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Abstract

System F is a well-known typed A-calculus with polymorphic types,
which provides a basis for polymorphic programming languages. We
study an extension of F, called F.. (pronounced ef-sub) that combines
parametric polymorphism with subtyping.

The main focus of the paper is the equational theory of F.. , which is
related to PER models and the notion of parametricity. We study some
categorical properties of the theory when restricted to closed terms,
including interesting categorical isomorphisms. We aso investigate proof-
theoretical properties, such as the conservativity of typing judgments with
respect to F.

We demonstrate by a set of examples how a range of constructs may
be encoded in F.. . These include record operations and subtyping hierar-
chiesthat are related to features of object-oriented languages.
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1. Introduction

System F [Gir 71] [Rey 74] is a well-known typed A-calculus with polymorphic types
that provides a basis for polymorphic programming languages. We study an extension of
F that combines parametric polymorphism [Str 67] with subtyping. We call this language
F<., where <: is our symbol for the subtype relation. F.. is closely related to the
language F < identified by Curien, and used by Curien and Ghelli primarily as a test case
for certain mathematical techniques [Ghe 90] [CG 91]. F< is, in turn, a fragment of the
language Fun [Cw 85]. In spite of F..'s apparent minimality, it has become apparent that a
range of constructs may be encoded in it (or in F.); these include many of the record
operations and subtyping features of [Car 88], [CM 91] and related work that are connected
to operations used in object-oriented programming. We illustrate some of the power of
F<. in Section 3; see also [Car 91].

We have also found that the study of F.. raises semantic questions of independent
interest. A major concern in this paper is an equational theory for F.. terms. The
equational axioms for most systems of typed A-calculi arise naturally as a consequence of
characterizing type connectives by adjoint situations (for example). In addition, it is often
the case that provable equality may be captured by a reduction system obtained by
orienting the equational axioms in a straightforward way. However, both of these
properties appear to fail for F.. . A simple example illustrates some of the basic issues.

Consider the polymorphic type V(A)A—A—A. This type is commonly referred to as
Bool, sincein system F and related systems there are two definable elements of this type.
These elements are written as the following normal forms:

true 2 A(A) A(XA) A(Y:A) X
false 2 A(A) A(XA) A(Y:A)y

In F<. , however, there are two additional normal forms of type Bool. These arise because
we have a maximal type Top, which has all other types as its subtypes. The main idea
behind the additional terms is that we can change the type of any argument not used in
the body of aterm to Top, and still have aterm of the same type (by antimonotonicity of
the left operand of — with respect to <:). This gives us the following two normal forms
of type Bool.

true. 2 A(A) A(xA) A(y:Top) x
false 2 A(A) A(xTop) A(Y:A) y

However, true and true' are completely equivalent terms when considered at type Bool.
Specifically, for any type A, the terms true(A) and true'(A) define extensionally equal
functions of type A—=A—A. Put proof-theoreticaly, if we take any term a containing true
with the property that when reducing a to normal form we apply each occurrence of true
to two arguments, then we may replace any or all occurrences of true by true' and obtain
a provably equal term. For this reason, it seems natural to consider true = true', and
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similarly false = false', even though these terms have different normal forms. When we
add these two equations to our theory, we restore the pleasing property that Bool contains
precisely two equivalence classes of hormal forms.

While our initial examination of the equational theory of F.. was motivated by a
vague intuition about observable properties of normal forms, our primary guide is the
PER semantics of polymorphic A-calculus with subtyping [BL 88] [CL 90] [Ghe 90] [Sce 90].
One relevant characteristic of PER models is the parametric behavior of polymorphic
functions. Specificaly, since polymorphic functions operate independently of their type
parameter, they may be considered equivalent at al their type instances. In F.. we can
state a consequence of this notion of parametricity, namely that whenever the two type
instances have a common supertype, they will be equal when considered as elements of
that supertype (see the rule (Eq appl2) in section 2.2). Hence the syntax of F.. can state, at
least to some extent, the semantic notion of parametricity investigated in [Rey 83], [Fre 91],
and [MS 91]. A genera principle we have followed is to adopt axioms that express
parametricity properties satisfied by PER models, but not to capture explicitly the exact
theory of PER models [Mit 90]. This leads us to a new angle on parametricity which may
prove useful in further study, and also gives us a set of axioms that are sufficient to prove
true = true', and other expected equations, without appearing contrived to fit these
particular examples.

While F.. differs from each of the A-calculi mentioned above, several properties of
F<. transfer easily from related work; in particular, F.. differs from F [CG 91] only in
the equational theory. For syntactic properties we have strong normalization [Ghe 90];
canonical type derivations, coherence, minimum typing [CG 91]; and confluence of the 3-
Nn-TopCollapse equational theory [CG 914a]. The PER semantics follows easily from the
work in [BL 88], [CL 90], [Ghe 90], and [Sce 90]. While an alternative semantics could
perhaps be developed in the style of [BFSS 90] and [Fre 91], we do not explore that
possibility here.

The main results of this paper are an equational theory for F.. , some proof-theoretic
properties developed in section 2 including conservativity of F.. typing over F, a set of
examples in section 3 demonstrating the expressiveness of F.. (some reported earlier in
[CL 90], and in [Ghe 90] with attribution), and in section 4 some categorical properties of
the theory when restricted to closed terms.

2. S/Stern F<

F<. is obtained by extending F [Gir 71] [Rey 74] (see Appendix) with a notion of
subtyping (<:). This extension allows us to remain within a pure calculus. That is, we
introduce neither the basic types, nor the structured types, normally associated with
subtyping in programming languages. Instead, we show that these programming types
can be obtained via encodings within the pure calculus. In particular, we can encode
record types with their subtyping relations [Car 88].
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2.1 Syntax

Subtyping is reflected in the syntax of types by a new type constant Top (the
supertype of al types), and by a subtype bound on second-order quantifiers. V(X<:AA'
(bounded quantifiers [Cw 85]). Ordinary second-order quantifiers are recovered by setting
the quantifier bound to Top; we use V(X)Afor V(X<:Top)A. The syntax of values is
extended by a constant top of type Top (mostly a convenience), and by a subtype bound
on polymorphic functions, A(X<:A)a. We use A(X)a for A(X<:Top)a.

Syntax

AB = Types
X type variables
Top the supertype of al types
A—B function spaces
V(X<:A)B bounded quantifications
ab:= Vaues
X value variables
top the canonical value of type Top
A(XADb functions
b(a) applications
A(X<:Ab bounded type functions
b(A) type applications

The — operator associates to the right. The scoping of A and V¥ extends to the right as far
as possible. Types and terms can be parenthesized.

A subtyping judgment is added to F 's judgments. Moreover, the equality judgment on
values is made relative to a type; this is important since values in F.. can have many
types, and two values may or may not be equivalent depending on the type that those
values are considered as possessing (see, for example, the rule (Eq collapse) in section 2.2).

Judgments
FE env E isawell-formed environment
EF Atype Aisatype
EFA<:B Aisasubtype of B
EFa: A ahastype A
EFa<Db:A a and b are equal members of type A

We use dom(E) for the set of variables defined by an environment E.
Asusual, we identify terms up to renaming of bound variables; that is, using B{X<-C}
for the substitution of C for X in B, and FV(-) for sets of free variables:

Page 5



V(X<:A)B V(Y<:A) B{X<Y} where Y ¢ FV(B)
A(X:A)b A(Y:A) b{x<-y} where y ¢ FV(b)

A(X<:A)b ACY<:A) b{X<Y}  where Y ¢ FV(b)

These identifications can be made directly on the syntax; that is, without knowing
whether the terms involved are the product of formal derivations in the system. By
adopting these identifications, we avoid the need of a type equivalence judgment for
quantifier renaming.

Environments, however, are not identified up to renaming of variables in their
domains; environment variables are kept distinct by construction. A more formal
approach would use de Bruijn indices for free and bound variables [deB 72].

2.2 Rules

The inference rules of F.. are listed below; the only essential difference between
these and the ones of F . [Ghe 90] [CG 91] iS in the more general (Eq appl2) rule. We now
comment on the most interesting aspects of the rules. (See also the discussion about (Eq
appl2) in section 2.4.)

The subtyping judgment, E - A <: B, is, for any E, areflexive and transitive relation
on types with a subsumption property; that is, amember of atypeisaso amember of any
supertype of that type. Every type is a subtype of Top. The function space operator — is
antimonotonic in its first argument and monotonic in its second. A bounded quantifier is
antimonotonic in its bound and monotonic in its body under an assumption about the free
variable.

The rules for the typing judgment, EF a: A, are the same as the corresponding rules
in F, except for the extension to bounded quantifiers. However, additional typing power
is hidden in the subsumption rule, which allows a function to take an argument of a
subtype of itsinput type.

Most of the equivalence rules, E-a <=b: A, are unremarkable. They provide
symmetry, transitivity, congruence on the syntax, and 3 and | equivalences. Two rules,
however, stand out. The first, (Eq collapse) (also called the Top-collapse rule), states that
any two terms are equivalent when “seen” at type Top; since no operations are available
on members of Top, all values are indistinguishable at that type. The second, (Eq appl2), iS
the congruence rule for polymorphic type application, giving general conditions under
which two expressions b'(A') and b"(A") are equivalent at a type C. This rule has many
intriguing consequences, which will be amply explored throughout this work. (We
occasionally write EF AB<:C for EF A<:COEF B<:C, and so on.)
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Environments

(Env g) (Envx) (Env X)
EFAtype xgdom(E) EFAtype Xg¢dom(E)
F g env FEXAenv FEX<:Aenv
Types
(Type X) (Type Top)
FEX<:AE env FEenv
EX<:AE'I Xtype EF Top type
(Type —) (Type V)
EFAtype EF Btype EX<:Al Btype
E+ A—Btype EF V(X<:A)B type
Subtypes
(Sub refl) (Sub trans)
EF Atype EFA<:B EFB<:C
EFA< A EFA<:C
(Sub X) (Sub Top)
FEX<:AE' env EF Atype
EX<AE F X<:A EFA<: Top
(Sub —) (Sub V)
EFA<:A EFB<:B EFA<:A EX<A'IB<:B
EFA-B<: A—B EF V(X<:AB<: V(X<:A)B'
Values
(Subsumption) (Val x) (Val top)
EFaA EFA<B FEXAE env FE env
EFa:B EXAE FxA EFtop: Top
(Val fun) (Val appl)
ExAF b:B EFb: A-B EFraA
EFA(XAb: A—B EFDb(a): B
(Val fun2) (Val appl2)
EX<:AFb:B EFDb: V(X<:AB EFA<A
EFAX<:A)b: V(X<:A)B EF b(A) : B{X<A}
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Equivalence

(Eq symm) (Eqtrans)
EFa<Db:A EFa<sb:A EFbe<c:A
EFb<a:A EFa<cCc:A
(Eax) (Eq collapse)
EFXA EFa:Top ERDb: Top
EFX<Xx: A EFa<Db:Top
(Eq fun) (Eq appl)
ExAFb<b :B EFb<b:A—-B Ela<a:A
EFAXAD < A(XA)DL : A—B EFb(a) < b'(@): B
(Ed appl2)
(Eq fun2) EFDb<Db": V(X<:AB EFAA'<A
EX<:Akb<b':B EF B{X<A}, B{X<A"} <: C
EFAX<:Ab <= A(X<:A)b': V(X<:A)B EFDb(A) <=b"'(A"): C
(Eq eta) (Eq eta2)
EFb<Db:A—=B ygdom(E) EFb<Db: V(X<:A)B Y¢gdom(E)
EFA(y:Ab(y) <=b' : A—=B EFA(Y<:A)D(Y) < b': V(X<:A)B
(Eq beta) (Eq beta2)
ExAFb<Db:B Elta<a:A EX<:AFb<b:B EFA< A
EF (A(xA)b)(a) <= b{x<a}:B EF (AX<:A)b)(A) <= b{X<A}: B{X<A}

2.3 Basic properties

We now state some basic lemmas about F.. derivations. Most of these are proven by
(simultaneous) induction on the size of the derivations; the proofs are long, but
straightforward if carried out in the order indicated. We conclude the section with an
application of these lemmas, showing that typing is preserved under [3-n-reductions.

