
Page 1

Extensible Records in a
Pure Calculus of Subtyping

Luca Cardelli
Digital Equipment Corporation, Systems Research Center

130 Lytton Avenue, Palo Alto CA 94301

Abstract
Extensible records were introduced by Mitchell Wand while

studying type inference in a polymorphic λ-calculus with record types.
This paper describes a calculus with extensible records, F<:ρ, that can
be translated into a simpler calculus, F<:, lacking any record
primitives. Given independent axiomatizations of F<:ρ and F<: (the
former being an extension of the latter) we show that the translation
preserves typing, subtyping, and equality.

F<:ρ can then be used as an expressive calculus of extensible
records, either directly or to give meaning to yet other languages. We
show that F<:ρ can express many of the standard benchmark examples
that appear in the literature.

Like other record calculi that have been proposed, F<:ρ has a
rather complex set of rules but, unlike those other calculi, its rules are
justified by a translation to a very simple calculus. We argue that
thinking in terms of translations may help in simplifying and
organizing the various record calculi that have been proposed, as well
as in generating new ones.

Appears in: Theoretical Aspects of Object-Oriente Programming, J.C.Mitchell, C.Gunter Eds. 1993.

SRC Research Report 81, January 3, 1989. Revised October 22, 1993.
© Digital Equipment Corporation 1989,1993.
This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment
Corporation in Palo Alto, California; an acknowledgment of the authors and individuals contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license
with payment of fee to the Systems Research Center. All rights reserved.

Page 2

Contents

1. Introduction
2. System F<:

2.1 Syntax
2.2 Rules

3. Basic encodings
3.1 Booleans
3.2 Products
3.3 Enumerations
3.4 Tuples

4. Records
4.1 Simple records
4.2 Extensible records

5. System F<:ρ
5.1 Syntax
5.2 Rules
5.3 Properties
5.4 Some useful extensions

5.4.1 Recursive types
5.4.2 Label sets
5.4.3 Definitions

5.5 Examples
6. Translation of F<:ρ into F<:
7. The translation preserves derivations
8. Conclusions
Acknowledgements
References

Page 3

1. Introduction
Extensible records, and the associated notion of row variables, were introduced by

Mitchell Wand while he was studying the problem of type inference in a polymorphic
λ-calculus with record types [Wand 1987]; a row variable is a type variable ranging
over the possible field-extensions of a record type. Many calculi of row variables have
been produced since then [Jategaonkar, Mitchell 1988] [Rémy 1989] [Wand 1989]
[Harper, Pierce 1990] [Cardelli, Mitchell 1991], and many more can be imagined. As
we try to increase the expressiveness of these calculi, the axiomatization techniques
become more and more divergent and complex. To be able to compare and discuss
these different calculi, we feel the need of some more fundamental framework. This
paper suggests that a very simple calculus of subtyping can be used as a basis for
studying much more complex calculi of extensible records.

In the search for a unifying framework, we can adopt the following working
hypothesis: every reasonable calculus of row variables should be reducible to a
calculus without row variables, via a well-behaved translation. The purpose of this
hypothesis is not to eliminate row variables completely, since the translated programs
would become too verbose to be useful; the purpose is to gain insights in the study of
calculi with row variables. Even if our working hypothesis turns out to be false, which
it may well be, we will have distinguished the easier features that can be translated
from the more complex ones that cannot.

To carry out this plan, we need to fix a suitable target calculus for the translation.
Since we are studying type variables, a likely choice would seem to be the second-
order λ-calculus (system F [Girard 1971] [Reynolds 1974]). To express the idea that
the translation is well-behaved, we require some basic soundness properties such as
the preservation of typing, subtyping, and equality relations. But, in order to preserve
subtyping relations, we need to translate to a target calculus that still has a notion of
subtyping; otherwise we would gain little insight about the complex subtyping
relations induced by extensible records. For a similar reason, we are not interested in
untyped target calculi, for which translations are easily obtainable.

As target calculus we use therefore an extension of F with subtyping, called F<:
(F-sub), which has been studied recently [Curien, Ghelli 1991] [Curien, Ghelli 1992]
[Cardelli, et al. 1991]. The fact that a translation of extensible records into F<: is at all
possible also gives us new evidence about the expressiveness of F<:, and reinforces
our feeling that F<: can be regarded as a canonical calculus of subtyping.

Before the main discussion, we briefly review the motivations that led to the
notions of row variables and extensible records.

In a calculus with records, a program may contain expressions like r.l where r
denotes a record value and the label l denotes a field of that record; then the record
selection r.l denotes the value of the field labeled l in record r.

Given the expression r.l we can infer that r has a type of the form Rcd(l:A), that is,
a record type having a field labeled l of type A; the type A is to be determined later.
Given another expression r.l' in the same program, we can then infer that r has a type
of the form Rcd(l:A,l':A'), and so on.

Page 4

This form of typing, though, becomes insufficient when considering record
updates. The expression r.lóïôa denotes a record similar to r, except that the value of
its l component is updated to a. Consider now the program:

p @ λ(r) r.lóïôa

Assuming a:A, and for any type B, we can infer the typing:

p: Rcd(l:B)îïñRcd(l:A)

Given a record value rcd(l=b,l'=b'), having two fields labeled l and l' with respective
values b and b', we consider legal the expression p(rcd(l=b,l'=b')) because the
argument has all the fields required by the type of p. This expression then receives the
type Rcd(l:A), because of the typing of p above. Unfortunately, by this typing we
have forgotten that the argument of p, and hence its result, has another component
labeled l'. This is unsatisfactory.

To capture the kind of polymorphism required by the record update operation, we
introduce row variables. Record types are extended to the more general form
Rcd(l1:A1,..,ln:An,X), where X is a row variable intended to represent “all the other
fields” of a given record type; in this case all the fields except the ones labeled l1..ln.
We can then assign to the program p the more informative type:

p: Rcd(l:B,X)îïñRcd(l:A,X)

Now, in p(rcd(l=b,l'=b',l"=b")), where b':B' and b":B", the row variable X is bound to
l':B',l":B" (a row type), producing the expected result type Rcd(l:A,l':B',l":B") by
substitution of l':B',l":B" for X.

In this form of type inference we must keep track of constraints on the row
variables, such as the fact that X in the example above must not come to contain l
components (otherwise we would have a duplicate label). These constraints can be
made manifest by adopting a type system featuring explicit polymorphism; then
program p receives the typing:

p : Ó(Y) Ó(X¶l) Rcd(l:Y,X)îïñRcd(l:A,X)

Here X¶l means that X is undefined at label l (that is, X can be bound only to row
types that have no l components). Appropriate types and rows must then be explicitly
supplied as arguments to p, as in:

p(B)(l':B',l":B")(rcd(l=b,l'=b',l"=b"))

This is finally a satisfactory typing of p, although for practical reasons we may
require some type inference to avoid writing down the type arguments (B) and
(l':B',l":B"). We do not discuss type inference here, which we consider as a pragmatic
variation on the basic calculus.

In Wand's original view, and in further developments [Rémy 1989] [Harper,
Pierce 1990], row variables are type variables of a different kind. In contrast, in
[Cardelli, Mitchell 1991] we studied an explicitly polymorphic type system where
both row variables and type variables are instances of second-order type variables,
therefore unifying the two concepts. In this paper we go back to the original view that

Page 5

row variables are separate, but we show that they can ultimately be expressed as
ordinary type variables.

In outline, this paper shows how a calculus with row variables, F<:ρ, can be
represented in a simpler calculus without row variables, F<:, via a translation. Given
independent axiomatizations of F<:ρ and F<: (the former being an extension of the
latter) we prove that the translation is well-behaved, in that it preserves typing,
subtyping, and equality.

The paper is organized as follows. Sections 2 and 3 recall the definition of F<: and
its expressive power (borrowing from [Cardelli, et al. 1991]). Section 4 gives the
main intuitions of the encoding of extensible records in F<:. Section 5 describes F<:ρ.
Section 6 gives the translation of F<:ρ into F<:, and finally section 7 shows that the
translation is sound.

Examples of the expressive power of F<:ρ and comparisons with other calculi are
delayed until section 5.5. We show there that F<:ρ can express many of the standard
benchmark examples that appear in the literature. We encourage readers to examine
these examples whenever convenient.

