing an arbitrary cell (the head of the
list) and another list cell (the tail). Head and Tail fail with 'head' and 'tail' on null lists.
DestNil takes a list at some depth on AS and fails with 'destnil' if the list is not null. Dest-
Cons takes three AS displacements; the first one must contain a non-null list (otherwise
fails with 'destcons'), the second one is where the head of that list is copied, and the
third one is where the tail of that list is copied. The three displacements may coincide:
the first one will be overwritten by the second and third, and the second one will be
overwritten by the third.

 Assign ( )
       (AS.l:address.x:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.triv, RS, FR, PR, TS, ES, M[x/l])

 DestRef (n: int≥0, m: int≥0)
       (AS[n]l:address, RS, FR, ^.PS, TS, ES, M) =>
            (AS[n]l[m]M(l), RS, FR, PR, TS, ES, M)

 Pair ( )
       (AS.x:α.y:β, RS, FR, ^.PR, TS, ES, M) =>
            (AS.(x,y), RS, FR, PR, TS, ES, M)

 Left ( )
       (AS.(x:α,y:β), RS, FR, ^.PR, TS, ES, M) =>
            (AS.x, RS, FR, PR, TS, ES, M)

 Right ( )
       (AS.(x:α,y:β), RS, FR, ^.PR, TS, ES, M) =>
            (AS.y, RS, FR, PR, TS, ES, M)

 DestPair (n: int≥0, m: int≥0, p: int≥0)
       (AS[n](x:α,y:β), RS, FR, ^.PR, TS, ES, M) =>
            (AS[n](x,y)[m]x[p]y, RS, FR, PR, TS, ES, M)

 Nil ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.nil, RS, FR, PR, TS, ES, M)
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4.8  Record Operations

Records are tuples of cells (written (|x1:α1,..,xn:αn|)) with a constant-time field se-
lection operation. Record builds a record of n fields taken from AS. Field selects a field
of a record. DestRecord takes an AS displacement and a list of n AS displacements (for
records of n fields) and distributes the fields on AS according to the displacements. The
rightmost displacements overwrite the previous ones when they coincide.

 Cons ( )
       (AS.x:α.l:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.cons(x,l), RS, FR, PR, TS, ES, M)

 Head ( )
       (AS.l:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.head(l), RS, FR, PR, TS, ES, M)
       ? 'head' if l=nil

 Tail ( )
       (AS.l:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.tail(l), RS, FR, PR, TS, ES, M)
       ? 'tail' if l=nil

Null ( )
       (AS.l:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.l=nil, RS, FR, PR, TS, ES, M)

DestNil (n: int≥0)
       (AS[n]l:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS[n]l:α list, RS, FR, PR, TS, ES, M)
       ? 'destnil' if l≠nil

DestCons (n: int≥0, m: int≥0, p: int≥0)
       (AS[n]l:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS[n]l[m]head(l)[p]tail(l), RS, FR, PR, TS, ES, M)
       ? 'destcons' if l=nil

Record (n: int≥0)
       (AS.x1:α1..xn:αn, RS, FR, ^.PR, TS, ES, M) =>
            (AS.(|x1,..,xn|), RS, FR, PR, TS, ES, M)

Field (i: int≥1≤n)
       (AS.(|x1:α1,..,xn:αn|), RS, FR, ^.PR, TS, ES, M) =>
            (AS.xi, RS, FR, PR, TS, ES, M)
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The Field operation is undefined if the index i is out of bound; similarly De-
stRecord is undefined if AS[n] is not a record of length p. As we already mentioned, it
is assumed that these situations can never arise at run time because of typechecking at
the source program level.

4.9  Variant Operations

Variant cells (written [|a=x:t|]) contain a tag a (an integer) and another cell x; they
are used to discriminate among a finite set of possibilities.Variant builds a variant with
a given tag, taking the contents from the stack. As extracts the contents of a variant, pro-
vided that the given tag matches the variant tag (may fail with 'as'). Is tests whether a
given tag is the tag of a variant on the stack. DestVariant is like As, but works at an ar-
bitrary displacement on AS and may fail with 'destvariant'. The Case operation associ-
ates a program with each variant tag, by making a constant-time selection based on the
tag of a variant on AS. 

4.10  Array Operations

Arrays are considered a constant access time implementation of lists of references,
and hence are assignable. Arrays can be built from lists or by tabulating functions in an
interval, and can be disassembled again into lists. Their LowerBound and Size at-

DestRecord (n: int≥0, [m1: int≥0; .. ; mp: int≥0])
       (AS[n](|x1:α1,..,xp:αp|), RS, FR, ^.PR, TS, ES, M) =>
            (AS[n](|x1,..,xp|)[m1]x1..[mp]xp, RS, FR, PR, TS, ES, M)

Variant (a: int≥1)
       (AS.x:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.[|a=x|], RS, FR, PR, TS, ES, M)

 As (a: int≥1)
       (AS.[|aÕ=x:α|], RS, FR, ^.PR, TS, ES, M) =>
            (AS.x, RS, FR, PR, TS, ES, M)
       ? 'as' if a≠aÕ

Is (a: int≥1)
       (AS.[|aÕ=x:α|], RS, FR, ^.PR, TS, ES, M) =>
            (AS.a=aÕ, RS, FR, PR, TS, ES, M)

DestVariant (a: int≥1, n: int≥0, m: int≥0)
       (AS[n][|aÕ=x:α|], RS, FR, ^.PR, TS, ES, M) =>
            (AS[n][|aÕ=x|][m]x, RS, FR, PR, TS, ES, M)
       ? 'destvariant' if a≠aÕ

Case ([c1: α1→β, .. , cp: αp→β])  
       (AS.[|ai=x:αi|], RS, FR, ^.PR, TS, ES, M) =>
            (AS.x, RS, FR, ci, TS, ES, M)        (with 1≤i≤p)
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tributes are also computed in constant time.
Array takes a lowerbound and a list and makes an array with that lowerbound,

whose i-th element is the i-th element of the list; the size of the array is the length of the
list. Tabulate takes a function f with integer domain, a lowerbound and a size, and
makes an array with that size and lowerbound whose i-th element is f(i), for i ranging
from lowerbound to lowerbound+sizeÐ1; it fails if the size is negative. LowerBound
takes an array and returns its lowerbound. Size takes an array and returns its size. Sub
takes an array and an index i and returns the value of the i-th element of the array; it
fails if i is out of bounds. Update takes an array, an index i, and a value x and updates
the i-th element of the array by x, returning triv; it fails if i is out of bounds. ArrayToList
takes an array and makes a list of its contents in their order.