Notation
Let 9 stand for either C type, C<:C', c:C,or c<>C":C.

Lemma (Renaming)
Assume Ygdom(E,X<:D,E")
FEX<:D,E env = F EY<:D,E{X<Y} env (equal-size derivations)
EX<:D,E'F3 = EY<:D,E{X<Y}F 3{X<Y} (equal-size derivations)
Assume yg#dom(E,x:D,E’)
FExDE env = FEY.D,E env (equal-size derivations)
ExDEFJS = EyYy.DEFHx<y} (equal-size derivations)
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Lemma (Implied judgments)
(S/env) FEFenv = FEenv
EFF3 = FEenv
(envitype) FEX<:D[E env = EFIDtype
FExD,E'env = EFFDtype

Lemma (Bound change)
FEX<:D'E'env, EFDtype = FEX<:D,E env
EX<:D'E'FCtype, EFDtype = EX<:D,EF Ctype

Lemma (Weakening)
Let B stand for either X<:D or x:D.
Assume F E,3 env, and X,x¢dom(E')
FEE env = FERE env
EEFS = EREFLS

Lemma (Multiple weakening)
Assume F E,F env and dom(F)ndom(E')=g.
FEE env = FEF,E env
EEFS = EFEFRS
Proof Induction on the length of F. [

Lemma (Implied judgments, continued)
(sub/type) EFC<:C = EFCtype, EF C type

Lemma (Bound weakening)
Let <BR,@3> stand for either <X<:D,X<:D'> or<x:D,x:D'>.
Assume EFD'<:D.
FERE env = FER,E env
EREFS = EREFS

Lemma (Type substitution)
Assume E+ D'<:D; then
FEX<:D,E env = F EE{X<D'} env
EX<:D.E'+3 = EE{X<D'}+ XD}

Lemma (Value substitution)
Assume E+ d:D; then
FExD,E env = I EFE env
ExDEFJ = EFE F H{x<d}

Lemma (Value strengthening)
AssumexgFV(39); then, for & # c<=C".C.
FEXD,E env = FEFE env
ExDEF3 = EEFS
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Lemma (Implied judgments, continued)
(val/type) EFc: C = EI Ctype,
(egival) EFc<c:C = EFc:C, EFcC:C,

Lemma (Eqg subsumption)
EFceCc:C, EFC<:D = EFcec:D
Proof
By sub/type lemma, EF C type. Take xgdom(E).
ThenEx:Cenv and ExCH x:C.
By weakening lemma Ex:C+ C<:D
By (Subsumption) E,x:C - x:D, and by (Eqx), E,x:C F x<>x:D.
By (Eqfun), EF A(X:C)x<>A(X:C)x : C—D.
By hypothesis and (Eq appl), E F (A(X: C)X)(C) <=(A(x:C)x)(c") : D
By (Eqbeta), EF (A(x:C)x)(c)<=C': D.
By (Eq symm) (Eq beta), E F (A(x:C)x)(c)<=C: D.
Hence by (Eq symm) (Eqtrans), EF c<=c': D. [

Lemma (I mplied judgments, continued)
(val/eq) EFc:C = Ekcec:C

Lemma (Congruence)
EFded:D JExXDEFcC =
E,E I c{x<d}<>c{x<d}: C

Lemma (Exchange)
Let 3 stand for either X<:D or x:D.
Let (¥ stand for either X'<:D' orX:D'.
Assumet E,R env.
FERRE env = FERBE env
ERREFI = ERRE S

Lemma (Substitution exchange)
Let B stand for either X:D' or X'<:D'.
FEX<:D,RE env = | E,R{X<D}X<:D,E env
EX<:D,RE'F Ctype = E,[X<D} X<:D,E'ICtype

The following two lemmas draw conclusions about the shape of terms and derivations
from the fact that certain subtyping and typing judgments have been derived.

Lemma (Subtyping decomposition)
e |If EF A<:X then A=Y, for sometype variable Y,
and either Y1=X, or for somen=1, Y;<:Yy€E ... Y;<:XeE.
o IfEX<:BE I X<:A, then either A=X or E X<:B,E' - B<:A.
o If EFTop<:A, then A=Top.
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. IfEFB—B"<:A, theneither A=Top
or A=A'—A",E A<:B'and E} B"<:A".
« IfEFA<:B'—B", then
either A=A'—A" for some A A", withEFB'<:A'and E+- A"<:B"
or A=X; and for some A", A",n=1: X;<:Xp e E.. X;<tA'—A" € E
withEF B'<:A'and EF A"<:B".
« IfEF V(X<:B')B"<:A, then either A=Top
or A=V(X<:A)A", EF A<:B'and E.X<:A'FB"<:A".
o If EFA<:V(X<:B)B", then
either A=V(X<:A)A" for some A" A",
with E+ B'<:A"and E.X<:B'FA"<:B"
or A=X4 and for some A A" ,n>1: X1<:Xp e E.. X< V(X<:A)A" € E
with EF B'<:A"and E.X<:B'FA"<:B".
Proof (sketch)
All cases are proven by induction on the size of the derivations, in order to
circumvent the (Sub refl) and (Sub trans) rules that do not follow the structure of terms.
Otherwise the proofs are straightforward. [

Lemma (Typing decomposition)
e IfEXD,EFXC, then EFD<:C.
o If EFtop:A, then A=Top.
e IfEFA(XB)b: A, then either A=Top,
or, for someA'\A",B", A=A'—-A"
with EF A<:B', EFB"<:A", andEXxB'Fb: B".
If EF b(c) : B" then for some B',
EFb:B—=B"andElc:B.
If EF A(X<:B')b: A, then either A=Top,
or, for some A"\ A" ,B", A=V(X<:A)A"
with EF A<:B', EX<:A'FB"<:A",and EX<:B'+b: B".
If EF b(C) : D then for some B',B",X,
EFC<:B, EFB'{X<C} <: D, and EFb: V(X<:B')B".
Proof (sketch)
All cases are proven by induction on the size of the derivations, in order to
circumvent the (Subsumption) rule that does not follow the structure of terms.
Otherwise the proofs are straightforward. [

We conclude with a proposition about the preservation of typing under 3 and n
reduction. The second-order n case is by far the hardest, and it requires the following
lemma about the elimination of unused free variables (FV ).
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Lemma (Non-occurring type variable)
If X¢FV(c,E') and E,X<:D,E'I-c: C then for some Cywith X¢FV(Cp)
EX<:D,E'Fc:Cpand EX<:D,E' - Cy<:C
Proof
By induction on the derivation of E,X<:D,E' I ¢ : C. The interesting cases are (val
appl) and (Val appl2), where we use the subtyping decomposition lemmas for — and V.
We show the (val appl2) case, where we have:
c=b(A"), C=B{Y<-A} (forY¢dom(E,X<:D,E'))
EX<:D,E'Fb: V(Y<:AB, EX<:D,EFA<:A
Since X¢gFV(b), by induction thereis atype ABy with X¢FV(AB), and
EX<:D,E'Fb: ABy, EX<:D,E'F ABy<:(Y<:A)B.
By the (subtyping decomposition lemma) ABy=V(Y<:Ap)Bg with:
either ABy=V/(Y<:Ag)Bg for some Ag,Bg,
with E;X<:D,E' - A<:Agand E,X<:D,E',Y<:Ay I Bp<:B.
Hence, XgFV(V(Y<:Ag)Bg), EX<:D,E'Fb: V(Y<:Ag)Bg
or ABy=X; and for some Ag,Bp,n>1:
X1<:Xp e EX<:D,E' .. Xp<:W(Y<:Ap)Bp e EX<:D,E
with EX<:D,E' I A<:Agand E,X<:D,E',Y<:Ay I Bp<:B.
If Xn<:V(Y<:Ag)Bg € E XgFV(V(Y<:Ag)Bp) since X comes &fter E.
If X <:Y(Y<:Ap)Bp = X<:D; XegFV(D=V(Y<:Ag)Bp).
If X,<:V(Y<:Ap)Bp € E'; XgFV(V(Y<:Ap)Bp) by the hyp. X¢FV(E).
By n uses of (subx) and (subsumption), E,;X<:D,E' b : V(Y<:Ag)By.
Hence, in both cases, by (suo Trans), EXX<:D,E' - A’ <: Ay,
and EX<:D,E' - b(A") : Bo{ Y<-A'}, with X¢gFV(By{ Y<-A}),
Moreover, from E,X<:D,E',\Y<:AgF By<:B
by (bound weakening lemma) E,X<:D,E',\Y<:A'F Bp<:B
and by (type substitution lemma) E,X<:D,E' - Bo{ Y<-A'}<:B{Y<-A}.
Hence we can take Cy = Bp{Y<-A}. O

Proposition (Preservation of typing under 3-n-reductions)

(Bl) EFAXB)b)(c): A = EFb{x<c}:A

(n1) EFAXB)C(X): A x¢gFV(c) = EFc: A

(B2) EFAMX<:Bb)(C): A = EFb{X<C}: A

(n2) EFAMX<:B)c(X): A, XgFV(c) = EFc: A
Proof

The first three cases are obtained easily by applying the appropriate decomposition
lemmas, along with weakening, bound weakening, value and type substitution, and value
strengthening.