Readers who wish to learn about F<:ρ as a language of records but who are not
interested in the translation into F<:, may confine themselves to sections 1, 2.0, 2.1,
2.2, 5.0, 5.1, 5.2, 5.4, 5.5, and 8.

2. System F<:
In this section we describe the target calculus, F<:, for the translation that will

follow. F<: can be translated in turn into a trivial extension of F called F1 [Breazu-
Tannen, et al. 1989]. However, the known translations from F<: to F1 do not preserve
subtyping in F<: [Martini 1990]; this reinforces the point that translating to F<: is
more informative than translating directly to F.

F<: is obtained by extending F with a notion of subtyping (<:). This extension
allows us to remain within a pure calculus. That is, we introduce neither the basic
types nor the structured types normally associated with subtyping in programming
languages. Instead, we show that these programming types can be obtained via
encodings within the pure calculus. In particular, we can encode record types with
their subtyping relations [Cardelli 1988].

2.1 Syntax
The syntax of F<: extends the syntax of F as follows. A new type constant Top

denotes the supertype of all types. Second-order quantifiers acquire a subtype bound:
Ó(X<:A)A' (bounded quantifiers [Cardelli, Wegner 1985]). Ordinary second-order
quantifiers are recovered by setting the quantifier bound to Top; we use Ó(X)A for
Ó(X<:Top)A. The syntax of values is extended by a constant top of type Top, and by a
subtype bound on polymorphic functions, λ(X<:A)a. We use λ(X)a for λ(X<:Top)a.

Syntax

A,B ::= Types

Page 6

X type variable
Top the supertype of all types
AîïñB function space
Ó(X<:A)B bounded quantification

a,b ::= Values
x value variable
top canonical value of type Top
λ(x:A)b function
b(a) application
λ(X<:A)b bounded type function
b(A) type application

 A subtyping judgment is added to F 's judgments. Moreover, the equality judgment
on values is made relative to a type; this is important since values in F<: can have
many types, and two values may or may not be equivalent depending on the type
those values are considered as possessing.

Judgments

∫ E env E is a well-formed environment
E ∫ A type A is a type
E ∫ A <: B A is a subtype of B
E ∫ a : A a has type A
E ∫ a óïñ b : A a and b are equal members of type A

We use dom(E) for the set of variables defined by an environment E.
As usual, we identify terms up to renaming of bound variables; that is, using

C{XóïôD} for the substitution of D for X in C :

Ó(X<:A)B 7 Ó(Y<:A)B{XóïôY}
λ(x:A)b 7 λ(y:A) (b{xóïôy})
λ(X<:A)b 7 λ(Y<:A) (b{XóïôY})

These identifications can be made directly on the syntax, that is, without knowing
whether the terms involved are the product of formal derivations in the system. By
adopting these identifications, we avoid the need for a type equality judgment.

Environments, however, are not identified up to renaming of variables in their
domains; environment variables are kept distinct by construction. A more formal
approach would use de Bruijn indices for free and bound variables [de Bruijn 1972].

2.2 Rules
The inference rules of F<: are listed below; we now comment on their most

interesting aspects.
The subtyping judgment, E ∫ A<:B, defines, for any E, a reflexive and transitive

relation on types with a subsumption property: a member of a type is also a member
of any supertype of that type. Every type is a subtype of Top. The function space

Page 7

operator îïñ is antimonotonic in its first argument and monotonic in its second. A
bounded quantifier is antimonotonic in its bound and monotonic in its body.

The rules for the typing judgment, E ∫ a:A, are the same as the corresponding
rules in F, except for the extension to bounded quantifiers. However, additional
typing power is hidden in the subsumption rule, which for example allows a function
to take an argument having a subtype of the function's input type.

Most of the equivalence rules, E ∫ aóïñb:A, are unremarkable. They provide
congruence over the syntax, and β and η equivalences. Two rules, however, stand out.
The first, (Top collapse), states that any two terms are equivalent when “seen” at type
Top. Since no operations are available on members of T o p, all values are
indistinguishable at that type; this fact will have many interesting consequences in the
sequel. The second, (Eq appl2), is the congruence rule for polymorphic type
application, giving general conditions under which two expressions b'(A') and b"(A")
are equivalent at a type C. This rule also has many intriguing consequences, but these
will not be explored here. They are described in [Cardelli, et al. 1991].

 Environments

(Env ) (Env x) (Env X)

E ∫ A type xÌdom(E) E ∫ A type XÌdom(E)
 ———— —————————– —————————–

∫  env ∫ E,x:A env ∫ E,X<:A env

Types

(Type X) (Type Top)

∫ E,X<:A,E' env ∫ E env
————————– —————

E,X<:A,E' ∫ X type E ∫ Top type

(Type îïñ) (Type Ó)

E ∫ A type E ∫ B type E,X<:A ∫ B type
—————————— ————————

E ∫ AîïñB type E ∫ Ó(X<:A)B type

Subtypes

(Sub refl) (Sub trans)

E ∫ A type E ∫ A<:B E ∫ B<:C
 ————— —————————–

E ∫ A <: A E ∫ A <: C

(Sub X) (Sub Top)

∫ E,X<:A,E' env E ∫ A type
 ———————— —————

E,X<:A,E' ∫ X<:A E ∫ A <: Top

(Sub îïñ) (Sub Ó)

E ∫ A'<:A E ∫ B<:B' E ∫ A'<:A E,X<:A' ∫ B<:B'
 —————————— —————————————

E ∫ AîïñB <: A'îïñB' E ∫ Ó(X<:A)B <: Ó(X<:A')B'

Values

Page 8

(Subsumption) (Val x) (Val top)

E ∫ a:A E ∫ A<:B ∫ E,x:A,E' env ∫ E env
———————— ——————– —————

E ∫ a : B E,x:A,E' ∫ x:A E ∫ top : Top

(Val fun) (Val appl)

E,x:A ∫ b:B E ∫ b : AîïñB E ∫ a:A
 ———————— ——————————

E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B

(Val fun2) (Val appl2)

E,X<:A ∫ b:B E ∫ b : Ó(X<:A)B E ∫ A'<:A
 ——————————— —————————————

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A') : B{XóïôA'}

Equivalence

(Eq symm) (Eq trans)

E ∫ a óïñ b : A E ∫ a óïñ b : A E ∫ b óïñ c : A
 —————– —————————————

E ∫ b óïñ a : A E ∫ a óïñ c : A

(Eq x) (Eq collapse)

E ∫ x:A E ∫ a : Top E ∫ b : Top
 —————— ——————————

E ∫ x óïñ x : A E ∫ a óïñ b : Top

(Eq fun) (Eq appl)

E,x:A ∫ bóïñb' : B E ∫ bóïñb' : AîïñB E ∫ aóïña' : A
—————————————— ——————————————

E ∫ λ(x:A)b óïñ λ(x:A)b' : AîïñB E ∫ b(a) óïñ b'(a') : B

(Eq appl2)

(Eq fun2) E ∫ b'óïñb" : Ó(X<:A)B E ∫ A',A"<:A
E,X<:A ∫ bóïñb' : B E ∫ B{XóïôA'}, B{XóïôA"} <: C

————————————————————————————————

——

E ∫ λ(X<:A)b óïñ λ(X<:A)b' : Ó(X<:A)B E ∫ b'(A') óïñ b"(A") : C

(Eq Eta) (Eq Eta2)

E ∫ b óïñ b' : AîïñB yÌdom(E) E ∫ b óïñ b' : Ó(X<:A)B YÌdom(E)
————————————— ————————————————

E ∫ λ(y:A)b(y) óïñ b' : AîïñB E ∫ λ(Y<:A)b(Y) óïñ b' : Ó(X<:A)B

(Eq Beta) (Eq Beta2)

E,x:A ∫ b óïñ b' : B E ∫ a óïñ a' : A E,X<:A ∫ b óïñ b':B E ∫ A' <: A
——————————————— ———————————————————

E ∫ (λ(x:A)b)(a) óïñ b'{xóïôa'} : B E ∫ (λ(X<:A)b)(A') óïñ b'{XóïôA'} : B{XóïôA'}

This calculus was first extracted by Pierre-Louis Curien from the one in [Cardelli,
Wegner 1985] and studied by him and Giorgio Ghelli [Curien, Ghelli 1992] under the
name F≤. The present F<: is a refinement of F≤, achieved mostly by extending the (Eq

appl2) rule. It is studied in [Cardelli, et al. 1991].