Array ( )
       (AS.lb:int.e:α list, RS, FR, ^.PR, TS, ES, M) =>
            (AS.array(lb,n,[l1,..,ln]), RS, FR, PR, TS, ES, M[nth(1,e)/l1]..[nth(n,e)/ln])
       where nth(i,e) is the i-th element of e, 
       n is the length of e, and li are new addresses

Tabulate ( )
       (AS.f:int→α.lb:int.size:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.array(lb,size,[l1,..,ln]), RS, FR, PR, TS, ES, 

M[f(lb)/l1]..[f(lb+sizeÐ1)/ln])
       ? 'tabulate' if size<0
       where li are new addresses

LowerBound ( )
       (AS.array(lb,size,[l1,..,ln]), RS, FR, ^.PR TS, ES, M) =>
            (AS.lb, RS, FR, PR, TS, ES, M)

Size ( )
       (AS.array(lb,size,[l1,..,ln]), RS, FR, ^.PR, TS, ES, M) =>
            (AS.size, RS, FR, PR, TS, ES, M)

Sub ( )
       (AS.array(lb,size,[l1,..,ln]).i:int, RS, FR, ^.PR, TS, ES, M) =>
            (AS.M(liÐlb+1), RS, FR, PR, TS, ES, M)
       ? 'sub' if i<lb or i≥lb+size

Update ( )
       (AS.array(lb,size,[l1,..,ln]).i:int.x:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.triv, RS, FR, PR, TS, ES, M[x/liÐlb+1])
       ? 'update' if i<lb or i≥lb+size

ArrayToList ( )
       (AS.array(lb,size,[l1,..,ln]), RS, FR, ^.PR, TS, ES, M) =>
            (AS.cons(M(l1),..cons(M(ln),nil)..), RS, FR, PR, TS, ES, M)
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The operation 'array' used above is the basic allocator of array objects, and 'cons' is
the list constructor.

4.11  Equality

There are two general-purpose equality operations, apart from the equality oper-
ations on ground types already described. They are Equal (structural equality) and Iso-
morphic (structural equality on possibly circular data).

Equal checks the structural equality of data, but it diverges on circular data struc-
tures. It fails with string 'equal' if the structures contain functional objects.

Isomorphic is like Equal, but on circular structures it returns true iff the infinite un-
foldings of the structures are equal. It fails with string 'isomorphic' if the structures con-
tain functional objects.

5  Stack Operations
Stack operations manipulate the argument stack. GetLocal(n) copies the n-th cell

from the top of AS onto AS. Inflate(n,m) inserts n null cells above the m-th cell from the
top of AS. Deflate(n,m) deletes n cells starting from the m-th cell from the top of AS; cells
above and below the deleted area are recompacted. Permute([p0; .. ;pnÐ1]) permutes the
top n cells of AS simultaneously copying the i-th cell from the top into the pi-th one, for
every i in 0..nÐ1 (p0..pnÐ1 must be a permutation of 0..nÐ1). 

Equal ( )
       (AS.x:α.y:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.equal(x,y), RS, FR, PR, TS, ES, M)
       ? 'equal' if x or y contain closures

 Isomorphic ( )
       (AS.x:α.y:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.isomorphic(x,y), RS, FR, PR, TS, ES, M)
       ? 'isomorphic' if x or y contain closures

GetLocal (n: int≥0)
       (AS[n]x:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS[n]x.x, RS, FR, PR, TS, ES, M)

 Inflate (n: int≥0, m: int≥0)
       (AS.xmÐ1:αmÐ1..x0:α0, RS, FR, ^.PR, TS, ES, M) =>
            (AS.trivn+mÐ1..trivm.xmÐ1..x0, RS, FR, PR, TS, ES, M)

Deflate (n: int≥0, m: int≥0)
       (AS.xn+mÐ1:αn+mÐ1..x0:α0, RS, FR, ^.PR, TS, ES, M) =>
            (AS.xmÐ1..x0, RS, FR, PR, TS, ES, M)
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An Inflate operation with m=0 pushes n cells on top of AS; similarly Deflate with
m=0 pops n cells from the top of AS.

6  Closure Operations
A closure is a data object representing a function; it contains the text of the function

and the value of its free variables. The text of a function is in itself a rather complex
structure; it contains a sequence of instructions in some suitable machine language,
and a set of literals which may be strings or other text cells. Text literals are needed be-
cause a function may return another function which is textually contained in it, and we
must be able to extract its text (because of garbage collection problems there can only
be pointers to cells, never pointers pointing inside cells). String literals are useful when
a function contains constant strings in its text. It is not necessary to allocate those
strings every time that function is executed; the allocation can be done once at assembly
time, and the strings can be saved in literals to be retrieved later.

Closures are created by placing the values for free variables and the text of the
function on AS, and then storing this information in a newly allocated closure cell. Clo-
sures for (mutually) recursive functions may contain loops, and are allocated in two
steps: dummy closures for a set of mutually recursive functions are first allocated in the
heap, and later on recursive closures are built by filling the dummy closures. This way
the closures may mutually contain pointers to the other (dummy) closures.

The operations on closures are Closure (which creates a closure with arguments on
AS), DumClosure (which allocates an empty closure), RecClosure (which fills in dummy
closures), GetGlobal (which retrieves the value of a free (global) variable) and GetLiteral
(which retrieves a literal from the text of the closure). Moreover the closures FunId
(identity function) and FunComp (function compositions) are provided as primitives
(mostly to allow peephole optimizers to optimize occurrences of Id(x), Comp(f,Id) and
Comp(Id,f)).

Permute ([p0: int≥0≤nÐ1;..;pnÐ1: int≥0≤nÐ1])
       (AS.xnÐ1:αnÐ1..x0:α0, RS, FR, ^.PR, TS, ES, M) =>
            (AS.xpnÐ1..xp0, RS, FR, PR, TS, ES, M)

GetLocal
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FunId ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.id, RS, FR, PR, TS, ES, M)

 FunComp ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.comp, RS, FR, PR, TS, ES, M)

Closure (n: int≥0)
       (AS.x1:α1..xn:αn.t:text, RS, FR, ^.PR, TS, ES, M) =>
            (AS.closure(t,x1,..,xn), RS, FR, PR, TS, ES, M)

DumClosure (n: int≥0)
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.closure(triv,triv1,..,trivn), RS, FR, PR, TS, ES, M)

RecClosure (n: int≥0, m: int>n)
       (AS.xn:αn..x1:α1.t:text[m]closure(triv,triv1,..,trivn),
        RS, FR, ^.PR, TS, ES, M) =>
            (AS[mÐnÐ1]closure(t,x1,..,xn), RS, FR, PR, TS, ES, M)

GetGlobal (n: int≥0≤p)
       (AS, RS, closure(t:text,x0:α0,..,xp:αp), ^.PR, TS, ES, M) =>
            (AS.xn, RS, closure(t,x0,..,xp), PR, TS, ES, M)

GetLiteral (n: int≥0≤p)
       (AS, RS, closure(text(c:code,x0:α0,..,xp:αp),..), ^.PR, TS, ES, M) =>
            (AS.xn, RS, closure(text(c,x0,..,xp),..), PR, TS, ES, M)

Closure
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DumClosure

RecClosure
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GetGlobal

GetLiteral
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7  Control Operations
These are operations affecting the Program Counter or the Stack Pointer. Jump is

an unconditional branch to another point in the same program text. TrueJump and
FalseJump are conditional branches which jump when the top of AS is respectively true
and false; otherwise the normal execution flow continues.