The (n2) case goes as follows. From E F A(X<:B)c(X) : A by the (typing
decomposition lemma) for fun2 and appl2, we obtain (omitting the easy case of A=Top ),
for someA'A",B",Y,C,C"
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A=V(X<:A)A" with EFA<:B', EX<:A'FB"<:A", and EX<:B'tc(X): B"

EX<:B'Fc: V(Y<:C)C" with EX<:B'FX<:C' and EX<:B'FC'{Y<X} <: B".
Since X¢FV(c), by the (non-occurring type variable) lemmathereisaD with:

X¢FV(D) and EX<:B'c: D, EX<:B'FD<: Y(Y<:C')C"
Using the (subtyping decomposition lemma) on D we obtain two subcases that, for some
D',D", both lead to:

EX<:B'Fc: V(Y<:D)D", XgFV(V(Y<:D')D")

with EX<:B'F C<:D' and EX<:B'Y<:C'}F D"<:C"
By the (type strengthening lemma) from E,X<:B'tc: V(Y<:D")D":

Erc: Y(Y<:D')D" i.e. EFc: V(X<:D')D"{Y<=X}
Now, to obtain the final goal EF ¢ : V(X<:A)A" via subsumption, we need to show only
that EF V(X<:D")D"{Y<=X}<: V(X<:A)A", i.e. that:

(1) EFA<:D'

2 EX<:A'FD"{Y<X}<:A"
For (1) we use the (type substitution lemma) to get:

EFB<:C{X<B} (from E,X<:B'F-X<:C)

E FC{X<B'}<:D'{X<B}=D' (from EX<:B' C'<:D')
HenceE + A<:B<:C{X<B'} <: D
For (2) we use the (bound weakening lemma) twice to get:

EX<:AY<:XFD"<:C"

(from EX<:BY<:C'FD"<:C", EX<:B'FX<:C', EFA<:B)

from this by the (type substitution lemma)

EX<:A'F D"{Y<X} <: C'{Y<X}
We also have, by the (bound weakening lemma):

EX<:A'F C{Y<X} <: B" (from EX<:B'F C'{Y<-X} <: B", EF A<:B)
Finaly: EX<:A'FD{Y<X} <: C{Y<X} <:B"<:A". O

Note that this proposition is nontrivial; for example, the (1) case does not follow
simply from the (Eq beta) rule and the eg/val lemma. Moreover, the derivation of E +
b{x<-c} : A will have, in general, quite a different shape than the derivation of E +
(A(x:B)b)(c) : A.

2.4 Derived rules

Most of the lemmas in the previous section can be written down as derived inference
rules. Here we discuss some derived rules of specia significance.

First, the eg-subsumption lemma in the previous section gives us a very interesting
rule that lifts subsumption to the equality judgment. We remark that thisis proven viathe
(Eq beta) rule.
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(Eq subsumption)
Ea<a:A EFA<:B

EFa<a:B
Note that, in general, itisnot truethat EFa<=a :BandEFA<:Bimply EFa <
a:A
The following two lemmas concern the equivalence of functions modulo domain
restriction; the first one will find a useful application in section 3.1.

Lemma (Domain restriction)
If f: A—B, then f isequivalent to its restriction f | o- to a smaller domain A'<:A, when
they are both seen at type A'—B. That is:
(Eq fun')
EFA<:A EFB<:B ExAlkb<b:B
EFAXADb < AXA)D : A—=B'

Proof (sketch)
First derive EF A(y:A)(A(X:A)b)(y) <=A(X:A)b' : A'—B' via (Eg-subsumption)
and (Eq beta). Then passfrom EF A(X:A)b <= A(x:A)b: A—=B to
EFAXAD <= A(XA)b: A'—B' by (Eq subsumption), and to
EFA(Y:A)YAXA)D)(Y) <= A(XA)b: AA—B' by (Eqeta).
Conclude by transitivity. [

Lemma (Bound restriction)
If f: V(X<:A)B, thenf is equivalent to its restriction f |5 to a smaller bound A'<:A,
when they are both seen at type V(X<:A)B. That is:
(Eq fun2)
EFA<:A EX<!AFB<:B' EX<:Akb<b':B
EFAX<:A)b <= A(X<:A)b': V(X<:A)B'

Proof
Similar to the previous lemma, using (Eq beta2) and (Eq eta2). [J

We now turn to the (Eq appl2) rule. This rule asserts that if a polymorphic function b :
V(X<:A)Bisinstantiated at two types A'<:A and A"<:A, then both instantiations evaluate
to the same value with respect to any result type that is an upper bound of B{X<-A'} and
B{X<A"}.

(Eq appl2)
EFb<b": V(X<:AB EFA<:A EFA'<A
EF B{X<A}<:C EFlB{X<A"}<:C
EFDb(A) «<b"(A"): C
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Note that this rule asserts that the result of b(A) is independent of A, in the proper result

type.
A simpler derived rule (used in F< [CG 91]) is obtained by setting A'=A":

(Eq appl2 A=A")
EFb<b": V(X<:AB EFA<:A
EFD'(A) <= Db"(A) : B{X<A}

However, the (Eq appl2) rule is most useful when A'ZA" and we can find a nontrivial
upper bound to B{X<-A'} and B{X<-A"}. This fact motivates the following derived rule,
which is often used in practice.

Denote by B{X <C,X * <D} the substitution of C for the negative occurrences of X
in B, and of D for the positive ones. Take A'<:A" (<: A), then we have:

B{X<A" B{(X <A X <A} < B{X <A X <A"

B{X<A"} B{X «<A" X <A <: B{X <A X" <A"
(A proof of this may be found in [Ghe 90], section 14.3.) Hence, for A'<:A"<:A we have a
(nontrivial) common supertype for B{X<-A'} and B{X<-A"}. This fact then justifies the
rule:

(Eqappl2-+)
EFb<b": V(X<:AB EFA<:A'<A
EFD(A) < b"(A") : B{X <A X" <A"}
Thisruleisin fact a special case of dinaturality of type application [BFSS 90], where
the dinaturality is required only with respect to coercions A'<:A" , for all A', A" subtypes
of A. We have the diagram:

/B{5 (_A'
V(X< :A)B\~ B{}A-( <A}
B{X<A"}

The two arrows on the left are the A" and A" instances of generic type application x(X),
where x is a variable of type V(X<:A)B, and B might have the type variable X free. The
two arrows on the right are coercions induced by A'<:A". Here V(X<:A)B isconstant in
X, so the coercion A'<:A" has no effect on this type. Hence the diagram above isjust a
brief version of:
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V(X<:A)B — B{X<A}

V(X<:A)B B{X <A X" <A"}

V(X<:AB —» B{X<-A"}

where now the two horizontal arrows are the A" and A" instances of x(X). In the
terminology of [BFSS 90, p.42], the family given by {x(X)|X<:A} is dinatural in the
coercions.

We conclude this section with an application of (Eq appl2), which is used in sections
3.3and 4.

Proposition (Eg-substitution)
Assume E,X<:Ax: Sk b:B and X positivein Sand B.
If EFALAS <! A EF si§X<Aq}, EF 5o:§ XAy}, EF 51«5 XA}
then EF b{X<-Aq x5} <=b{X<-Apx<5,}: B{X<-A}

Proof

Let M £ A(X<:A)A(x:Sb. Then E F M: V(X<:A)S—B. Now prove:
(1)  EEM(A)(sy) <= M(A)(sy) : B{X<-A},

by (Eq appl2) and (Eq appl), sSince X is positivein Sand B.
(2) EEM(A)(sp) <> M(A)(sp) : B{X<-A}

similarly to (1).
) EEM(A)(s) <= M(A)(sy) : B{X<-A}

by (Eq appl2) and (Eq appl), SiNce E F 51 <>Sy: {X<-A}.
Conclude by (Eq trans), (Beta2), and (Beta). [

The proposition can be easily generalized to the case where there are several variables
X1 S0 X Sy (X positive in all of them) and terms E F sg:
SX<A},..., EF s SX<A}, WIthEF A4,..,A <! Aand E fSy<>...<>5,; S X<A}.

2.5 PER semantics

For the PER semantics, the reader can consult [BL 88], [CL 90], [Ghe 90], and [Sce 90].
The interpretation of F.. in PER is explained in those papers, except that the rule (Eq
appl2) must be shown sound. The proof rests on the fact that, given types V(X<:A)B and
A'<:A and denoting with [ ] the interpretation function for types, we have [V(X<:A)B] [J
[B{X<-A}]. From this, and the observation that the interpretation for terms is given by
erasing the type information, the conclusion is straightforward.
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2.6 Conservativity of typing

Besides the presence of subtypes, the main new feature of F.. with respect to F liesin
its equational theory, which extends the standard (3-n equality in two directions, by
adding a terminal type Top and introducing the rule (Eq appl2). Besides nonessential
syntactic variants, the language of F is included in F..’s language and thus it makes
sense to investigate whether F.. is conservative over F. We may, however, consider also
an “intermediate” system between F and F.., with the property that the language
inclusion of F into F.. “splits’.

The system we are interested in is F; , obtained by adding to F the type constant Top,
together with rule (Eq collapse) for making Top aterminal type. If we want to compare F..
with its underlying subtype-free systems, we need a system such as F4 , and not F, since
it iswell known that the terminal type is not definable in F. Moreover, the conservativity
result we will prove with respect to F holds because F.. proves only trivial subtype
judgments between F types, while the situation for F; is more complex and its analysis
sheds some more light on the structure of subtype proofs.

First of all, the equational theory (<=) of F.. is not conservative over F, because of
the rule (Eq appl2). Consider, for example:

Proposition
EFBtype, EFc: V(X)X—B, Ea: A
= EI c(Top)(top) <= c(A)(a) : B
Proof
E F c(Top)(top) <= c(Top)(a) : B val/eq lemma (Eq appl2) (Eq collapse) (Eq appl)
EFc(Top)(@) <= c(A)(a) : B val/eq lemma (Eq appl2) (Eq appl)
EF c(Top)(top) <= c(A)(a): B (Eqtrans). (1

By applying this fact twice via (Eq trans) we can show:
y . V(X)X—=Bool I y(Bool)(true) <> y(Bool)(false) : Bool

which is an F-judgment equating two different 3-n-normal forms. It is well known that
no such judgment is derivable in F. A further application of (Eq fun) produces two closed
terms with the same property.

As for the typing theory, however, F..’s rules are designed to maintain and carefully
generalize those of its subsystems. Writing ¢ for derivationsin F, 4 for derivations in
F,,and . for derivationsin F.. , we can prove the following result.

Theorem
() If EF<. a: A whereE, a, and A arein the language of F,
then E |_|: a: A
(i) If EF<. a: A, whereE, a, and A arein the language of F, , then there
existsan Fq-term, al, suchthat Ejal: A and El.. a<sal: A
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The proof of these statements (inspired by some results in [Ghe 90]) requires a detour on
normal form proofsin F.. . These normal forms are studied in [CG 91] for a slightly
different system, but they share with F.. the same typing judgments. The reason for the
detour is that trivial proofs by induction on the derivation of E .. a: A do not work,
since F.. has “cut rules’ (e.g. (Subsumption), (Sub Trans), Or (Val appl)) that may introduce
non-F (or non-F,) types.