The following derived rules will be needed later. Their proofs follow from the
lemmas listed in section 5.3 for F<:ρ. (Those lemmas hold for F<: as well, when
restricted to the syntax of F<:.)

Page 9

Lemma (subsumption equivalence)
The subsumption rule extends to the equality judgment:

 (Eq subsumption)

E ∫ a óïñ a' : A E ∫ A <: B
————————————

E ∫ a óïñ a' : B

Lemma (domain restriction)
If f: AîïñB, then f is equivalent to its restriction f |A' to a smaller domain A'<:A,

when they are both seen at type A'îïñB. That is:

(Eq fun')

E ∫ A'<:A E ∫ B<:B' E,x:A ∫ bóïñb' : B
——————————————————

E ∫ λ(x:A)b óïñ λ(x:A')b' : A'îïñB'

Lemma (bound restriction)
If f: Ó(X<:A)B, then f is equivalent to its restriction f |A' to a smaller bound

A'<:A, when they are both seen at type Ó(X<:A')B. That is:

(Eq fun2')

E ∫ A'<:A E,X<:A' ∫ B<:B' E,X<:A ∫ bóïñb' : B
——————————————————————

E ∫ λ(X<:A)b óïñ λ(X<:A')b' : Ó(X<:A')B'

3. Basic encodings
Since F<: is an extension of F , it can express all the standard encodings of

algebraic data types that are possible in F [Böhm, Berarducci 1985]. However, it is
not clear that anything of further interest can be obtained from the subtyping rules of
F<:, which involve only an apparently useless type Top and the simple rules for îïñ
and Ó.

In this section we begin to show that we can in fact encode rich subtyping
relations on familiar data structures. In section 4 the encodings become more
involved; this increase in complexity then motivates the switch to an independently
axiomatized system (F<:ρ) in section 5.

3.1 Booleans
In the sequel of section 3 we concentrate on inclusion of structured types, but for

this to make sense we need to show that there are some non-trivial inclusions already
at the level of basic types. We investigate here the type of booleans, and in the process
we illustrate some interesting consequences of the F<: rules.
 Starting from the encoding of Church's booleans in F , we can define three
subtypes of Bool as follows (cf. [Fairbairn 1989]):

Bool @ Ó(A) AîïñAîïñA
True @ Ó(A) AîïñTopîïñA
False @ Ó(A) TopîïñAîïñA

Page 10

None @ Ó(A) TopîïñTopîïñA

where:

None <: True, None <: False, True <: Bool, False <: Bool

Looking at all the closed normal forms (that is, the elements) of these types, we have:

trueBool : Bool @ λ(A) λ(x:A) λ(y:A) x
falseBool : Bool @ λ(A) λ(x:A) λ(y:A) y
trueTrue : True @ λ(A) λ(x:A) λ(y:Top) x
falseFalse : False @ λ(A) λ(x:Top) λ(y:A) y

We obtain four elements of type Bool; in addition to the usual two, trueBool and
falseBool , the extra trueTrue and falseFalse have type Bool by subsumption. However,
we can show that trueBool and trueTrue are provably equivalent at type Bool, by using
the domain restriction lemma ((Eq fun'), section 2.2).

E,A<:Top,x:A,y:Top ∫ x óïñ x : A E ∫ A<:Top
 ———————————————————

E,A<:Top,x:A ∫ λ(y:Top) x óïñ λ(y:A) x : AîïñA (Eq fun')
 —————————————————————————

E,A<:Top ∫ λ(x:A) λ(y:Top) x óïñ λ(x:A) λ(y:A) x : AîïñAîïñA
 ————————————————————————————

E ∫ λ(A) λ(x:A) λ(y:Top) x óïñ λ(A) λ(x:A) λ(y:A) x : Ó(A) AîïñAîïñA
 ————————————————————————————

E ∫ trueTrue óïñ trueBool : Bool

Similarly, we can show that E ∫ falseFalse óïñ falseBool : Bool. Hence, there really are
only two different values in Bool.

3.2 Products
The standard encoding for pairs in F already exhibits useful subtyping properties:

A×B @ Ó(C)(AîïñBîïñC)îïñC

Since both A and B occur in monotonic positions in A×B (being twice on the left of an
arrow), we obtain the expected monotonic inclusion of products as a derived rule:

E ∫ A <: A' E ∫ B <: B'
 ———————————

E ∫ A×B <: A'×B'

The operations on pairs are defined, as usual, as:

pair : Ó(A) Ó(B) AîïñBîïñA×B
@ λ(A) λ(B) λ(a:A) λ(b:B) λ(C) λ(f:AîïñBîïñC) f(a)(b)

fst : Ó(A) Ó(B) A×BîïñA
@ λ(A) λ(B) λ(c:A×B) c(A)(λ(x:A)λ(y:B)x)

snd : Ó(A) Ó(B) A×BîïñB
@ λ(A) λ(B) λ(c:A×B) c(B)(λ(x:A)λ(y:B)y)

We often use the following abbreviations, disambiguated by context:

a,b 7 a,A×Bb 7 pair(A)(B)(a)(b)
fst(c) 7 fstA×B(c) 7 fst(A)(B)(c)

Page 11

snd(c) 7 sndA×B(c) 7 snd(A)(B)(c)

3.3 Enumerations
Enumeration types (that is, finite sets) form another collection of base types with

interesting inclusion relations. We describe them here because they show an
interesting use of the Top type, and hint at the encoding of tuples in the next section.

The enumeration of zero elements can be defined as:

N0 @ Ó(A) TopîïñA

This type has no closed normal forms, hence no “elements”.
The enumeration of one element is defined as:

N1 @ Ó(A) A×TopîïñA

This type has just one closed normal form:

one1 : N1 @ λ(A) λ(x:A×Top) fst(x)

Moreover, N0 <: N1 because A×Top<:Top.
The enumeration of two elements is defined as:

N2 @ Ó(A) A×A×TopîïñA

This type has the two closed normal forms:

one2 : N2 @ λ(A) λ(x:A×A×Top) fst(x)
two2 : N2 @ λ(A) λ(x:A×A×Top) fst(snd(x))

Moreover, N1 <: N2, and by subsumption:

one1 : N2

We find that N2 has three elements. As for booleans, we can prove that two of these
are equal in N2:

∫ one1 óïñ one2 : N2

At this point the pattern of enumeration types should be clear:

Nn @ Ó(A) A×..×A×TopîïñA
 n times

with Nn <: Nn+1, where Nn has n distinct elements.

3.4 Tuples
A tuple type Tuple(A1,...,An,C) denotes an iterated product type. Its last slot, C,

can be filled with any type. When C is a type variable, we have an extensible tuple
type. When it is Top, we have a simple tuple type.

Tuple(C) @ C
Tuple(A1,...,An,C) @ A1×(...×(An×C)..) n≥1

Hence we have:

Page 12

Tuple(A1,...,An,Tuple(B1,...,Bm,C)) 7 Tuple(A1,...,An,B1,...,Bm,C)

with derived rule:

E ∫ A1 <: B1 ... E ∫ An <: Bn E ∫ C <: D
 ——————————————————

E ∫ Tuple(A1,...,An,C) <: Tuple(B1,...,Bn,D)

As a special case we obtain the rule for simple tuples:

E ∫ A1 <: B1 ... E ∫ An <: Bn E ∫ An+1 type ... E ∫ Am type
 —————————————————————————

E ∫ Tuple(A1,...,An,...,Am,Top) <: Tuple(B1,...,Bn,Top)

For example:

Tuple(A, B, Top) <: Tuple(A, Top)
since A <: A, B×Top <: Top, and × is monotonic.

We note here that the type Top assumes a very useful role, in allowing a longer
tuple type to be a subtype of a shorter tuple type. The intuition is that a longer tuple
value can always be regarded as a shorter tuple value, by “forgetting” the additional
components, and this is possible since everything is forgotten in Top.