Function application is split into three operations: SaveFrame (which saves the call-
ing closure on RS), ApplFrame (which saves the calling program counter on RS, and ac-
tivates the called closure sitting on the top of AS by making it the one pointed by FP
and by setting PC at its entry point) and RestFrame (which restores the calling closure
from RS). This means that SaveFrame and RestFrame are inverses and can be canceled
out in multiple (curried) applications. The called closure uses Return to restore the call-
ing program counter and return to the calling function (where a RestFrame is normally
executed). The sequence SaveFrame, ApplFrame, RestFrame, Return can be optimized
to TailApply, which uses a jump to pass control to the called function (there is no point
in going back to the calling function because this would immediately execute a Return).
The advantage of TailApply is that the control stack does not grow, hence iteration can
be programmed by (tail) recursion without any penalty. Return and TailApply also in-
corporate a Deflate operation, and hence take two arguments for deflating n cells be-
low the m cell from the top of AS.

Jump (c: code)
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, c, TS, ES, M)

TrueJump (c: code)
       (AS.true, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, c, TS, ES, M)
       (AS.false, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, PR, TS, ES, M)

FalseJump (c: code)
       (AS.false, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, c, TS, ES, M)
       (AS.true, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, PR, TS, ES, M)

SaveFrame ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS.FR, FR, PR, TS, ES, M)

ApplFrame ( )
       (AS.x:α.closure(text(c:code,..),..):α→β, RS, FR, ^.PR, TS, ES, M) =>
            (AS.x, RS.PR, closure(text(c,..),..), c, TS, ES, M)
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RestFrame ( )
       (AS, RS.FRÕ, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FRÕ, PR, TS, ES, M)

Return (n: int≥0, m: int≥0)
       (AS.xn+mÐ1:αn+mÐ1..x0:α0, RS.c:code, FR, ^.PR, TS, ES, M) =>
            (AS.xmÐ1..x0, RS, FR, c, TS, ES, M)

TailApply (n: int≥0, m: int≥0)
       (AS.xn+mÐ1:αn+mÐ1..x0:α0.closure(text(c:code,..),..):α→β, 

RS, FR, ^.PR, TS, ES, M) =>
            (AS.xmÐ1..x0, RS, closure(text(c,..),..), c, TS, ES, M)

SaveFrame

ApplFrame
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RestFrame

Return
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8  Trap Operations
The FailWith operation takes a string and generates a failure with that string as

failure reason. The failure can be trapped by a previously executed Trap or TrapList in-
struction, which saved the state of the machine (except the heap) at a failure recovery
point.

Trap saves AP, FP, SP and a PC, corresponding to the failure handler, on the trap
stack TS together with a flag meaning that all failures will be trapped. TrapList takes a
list of strings and saves AP, FP, SP and the PC of the handler on TS, together with the
list of strings which is used to selectively trap failures. UnTrap reverts the effect of the
most recent Trap or TrapList. FailWith takes a string s and searches the trap stack from
the top for a Trap block or a TrapList block with a list of strings containing s. If one is
found, the corresponding state of the machine (AP, FP, SP, PC) is restored and the Trap
or TrapList block and all the ones above it are removed. If no matching trap is found,
the message 'Failure: ' followed by the failure string is printed on the standard output
stream, and the machine stops.

Trap (c: code)
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, PR, TS.(all,c,RS,FR,AS), ES, M)

TrapList (c:code)
       (AS.sl:string list, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, PR, TS.(only(sl),c,RS,FR,AS), ES, M)

TailApply



23

UnTrap (c: code)
       (AS, RS, FR, ^.PR, TS.(all,c,RSÕ,FRÕ,ASÕ), ES, M) =>
            (AS, RS, FR, c, TS, ES, M)
       (AS, RS, FR, ^.PR, TS.(only(sl),c,RSÕ,FRÕ,ASÕ), ES, M) =>
            (AS, RS, FR, c, TS, ES, M)

FailWith
       (AS.s:string, RS, FR, ^.PR, TS.(x,PRÕ,RSÕ,FRÕ,ASÕ).., ES, M) =>
            (ASÕ.s, RSÕ, FRÕ, PRÕ, TS, ES, M)
            where (x,..) is the first trap block from the top of TS
            such that x=all or x=only(sl) and s is contained in sl.
       (AS.s:string, RS, FR, ^.PR, TS.(x,PRÕ,RSÕ,FRÕ,ASÕ).., ES, M) =>
            (AS.printfailure(s), RS, FR, <>, <>, ES, M)
            if there is no trap block satisfying the above condition.

Trap
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TrapList

UnTrap
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9  Input-output
Input-output is done on streams. A stream is like a queue; characters can be read

from one end and written on the other end. Reads are destructive, and they wait indef-
initely on an empty stream for some character to be written. In what follows, a "file" is
a character file on disk which has a "file name"; a "stream" is an abstract machine object
(it is a pair of file descriptors, one open for input and the other one open for output).

Streams are associated with file names in the operating system. A copy of an exist-
ing stream can be associated with a file name by the PutStream operation which takes
a string (the file name) and a stream and returns triv. The stream is unaffected by this
operation. A failure with string 'putstream' occurs if the association cannot be carried
out.

The operation GetStream takes a string (a file name) and returns a new stream
whose initial content is the content of the corresponding file. It fails with string 'get-
stream' if the stream is not available (e.g. the file name syntax is wrong, or the file is
locked). If no file exists with that file name, a new empty stream is returned (hence,
empty files and streams are indistinguishable from non-existing ones). The same file
name can be requested several times; every time a new independent stream is generat-

FailWith



26

ed.
The standard terminal streams are obtained by GetStream('input'), Get-

Stream('output') and GetStream('error'); note that these are streams, hence it is possible
to write on input (what is written will then be read back) and to read from output (out-
put is generally empty). ListStreams returns a list of the non-empty streams associated
to names, as a list of strings (file names).