2.6.1 Normal and minimal proofsin F_.

In F<. asingle typing judgment may have many proofs. The non-determinism of the
proof search arises from the freedom in the order in which the rules (Subsumption) and (Sub
trans) can be applied. However, as showed in [CG 91], this freedom does not provide
additional proving power. In subtype proofs we can do without (Sub trans) except for the
uses where thefirst (i.e., smallest) typeis avariable appearing in the environment. In type
proofs, we can restrict the use of (Subsumption) SO as to derive only the least type for a
given term, which may be then given a larger type with a single, last application of
(Subsumption). These ideas are the inspiration for the notions of normal and minimal
normal proofs.

Subtype proofs

A normal form proof of E .. A<:B is a proof E -, A<:B obtained in the formal
system ks consisting of the rules (Sub Top), (Sub —), (Sub ) (where .. isreplaced by Fq¢ ),
plus the following rules:

(Sub Refl-X) (Sub Trans-X)
E s X type EX<:BE'FyB<:A AZTop
Ebg X<: X E'X<:BE" by X<: A

Type proofs

Normal form proofs and minimal normal form proofs of E .. a: A are
simultaneously defined as follows.

A normal form proof E s a: Aiseither (1) aminimal normal form proof E s a:
A, or (2) a minimal normal form proof followed by a single nontrivial use of
subsumption; in this case the final step has the form:

EFpmfa: A EFfA<IA where A'ZA.
EFbgfa: A
A minimal normal form proof E s @ : A isaproof using only the rules: (val x), (val
top), (Val fun), (val fun2) (where . is replaced by ,,f), or one of the two rules below,

which use the following notation:
E(X)=A if E=E1X<:AE2.
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E*(C)=C if Cisnot avariable
E*(X)=E(X) if E(X)isnotavariable,
E*(X)=E1*(E(X)) if E(X)isavariableand E=E1,X<:AE2.
(Val appl-min)

EFmib: C Ebga: A E*(C)=A—B

EFmnib(@) : B

(Val appl2-min)

EFmib: C EFfA<IA E*(C)=V(X<:A)B

E Frnt B(AY) 1 B{X<-A}

Proposition
For any provable judgment E .. a: A, there exists aunique derivation
of EFpra: A

Proof [cG9o1 I

2.6.2F_. typing is conservative over F typing
It is not difficult to see F as a subsystem of F.. . We can define atranslation function
T over the language of F so that:

T(VXA) = V(X<:Top) 1(A)
T(AXM) = A(X<:Top) (M)

and which istrivialy defined on all the other constructs. A well-formed environment E in
F consists of acollection E1=Xy,..., X}, of type variables and alist E2=x4: 5, ..., Xp: S,
of type assumptions, where at most the type variables in E1 can appear free. Then:

T(E) =Xi<:Top, ..., Xp<:Top, X1:1(Sy), ..., Xp: T(S)-

From this, it is almost obvious that F-derivations E g a:A and E - a<=a': A are mapped
to F..-derivations 7(E) F 1(a):7(A) and 1(E) - 1(a)<=1(a’): 7(A) with the following
properties. The resulting derivations never use (Subsumption) (and thus subtyping rules) or
Top rules, and (Eq appl2) is always applied in its special case when A'=A" and
C=B{X<-A'}. In the following we will argue directly in the language of F.. (thus
dispensing with 7).

Lemma

Let E be an F-environment, and let A and B be F-types.

Et<. A<:B iff A=B.
Proof

The “if” direction is aroutine induction. For the other direction, take the normal form
proof of E .. A<:B. Then, (Sub —) and (Sub V) proceed by induction, and (Sub Refl-X) IS
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trivial. For (Sub Trans-X), E ¢ X<:A must have been derived from E',X<:Top,E" - Top
<: A, but the latter implies A=Top by the subtyping decomposition lemma, which is
absurd since Aisan F-type. [

Lemma

Let E be an F-environment, a be an F-term, and let E s @ A. Then Alisan F-type
andEFga: A
Proof

By induction on the derivation E s a: A

(val x) E' X AE" Fpne X T A
Then Aisan F-type, since E is an F-environment.

(val fun) Thelast ruleis:
ExXAlb: B
Ermf AXA)b: A—B

By hypothesis, A(x:A)b is an F-term and therefore A is an F-type.
By induction hypothesis, Bisan F-typeand Ex:Atg b : B.

(Val fun2) is analogous to (Vval fun).
(Val appl-min) Thelast ruleis:
EFmib:C Ebga:A E*(C)=A—B
EFmb(@) : B

Consider first the premise E - b 2 C.

We show that C cannot be avariable. Indeed, if it were the case that
C=X, then E*(C)=E(X)=Top, since E is an F-environment, contrary to
the side-condition that E* (C) has to be afunction type.

Therefore C isnot avariable, and E* (C)=C=A—B.

By induction hypothesis, A—=B isan F-typeand E+g b : A—B.
Consider now the proof E s a: A. We claim it isactually

aminimal normal form proof. In fact, we already proved that A—B is
an F-type; hence A isan F-type. If it were the case that the last step of
the proof Esa: Ais

with A'ZA, then, by induction hypothesis, A' would be an F-type
and A'=A by the previous lemma. Hence the proof EFsa: Aisa
minimal normal proof E @ : A and, by induction hypothesis,
E |_|: a: A
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(Val appl2-min) Thelast ruleis:
EFmib: C EFA<IA E*(C)=V(X<:A)B
E bt B(A) : B{X<A'}

Note first that since b(A") isan F-term, A’ isan F-type. Asin the
previous case, C cannot be avariable, and C=V(X<:A)B.

By induction hypothesis, V(X<:A)B isan F-type (thus A=Top, making
trivial the other premise E A' <: Top) and E g b : V(X<:Top)B.
Then EFg b(A) : B{X<-A}. O

Theorem (Conservativity of typing over F)
Let E be an F-environment, a be an F-term and A be an F-type.
Ec.a:A = Eblga: A
Proof
Consider the unique normal form proof EFa: A.
If itslast stepis:
EFmfa: A EFgA'<IA
Elbppa: A
with A'ZA, then, by the previous lemma, A" would be an F-type
and A'=A by the other lemma. The proof E - a : A isthen a proof
EFmnf @ A; the previous lemma allows us to obtain the conclusion. [J

2.6.3 F_. typing is conservative “modulo an equality” over F1 typing

Asin the case of F, system F4 can be easily viewed as a subsystem of F.. . Consider
the subsystem of F.. obtained by: restricting (Env X) to the case where A=Top, dropping
al the subtyping rules but (Sub Top), removing (Subsumption), and restricting (Eq appl2) to the
case where A'=A" and C=B{X< A}. We will therefore identify F, with this subsystem
and write -, for Fq-derivations.

The reason why the typing theory of F.. is conservative over that of F (expressed in
the first lemma of the previous subsection) is that only trivial subtype judgments E k..
A<:B with A=B can be proved when A and B are F-types. The situation for Fq-typesis
more interesting, since, due to (Sub Top), nontrivial inclusions can be proved.

A first remark is that the typing of F.. isnot conservative over that of F4:

X<:Topx:Xt<. x:Top
but, of course,
- (X<:Top,x:Xtq x:Top)

Page 21



This failure is, indeed, one of the pragmatic reasons (from the programming language
design viewpoint) for introducing (Subsumption), since this is the mechanism by which a
program (method, function, ...) can be inherited in other types.

We can look, however, for conservativity modulo an F..-equality. If EF.. a: A,
where E, a, and A are in the language of Fq , then there exists an F4-term, al say, such
that EFy al : A and E k.. a<=al: A. In the example above, it is obvious that
X<:Top,x: X -1 top: Top and X<:Top,x: X -1 X<=top: Top, by (Eq Top).

We start with some preliminary lemmas. Let

id = A(X<:Top)A(x:X)x

Lemma (I dentity coercions)
Let E be an Fy-environment, A and B be F1-types, and E .. A<:B. Then there exists
an F1-term ka g such that:

E |_1 kA,B:AeB and E |_<: kA,B<—>Id(A) - A—B.

Proof
By induction on the normal form proof E - A<:B.
Note first that (Sub Trans-X) cannot be the last rule of such a proof,
because its premise would be E', X<:Top,E" I Top <: A(since Eisan
F,-environment), which would imply A=Top by subtyping decomposition
lemma, which isimpossible because of the side condition requiring AZTop.
In the other cases, we take kp g as the (inductively defined)
explicit coercion between A and B. Details are as follows.

(Sub Refl-X) istrivial.

(SubTop) E F<. A<:Top. Takethen kp top = A(X:A)top.
Rules (Eq collapse) and (Eq fun) give E . kA'TOpei d(A) : A—=Top.

(Sub —) Defineka—p a—g = A(f:A—=B) kg g o f o Ky a.

From E ks A—=B <: A'—B', by induction hypothesis
and an easy argument:

E, fA—=B .. A(XA)kg g (f(ka' A(X))) <= AXA)N(X) : A—B'
by (Eqeta) and transitivity:

E, f:A—B k.. A(xA)kg g(f(ka a(X)))<>f : A'—B'
by (Eq fun):

E F<: A(RA—B)AGCA)kg g (flka o))

< A(f:.A—=B)f : (A—=B)—=(A'—B)

(Sub V) E g V(X<:A)B <: V(X<:A")B' where A=A'=Top because
both V(X<:A)B and V(X<:A')B' are F;-types. Let:
C=V(X<:Top)B and C'=V(X<:Top)B'
and define:
ke.c = A(xC)A(X<:Top)kg g(X(X))
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From E s C <: C', by induction and an easy argument
EX Cl<. A(X<:Top)kg gi(X(X)) <> A(X<:Top)x(X) : C'
by (Eqeta2) and transitivity
EXx Chc. A(X<:Top)kg gi(X(X)) <= x: C'
and hence the thesis, by (Eq fun). (1

Lemma

Let E be an Fq-environment, a an Fi-term and E ¢ @@ A Then:

(i) AisanFq-type

(i) thereexistsan Fq-termal suchthat EF;al: A and EF.. a<»al: A
Proof

By inductionon E s a: A

(Val x) E'XAE" FqniX: A. Then Aisan F4-type, since Eisan
F,-environment and al=x; the conclusion (ii) follows by (Eq x).

(Val top) E s top : Top. Then aso E 4 top : Top and we can take al=top.
(val fun) Thelast ruleis:
ExXAFb: B
Ermf AKA)b: A—B

By hypothesis, A(x:A)b is an F;-term and therefore A is an F4-type.
By induction hypothesis, B is an F;-type and there exists aterm bl
suchthat Ex:At-q bl: Band ExAl.. b<>bl: B.

The thesis follows by (Eq fun).