For tuple values we have:

tuple(c) @ c
tuple(a1,...,an,c) @ a1,(...,(an, c)..) n≥1

tuple(a1,...,an,tuple(b1,...,bm,c)) 7 tuple(a1,...,an,b1,...,bm,c)

with derived rules:

E ∫ a1 : A1 ... E ∫ an : An E ∫ a : A
 ————————————————

E ∫ tuple(a1,...,an,a) : Tuple(A1,...,An,A)

E ∫ a1óïñb1 : A1 ... E ∫ anóïñbn : An E ∫ aóïñb : A
 ————————————————————————

E ∫ tuple(a1,...,an,a) óïñ tuple(b1,...,bn,b) : Tuple(A1,...,An,A)

The basic tuple operations are: a i, dropping the first i components of tuple a; and a.i,
selecting the i-th component of a. These are defined by iterating product operations;
we use the abbreviations:

a i 7 a Ai
i 7 dropi(Ai)(a) 7 sndi(a)

a.i 7 a.Ai
i 7 seli(Ai)(a) 7 fst(a i)

More precisely:

drop0 : Ó(A0) A0îïñA0
@ λ(A0) λ(t:A0) t

sel0 : Ó(A0) A0×TopîïñA0
@ λ(A0) λ(t:A0×Top) fstA0×Top(drop0(A0×Top)(t))

drop1 : Ó(A1) Top×A1îïñA1
@ λ(A1) λ(t:Top×A1) sndTop×A0

(drop0(Top×A1)(t))

Page 13

sel1 : Ó(A1) Top×A1×TopîïñA1
@ λ(A1) λ(t:Top×A1×Top) fstA1×Top(drop1(A1×Top)(t))

etc...

We obtain the derived rules:

E ∫ a : Tuple(A0 ,..,Ai-1,A) E ∫ a : Tuple(A0 ,..,Ai,A)
 ——————————— ——————————

E ∫ a i : A E ∫ a.i : Ai

E ∫ a0 : A0 ... E ∫ ai-1 : Ai-1 E ∫ a : A E ∫ a0 : A0 ... E ∫ ai : Ai E ∫ a : A
 ———————————————— ———————————————

E ∫ tuple(a0 ,...,ai-1,a) i óïñ a : A E ∫ tuple(a0 ,...,ai,a).i óïñ ai : Ai

Example:

let f: Ó(X<:Tuple(B,Top)) Tuple(A,X)îïñTuple(A,A,X) =
λ(X<:Tuple(B,Top)) λ(t:Tuple(A,X)) tuple(t.0, t.0, t 1)

f(Tuple(B,C,Top))(tuple(a,b,c,top)) óïñ tuple(a,a,b,c,top)
: Tuple(A,A,B,C,Top)

We have now developed the necessary techniques for encoding record types; this
is the subject of the next section.

4. Records
The general plan, carried out in later sections, is to axiomatize the rules for

records independently, and then provide a translation (encoding) into a calculus
without records. In this section we are a bit more informal, and we discuss the
encoding of record types without first discussing their derived type rules. Some
pathologies caused by this approach will disappear later.

4.1 Simple records
 Let L be a countable set of labels, enumerated by a bijection ιÏLîïñNat. We
indicate by li, with a superscript, the i-th label in this enumeration. Often we need to
refer to a list of n distinct labels out of this enumeration; we then use subscripts, as in
l1..ln. So we may have, for example, l1,l2,l3 = l5,l1,l17. More precisely, l1..ln stands for
lσ(1),..,lσ(n) for some injective σ Ï 1..nîïñNat.

A record type has the form Rcd(l1:A1, .., ln:An, C), where the final type C will
normally be either Top or a type variable. Once the enumeration of the set of labels L
is fixed, a record type is encoded as a tuple type where the record components are
allocated to tuple slots as determined by the index of their labels. That is, the
component of label li is allocated to the i-th tuple slot; the remaining slots are filled
with Top “padding”. For example:

Rcd(l2:C, l 0:A, D) @ Tuple(A, Top, C, D)

Since record type components are canonically sorted under the encoding, two
record types that differ only in the order of their components will be equal under the
encoding. Hence we can consider record components as unordered.

Page 14

As an artifact of the encoding, a missing record field of label li is equivalent to a
field li : Top. However, the type rules for these two situations will differ, and in the
former case the extraction of the label li will not be allowed.

A record type whose final component is Top is called a simple record; one whose
final component is a type variable, is called an extensible record, or simply a record.
Only these two situations will be allowed by the type rules for records; for example,
notice that Rcd(l 0:A, Rcd(l1:B, C)) is not very meaningful under the translation.

From the encoding, we can derive the familiar rule for simple records [Cardelli
1988]:

E ∫ A1 <: B1 ... E ∫ An <: Bn E ∫ An+1 type ... E ∫ Am type
 ——————————————————————————

E ∫ Rcd(l1:A1,..,ln:An,..,lm:Am,Top) <: Rcd(l1:B1,..,ln:Bn,Top)

The conclusion holds because any additional field lk:Ak (n<k≤m) on the left of <: is
absorbed either by the Top padding on the right, if ι (lk)<max(ι (l1)..ι (ln)), or by the
final Top, otherwise. For example:

Rcd(l 0:A, l1:B, l2:C, Top) 7 Tuple(A, B, C, Top)
<: Tuple(Top, B, Top) 7 Rcd(l1:B, Top)

Record values are similarly encoded, for example:

rcd(l2=c, l 0=a, d) @ tuple(a, top, c, d)

from which we obtain the rules for simple records:

E ∫ a1 : A1 ... E ∫ an : An
 —————————————————————

E ∫ rcd(l1=a1,..,ln=an,top) : Rcd(l1:A1,..,ln:An,Top)

E ∫ a1óïña'1 : A1 ... E ∫ anóïña'n : An
 ————————————————————————————————

E ∫ rcd(l1=a1,..,ln=an,top) óïñ rcd(l1=a'1,..,ln=a'n,top) : Rcd(l1:A1,..,ln:An,Top)

Record selection is encoded as follows:

r.li @ r.ι (li)

with the rule:

E ∫ r : Rcd(l:A,Top)
 —————————

E ∫ r.l : A

By subsumption, we have the following derived rules:

E ∫ a1 : A1 ... E ∫ an : An ... E ∫ am : Am
 ————————————————————————

E ∫ rcd(l1=a1,..,ln=an,..,lm=am,top) : Rcd(l1:A1,..,ln:An,Top)

E ∫ a1óïñb1 : A1 ... E ∫ anóïñbn : An
E ∫ an+1 : Bn+1 ... E ∫ ap : Bp E ∫ bn+1 : Cn+1 ... E ∫ bq : Cq

 ————————————————————————————

E ∫ rcd(l1=a1,..,ln=an,..,lp=ap,top) óïñ rcd(l1=b1,..,ln=bn,..,lq=bq,top)
: Rcd(l1:A1,..,ln:An,Top)

E ∫ r : Rcd(l1:A1,...,ln:An,Top) iÏ1..n
 ————————————

Page 15

E ∫ r.li : Ai

The second rule above is particularly interesting. It expresses a form of observational
equivalence: two records are equivalent at a given type if they coincide with the
components that are observable at that type. Ultimately, this is because any two
values are equivalent at type Top.

An interesting question about simple records remains: what is the equivalent of
the  operator on tuples? To answer this, we must turn to extensible records.

4.2 Extensible records
In the next section we fully axiomatize a system with row variables, F<:ρ. To

understand that axiomatization better, it may be useful to have an idea of the
translation into F<: that will follow. In this section we sketch the main ideas of that
translation, but the reader can skip to section 5 at any point.

As we have done with tuples, we would like to place a type variable at the end of
a record to capture all the “additional” components.

Tuple(A, B, C, X) X represents all the other tuple components
Rcd(l 0:A, l2:C, X) X represents all the other record components

When translating these records into tuples, we see that, to achieve the desired effect,
the final type variable must split into a set of type variables. (We use the symbol 1 to
mean, informally, “translates to”.)

Rcd(l 0:A, l2:C, X) 1 Tuple(A, X1, C, X3)

Here X cannot be bound to a single (record) type; it must be bound to a labeled
collection of types that fills the slots X1 and X3 exactly. We call these collections type
rows, and X a row (type) variable.

Consider, for example:

Rcd(l 0:A, l2:C, l4:E, X)

Here the row variable X can be instantiated only to a type row that does not contain
components labeled l 0, l2, or l4, since these are already accounted for. For example, X
can be instantiated to the type row l1:B, l3:D, Top.

We express this constraint on the instantiations of X by saying that X must have
kind “¶l 0,l2,l4”, which reads “... is undefined (exactly) at l 0,l2,l4” or “... does not
cover (exactly) l 0,l2,l4”.