Reads and writes on streams do not affect the files they were generated from by
GetStream. Conversely, a PutStream operation on a file does not affect the streams
which have been extracted from that file; it only affects the result of a succeeding Get-
Stream. Multiplexed read and multiplexed write operations can be obtained by passing
the same stream to several readers and writers respectively (i.e. to different parts of a
program).

The operation NewStream returns a new empty stream. It accounts for temporary
(unnamed) files. A stream-filename association can be removed by reassociating an
empty stream with that file name.

The operation CopyStream creates a stream B which is a copy of the current state of
the stream A. Reads and writes on A will not affect reads and writes on B, and vice ver-
sa. The stream A is not affected.

Input operations are destructive; the characters read are removed from the stream.
InChar reads a single character from a stream. InString takes a string pattern 'p' and re-
turns a scanning machine 'm' for that pattern. Every time 'm' is applied to a stream, it
will read until after the longest leftmost string matching that pattern, if any, and return
it. If no match is found the stream is not affected. InString fails with string 'instring' if
the pattern is malformed; the machine 'm' fails with string 'scan' when no match is
found, or on any I/O error. The syntax and semantics of patterns is described in section
"String Patterns". InInt reads an integer from a stream (which should start with a digit,
or with 'Ð' immediately followed by a digit), stopping before the first non-digit charac-
ter; it fails with string 'inint' if it cannot read an integer. EmptyStream tests for the empty
stream; the input operations do not fail on empty streams: they wait indefinitely for
something to be written on the stream. All the input operations are unbuffered, e.g.
when reading from terminal all editing and control characters are not interpreted.

Output operations are constructive; the characters written are appended to the end
of the stream. OutChar writes a single character at the end of a stream. OutString writes
a whole string. OutInt writes an integer (preceded by 'Ð' if negative). All the write op-
erations are unbuffered; the effect of buffered output can be obtained by OutString.

Refer back to the operational semantics section for clarifications about how
streams are contained in the memory M.

PutStream ( )
       (AS.sÕ:string.s:streamname, RS, FR, ^.PR, TS, ES, M[q:stream/s]) =>
            (AS.triv, RS, FR, PR, TS, ES, M[q/s][q/sÕ])
       ? 'putstream' on any I/O error
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 GetStream ( )
       (AS.s:string, RS, FR, ^.PR, TS, ES, M[q:stream/s]) =>
            (AS.sÕ:streamname, RS, FR, PR, TS, ES, M[q/s][q/sÕ])
            where sÕ is a new stream name.
       (AS.s:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.s:streamname, RS, FR, PR, TS, ES, M[<>/s])
            where s is not defined in M.
       ? 'getstream' on any I/O error

ListStreams ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.liststreams(M), RS, FR, PR, TS, ES, M)
            where liststreams(M) is the list of all the strings s
            such that s is a stream name in M and M(s)≠<>.
       ? 'liststreams' on any I/O error

NewStream ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS.s:streamname, RS, FR, PR, TS, ES, M[<>/s])
            where s is a new stream name.
       ? 'newstream' on any I/O error

CopyStream ( )
       (AS.s:streamname, RS, FR, ^.PR, TS, ES, M[q:stream/s]) =>
            (AS.sÕ:streamname, RS, FR, PR, TS, ES, M[q/s][q/sÕ])
            where sÕ is a new stream name.
       ? 'copystream' on any I/O error

EmptyStream ( )
       (AS.s:streamname, RS, FR, ^.PR, TS, ES, M[q:stream/s]) =>
            (AS.q=<>, RS, FR, PR, TS, ES, M[q/s])
       ? 'emptystream' on any I/O error

InChar ( )
       (AS.s:streamname, RS, FR, ^.PR, TS, ES, M[c.q:stream/s]) =>
            (AS.c:string, RS, FR, PR, TS, ES, M[q/s])
       ? 'inchar' on any I/O error

InString ( )
       (AS.p:string, RS, FR, ^.PR, TS, ES, M) =>
            (AS.scanningmachine(p):stream→string, RS, FR, PR, TS, ES, M)
       ? 'instring' if p is malformed
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In order to model user interaction, and in general other processes which act on the
file system, we add some state transitions which happen nondeterministically and
change the file system:

The first transition models an external process which reads from a stream, the sec-
ond one a process which writes on a stream, and the third one a process which creates,
deletes, replaces or renames a stream.

I/O errors can be treated by taking the predicate "on any I/O error" above to be
constantly true, i.e. an I/O error may unpredictably happen at any time.

10  Export and Import
Export takes a stream and an arbitrary Fam object, and saves the objects in the

stream, so that it can be later reloaded by the Import operation. Data sharing and loops
are preserved. The notation used to store an object in a stream is called MX (for module

InInt ( )
       (AS.s:streamname, RS, FR, ^.PR, TS, ES, M[c1..cn.q:stream/s]) =>
            (AS.stringtoint(c1..cnÐ1),
             RS, FR, PR, TS, ES, M[cn.q/s])
             where cn is the first of the ci not to be part
             of a valid int representation, or a trailing blank (n≥1).
       ? 'inint' on any I/O error, or if c1..cnÐ1 is not a valid int representation.

OutChar ( )
       (AS.s:streamname.c:string, RS, FR, ^.PR, TS, ES, M[q:string/s]) =>
            (AS.triv, RS, FR, PR, TS, ES, M[q.c/s])
       ? 'outchar' on any I/O error, or if length(c)≠1

OutString ( )
       (AS.s:streamname.sÕ:string, RS, FR, ^.PR, TS, ES, M[q:stream/s]) =>
            (AS.triv, RS, FR, PR, TS, ES, M[q.sÕ/s])
       ? 'outstring' on any I/O error

OutInt ( )
       (AS.s:streamname.n:int, RS, FR, ^.PR, TS, ES, M[q:stream/s]) =>
            (AS.triv, RS, FR, PR, TS, ES, M[q.inttostring(n)/s])

(AS, RS, FR, PR, TS, ES, M[sÕ.q:stream/s:streamname]) =>
          (AS, RS, FR, PR, TS, ES, M[q/s])

(AS, RS, FR, PR, TS, ES, M[q:stream/s:streamname]) =>
          (AS, RS, FR, PR, TS, ES, M[q.sÕ/s])

(AS, RS, FR, PR, TS, ES, M) =>
          (AS, RS, FR, PR, TS, ES, M[q:stream/s:streamname])
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exchange): it is a printable Ascii representation of Fam objects, having the following
syntax (see section "Concrete Syntax" for a description of the metasyntactic notation):

MX (Module Exchange) Syntax

A top-level MX definition ('mx' above) is a list '[t1 .. tn t]' of terms (with n≥0): the
main object is 't', and 't1' .. 'tn' are auxiliary definition used to encode sharing and loops:
whenever a term of the form '^i' (1≤i≤n) is found in t1 .. tn,t, it is interpreted as referring
to ti.