(Val fun2) is analogous to (Val fun).
(Val appl-min) Thelast ruleis:
EFmib:C Ebga:A E*(C)=A—B
EFmb(@) : B

Consider first the left premise, E Fyys b : C.
We observe that C cannot be avariable X. If it were, since
E isan F1-environment, we would have E* (C)=E(X)=Top,
contradicting the assumption that E* (C)=A—B.
Thus, C=A—B, induction applies, A—=B is an F;-type and
we obtain an F1-term bl such that
Eribl: A—=B and Et.. b<=bl: A—B.
Consider now the other premise, E s a: A
If it happens to be a minimal normal form proof E Fyra: A
then by induction hypothesis we have aterm al such that:
Elj;al: A and Efc. a<=al: A
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Otherwise, thelast step of EFra: Als:
EFmfa: A EFgfA'<IA
Elbpa: A

By induction hypothesis, A" is an F1-type and we get an F4-term &'
suchthat Etq @A and El.. a<=a"A'.
We already proved that A—B is an F4-type; hence A isan F4-type.
From E k¢ A" <: A, the identity coercionslemmagivesan Fq
term kA',A such that E |_1 kA',A:/A\I —Aand E |_<: kA"Aeid(A') A=A
Takethen al=kn a(@). Simple computations give:

EHjal: AandEl.. a<sal: A
Finally, by (Eq appl)

Etqbl(al) : Band Et.. bl(al) <= b(a) : B.

(Val appl2-min) Thelast ruleis
EFmib:C EFgA <A E*(C)=V(X<:A)B
E Frnt B(AY) 1 B{X<-A}

Note, first, that since b(A') isan Fy-term, A’ isan F4-type.
Asintheprevious case, in E ¢ b : C, C cannot be avariable.
Therefore, the left premise iISE ks b @ V(X<:A)B.
By induction hypothesis, V(X<:A)B isan F-type
(thus A=Top and the second premiseistrivial)
and we have an F1-term bl such that
Eli1bl: V(X<:Top)B and E .. b<=bl: V(X<:Top)B.
Then Eq b1(A) : B{X<-A} and E .. b(A)<=b1(A") : B{X<A}.O

We can finally prove our conservativity result:

Theorem (Conservativity of typing over Fq)
If EF<. a: A whereE, a, and A are in the language of F, , then there
existsan Fq-term, al, suchthat EF-;al: A and EF.. a<=al: A.

Proof
Take the normal form proof E ¢ a: A. If itisaminimal normal form
proof, then the thesis follows by the previous lemma. If, on the other
hand, it consists of aminimal normal form proof E s a: A’ followed by
subsumption with premise E k¢ A" <: A, then, by the previous lemma,
A'isan F4-type and we have an F4-term, &', such that E+; a' : A" and
Et.. a<=a : A'. Thethesisthen follows by the identity coercions lemma
and (Eq appl). (I
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3. Expressiveness

Since F.. isan extension of F, one can aready carry out all the standard encodings of
algebraic data types that are possible in F [BB 85]. However, it is not clear that anything of
further interest can be obtained from the subtyping rules of F.. , which involve only an
apparently useless type Top and the smple rules for — and V. In this section we begin to
show that we can in fact construct rich subtyping relations on familiar data structures.

3.1 Booleans

In the rest of section 3 we concentrate on inclusion of structured types, but for thisto
make sense we need to show that there are some nontrivial inclusions already at the level
of basic types. We investigate here the type of booleans, illustrating some consequences
of the F.. rules.

Starting from the encoding of Church's booleansin F, we can define three subtypes of
Bool asfollows (cf. [Fai 89]):

Bool £ V(A) A—A—A

True 2 V(A) A->Top—A

False £ V(A) Top—A—A

None £ V(A) Top—Top—A
where:

None<: True, None<: False, True<: Bool, False<: Bool

Looking at all the closed normal forms (that is, the elements) of these types, we have:

trueggg : Bool £ A(A) A(XA) A(y:A) x
falseggo : Bool £ A(A) A(XA) A(y:A) y
truerrye - True £ A(A) A(x:A) A(y: Top) x
falserge @ False £ A(A) A(x:Top) A(Y:A) Yy

We obtain four elements of type Bool; in addition to the usual two, truegy and falseggg,
the extra trueyy e and falsep e have type Bool by subsumption. This is somewhat
surprising because computationally there are only two booleans. Intuitively, if two
arguments of an arbitrary type are given, there are only two ways of providing a result of
that type. This coincides with the fact that by removing all the type information in the
terms above, we obtain only two distinct untyped terms. Fortunately, we can show that
truegyg and truer, e are provably equivalent at type Bool, by using the domain restriction
lemma (Eq fun') from section 2.4.
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EA<:TopxAy:TopFx<x: A EFA<:Top

EA<:TopX:AF A(y:Top) X <= A(Y:A) X : A=A (Eq fun’)
EA<:TopF A(X:A) A(Yy:Top) X <= A(X:A) A(Y:A) x: A=A—A
EFA(A) AQCA) A(y:Top) X <= A(A) A(XA) A(Y:A) x: V(A) A=A—A
E - truepyye <> truegyg : Bool

Similarly, we can show that E - falser e <= falsegyo @ Bool. Hence, there really are
only two different values in Bool; one value each in True and False , and none in None.

3.2 Naturals

The encoding of booleans in the previous section does not seem to generalize to other
algebraic types. A different style of encoding (which can also be applied to booleans)
works better for naturals. In the following encoding, Nat stands for the type of naturals,
Nat, for the type of zero naturals (the singleton zero), and Natg for the type of non-zero
naturals.

Nat £ WV(N) V(N<:N) V(N<:N) N,=(N—=Ng)—=N

Nat, £ W(N) V(N,<:N) V(Ng<:N) N,—~(N—-Ng)—=N,
Nats £ V(N) V(N,<:N) V(N<:N) N,—~(N—=Ng)—=Ng
The closed normal forms of minimal type for Nat are the usual Church numerals; for Nat,
we have only the zero natural, and for Natg the non-zero naturals. We obtain:

Nat,<: Nat, Natg<: Nat

zero: Nat, £

A(N) A(N<:N) A(Ng<:N) A(zZN;) A(SSN—=Ng) z

succ: Nat—Natg £

A(n:Nat)
A(N) A(N<:N) A(Ng<:N) A(ZN,) A(SN—=Ng)
s(n(N)(N2)(Ns)(2)(s))

3.3 Products
The standard encoding for pairsin F, shown below, already exhibits useful subtyping

properties.
AxB £ V(C)(A—»B—C)—C

Both A and B occur in monotonic positions in AxB, being placed on the left of an —
which is on the left of another —. Hence we obtain the expected monotonic inclusion of

products as a derived rule:
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EFA<!:A EFB<:!B
EFAXB<: A'XB

The operations on pairs are defined, as usual, as:

pair: V(A) V(B) A-B—AxB

2 A(A) A(B) A(a:A) A(b:B) A(C) A(f: A—=B—C) f(a)(b)
fst: Y(A) V(B) AxXB—A

2 A(A) A(B) A(c: AxB) c(A)(A(x:A)A(y:B)X)
snd:  V(A) V(B) AxB—B

2 A(A) A(B) A(c: AxB) c(B)(A(x:A)A(y:B)y)

We often use the following abbreviations, disambiguated by context:

a,b = aaxgb = pair(A)(B)(a)(b)
fst(c) = fstaxg(C) = fst(A)(B)(c)
sd(©) = sdap(© = snd(A)(B)(©)

3.4 Simpletuples

A tupletypeis an iterated product type. When the last factor of thisiterated product is
atype variable, we have an extensible tuple type. When it is Top, we have a simple tuple
type. In this paper we discuss only simple tuple types.

Tuple(Top) £ Top
Tuple(Aq,..,AnTop) £ Ayx(..x(AzXTOp)..) n>1

With derived rule:
EFA1<:By .. EFA<!B, EFAL1type .. EF Ay type
EF Tuple(Aq,...An-Am, TOP) <: Tuple(By,..,.Bn, TOP)

For example:

Tuple(A, B, Top) <: Tuple(A, Top)
because A<: A, BxTop <: Top, and % is monotonic.

We note here that the type Top assumes a very useful role, in alowing alonger tuple
type to be a subtype of a shorter tuple type. The intuition is that a longer tuple value can
always be regarded as a shorter tuple value, by “forgetting” the additional components,
and thisis possible since everything is forgotten in Top.

For tuple values we have:

tuple(top) £ top
tuple(ay,...an,top) £ aq,(..,(a,, top)..) n>1

with derived rules:
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ErFaj: Ay .. EFag Ay
E I tuple(ay,..,an,top) : Tuple(Aq,..,An, TOp)
EFaj<b;: Ay .. EFa,<sby: A,
E - tuple(ay,..,an,top) <= tuple(by,..,b,top) : Tuple(Aq,..,A,, TOp)

The basic tuple operations are: all, dropping the first i components of tuple a; and a.i,
selecting the i-th component of a. These are defined by iterating product operations,
again, we omit some typing information:

all = sndi(a)
ai = fst(an)
We obtain the derived rules:
Eta: Tuple(Ag....An,Top) n20, ie0.n+1
EFali: Tuple(A,..,An,Top)
Eta: Tuple(Ag....,An,Top) N0, i€0..n

Elai:A
ErFag: Ay .. EFag: Ay n=0
E I tuple(ag,..,an,top) [V <= tuple(a;,..,an,top) : Tuple(A;,...An, Top) i€0..n+1
Etag: Ay .. EFa,: A, n=0, i€0..n

E I tuple(ag,..,an,top).i <= & : A;

3.5. Simplerecords

We restrict ourselves to the encoding of simple records (the ones with a fixed number
of components[CL 90]); extensible records are treated in [Car 91].

Let L be a countable set of labels, enumerated by a bijection 1eL—Nat. We indicate
by i, with a superscript, the i-th label in this enumeration. Often we need to refer to alist
of n distinct labels out of this enumeration; we then use subscripts, asin | ... So we may
have, for example, 11,15,13=15,11,117. More precisely, |1..I,, stands for 19(2),..,10(N) for some
injective oel..n—Nat.

A record type has the form Red(l1:Aq,..,1:An,C); in this presentation C will always be
Top. Once the enumeration of labels is fixed, a record type is encoded as a tuple type
where the record components are allocated to tuple slots as determined by the index of
their labels. The component of label |1 is allocated into the i-th tuple slot; the remaining
dots arefilled with Top “padding”. For example:

Red(12:C, 10:A, Top) 2 Tuple(A, Top, C, Top)
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Since record type components are canonically sorted under the encoding, two record
types that differ only in the order of their components will be equal under the encoding.
Hence we can consider record components as unordered.