A constrained row variable X¶L is hence translated to a sequence of type variables
with “gaps” at L; for example:

X¶() 1 X0

X¶l 0 1 X1 X¶l 0,l1 1 X2

X¶l1 1 X0, X2 X¶l 0,l2 1 X1, X3

X¶l2 1 X0, X1, X3 X¶l1,l2 1 X0, X3

Therefore, the first step in extending F<: with row types is to allow constrained
row variables in environments:

Page 16

E', X¶L, E" ∫ ...

Then, if X¶L 1 X1, ..., Xn we translate:

E',X¶L ∫ Rcd(l1:A1, ..., lm:Am, X) type
1 E',X1, ..., Xn ∫ Tuple(B1, ..., Bn+m-1, Xn) type

where the Bi are the X1...Xn-1 and the A1...Am, in the proper order.
To manipulate type rows and row variables we introduce a new judgment form

(described in detail in the next section):

E ∫ R ¶L

where R is a type row (including a row variable), and L is the set of labels that are not
covered by the row R. In general we need to translate not just records, but rows,
which may have missing components:

(l 0:A, l2:C, X) ¶l1,l4 1 A, - , C, X3, - , X5 (a row missing 1st and 4th).

Once row variables are allowed in environments, they give rise naturally to
quantifiers Ó(X¶L), and binders λ(X¶L). These row quantifiers and row binders must
decompose under translation into sequences of type quantifiers and type binders. For
example, we have:

Ó(X¶l1) Rcd(l1:A; X) îïñ B
1 Ó(X0) Ó(X2) Tuple(X0,A,X2) îïñ B

We now come to the most important issue of the translation: matching the number
of arguments of a row type function λ(X¶L)a to the number of parameters in a row
type application (λ(X¶L)a)(R¶L). The application form for a function b: Ó(X¶L)B
will have the shape:

b(R¶L) : B{XóïôR} for R¶L

where B{XóïôR} is a row substitution such that (for ξ a row variable or Top):

 Rcd(l1:A1,...,ln:An, X) {Xóïô(l'1:B1,...,l'm:Bm, ξ)} =
Rcd(l1:A1,...,ln:An,l'1:B1,...,l'm:Bm, ξ)

We have seen that the translations of Ó(X¶L)B and λ(X¶L)b convert the single
parameter X¶L into a sequence of parameters whose length can depend only on L. We
call this length ∂L: the dimension of L. When translating an application b(R¶L) we
must then produce a sequence of applications of size ∂L, irrespectively of the actual
parameter R. This may require some regrouping of the components of an argument
row R. For example:

b(l2:A2,Y ¶l1l3) (where b:Ó(X¶l1l3)B and Y¶l1l2l3 1 Y0,Y4

1 b(Y0)(A2)(Y4) and l2:A2,Y ¶l1l3 1 Y0,A2,Y4)

b(l3:A3,Y ¶l1l2) (where b:∀ (X¶l1l2)B and Y¶l1l2l3 1 Y0,Y4

1 b(Y0)(Tuple(A3,Y4)) and l3:A3,Y ¶l1l2 1 Y0,A3,Y4)

Page 17

In the second case, b(Y0)(A3)(Y4) would be wrong; we must group A3 and Y4 into
Tuple(A3,Y4), to match the two parameters (X0 and X3) expected by b. For uniformity
in the translation, we always take the last parameter to be a tuple (since Tuple(A)7A),
so the first case above becomes:

b(l2:A2,Y ¶l1l3)
1 b(Y0)(A2)(Tuple(Y4))

In conclusion, we can say informally that row variables translate to rows of
variables, row types to rows of types, row quantifiers to rows of quantifiers, row
applications to rows of applications, etc. The main difficulty in the translation is to
ensure that all these rows match properly. For this, the precise relation between a row
R¶L and its dimension ∂L, will be discussed in section 6.

We now turn to a formal system based on the intuitions about the translation of
records into tuples developed in this section.

5. System F<:ρ
We now extend F<: with records and row variables, as discussed in section 4; the

resulting system is called F<:ρ.

5.1 Syntax
 Types in F<: are augmented by the following: record types Rcd(R), where R is a
row type that must be defined at all labels; row function types R¶L îïñ B from an input
of row type R¶L to an output of type B; and row variable quantifications Ó(X¶L)B,
where L is a set of labels at which X is undefined.

A row type is either the constant Etc, standing for an “empty row” (more
precisely, an unnamed extension of the current row type); a type variable X, standing
for an extension of the current row type; or l:A,R, extending the row type R by a field
of type A and label l.

Values are augmented by the following: records rcd(r), where r is a row value
defined at all labels; row functions λ(xaR¶L)b accepting a row value for x of row type
R¶L; and row type functions λ(X¶L)b accepting a row type for X that is undefined at
L. Record selection a.l can be used on a record a that is defined at l. A row function b
can be applied via b(r¶L) to a row value r undefined at L. A row type function b can
be instantiated via b(R¶L) to a row type R undefined at L.

Finally, a row value is either the constant etc, standing for an “empty row” (or, an
unnamed extension of the current row value); a row variable x; an extension l=a,r,
extending row value r by a field of value a and label l; or a restriction a\L, producing
a row value undefined at L from a record a.

Syntax

L ::= l1, .., ln Label set

A,B ::= ... Types as in F<:, plus:
Rcd(R) record type

Page 18

R¶LîïñB row function space
Ó(X¶L)B row quantification

R,S ::= Row types
X row type variable
Etc empty row type
l:A,R row type R plus field A labeled l

a,b ::= ... Values as in F<:, plus:
rcd(r) record value
a.l record selection
λ(xaR¶L)b row value function
b(r¶L) row value application
λ(X¶L)b row type function
b(R¶L) row type application

r,s ::= Row values
x row value variable
etc empty row value
l=a,r row value r plus field a labeled l
a\L row value of record a without fields in L

As discussed in section 2, we identify terms up to renaming of bound variables:

Ó(X¶L)B 7 Ó(Y¶L)B{XóïôY}
λ(X¶L)b 7 λ(X¶L)b{XóïôY}
λ(xaR¶L)b 7 λ(yaR¶L)b{xóïôy}

Moreover, we identify rows up to reordering of labeled components:

 l:A,l':A',R 7 l':A',l:A,R
 l=a,l'=a',r 7 l'=a',l=a,r

and we identify terms up to any permutation L' of a label set L:

Ó(X¶L)B 7 Ó(X¶L')B R¶LîïñB 7 R¶L'îïñB
λ(X¶L)b 7 λ(X¶L')b b(R¶L) 7 b(R¶L')
λ(xaR¶L)b 7 λ(xaR¶L')b b(r¶L) 7 b(r¶L')
a\L 7 a\L'

Again, these identifications are legitimate because they depend only on the syntax of
terms, and not on their derivations.

Given the identification of label sets above, we adopt the following notational
convention used in the inference rules:

l.L @ {l}∪ L where lÌL

We now add to F<: four judgments about rows, which all involve a set L at which
the rows are undefined.

Judgments

Page 19

... Judgments as in F<:, plus:
E ∫ρ R ¶L R is a row type not covering L
E ∫ρ raR ¶L r has row type R¶L
E ∫ρ R <a S ¶L R is a subrow of S, both not covering L
E ∫ρ r óïñ r'aR ¶L r is equal to r' at row type R¶L

It is important to notice that the L information is preserved exactly in F<:ρ
derivations, in the sense that E ∫ρ ϑ ¶L öõú E ∫ρ ϑ ¶L' is never derivable for L≠L' for
any of the four judgments. Hence, when we say that a row is undefined at L, we
always mean undefined exactly at L.

5.2 Rules
We indicate by ∫ρ the judgments in F<:ρ, to distinguish them from the judgments

∫ in F<:. The rules of F<:ρ consist of a copy of the rules of F<: (with ∫ replaced by
∫ρ) plus the ones listed below. We now briefly comment on the F<:ρ rules.

A row type is formed by starting with a row variable X¶L, or with a row Etc¶L,
and then prefixing fields l:A with lÏL, at each step discarding l from L. Note that Etc
can be assumed to lack any set of labels to start with. Informally, we can imagine
either that an element of Etc¶L is a collection of n=#L empty slots that are later
“filled in”, or that an element of Etc¶L is an infinite row with “gaps” corresponding to
L, and with all the other components filled with an error value.