The Export operation can be used to implement separate compilation, when the ex-
ported objects are closures.

mx ::=
'[' {shared} main ']'

main ::= term

shared :: = term

hexbyte ::= hexdigit hexdigit

hexdigit ::= '0'| .. | '9' | 'A' | .. | 'F'

hex ::= hexbyte hex (hexbytes may be separated by blanks or newlines)

size ::= int

code ::= hex

chars ::= hex

term ::=
int small integer
| '^' int indirection (shared or circular data)
| '[u' size hex ']' unbounded precision integer
| '[s' size chars ']' string
| '[p' term term ']' pair
| '[l' {term} ']' list
| '[i' term ']' reference
| '[r' size {term}1 ']' record
| '[v' int term ']' variant
| '[a' size term term {term} ']' array (size, lowerbound, size, items)
| '[c' size text {term} ']' closure
| text text

text ::=
'[t' size '[' size {term} ']' code ']'

Note: the double size information in arrays (which seems redundant) is 
need by 'Import', as the array size field could be a shared bigint and
unavailable when needed.



30

Import takes a stream which is assumed to contain an MX definition and converts
it into a Fam object. It is possible to use Import to load compiled programs produced
by foreign systems, if the code is fully relocatable and it is converted to MX text or clo-
sure notation.

11  Eval
Eval takes a special Fam object, called here a FamProg, as argument, and interprets

it as defining a 'source' Fam program. The FamProg is assembled and executed, and its
result is returned as the result of the Eval operation.

A FamProg is a list of statements. Every statement is a pair consisting of a label (an
integer) and an operation. Labels are local to (FamProg's denoting) text objects; label 0
means no label. An operation is a variant object, having an OpCode as tag and an op-
erand as contents. The operand can have different structures depending on the Op-
Code. The OpCode is a numerical encoding of the Fam operations; in addition there is
a special pseudo-OpCode, called Thread, whose operand is a FamProg.

The Thread OpCode is meant to facilitate translation from high-level languages
into FamProg's, by providing a simple way of concatenating two or more FamProg
structures. Two FamProg's P1 and P2 can be concatenated by generating the list of
statements '...; Thread P1; Thread P2; ...', which is a FamProg. Because of the Thread
pseudo-operation, a FamProg for a single text object may be a tree of statements, as op-
posed to a simple linear list. The correct sequence of statements is given by traversing
the tree from left to right in preorder.

The precise structure of a FamProg is defined in section "Abstract Syntax". Eval
may fail with string 'eval' if its argument is not a legal FamProg.

where 'assemble' is a straightforward translation form FamProg structures to abstract
machine programs.

Note1: FamProg's do not have to be (sources for) texts or closures; they may, for
example, simply build a pair by 'Eval[Int 3; Int 5; Pair] = (3,5)'.

Import ( )
       (AS.s:streamname, RS, FR, ^.PR, TS, ES, M) =>
            (AS.import(M(s)), RS, FR, PR, TS, ES, M)
       ? 'import' on any I/O error.

Export ( )
       (AS.s:streamname.a:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.triv, RS, FR, PR, TS, ES, M[M(s).export(a)/s])
       ? 'export' on any I/O error.

Eval ( )
       (AS.p:FamProg, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, assemble(p).PR, TS, ES, M)
       ? 'eval' if p is not a legal FamProg.
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Note2: FamProg's executed by Eval should not contain Start and Stop operations.

12  Other operations
Start initializes the abstract machine. It takes three parameters: ES, which is the ini-

tial environment containing all the predefined values and functions; M, containing val-
ues for all the locations mentioned by EP, and the initial file system; and a closure
which is the program to execute (by convention the start closure takes a triv argument).
The initial M must contain a stream called 'input' and a stream called 'output', which
are normally attached to the user terminal. These standard streams can be obtained
normally by GetStream, and all the stream operations are valid, including writing on
input, reading from output and performing PutStream and CopyStream on them.

Stop terminates the execution. Normally the value on the top of AS after a Stop is
the final result of the computation.

There is a notion of top-level environment which is implemented by EP (environ-
ment pointer), pointing to the argument stack AS. EP always points to some point of
AS below AP, and AP never descends below EP. The operation Define rises EP to incor-
porate more values in the top-level environment.

Collect takes any value (which can be used as a garbage collector parameter, if any)
and provokes a garbage collection, returning triv.

Skip has no effect.
StandAlone takes a stream and a closure, and saves the closure in the stream, to-

gether with all the environment needed to support the closure (e.g. the global variables
and the run time system). The file produced can be executed independently of the Fam
system. The input parameter accepted by a stand-alone function is installation-depen-
dent; it can be for example a list of strings (e.g. options) passed by the operating system.

Dump saves the current state of the Fam system (file system excluded) in a stream
and continues normal execution. A dump file can then be executed, reactivating the
system at the 'instant' of dump.

Start (ES: stack,
            M[q:stream/'input'][qÕ:stream/'output']: memory,
            closure(text(c:code,..)..): triv→α)
       (<>, <>, Ð, ^.<>, <>, <>, <>) =>
            (ES.triv, <>, closure(text(c:code,..)..), c, <>, ES, M)
            where M defines the addresses and stream names mentioned by ES.

Stop ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, <>, TS, ES, M)

Define ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, PR, TS, AS, M)
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13  Garbage Collection
This section describes a garbage collection algorithm for languages with a low per-

centage of side-effectable data. The algorithm is due to Lieberman and Hewitt [3] for a
much more general situation. The assumption of working with semi-applicative lan-
guages confers simplicity and elegance to the algorithm.

The basic idea is that of a copying garbage collector: there are two equal data areas
called spaces of which only one is active at any given time (we don't consider here in-
cremental garbage collection). When one space is full, it is copied into the other space
by following the reachable pointers. This copying operation can be done simply by a
recursive procedure if we are not short of space, otherwise by a well known pointer-
reversing technique which runs in constant space. Care must be taken to copy correctly
circular and shared structure. Finally we swap the spaces. 