From the encoding, we derive the familiar rule for simple records [Car 88]:

EFA1<:By .. EFAL<!B, EFAp1type .. EFAqLtype
EF Red(l1:Aq,-ln:Anol i Am Top) <: Red(l:By,..,15:Bp, Top)

This holds because any additional field I,: A, (h<k<m) on the |eft is absorbed either by the
Top padding on the right, if (I, )<max(i(I1)..t(1,)), or by the final Top, otherwise. For
example:
Red(10:A, 11:B, 12:C, Top) = Tuple(A, B, C, Top)
<: Tuple(Top, B, Top) = Red(I11:B, Top)

Record values are similarly encoded, for example:

red(I2=c, 10=a, top) 2 tuple(a, top, c, top)
from which we obtain the rules:
ElFa;: A .. EFag: Ay
Etred(l1=ay,...|n5=antop) : Red(l1:Aq,..,1h:An TOp)
EFaj<ai: Ay .. EFag<=ay: Ay
Errcd(l1=ay,..,|5=ap,top) <> red(l1=a'y,..,|j=a'h,top) : Red(11:Aq,..,1:An TOp)

Record selection is encoded as follows:

rli 2 r.a(ly)
EFr: Red(l: A Top)
EFrl:A

Note that, by subsumption, we have the following as (further) derived rules:
EFa;: A .. EFayt Ay .. EFag: Ay
Etred(l1=ay,...|n=an- | = amtop) : Red(l1:Aq,..ln:An, TOP)
E|_aleb1: Al . E|_an<—>bn . An
EFan1:Bn1 - EFay:By EFbp1:Chiq o EFDby: Cy
EFred(l1=ay,..In=an,..[p=ap,top) <= rcd(l1=by,...|n5=b,...[g=bg,top)
- Red(l1:Aq,...ln:An, TOp)
Etr: Red(l1:Aq,...1h:An TOP) iel.n
El r.Ii . Ai
The second rule above is particularly interesting. It expresses a form of observationa
equivalence: two records are equivalent if they coincide on the components that are
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observable at a given type. This holds ultimately because any two values are equivalent at
type Top.

3.6. Lists

Following the pattern used in the encoding of Naturals, we can define the algebra of
parametric lists [BB 85]. List[ A] stands for the homogeneous lists of type A.

ListfA] £ V(L) L—(A—L—L)—L
We have:
A<:B = Ligt[A] <: List[B]

nil: V(A) List[A] 2
A(A) A(L) A(n:L) A(C:A—L—L) n

cons: V(A) A—List[A] —List[A] £
A(A) A(hd: A) A(tl:List[A])
A(L) A(n:L) A(c:A—L—L)
c(hd)(tl(L)(n)(c))
length: V(A) ListfA] »Nat £
A(A) A(l:List[A])
I(Nat)(zero)(A(a: A)A(n: Nat)succ(n))

As an application of (Eq appl2) we can now show some interesting facts. Namely, any
two null lists are equal in List[ Top], and have the same length in Nat. Similarly for two
singleton lists, and so on. In the proof, we will use the Eg-substitution proposition of
Section 2.4.

Take b:B and c:C, then:

F nil(B) <> nil(C) : List[ Top] (Eq appl2)
F length(Top)(nil(B)) <= length(Top)(nil(C)) : Nat (Eq appl2, Eq appl)
F cons(B)(b)(nil(B)) <= cons(C)(c)(nil(C)) : List[ Top]
by Eg-substitution, starting from
X<:Top, x:X,l:List[ X] F cons(X)(X)(I) : List[X]
F length(B)(cons(B)(b)(nil(B))) <= length(C)(cons(C)(c)(nil(C))) : Nat
by Eg-substitution, starting from
X<:Top, I:List[ X] F length (X)(I) : Nat
Note that we have proven an interesting property of the behavior of length uniquely

from its type; any function f: V(A) List[A] —=Nat has such a property. This fact is related
to the theorems proved in [wad 89] using only the types of terms. A difference is that our
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proof is carried out within F.. , whereas Wadler uses semantic parametricity properties
beyond the proof system of F.

4. The category of closed terms

It is well known that the usual second-order encodings for products and coproducts,
while logically sound, do not define under (3-n-equality true categorical constructions.
One can easily prove the existence of aterm making a certain diagram commute, but its
unigueness does not follow from the standard equational rules.

As an example of the expressive power of (Eq appl2), we show that those encodings
are really categorical constructions when the underlying equational theory is the one of
F<. . In the same vein, motivated by the semantic isomorphisms obtained in [BFSS 90] and
[Fre 91] as consequences of parametricity, we investigate some provable isomorphismsin
a suitable setting. The framework for our discussion is a category whose objects are the
sets of closed terms of a closed type.

4.1 Definitions and basic properties

Recall that given a typed A-calculus language and a A-theory T, a category CI(T) is
determined by taking as objects of CI(T) the (closed) types of T [LS 86] [MS 89]. As for
morphisms, choose first one variable for each type and define the morphisms from A to B
to be equivalence classes of typing judgments x: A+ t:B, where X is the chosen variable of
type A, and the equivalence relation is given by the equality judgments X At t<>t":B of T.
We will write [x:A I t:B] for the morphism given by the judgment x:A |- t:B. Identity is
given by [x:AF x:A] and composition is defined by substitution:

[y:BFs.C] o [XxAFt:B] =[x A- {y<t}.C]

The category Cl(F<.), obtained by applying this construction to F.. , has a terminal
object, given by Top. For any object A, the canonical morphism from Ato Top is[X A+
top: Top] ; uniqueness is guaranteed by (Eq collapse).

Now, given an arbitrary (small) category C with a terminal object 1, consider the
canonical functor~_': C — Setsgiven by:

For any object A:
"A'=C(1,A) (theset of all morphisms 1—A)
For any morphism feC(A,B):
"f "isthe mapping from "A’ to ‘B’ given by composing with f
(that is"f "(p) = fop for peC(1,A))
Note that " " is not faithful if C is not well-pointed (as defined in 4.2.5). Given
f,geC(AB), f "and "g’ are set-theoretical mappings and therefore, in order to have'f '='g,
it is sufficient that fop=gop for any peC(1,A). The values of the functor ~_": C — Sets
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over al the objects and morphisms of C give a subcategory of Setsthat can be denoted
withC".

The category we are interested in is"Cl(F..) . We will prove, as consequences of (Eq
appl2), that it has finite products and coproducts. For this, however, it is convenient to
introduce the category CL , equivalent to "Cl(F<.), for which we can give a more explicit
description.

Remark
F Atype reads“Aisaclosed type”
FaA reads “aisaclosed term of closed type A’

Definition (cl-equality)
For -ff":A—B,wesay Ff<Cf': A—>B iff
fordla,FaA = FHf(a)<=f'(a): B

The objects of "CI(F..)" are, for any - A type, the sets of morphisms[z Top - t:A]. By
(Eq collapse) and congruence, [z Top - t:A] = [z Top F t{z<—top}: A]. The term t{z<—top} is
closed and zTop + t{z<top}:A iff - t{z<—top}:A. Any object of 'CI(F..)" is therefore
isomorphic to the set of equivalence classes [ a:A] of closed terms of a closed type; the
equivalence relation is given by the equality judgments - a<=a":A. (Write - A type for
such a set.) These sets are the objects of the category CL .

The morphisms of "CI(F<.)" are, for any morphism f = [x:A I t:B] of CI(F..), the
mappings from ‘A’ to "B’ given by f ((zTop + a:A]) = [zTop I t{x<a}:B] for any
[zTop  a:A]. By - and n-conversion one obtains a category equivaent to "Cl(F..)" by
stipulating that a morphism of CL from - A typeto - B type is an equivalence class of
derivable term judgments:

FHf.A—B
where the morphism equivalenceis
(Ff:A—-B)=(-f"A—B) iff f<clf:A-B.
The identity judgment is
idya £ FACA)X: A=A
and the composition judgment is, for any Fh:A—B and + g:B—C:
goh 2 FA(xA)g(h(X)) : A—=C

(We also ambiguously use goh 2 A(x:A)g(h(X)).)

We remark that morphism equivalence is not provable equality. For two morphisms -
f.A—B and I f":A—B to be equal it is sufficient that f and f ' agree on the closed terms of
type A. Similarly, the following two definitions correspond to isomorphism and
uniqueness (for morphisms) in CL..
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Definition (cl-isomorphism)
Wesay - A~C B iff thereexistt f:A—B, - g:B—A such that

F gof <«cl IdA tA—A

F fog «d IdB : B—B

Definition (cl-uniqueness)
Wesay + f:A—=Bisthe cl-unique f satisfying P(f) iff
for any other - f ': A—B satisfying P(f ') we have - f <¢l ' : A—B.

In order to prove that CL has finite products and coproducts, we need some more
lemmasin F.. , and especialy the crucial consequence of (Eq appl2) expressed in the eg-
var-substitution lemma, below.

Lemma (Type monotonicity)
Let EX<:BF C<: D<:Band E,X<:B,E' I Stype Then
(i) XpositiveinS = EX<:BEF X<C} <: §X<D}
(i)  XnegativeinS = EX<:B,E'F §X<D} <: X<C}
Proof
By induction on the derivation E,X<:B,E' - Stype. The only lesstrivial
caseis (Type V). Assume X positive in V(Y<:S1)&2. By induction hypothesis:
E,X<:B,E' I SI{X<D} <: SI{X<-C}
From E,X<:B,E',Y<:Sl F & type, by bound change lemma:
E,X<:B,E',\Y<:Sl{X<-D} F 2 type
Now conclude by induction and (sub v). (1

Definition (Pointed on X)
Given atype variable X, atype Sis pointed on X iff X ispositivein
Sand S=V(Y1<:By)..."(V<:B)T1—=(...=(T,—=X)...) for k>0, h=0.

Lemma (Generalized collapse)
Let E,X<:Top I Stype, with Spointed on X.
EFDtype and EFs: X<D} = EX<:Top,X:Sk x<>s: §X<Top}
Proof
Let S=V(Y1<:By)... V(Y <:BYT1=(...=(Th—=X)...).
By type monotonicity lemma,
EX<:Topt S<: §X<Top} and EX<:TopHF YX<D} <: §X<Top}.
Let F=Y1<:By{X<Top},...,Y, <:B{X<Top}, t;: T1{X<Top},.. ..ty To{X<Top}.
By (val x), weakening, and (Subsumption),
EX<:Top,x:SF F x: §X<Top}
by (Eq appl2) and (Eq appl),
EX<:Topx:SF F x(Y7)...(Y))(t)...(&) : Top
Anaogoudly, from EF s: X<D} we obtain:
EX<:Top,x:SF - s. §X<Top}

Page 33



and then:

EX<:Topx:SFF (Y7)...(Yj)(t1)...(}) : Top
By (Eq collapse),

EX<:Topx:SF F x(Y7)...(Y))(t)...(&) <= s(Y7)...()(t1)..(t) : Top
By (Eq fun), (Eqfun2), (Eqeta) and (Eq eta2),

EX<:Top,X:SF X <= s: §X<Top}. O

By generalized collapse and the eg-substitution property (section 2.4) we obtain the
following lemma, which expresses a parametricity property: a (possibly open) term a of a
closed type A is provably equal to any term obtained by substituting specific types and
termsfor its free variables.