A record type can be formed only from a complete row R¶(), one lacking no
labels. (We call R¶() complete even though we have only finite information about the
labels of R; for example, Etc¶() is complete but entirely unknown.) This
completeness requirement is probably not essential, but gives us a simpler calculus
where record types carry only positive information, while row variables carry only
negative information [Harper, Pierce 1990].

The subrow judgment, E ∫ρ R <a S ¶L, is mainly an auxiliary one used to define
subtyping on records. According to this judgment, every row is a subrow of Etc; then
we have componentwise subtyping on fields having the same label. Hence, a longer
row ending in Etc is a subrow of a shorter row ending in Etc if their corresponding
components are in subtype relation. Rows ending with the same type variables must
have the same length (otherwise, assuming X¶l, what could L be in E ∫ρ l:A,X <a X
¶L ?). Rows ending in distinct type variables are unrelated, since we have no
information about the labeled types that may be substituted for the variables.

Record values can be created only from complete rows, as discussed above. Given
a record a : Rcd(l:A,R) we can select its l component by a.l : A. Moreover, given a
record a : Rcd(l1:A1..ln:An,R) we can extract a row a\L a R¶L from it by removing all
the components with labels in L.

In F<: any two values are equivalent in Top. Similarly, in F<:ρ any two row
values are equivalent in Etc.

Environments

(Env x ¶L) (Env X ¶L)

Page 20

E ∫ρ R ¶L xÌdom(E) ∫ρ E env XÌdom(E)
—————————— ——————————

∫ρ E,xaR¶L env ∫ρ E,X¶L env

Types

(Type Rcd) (Type îïñ ¶L) (Type Ó ¶L)

E ∫ρ R ¶() E ∫ρ R ¶L E ∫ρ B type E,X¶L ∫ρ B type
 ———————— —————————— —————————

E ∫ρ Rcd(R) type E ∫ρ R¶LîïñB type E ∫ρ Ó(X¶L)B type

Row types

(Type X) (Type Etc) (Type cons)

∫ρ E',X¶L,E" env ∫ρ E env E ∫ρ R ¶l.L E ∫ρ A type
 ————————— ————— ———————————

E', X¶L,E" ∫ρ X ¶L E ∫ρ Etc ¶L E ∫ρ l:A,R ¶L

Subtypes

(Sub Rcd) (Sub îïñ ¶L) (Sub Ó ¶L)

E ∫ρ R <a R' ¶() E ∫ρ R'<aR ¶L E ∫ρ B<:B' E,X¶L ∫ρ B <: B' type
 —————————— ——————————— ——————————————

E ∫ρ Rcd(R) <: Rcd(R') E ∫ρ R¶LîïñB <: R'¶LîïñB' E ∫ρ Ó(X¶L)B <: Ó(X¶L)B' type

Subrows

(Sub Row refl) (Sub Row trans)

E ∫ρ R ¶L E ∫ρ R <a S ¶L E ∫ρ S <a T ¶L
 ——————— ——————————————

E ∫ρ R <a R ¶L E ∫ρ R <a T ¶L

(Sub Etc) (Sub cons)

E ∫ρ R ¶L E ∫ρ A <: B E ∫ρ R <a S ¶l.L
 ———————— —————————————

E ∫ρ R <a Etc ¶L E ∫ρ l:A,R <a l:B,S ¶L

Values

(Val rcd) (Val sel)

E ∫ρ raR ¶() E ∫ρ a : Rcd(l:A,R)
 ————————— ————————

E ∫ρ rcd(r) : Rcd(R) E ∫ρ a.l : A

(Val fun ¶L) (Val appl ¶L)

E,xaR¶L ∫ρ b : B E ∫ρ b : R¶LîïñB E ∫ρ raR ¶L
———————————— —————————————

E ∫ρ λ(xaR¶L) b : R¶LîïñB E ∫ρ b(r¶L) : B

(Val fun2 ¶L) (Val appl2 ¶L)

E,X¶L ∫ρ b : B E ∫ρ b : Ó(X¶L)B E ∫ρ R ¶L
 ——————————— —————————————

E ∫ρ λ(X¶L)b : Ó(X¶L)B E ∫ρ b(R¶L) : B{XóïôR}

Row values

(Row Subsumption) (Val x ¶L)

E ∫ρ raR ¶L E ∫ρ R <a S ¶L ∫ρ E',xaR¶L,E" env
 ————————————— ——————————

Page 21

E ∫ρ raS ¶L E',xaR¶L,E" ∫ρ xaR ¶L

(Val etc) (Val cons) (Val restr)

∫ρ E env E ∫ρ raR ¶l.L E ∫ρ a:A E ∫ρ a : Rcd(l1:A1..ln:An,R)
 ——————— ————–—————— ————————————

E ∫ρ etc a Etc ¶L E ∫ρ l=a,r a l:A,R ¶L E ∫ρ a\ l1..ln a R ¶l1..ln

Value equivalence

(Eq rcd) (Eq sel) (Eq Eval sel)

E ∫ρ r óïñ r' a R ¶() E ∫ρ aóïña' : Rcd(l:A,R) E ∫ρ raR ¶l E ∫ρ aóïña':A
 ————————————— —————————— ———————————

E ∫ρ rcd(r) óïñ rcd(r') : Rcd(R) E ∫ρ a.l óïñ a'.l : A E ∫ρ rcd(l=a,r).l óïñ a' : A

(Eq fun ¶L) (Eq appl ¶L)

E,xaR¶L ∫ρ bóïñb' : B E ∫ρ bóïñb' : R¶LîïñB E ∫ρ róïñr'aR ¶L
—————————————————— ———————————————

—

E ∫ρ λ(xaR¶L)b óïñ λ(xaR¶L)b' : R¶LîïñB E ∫ρ b(r¶L) óïñ b'(r'¶L) : B

(Eq fun2 ¶L) (Eq appl2 ¶L)

E,X¶L ∫ρ b óïñ b' : B E ∫ρ b óïñ b' : Ó(X¶L)B E ∫ρ R ¶L
 ———————————————— ———————————————

E ∫ρ λ(X¶L)bóïñλ(X¶L)b' : Ó(X¶L)B E ∫ρ b(R¶L) óïñ b'(R¶L) : B{XóïôR}

(Eq Beta ¶L) (Eq Eta ¶L)

E,xaR¶L ∫ρ b óïñ b' : B E ∫ρ róïñr'aR ¶L E ∫ρ b óïñ b' : R¶LîïñB yÌdom(E)
————————————————— ———————————————

—

E ∫ρ (λ(xaR¶L)b)(r) óïñ b'{xóïôr'} : B E ∫ρ λ(yaR¶L)b(y¶L) óïñ b' : R¶LîïñB

(Eq Beta2 ¶L) (Eq Eta2 ¶L)

E,X¶L ∫ρ b óïñ b' : B E ∫ρ R ¶L E ∫ρ b óïñ b' : Ó(X¶L)B YÌdom(E)
——————————————————— ————————————————

E ∫ρ (λ(X¶L)b)(R¶L)óïñb'{XóïôR} : B{XóïôR} E ∫ρ λ(Y¶L)b(Y¶L)óïñb' : Ó(X¶L)B

Row value equivalence

(Eq Row symm) (Eq Row trans)

E ∫ρ róïñsaR ¶L E ∫ρ róïñsaR ¶L E ∫ρ sóïñtaR ¶L
 ——————— ——————————————

E ∫ρ sóïñraR ¶L E ∫ρ r óïñ t a R ¶L

(Eq Row Subsumption) (Eq Row collapse)

E ∫ρ róïñr'aR ¶L E ∫ρ R <a S ¶L E ∫ρ raEtc ¶L E ∫ρ saEtc ¶L
 —————————————— —————————————

E ∫ρ róïñr'aS ¶L E ∫ρ r óïñ s a Etc ¶L

(Eq x ¶L) (Eq etc) (Eq cons)

E ∫ρ x a R ¶L ∫ρ E env E ∫ρ róïñr'aR ¶l.L E ∫ρ aóïña':A
 ———————— ———————————————————————

—

E ∫ρ x óïñ x a R ¶L E ∫ρ etc óïñ etc a Etc ¶L E ∫ρ l=a,r óïñ l=a',r' a l:A,R ¶L

(Eq restr) (Eq Eval restr)

E ∫ρ aóïña' : Rcd(l1:A1..ln:An,R) E ∫ρ róïñr'aR ¶l1..ln E ∫ρ a1:A1 ... E ∫ρ an:An
————————————————————————————————