Copying garbage collection is appealing because the time spent in copying only
depends on the amount of active data, not on the size of the spaces; together with re-
cursive copying this amounts to a very fast collection. Moreover the data is automati-
cally compacted during copying, reducing the rate of page faults in virtual memory
systems.

The problem with copying collectors it that they need a very large address space.
The two-spaces algorithm 'wastes' 50% of the memory.

The algorithm proposed by Hewitt and Lieberman generalizes copying collectors
to n spaces (of which only one is 'wasted' for copying the other ones in turn), in such a
way that not all the memory has to be searched in general when copying a little part of
it. 

This can work only under assumptions about which spaces contain pointers to

Collect ( )
       (AS.x:α, RS, FR, ^.PR, TS, ES, M) =>
            (AS.collect(x), RS, FR, PR, TS, ES, M)

Skip ( )
       (AS, RS, FR, ^.PR, TS, ES, M) =>
            (AS, RS, FR, PR, TS, ES, M)

StandAlone ( )
       (AS.s:streamname.f:α→β, RS, FR, ^.PR, TS, ES, M) =>
            (AS.triv, RS, FR, PR, TS, ES, M[M(s).standalone(f)/s])
       ? 'standalone' on any I/O error.

Dump ( )
       (AS.s:streamname, RS, FR, ^.PR, TS, ES, M) =>
            (AS.triv, RS, FR, PR, TS, ES,
             M[M(s).dump(AS,RS,FR,PR,TS,ES,M)/s])
       ? 'dump' on any I/O error.
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which other spaces. These assumptions must be preserved during allocation and col-
lection.

It turns out that the assumptions hinted at above are much easier to verify in ap-
plicative languages. We obtain a garbage collector which can work on extremely large
collections of data with only a limited working area. Moreover some areas can be col-
lected more often then others, so that 'stable' data tends to migrate towards rarely col-
lected areas while 'volatile' data is quickly reclaimed.

Here is an overview of the algorithm. The basic observation is that, most of the
time, recently allocated data points to previously allocated data because it has been
built on top of it. We refer to this fact by saying that pointers generally point to the past.
There are two exceptions which have to be treated specially: recursive functions (which
may contain environment loops) and references (which may point to the future after an
assignment).

The available space is (dynamically) partitioned into a 'monotonic' area containing
data which only points to its past, and a 'paradoxical' area which may contain pointers
to the future. The paradoxical area is used to allocate recursive closures and references,
and it is assumed to be relatively small.

At some point during the execution of a program we may decide that garbage col-
lection is needed. Let us consider the monotonic area first. We split the monotonic area
arbitrarily in three contiguous sections, called past, present and future. The idea is to
copy the 'present' space only, given a big enough buffer to contain it; past and/or fu-
ture may be empty. We start following the reachable pointers. If some data is in the fu-
ture we keep following it without copying it. If it is in the present space we copy it as
in the normal copying garbage collector. If it is in the past we even stop following the
pointers because we pretend that they cannot lead us back to the present (actually they
might, going through the paradoxical area, but the past will be on average rather big
and we do not want to search it all). In the paradoxical area we also stop following
pointers because we treat this area separately in the second phase of collection.

So, our target is to find out all the reachable pointers pointing to the present, and
up to now we have found all those coming from the future and from the present itself,
and we know that there are no pointers coming directly from the past. But there may
be pointers in the paradoxical area pointing to the present, which are only reachable
from the past. On the assumption that the past is on average much bigger than the par-
adoxical area, it is more convenient to search the latter area rather then the past. But we
cannot do this by following reachable pointers, because we have chosen not to follow
some pointers. Hence we must scan the whole paradoxical area for pointers to the
present, and take the conservative view that all those pointers are reachable. This scan-
ning process is called scavenging. When we find a pointer to the present we proceed
copying and following the pointers as before.

Finally we have a copy of the present, and we must substitute it for the old present;
this can be done by maintaining a linked list of the pages in the monotonic area in
monotonic order (this is the reason why we could split neatly past, present and future
at the beginning).
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We still have to describe how to collect the paradoxical area. This is done quite sim-
ply by following the reachable pointers everywhere in both areas, copying when we
find something in the paradoxical area. In other words, we consider the paradoxical
area as present, and the monotonic area as future with no past. This is a heavy opera-
tion because it involves searching the whole memory: again the paradoxical area
should be small and stable, so that it can be collected infrequently.

The general strategy is then to collect very frequently the extreme future, which
presumably contains very dynamic data, and less and less frequently as we move to-
wards the past, which comes to contain more and more stable data because of compac-
tion (to ensure this migration of stable data we have to alternately collect overlapping
presents). This should be intermixed with the collection of the paradoxical area. Some
simple adaptive scheme is probably the best way of implementing this strategy.

14  Compilation Hints
Here are some suggestions about how to compile high-level language expressions

into Fam operations. There is a translation function '[| |]' from expressions to Fam pro-
grams, for example '[|3|] => Int(3)' means that the expression '3' is translated into the
Fam operation 'Int(3)'.

Primitive operations (like '+') which have a corresponding Fam machine operation
are translated by translating their arguments left to right, and then suffixing the appro-
priate Fam operation:

Variables are converted to a GetLocal or GetGlobal operation, depending on
where they are defined; strings are converted to GetLiteral:

Function applications are translated by translating the argument, the function and
then appending the three parts of the apply operation:

Functions are compiled into sequences of operations which, at run time, build clo-
sures. First all the global variables of the function are collected from the appropriate en-
vironments (we informally use Get(x) for GetLocal or GetGlobal with the appropriate
displacement), then the text of the function is fetched by GetLiteral, and finally a Clo-
sure is generated.

[|op(arg1,..,argn)|] => 
     [|arg1|] .. [|argn|] [|op|]

[| .. x .. y .. 'string' .. |] => 
      .. GetLocal(n) .. GetGlobal(m) .. GetLiteral(p) ..

[|f(a)|] =>
     [|a|] [|f|] SaveFrame ApplFrame RestFrame
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Recursive functions involve DumClosure and RecClosure. Here is the compilation
of two mutually recursive functions f and g:

Here is how to use trap operations. 'A ? B' is a program which starts evaluating 'A'
and if no failure occurs B is ignored; however if a failure occurs in A then the "exception
handler" B is executed. 'A ? B' is compiled by setting a Trap which in case of failure pro-
duces a jump to label1 (hence executing B); if no failure occurs in A the execution reach-
es the UnTrap operations which undoes the trap and jumps to label2 (hence ignoring
B). Failures are produced by the FailWith operation or by exceptions arising from prim-
itive operations (e.g. divide by zero).