Lemma (Eg-var-substitution)
Assume, for i=1..n, E',X<:Top}+ § typeand § pointed on X. Let:
E = E, X<:Top, X1: Sy, ..., Xpt Sy
If - Atype, EF aA E'F D typeand E' I ti: §{X<-D} fori=1..n,
then EFa <> a{X<D, x;<tq, ..., Xy<to} - A
Proof
By generalized collapse lemma, , for i=1..n:
E' X<:Topx: §F X <= tj : §{X<Top}.
The eg-substitution proposition (Sect. 2.4) allows us to conclude. [

4.2 CL finite products and coproducts; well-pointedness
In this section we show that the equational theory of F.. is strong enough to entail
some basic categorical propertiesof CL..

4.2.1 Terminal objects

Proposition
For any object I C type, there is a unique morphism - 1 : C—Top.
Proof
Take 1c 2 A(x:C) top.
Take any other morphism - f: C—Top.
x:CHf:C—=Top (weaken)
X:CHf(X) <= top: Top (Eqcollapse)
FAXC) f(X) <= A(x:C) top: C—=Top (Eq fun)
Ff<s1c: C—Top (Eqeta)
A fortiori, - f <¢ 1-: C—Top. O
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4.2.2 Binary products

Definition
AxB £ V(C)(A—»B—-C)—C

Proposition
For any pair of objects A type, - B type, the object - AxB
type is their categorical product. That is, there exist
F1:AxB—A, F r:AxB—B such that for any + C type, and for
any - f:C—A, |- g:C—B, there exists a unique (i.e. cl-unique)
F h:C—AxB such that - lch<>¢ f: C=A and I roh <>¢l g :
C—B.

A<—Ax8—> B

Proof
Define:

px £ A(x:A)A(y:B)x

py £ A(x:A)A(y:B)y

| 2 A(p: AxB)p(A)(pX) then - l:AxXB—A

r4 /\(p AxB)p(B)(py) then - r:AxB—B

pair 2 A(a:A)A(b:B)A(C)A(g:A—=B—C)q(a)(b)
then - pair : A=B—=AxB

couple 2 A(C)A(f: C—=A)A(g: C—B)A(c: C)pair (f(c))(g(c))
then I~ couple : ¥(C) (C—A)—(C—B)—=C—(AxB)

Fix an object - C type and two morphismst f:C—A and - g:C—B.

1) Existence.

Take h £ couple(C)(f)(g) < A(c:C)pair(f(c))(9(c)
Floh <= A(ZC)I(h(2)) <= A(zC)f(2) <= f: C—A
Froh <= A(ZzC)r(h(2)) <= A(zC)g(2) <= g: C—B

2) The morphism above is well defined. Just show that:

Ff' <df:C—>AFg <t g: C—B implies
I couple(C)(f)(g) <=¢ couple(C)(f )(g) : C—=AxB

3) Unigqueness.

3.1) Show, for I~ c:AxB, that - couple(AxB)(1)(r)(c) <= c: AxB
The normal form of ¢ must have the shape:
¢ = A(C)A(a:D)q(a)(b)
for some C<:Top+ A—B—-C<:D, C<:Top,q:DF a:A, and C<:Top,q:D I b:B.
By the bound weakening lemma,
C<:Top,gA—=B—=CF a:A, and C<:Top,gA—=B—C}+ b:B
and by (Eq fun’), for ¢’ £ A(C)A(q: A—=B—C)q(a)(b),

Page 35



Fc<C' : AxB.
By [B-conversion
FI(c) <= c(A)(pX) <= a{C<-A,q<px} : A Let al £ a{C<A,g<—px}
Fr(c) <= c(B)(py) <= b{C<B,g<py} : B Let bl £ a{C<B,q<—py}.
By the eg-var-substitution lemma,
C<:Top,gA—=B—-Cla<al: A
C<:Top,gA—=B—Ck-b<Dbl:B
C<:Top,g:A—=B—CF g(a)(b) <= q(al)(b1) : C (Eg-appl)
F A(C)A(g:A—=B—=C)q(a)(b) <= A(C)A(g:A—=B—C)q(al)(bl)
- AxB  (Eqfun, Eqfun2)
Hence:
= couple(AxB)(I)(r)(c) < pair(l(c))(r(c))
<> A(C)A(q:A—=B—C)q(al)(bl) <= A(C)A(q:A—>B—-C)q(a)(b)
< C <cCc:AxB

3.2) Show, by B-conversion, that for any - D type, - k:D—C, and - d: D,
F couple(D)(f-k)(g-k)(d) <= (couple(C)(f)(g)-k)(d) : AxB
That h is cl-unique now follows by the usual argument. [

Corollary FA~C A, FB~dB = FAxB-~¢AXB
Proof
Standard diagram chasing, from the existence of products. [

4.2.3 Initial objects
Definition
Bot £ V(X)X
Proposition
For any object |- C type, there is a unique morphism + O : Bot—C.
Proof
Take Oc £ A(x:Bot) x(C).
Take any other morphism - f : Bot—C.
Since there are no terms ¢ such that - ¢ : Bot, then it is vacuously
true that for all - c: Bot, - f(c) <= Oz (c) : C,
that is, that - f <>¢ O : Bot—C. [J

Remark

Bool —Bot is aso an initial object, by the same argument, since there are no terms of
type Bool —Bot. The unique map is the equivalence class of A(x: Bool —=Bot) x(true)(C),
which includes A(x: Bool —Bot) x(false)(C). More generally, any empty type V for which
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there exists aterm = f:VV—Bot isinitial. The canonical morphism is the equivalence class
of A(x:V) f(X)(C), which is cl-unique since there are no closed termst c:V.

4.2.4 Binary coproducts
Definition
A+B2 V(C) (AeC) —>(B—>C) —=C

Proposition

For any pair of objects - A type, - B type, the object - A+B A o A+ B 4_ B

type is their categorical coproduct. That is, there exist
Fi:A—A+B, - j:B—=A+B such that for any + C type, and for
any + f:A—C, - g:B—C, there exists a unique (i.e. cl-unique)

F h:A+B—C such that - hoi <>¢l f: A—>C and F hoj <>¢l g :
B—C.

Proof
Define:

i 2 A(XA)ACA(f: A=C)A(g:B—=O)f(x) then Fi: A—A+B
j 2 A(y:B)A(C)A(f:A—=C)A(g:B—C)g(y) then +j: B —=A+B
case £ A(C)A(f:A—=C)A(g:B—C)A(c: A+B)c(C)(f)(g)

then - case: V(C) (A—=C)—(B—C)—(A+B)—C

0) Let |- c: A+ B; then the normal form of ¢ must have one of the shapes:
c=ACYA(f:D)A(g":G)f '(a)
for some C'<:Top FA—=C <:D, C<:TopHFB—C'<:G, and
C<:Topf"D,g:GFaA
c = A(CYA(f:D)A(g":G)g'(b)
for some C'<:Top FA—=C <:D, C<:TopHB—=C'<:G, and
C<:Top,fD,g:G+hb:B
By the bound weakening lemma,
C<:Topf:A-C,g:B—=Ct+ aA
C<:Top,f"A—-C,g:B—C'I b:B
and, by (Eqfun),
either Fc< A(CHA(f:A—=C)A(g:B—=C)f'(a) : A+B
or Fc < ACYA(f:A—=C)A(g:B—C)g'(b) : A+B

Fix an object - C type and two morphismst f:A—C and + g:B—C.

1) Existence

Take h £ case(C)(f)(q).
F hoi <= A(X:A)h(i(X)) <= A(XA)(X) <= f: A—=C
F hoj <= A(X:A)h(j(X)) <= A(X:A)g(X) <= g: B—C

Page 37



2) The morphism above is well defined.
Show " <¢ f: A=C, I g" <€ g: B—C implies
- case(C)(f)(g) <>¢! case(C)(f ")(g") : A+B—~C
That is, for - c:A+B,
= casg(C)(f)(g)(c) <> case(C)(f ")(g")(c) : C
By (0) and [3-conversion, either
- case(C)(f)(g)(c) <> f(&{C'«-Cf'«<f,g<q}): C and
Fcase(C)(f ")(9")(c) <= f"(&{C'Cf'f".g<g'}): C
or
F case(C)()(9)(c) <> 9(b{C' <-Cf'<f,g<qg}): C and
Fcase(C)(f ")(g")(c) <= g"(b{C' «-Cf'«f".g«g"}): C
In the first case (the other one is similar), the eg-var-substitution lemma gives:
C<:Top,f"A-C,g.B=ClFra< afC'<Cf'<fg<g}: A andaso
C<:TopfA-=C,g:B=Clra<afC<Cf'<f"g<qg'}: A
from which we infer:
Fa{C«<Cf'«f"g<g'} < a[C<Cf'<fg<g}:A
since both terms are closed. Now conclude by using - f" <¢l f : A—=C.

3) Unigqueness.
3.1) Show, for - c:A+B, that - case(A+B)(i)(j)(c) <= c: A+B.
By cases on the normal form of ¢, according to (0).
In the first case,
F case(A+B)(i)(j)(c) <> c(A+B)(i)(j) <= i(a{C'<-A+B,f'<i,g'<j}) : A+B
Let al £ a{C'<A+B,f'<i,g'<|}. By the eg-var-substitution lemma,
C<:TopfA-C.,g:B=Clal<a:A
C<:Topf"A—-C.,g:B—=C'If'(al) <=f'(@): C' (Eqappl)
FAC)A(f:A—=C)A(g:B—=C)f '(al)
<= A(C)A(f "A—=C)A(g:B—=C')f'(a) : A+B (Eqfun, Eqfun2)
Fi(al) <= c: A+B (def)
F case(A+B)(i)(j)(c) <= c: A+B (equation above)

The second caseis similar.

3.2) Show, for any + D type, F k:C—D, and - c.A+B,
F case(D)(kof)(keg)(c) < (k-case(C)(f)(9))(c) : D.

By cases on the normal form of ¢, according to (0).

In the first case we have:

+ case(D) (kof)(k-g)(c) <> c(D)(k-f)(k-0)
<> k(f(&{C' <D, '<kof,g <kog})) : D

F (k-case(C)(f)(9))(c) <> k(f(a{C' <-C,f'<f,g'<-q})): D
From the eg-var-substitution lemma,
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C<:Top,f:A—=C',g:B—=C'I- a <= afC <D, '<kof,g'«<kog} : A
C<:Topf:A—=C,g:B=Clra<afC<Cf'<fg<g}: A
Conclude by transitivity and (Eq appl).
The second caseis similar.
(4) Uniqueness can now be shown by the standard argument. [

Corollary FA~¢ A, FB~dB = FA+B~CdA+B
Proof
Standard diagram chasing, from the existence of coproducts. [

4.2.5 Well-pointedness

A category C with aterminal object 1 is well-pointed iff for any pair of objects A and
B and any f,geC(A,B) we have:

f=g iff forany heC(1,A), foh =goh.