—

E ∫ρ a\ l1..ln óïñ a'\ l1..ln a R ¶l1..ln E ∫ρ rcd(l1=a1..ln=an,r)\ l1..ln óïñ r' a R ¶l1..ln

Example derivations

∫ρ E env ∫ρ E,X¶l3,l5 env
 ————— ————————

E ∫ρ Etc ¶l3,l5 E ∫ρ A type E,X¶l3,l5 ∫ρ X ¶l3,l5 E ∫ρ A type
 ————————––——— ———————–———————

Page 22

E ∫ρ l3:A,Etc ¶l5 E ∫ρ B type E,X¶l3,l5 ∫ρ l3:A,X ¶l5 E ∫ρ B type
 ——————————––— —————————–—————

E ∫ρ l5:B,l3:A,Etc ¶() E,X¶l3,l5 ∫ρ l5:B,l3:A,X ¶()
 ——————————— ——————————————

E ∫ρ Rcd(l5:B,l3:A,Etc) type E,X¶l3,l5 ∫ρ Rcd(l5:B,l3:A,X) type

5.3 Properties
We now state some basic lemmas about the properties of F<:ρ derivations (and,

implicitly, of F<: derivations). Unless otherwise noted, these are all proven by
induction on the derivations; the proofs are long, but straightforward if done in the
order indicated.

Notation
Let ϑ be any of

C type, S ¶M, C<:C', S<aS' ¶M, c:C, saS ¶M, cóïñc':C, sóïñs'aS ¶M

Lemma (renaming)
Let <ξ,ξ',ß,ß'> stand for either <X, Y, X<:D, Y<:D>, <X, Y, X¶M, Y¶M>,
<x, y, x:D, y:D>, or <x, y, xaT¶M, yaT¶M>.
Assume ξ'Ìdom(E,ß,E').

∫ρ E,ß,E' env öõú ∫ρ E,ß',E'{ξóïôξ'} env
E,ß,E' ∫ρ ϑ öõú E,ß',E'{ξóïôξ'} ∫ρ ϑ{ξóïôξ'}

Lemma (implied judgments 1)
(ϑ /env) ∫ρ E,F env öõú ∫ρ E env

E,F ∫ρ ϑ öõú ∫ρ E env
(env/type) ∫ρ E,X<:D,E' env öõú E ∫ρ D type

∫ρ E,x:D,E' env öõú E ∫ρ D type
(env/rowtype) ∫ρ E,xaR¶L,E' env öõú E ∫ρ R ¶L

Lemma (bound change)
∫ρ E,X<:D',E' env, E ∫ρ D type öõú ∫ρ E,X<:D,E' env
E,X<:D',E' ∫ρ C type, E ∫ρ D type öõú E,X<:D,E' ∫ρ C type
E,X<:D',E' ∫ρ S ¶M, E ∫ρ D type öõú E,X<:D,E' ∫ρ S ¶M

Lemma (weakening)
Let ß stand for either X¶L, X<:D, x:D, or xaT¶L.
Assume ∫ρ E,ß env, and X,xÌdom(E'); then

∫ρ E,E' env öõú ∫ρ E,ß,E' env
E,E' ∫ρ ϑ öõú E,ß,E' ∫ρ ϑ

Assume ∫ρ E,F env and dom(F)∩dom(E')=; then
∫ρ E,E' env öõú ∫ρ E,F,E' env
E,E' ∫ρ ϑ öõú E,F,E' ∫ρ ϑ

Lemma (implied judgments 2)
(sub/type) E ∫ρ C<:C' öõú E ∫ρ C type, E ∫ρ C' type
(subrow/typerow) E ∫ρ S<aS' ¶M öõú E ∫ρ S ¶M, E ∫ρ S' ¶M

Lemma (bound weakening)

Page 23

Let <ß,ß'> stand for either
<X<:D, X<:D'>, <x:D, x:D'>, or <xaR¶L, xaR'¶L>.

Assume E ∫ρ D'<:D and E ∫ρ R'<aR ¶L.
∫ρ E,ß,E' env öõú ∫ρ E,ß',E' env
E,ß,E' ∫ρ ϑ öõú E,ß',E' ∫ρ ϑ

Lemma (type substitution)
Assume E ∫ρ D'<:D; then

∫ρ E,X<:D,E' env öõú ∫ρ E,E'{XóïôD'} env
E,X<:D,E' ∫ρ ϑ öõú E,E'{XóïôD'} ∫ρ ϑ{XóïôD'}

Assume E ∫ρ S ¶M; then
∫ρ E,X¶M,E' env öõú ∫ρ E,E'{XóïôS} env
E,X¶M,E' ∫ρ ϑ öõú E,E'{XóïôS} ∫ρ ϑ{XóïôS}

Lemma (value substitution)
Assume E ∫ρ d:D; then

∫ρ E,x:D,E' env öõú ∫ρ E,E' env
E,x:D,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ{xóïôd}

Assume E ∫ρ taT ¶N; then
∫ρ E,xaT¶N,E' env öõú ∫ρ E,E' env
E,xaT¶N,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ{xóïôt}

Lemma (value strengthening)
Assume xÌFV(ϑ); then, for ϑ ≠ cóïñc':C

∫ρ E,x:D,E' env öõú ∫ρ E,E' env
E,x:D,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ{xóïôd}

Assume xÌFV(ϑ); then, for ϑ ≠ róïñr'aR ¶L
∫ρ E,xaT¶N,E' env öõú ∫ρ E,E' env
E,xaT¶N,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ

Lemma (implied judgments 3)
(val/type) E ∫ρ c : C öõú E ∫ρ C type,
(rowval/rowtype) E ∫ρ saS ¶M öõú E ∫ρ S ¶M,
(eq/val) E ∫ρ cóïñc' : C öõú E ∫ρ c : C, E ∫ρ c' : C,
(roweq/rowval) E ∫ρ sóïñs'aS ¶M öõú E ∫ρ saS ¶M, E ∫ρ s'aS ¶M,

Lemma (subsumption equivalence)
E ∫ρ cóïñc' : C, E ∫ρ C<:D öõú E ∫ρ cóïñc' : D

Proof By subsumption and beta; see [Cardelli, et al. 1991] M

Lemma (implied judgments 4)
(val/eq) E ∫ρ c : C öõú E ∫ρ cóïñc : C
(rowval/roweq) E ∫ρ saS ¶M öõú E ∫ρ sóïñsaS ¶M

Lemma (exchange)
Let ß stand for either X<:D, Y¶M, x:D, or xaT¶M.
Let ß' stand for either X'<:D', Y'¶M', x':D', or x'aT'¶M'.
Assume ∫ρ E,ß' env.

Page 24

∫ρ E,ß,ß',E' env öõú ∫ρ E,ß',ß,E' env
E,ß,ß',E' ∫ρ ϑ öõú E,ß',ß,E' ∫ρ ϑ

We can now show that an observational equivalence rule for records is derivable.
This rule asserts that two record values are equal at a given type if all the equally-
labeled fields that can be observed at that type are equal.

Proposition (observational equivalence for records)
E ∫ρ a1óïñb1:A1 ∧ ... ∧ E ∫ρ anóïñbn:An ∧ E ∫ρ raR ¶l1..ln ∧ E ∫ρ saS ¶l1..ln

öõú E ∫ρ rcd(l1=a1,..,ln=an,r) óïñ rcd(l1=b1,..,ln=bn,s) : Rcd(l1:A1,..,ln:An,Etc)
Proof

Let L7l1..ln.
E ∫ρ raR ¶L öõú ∫ρ E env (implied judgment)
E ∫ρ raR ¶L öõú E ∫ρ R ¶L (implied judgment)

E ∫ρ R ¶L öõú E ∫ρ R <a Etc ¶L (Sub Etc)
E ∫ρ raR ¶L ∧ E ∫ρ R <a Etc ¶L öõú E ∫ρ raEtc ¶L (subsumption equiv.)