15  String Patterns
String patterns are used in the Search and InString operations; they provide a reg-

ular expression pattern matching facility for character strings. A string pattern is itself
a string, which is interpreted as regular expression definition (the metasyntactical no-
tation is defined in section "Concrete Syntax"):

[|λx. .. x .. y .. z .. 's' .. |] => 
     Get(y) Get(z)
     GetLiteral(text([| .. x .. y .. z .. 's' .. |]Return(1,1),'s'))
     Closure(2)

[|let rec f = .. g .. and g = .. f .. |] =>
     DumClosure(1) DumClosure(1)
     GetLocal(0) GetLiteral(text([| .. g .. |]Return(1,1))) RecClosure(1,1)
     GetLocal(0) GetLiteral(text([| .. f .. |]Return(1,1))) RecClosure(1,0)

[|A ? B|] => 
     Trap(label1) [|A|] UnTrap(label2) label1:[|B|] label2:

special ::=  "(" | ")" | "*" | "+" | "?" | "|" | "." | "~" | "#" | "[" | "]" | "/"

basic ::= any Ascii character which is not a special

self ::= basic | "/" special

exp ::= 
self match itself ("/" is the escape for specials).
| "." match any character except newline (Ascii 10).
| "~" match beginning of string.
| "#" match end string.
| "["{self}1"]" match any of the characters in brackets.
| exp "*" match any number of exp's, including zero.
| exp "+" match any number of exp's greater than zero.
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In the Search operation, '~' matches the beginning of the search string: it is not as-
sociated to any substring, but the matching substring, if any, will be an initial segment
of the search string. In the InString operation, '~' matches the current beginning of
stream; the result of InString will be an initial segment of the stream (this prevents run-
ning down the stream in search of a match).

In the Search operation, '#' matches the end of the search string: it is not associated
to any substring. In the InString operation, '#' matches the current end of stream; if '#'
is not used, InString may hung at the end of stream waiting for more characters to be
written in it.

16  Concrete Syntax
This section defines a textual syntax for abstract machine programs; this is essen-

tially an assembly language for Fam.
The syntactic notation is as follows: strings between quotes '"' are terminals; iden-

tifiers are non-terminals; juxtaposition is syntactic concatenation; '|' is syntactic alter-
native; '[ ]' is the empty string; '[ ... ]' is zero or one times (i.e. optionally) ' ... '; '{ ... }n' is
n or more times ' ... ' (default n=0); '{ ... / --- }n' means n (default 0) or more times '...'
separated by '---'; Parentheses '( ... )' are used for precedence.

Operation ::=   
   'GetLocal' Integer
| 'Inflate'  Integer ',' Integer
| 'Deflate'  Integer ',' Integer
| 'Permute'  '[' {Integer / ';'} ']'

| exp "?" match exp optionally.
| exp exp match the concatenation of two exp's.
| exp "|" exp match one of two exp's.
| "(" exp ")" match exp.

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

LabelChar ::= <any printable character different from space,
newline, tab and ':'>

StringChar ::= <any printable character different from Ô"Õ,
or an escape sequence starting with Ô\Õ>

Int ::= Digit | Digit Int

String ::= '''' {StringChar} ''''

Label ::= {LabelChar}

Program ::= '[' {Instruction / ';'} ']'

Instruction ::= Operation | Label ':' Instruction
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| 'Triv'
| 'True'
| 'False'
| 'Not'
| 'And'
| 'Or'
| 'Xor'
| 'BoolEq'
| 'Int' Integer
| 'Minus'
| 'Plus'
| 'Diff'
| 'Times'
| 'Divide'
| 'Modulo'
| 'Greater'
| 'Less'
| 'GreaterEq'
| 'LessEq'
| 'IntEq'
| 'String' String
| 'Length'
| 'SubString'
| 'Search'
| 'Explode'
| 'Implode'
| 'ExplodeAscii'
| 'ImplodeAscii'
| 'IntToString'
| 'StringToInt'
| 'StringEq'
| 'Ref'
| 'At'
| 'Assign'
| 'DestRef' Integer ',' Integer
| 'Pair'
| 'Left'
| 'Right'
| 'DestPair' Integer ',' Integer ',' Integer
| 'Nil'
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| 'Cons'
| 'Head'
| 'Tail'
| 'Null'
| 'DestNil' Integer
| 'DestCons' Integer ',' Integer ',' Integer
| 'Record' Integer
| 'Field' Integer
| 'DestRecord' Integer ',' '[' {Integer / ';'} ']'
| 'Variant' Integer
| 'As' Integer
| 'Is' Integer'
| 'DestVariant' Integer ',' Integer ',' Integer
| 'Case' '[' {Label / ';'} ']'
| 'Array' 
| 'Tabulate'
| 'LowerBound'
| 'Size'
| 'Sub'
| 'Update'
| 'ArrayToList'
| 'Equal'
| 'Isomorphic'
| 'Id'
| 'Comp'
| 'Text' Label
| 'Closure' Integer
| 'DumClosure' Integer
| 'RecClosure' Integer ',' Integer
| 'GetGlobal' Integer
| 'Jump' Label
| 'TrueJump' Label
| 'FalseJump' Label
| 'SaveFrame'
| 'RestFrame'
| 'ApplFrame'
| 'Return' Integer ',' Integer
| 'TailApply' Integer ',' Integer
| 'Trap' Label
| 'TrapList' Label
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| 'UnTrap' Label
| 'FailWith'
| 'PutStream'
| 'GetStream'
| 'ListStreams'
| 'EmptyStream'
| 'CopyStream'
| 'EndStream'
| 'InChar'
| 'InString'
| 'InInt'
| 'OutChar'
| 'OutString'
| 'OutInt'
| 'Eval'
| 'Start'
| 'Stop'
| 'Define'
| 'Collect'
| 'Skip'
| 'Import'
| 'Export'
| 'StandAlone'
| 'Dump'

Note1:  String and Text are converted to GetLiteral by the assembler.
Note2:  Escape sequences for Strings:

Note3:  Comments can be introduced within curly brackets '{' and '}', and they can

  \z 0 nul
  \x 4 eot
  \b 8 backspace
  \t 9 tab
  \n 10 newline
  \r 13 carriage return
  \e 27 escape
  \f 28 form feed
  \d 127 del
  \^<c> <c> mod 64 control<c> for any printable <c>
  \<c> <c> <c> for any other printable <c>
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be nested.