Proposition
CL isweéll-pointed.
That is, for any - A type, - B type, and any I f,g : A—B, we have:
Ff<Cg:A-B <« foranylF h: Top—A, I foh <>Cl goh: Top—B
Proof

=
)
x:Top F f(h(x)) <= f(h(top)) : B (Eq collapse) and (Eq appl)
x:Top F g(h(x)) <= g(h(top)) : B similarly
x:Top F f(h(top)) <= g(h(top)) : B hypothesis, weaken
F A(x:Top) f(h(X)) <= A(x:Top) g(h(x)) : Top—B (Eq trans) and (Eq fun)
Hence foh <= goh : Top—B.
<)
Taketl a: A, consider h=A(x:Top)a.
F (foh)(top) <= (g-h)(top) : B hypothesis
Ff(a) <= g(a): B (Eq beta)

Hencet f <¢l g: A—B. O

4.3 CL isomorphisms
The following isomorphisms were inspired by [BFSS 90] and [Fre 91].

4.3.1 Double negation

We prove that, for any - A type we have A ~ V(C)(A—=C)—C. Thisis an isomorphism
holding in the models studied in [BFSS 90], but which has no known proof in F. (See the
remark at the end of this section.)
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Proposition
FAtype = FA~¢ V(C)(A—-C)—C
Proof
Define:  f £ A(x: V(C)(A—C)—C) x(A)(id(A))
g 2 A(Y:A) A(C) A(zA—C) z(y)
Then: Ff. (V(C)(A—-C)—C) — A, and I-g: A —= (V(C)(A—=C)—C)
Take a such that - a: A. Then, by (3-conversion:
F1(g(@) <> f(A(C) A(zA—C) Z(a))
<> (A(C) A(zA—C) Z(&))(A)(id(A))
< id(A)(a) <=a: A
Takeclosed b such that - b : V(C)(A—=C)—C.
Then b has anormal form of the shape
b= A(C) A(zD) z(al)
for some C<:Top+ A—C<:D and C<:Top,zD I al:A.
By the bound weakening lemma,
C<:Top,zA—CF al:A
and hence
Fb <= A(C) A(zA—=C) z(al)
Then
F g(f(b)) <= A(C) A(zA—C) z(al{C<-A, z=-id(A)})
: (C)(A—=C)—C
By the eg-var-substitution lemma,
C<:Top, zA—Ct al <= al{C<A, z=-id(A)} : A
Hence,
C<:Top, zA—-Ct z(al) <= z(al{C<-A, z=id(A)}): C
That is:
F A(C) A(zA—C) z(al) <= A(C) A(zA—C) z(al{C<-A, z=-id(A)})
. V(C)(A—=C)—C
Combining the two equations above:
F g(f(b)) <= A(C) A(zA—C) z(al) <= b : V(C)(A—=C)—C. O

Remark

Christine Paulin-Mohring has shown that, even for A closed, A ~ V(C)(A—=C)—C is
not provable in F via the isomorphism we have used in the proof above. (It is not known
whether some other isomorphism would work). To seethis, let T be V(R)R—R; the term:

A(P) A(x:(T—T)—P)

XAY:T) y (P=T) (A(U:P)y) (x(A(v:T)v)))
L Y(P)((T—T)—P)—>P

is not convertible to any term of the form:

Page 40



A(P) A(x:(T—=T)—P) x(c)

where c isaclosed term of type T—T.

Moreover, Roberto Di Cosmo [DiC 91] has shown that A is not isomorphic to
7(C)(A—=C)—C in F in the usual sense of F-isomorphisms, as opposed to cl-
isomorphisms.

4.3.2 Existentials

We prove in this section that the terminal type Top is isomorphic in CL to F(X)X.
From the programming point of view this is consistent with the intuition that, although
any value can be encapsulated as an object of type 7(X)X, there is no way of using an
object of this type. We will prove, more generally, that F(X<:A)X ~ A (i.e. F F(X<:A)X
~cl A)

Lemma 1
EFBtype EFy: V(X<:AX—B, EFA'<:A EFa:A, EF-a<a:A
= EFyA(a) <yA)a):B
Proof
First,
EFy «<y: V(X<:AX—=B hypothesis, (Eqx)
EFy(A) < y(A): A—B (Eq appl2), since X¢FV(B), by E - B type
EFY(A)(a) <= y(A)(@): B  hypothesis, (Eq appl)
Then,
EFy «<y: V(X<:AX—=B hypothesis, (Eqx)
EFY(A) < y(A): A—B (Eqappl2)
EFY(A)(@) < y(A)(@) : B hypothesis, (Eq appl)
Finally,
EFy(A(a) < yA)@):B.O
Definition
Let id: V(A) V(W<:A) W-W £ A(A) A(W<:A) A(Ww:W) w
Definition
IW<:AB £ Y(V)(V(W<:A)B—-V)—-V
some: V(A) V(X<:A) X—=AW<: AW
2 AA) A(X<:A) A(x:X)
A(V) A(z (W< :A)W—-V) z(X)(X)

Proposition

FAtype = FA-~0 JX<:A)X
Proof

Letkf: (IW<:AW) — A
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wheref = A(p: A(W<:A)W)p(A)(id(A))
Letk-g: A—= (FW<:AW)
where g = A(x: A)some(A)(A)(X)
Takeasuchthat - a:A. Then
= f(9(a)) < f(some(A)(A)(a))
< f(A(V)(A(z V(W<:A)W—-V)z(A)(a))
< (AMA(Z (W<:A\W-V)Z(A)(a)) (A) (id(A))
< id(A)(A)(a)
<a:A
Take closed b such that - b : F(W<:A)W.
Then b has anormal form of the shape:
b= A(V)A(zD)z(B1)(b1)
for some D, B1, bl such that:
V<:Topk V(W<:A)\W—-=V <:D
V<:Top,zDFbl:Bl<: A
By the bound weakening lemma, and (Eq fun')
Fb <= A(V)A(z V(W< :A)W—-V)z(B1)(b1)
Then
= g(f(b)) <= g(b(A)(id(A)))
<> g(id(A)(BL{V<A})(bL{V<A,z<id(A)})
<> g(bl{V<-A,z=-id(A)})
<> some(A)(A)(b1{V<A,z=-1d(A)})
< AV)A(z V(W<:A)W-V) z(A)(b1{V<Az<id(A)})
C W< AW
By the eg-var-substitution lemma, since
Fid(A) : VIW<:A\W-W<: V(W<:A)\W—A,
V<:Top, z V(W<:A)\W—V I- bl <> b1{V<Az<-id(A)} : A.
Hence by Lemma 1,
V<:Top, z V(W<:A)W—-V |- z2(A)(b1{V<A,z=-1d(A)}) <= z(B1)(b1) : V
That is:
FAMV)A(zZ V(W<:A)\W-V) z(A)(b1{V<A,z=-id(A)})
< A(V)A(z V(W<:A)W-V) z(B1)(b1)
- AW<:AW
Combining the two equations above:
Fg(f(b)) <
< A(V)A(z V(W<:A)W-V) z(B1)(b1)
<D
- W< AW. O

Corollary
F Top ~¢ FX)X
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4.3.3 Other cl-isomorphisms
Many other isomorphisms can be derived with the techniques developed in the
previous sections. Among them we have the following.

Domain restriction
C ~ V(X) X—=C
A—-C ~ V(X<:A) X—=C

Categorical
(AxB)xC ~ Ax(BxC)
AxTop ~ TopxA ~ A
(A+B)+C ~ A+(B+C)
A+Bot ~ Bot+A ~ A

Various
Top—A ~ A (by ssimple top collapse)
A—Top ~ Top (by simple top collapse)
Top ~ V(C) C—=C (by analyzing the normal forms)
Bot —A ~ Top (by analyzing the normal forms)
A—Bot ~ Bot for Anonempty (by vacuous fog <>¢ id conditions

since both types are empty)

7(X) (A—=X) ~ A-=V(X)X (B-n suffices)

Conclusions

We study an extension of system F with subtyping and its equational theory. While
the equational rules are not complete for PER models, the main inspirations for the most
novel rules come from PER models and categorical notions of parametricity. Although
our proof system is not a conservative extension of system F, we prove the conservativity
of typing judgments with respect to F. We study some categorical properties of the theory
when restricted to closed terms, including interesting categorical isomorphisms. These
isomorphisms provide some confidence in the strength of the proof system. Additional
evidence is given by a set of encodings; these include record operations and subtyping
hierarchies that are related to features of object-oriented languages.

One important area we have not studied is an adequate computation system. Ideally
we would like to have a notion of reduction such that any two provably equal terms
reduce to a common term. If possible, we would like reductions to terminate as well. A
standard approach is to orient each equational axiom in one direction. The two equational
rules that lead to immediate problems are (Eq collapse) and (Eq appl2); for these it is not
obvious how to produce an oriented reduction rule. Furthermore, in order to capture
equivalence, a set of oriented rules would have to be proved confluent. If we had a
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computational characterization of equality, we would have decidability of the equational
system; in its absence, decidability remains an open problem.

The final form of the (Eq appl2) rule is still under investigation. Some recent insights
[ACC 93] seem to suggest that (Eq appl2-+) should be taken instead. Specifically, formal
systems considered in [BFSS 90] and [ACC 93] have the latter as a consequence, but not
the former. The (Eq appl2) rule was adopted here because it is valid in PER and has a
simpler syntactic form.
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Appendix: System F

Environments

(Env g) (Envx) (Env X)
EF Atype xgdom(E) FEenv Xgdom(E)
Fgenv F EXxAenv F E, X env
Types
(Type X) (Type —) (Type V)
FEXE' env EFAtype EF Btype EXF Btype
EXE F Xtype E+ A—Btype EF V(X)B type
Values
(val x) (Val fun) (Val appl)
F EXxAE env Ex:AF b:B E-b: A—-B EFRaA
EXAE F XA EFA(XADb: A—B EFDb(a): B
(Val fun2) (Val appl2)
EXFDb:B EFDb: V(X)B EF Atype
EFAX)b: V(X)B EF b(A) : B{X<-A}
Equivalence
(Eq symm) (Eq trans)
EFa<Db:A EFa<b:A EFbe<c:A
EFb<a:A EFa<cCc:A
(Eax) (Eq fun) (Eq appl)
EFXA ExXAFb<b': B EFb<b:A—-B Ela<a:@A
EFX<Xx:A EFAMXAD <= A(XA)D : A—=B EFDb(@ < b(@): B
(Eq fun2) (Eq appl2)
EXFb<b':B EFb<b: V(X)B EF Atype
EFAX)b <= AX)b' : V(X)B EFD(A) <= b'(A) : B{X<A}
(Eq eta) (Eq eta2)
EFb<b:A—=B ygdom(E) EFb<Db: V(X)B Y¢dom(E)
EFA(y:Ab(y) <=b' : A—=B EFAYD(Y) <= b : V(X)B
(Eq beta) (Eq beta2)
ExXAFb<Db:B Ela<a:A EXFb<Db:B EFAtype

EF (A(xA)b)(a) <> bi{x<a}: B EF (A)D)(A) < b{X<A} : B{X<A}
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