17  Abstract Syntax
This section contains a description of Fam programs in terms of Fam data struc-

tures. The main use of this representation is in the Eval operation (see section "Eval").
In what follows, 'list' is the list type, '#' is the pair type and '[| ... |]' is the variant

type; when no type is associated to a variant label, triv is intended. The operations are
listed in alphabetical order. The numerical opcodes of operations (used by Eval) is giv-
en by the position in this list, with 'OpAnd' being '1'. Comments are enclosed in '{ }'.

FamOperation =
[|
OpAnd;
OpApplFrame;
OpArray;
OpArrayToList;
OpAs: {CaseNumber} int;
OpAssign;
OpAt;
OpBoolEq;
OpCase: {CaseLabels} int list;
OpClosure: {Size} int;
OpCollect;
OpCons;
OpCopyStream;
OpDefine;
OpDeflate: {Size} int # {Displ} int;
OpDestCons: {ListDispl} int # {HeadDispl} int # {TailDispl} int;
OpDestNil: {ListDispl} int;
OpDestPair: {PairDispl} int # {LeftDispl} int # {RightDispl} int;
OpDestRecord: {RecordDispl} int # {FieldDispls} int list;
OpDestRef: {RefDispl} int # {AtDispl} int;
OpDestVariant: {CaseNumber} int # {VariantDispl} int # {AsDispl} int;
OpDiff;
OpDivide;
OpDumClosure: {Size} int;
OpDump;

FamProg = FamStatement list

FamStatement = {Label} int # FamOperation
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OpEmptyStream;
OpEval;
OpExplode;
OpExplodeAscii;
OpExport;
OpFailWith;
OpFalse;
OpFalseJump: {TargetLabel} int;
OpField: {FieldNumber} int;
OpFunComp;
OpFunId;
OpGetLocal: {Displ} int;
OpGetGlobal: {Displ} int;
OpGetStream;
OpGreater;
OpGreaterEq;
OpHead;
OpImport;
OpImplode;
OpImplodeAscii;
OpInChar;
OpInInt;
OpInString;
OpInflate: {Size} int # {Displ} int;
OpInt: {Integer} int;
OpIntEq;
OpIntToString;
OpIs: {CaseNumber} int;
OpJump: {TargetLabel} int;
OpLeft;
OpLength;
OpLess;
OpLessEq;
OpListStreams;
OpLowerBound;
OpMinus;
OpModule;
OpNewStream;
OpNil;
OpNot;
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OpNull;
OpOr;
OpOutChar;
OpOutInt;
OpOutString;
OpPair;
OpPermute: {Permutation} int list;
OpPlus;
OpPutStream;
OpRecClosure: {Size} int # {Displ} int;
OpRecord: {Size} int;
OpRef;
OpRestFrame;
OpReturn: {DeflateSize} int # {DeflateDispl} int;
OpRight;
OpSame;
OpSaveFrame;
OpSearch;
OpSize;
OpSkip;
OpStandAlone;
OpStart;
OpStop;
OpString: {String} token;
OpStringEq;
OpStringToInt;
OpSub;
OpSubString;
OpTabulate;
OpTail;
OpTailApply: {DeflateSize} int # {DeflateDispl} int;
OpText: {Text} FamProg;
OpTimes;
OpTrap: {TargetLabel} int;
OpTrapList: {TargetLabel} int;
OpTriv;
OpTrue;
OpTrueJump: {TargetLabel} int;
OpUnTrap: {TargetLabel} int;
OpUpdate;
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OpVariant: {CaseNumber} int;
Thread: FamProg

  |]

Note:  OpText and OpString denote OpGetLiteral operations.

18  VAX Data Formats
Comments to the pictures. Each segment "+ÐÐ+" is one byte. The symbol "^" below

a data structure represents the location pointed by pointers to that structure; fields pre-
ceding "^" are only used during garbage collection and are inaccessible to the Fam op-
erations (and hence to the user). Unboxed data is kept on the stack, or in the place of
pointers in other data structures; unboxed data does not require storage allocation.
Pointers can be distinguished from unboxed data as the former are > 64K. There are au-
tomatic conversions between SmallIntegers and BigIntegers, so that the Fam opera-
tions only see the type Integer.

Triv
0       (triv)             (unboxed)

Boolean
0       (false)            (unboxed)

1       (true)             (unboxed)

SmallInteger
–32768 .. +32767           (unboxed)

BigInteger
+––+––+––+––+––+––+––+––+ ... +––+––+––+––+

|     n     |  Chunk 1  |     |  Chunk n  |   (n≥1)
+––+––+––+––+––+––+––+––+ ... +––+––+––+––+

^

Pair
+––+––+––+––+––+––+––+––+

|    Fst    |    Snd    |

+––+––+––+––+––+––+––+––+

^
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List
0        (emptylist)        (unboxed)

 

+––+––+––+––+––+––+––+––+

|    Hd     |    Tl     |   Tl may only be emptylist

+––+––+––+––+––+––+––+––+   or point to a list

^

Record
0        (nullrecord)                    (unboxed)

 

+––+––+––+––+––+––+ ... +––+––+––+––+

|  n  |  Field 1  |     |  Field n  |    (n>0)

+––+––+––+––+––+––+ ... +––+––+––+––+

      ^

Variant
+––+––+––+––+––+––+

|    As     | Is  |

+––+––+––+––+––+––+

^

Reference
+––+––+––+––+

|    At     |

+––+––+––+––+

^

String
+––+––+––+––+––+ ... +––+

|     n     |C1|     |Cn|    (n≥0)
+––+––+––+––+––+ ... +––+

^

Array
+––+––+––+––+––+––+––+––+––+––+––+––+ ... +––+––+––+––+

|LowerBound |     n     |  Item 1   |     |  Item n   |   (n≥0)
+––+––+––+––+––+––+––+––+––+––+––+––+ ... +––+––+––+––+

^
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Text
+––+––+––+––+––+––+––+ ... +––+   (n≥1)
|  n  | Literals  |C1|     |Cn|   (^) when pointed from a Closure

+––+––+––+––+––+––+––+ ... +––+   Literals may be Nil or point

      ^          (^)              to Literals

Literals
+––+––+––+––+––+––+ ... +––+––+––+––+   (n≥1)
|  n  | Literal 1 |     | Literal n |   Literal may be a Text,

+––+––+––+––+––+––+ ... +––+––+––+––+   a String or a BigInteger

      ^

Closure
+––+––+––+––+––+––+––+––+––+––+ ... +––+––+––+––+

|  n  |   Text    |  Global 1 |     |  Global n |   (n≥0)
+––+––+––+––+––+––+––+––+––+––+ ... +––+––+––+––+   Text points

      ^                                             to a Text
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