∫ρ E env öõú E ∫ρ etcóïñetcaEtc ¶L (Eq etc)
E ∫ρ raEtc ¶L ∧ E ∫ρ etcaEtc ¶L öõú E ∫ρ róïñetcaEtc ¶L (Eq Row collapse)
E ∫ρ saS ¶L öõú E ∫ρ etcóïñsaEtc ¶L (similarly)
E ∫ρ róïñetcaEtc ¶L ∧ E ∫ρ etcóïñsaEtc ¶L öõú E ∫ρ róïñsaEtc ¶L (Eq trans)

E ∫ρ raR ¶l1..ln ∧ E ∫ρ saS ¶l1..ln öõú E ∫ρ róïñsaEtc ¶l1..ln (above)

E ∫ρ a1óïñb1:A1 ∧ ... ∧ E ∫ρ anóïñbn:An ∧ E ∫ρ róïñsaEtc ¶l1..ln
 öõú E ∫ρ l1=a1,..,ln=an,r óïñ l1=b1,..,ln=bn,s a l1:A1,..,ln:An,Etc ¶() (Eq Row cons)
 öõú E ∫ρ rcd(l1=a1,..,ln=an,r)óïñrcd(l1=b1,..,ln=bn,s):Rcd(l1:A1,..,ln:An,Etc) (Eq

rcd) M

5.4 Some useful extensions
In preparation for examples in the next section, we discuss some useful extensions

of our system: recursive types, label-set variables, and definitions. These extensions
are not treated in the formal part of the paper.

5.4.1 Recursive types
In order to introduce recursive types, we need to add type equivalence judgments

to the system along with rules (omitted here) for making type equivalence into a
congruence over the syntax:

E ∫ρ A óïñ B type A and B are equivalent types
E ∫ρ R óïñ S ¶L R and S are equivalent row types

A recursive type is, syntactically, a term µ(X)A where A is contractive in X
(written A(X). This means that A≠X , and if A=µ(Y)B then B(X. We immediately
identify recursive types up to renaming of bound variables:

µ(X)A 7 µ(Y)A{XóïôY}

Page 25

Then, the rules for recursive types [Amadio, Cardelli 1993] are:
 (unfold)

E,X<:Top ∫ρ A type A(X E ∫ρ µ(X)A type
 ——————————— ——————————————

E ∫ρ µ(X)A type E ∫ρ µ(X)A óïñ A{Xóïôµ(X)A} type

E,X<:Top ∫ρ A óïñ B type A(X B(X
————————————————

E ∫ρ µ(X)A óïñ µ(X)B type
 (contract)
E ∫ρ A óïñ C{XóïôA} type E ∫ρ B óïñ C{XóïôB} type C(X

————————————————————————

E ∫ρ A óïñ B type

E ∫ρ µ(X)A type E ∫ρ µ(Y)B type E,Y<:Top,X<:Y ∫ρ A<:B
 —————————————————————————

E ∫ρ µ(X)A <: µ(Y)B

A recursive value is, syntactically, a term µ(x:A)a, with the identification:

µ(x:A)a 7 µ(y:A)a{xóïôy}

The standard rules for recursive values are:

E,x:A ∫ρ a : A E,x:A ∫ρ a : A E,x:A ∫ρ aóïñb : A
 ——————— —————————————— ———————————

E ∫ρ µ(x:A)a : A E ∫ρ µ(x:A)a óïñ a{xóïôµ(x:A)a} : A E ∫ρ µ(x:A)a óïñ µ(x:A)b : A

5.4.2 Label sets
The next extension involves variables W ranging over sets of labels. We allow

these in environments, under an assumption WπL that W does not contain any of the
labels in L.

E ∫ρ L π M E ∫ρ L π M E ∫ρ L π l.M
————— ————— —————

E ∫ρ M π L E ∫ρ L π  E ∫ρ L π M

∫ρ E env E ∫ρ L π l.M
———————— —————

E ∫ρ  π l1. .. ln. E ∫ρ l.L π M

E ∫ρ L π  WÌdom(E) ∫ρ E, W π L env
 ——————————— —————————

∫ρ E, W π L env E, W π L, E' ∫ρ W π L

The rules of F<:ρ that involve label sets L, are extended to require Lπ, to make sure
that L is well-formed. We do not define quantifiers or functions over label-set
variables because we do not know how to translate them into F<:; label-set variables
will be used only in definitions.

5.4.3 Definitions
We now extend the system with various flavors of definitions. The simplest

definitions are value and row value definitions (let's):

E ∫ρ a : A E,x:A ∫ρ b : B E ∫ρ a : A E,x:A ∫ρ b : B
 ——————————— ———————————————

E ∫ρ let x : A = a in b : B E ∫ρ let x : A = a in b óïñ b{xóïôa} : B

Page 26

E ∫ρ r a R ¶L E,xaR¶L ∫ρ b : B E ∫ρ r a R ¶L E,xaR¶L ∫ρ b : B
 —————————————— ————————————————

E ∫ρ let x a R ¶L = r in b : B E ∫ρ let x a R ¶L = r in b óïñ b{xóïôr} : B

There are several kinds of type-level definitions (Let's); we may give a definition
of either a type variable, a row type variable, or a label-set variable, in the scope of
either a type, a row type, a value, a row value, or a label-set.

To compress several cases into one, we use the abbreviations:

X,Y are either type, row type, or label-set variables;
A,B,C are either types, row type, or label sets;
Aa,Bb,Cc are either values, row values, types, row types, or label-sets;
pred is either : A, a R ¶L, type, ¶L, or πL.
ÏK is either <:A, ¶L, or πL (we often omit <:Top);
Aa{X} means X may occur in Aa; then Aa{B} stands for Aa{XóïôB}

For type, row type, and label-set definitions, in various scopes, we have the rules:

Let X = A in Bb{X} 7 Let X’ = A in Bb{X’}

E ∫ρ AÏK E ∫ρ Bb{A} pred E ∫ρ AÏK E ∫ρ Bb{A} pred
 ————————————— —————————————————

E ∫ρ Let XÏK = A in Bb{X} pred E ∫ρ Let XÏK = A in Bb{X} óïñ Bb{A} pred

Note that, unlike value definitions, we do not require E,XÏK ∫ρ Bb{X} pred; this might
not be typeable on its own.

We also introduce parametric type-level definitions, for example:

Let X[Y,Z] = A{Y,Z} in ... X[B1,C1] ... X[B2,C2] ...
óïñ ... A{B1,C1} ... A{B2,C2} ...

for which we omit the obvious but technically complicated definitions.
Finally, we use top level declarations, in the following way:

let x : A = a
let y : B = b stands for let x : A = a in let y : B = b in c
c

and similarly for Let.
We now have enough useful features, and we can turn to examples.

5.5 Examples
Many examples in this section are adapted from [Canning, et al. 1989] [Harper,

Pierce 1990] and [Cardelli, Mitchell 1991].
We start with a list of standard test cases and compare them with other calculi.

¢ Extracting a field from a record that is known to possess it.

let selectx : Rcd(x:Nat,Etc)îïñNat =
λ(a:Rcd(x:Nat,Etc)) a.x

selectx(rcd(x=3,y=true,etc)) óïñ 3 : Nat

Page 27

¢ Extracting a field from a record that is not known to possess it.
This is a typing error in all the calculi that have been proposed.

¢ Removing a field from a record that is known to possess it.

let restrictx : Ó(X¶x) Rcd(x:Nat,X)îïñ ...X... =
λ(X¶x) λ(a:Rcd(x:Nat,X)) ... a\x ... (in a row context)

restrictx(y:Nat,Etc¶x)(rcd(x=3,y=true,etc))

¢ Removing a field from a record that is not known to possess it.
This is the crucial feature in [Cardelli, Mitchell 1991]. It is not possible here

because the translation (section 6) requires exact knowledge of the missing fields.

¢ Adding a field to a record that is known not to possess it.
Not applicable; all records are already “complete”. However, we can add a field to

a row that is known not to possess it:

λ(raR¶x.L) ... x=b,r ... (in a row context)

¢ Adding a field to a record that is not known to possess it.
Not applicable; all records are already “complete”. Moreover, even for rows, “not

knowing” is not a sufficient condition for adding a field. This operation is possible in
[Wand 1987], [Rémy 1989], and [Cardelli, Mitchell 1991].

¢ Updating a field of a record that is known to possess it.
Although adding a field under these conditions is not possible because all records

are “complete”, there is no problem with updating. Note that type information about
additional input fields is preserved. This example motivated the work [Cardelli,
Mitchell 1991].

let replacex : Ó(X¶x) Ó(A) Rcd(x:Top,X)îïñAîïñRcd(x:A,X) =
λ(X¶x) λ(A) λ(r:Rcd(x:Top,X)) λ(a:A) rcd(x=a,r\x)

replacex(y:Bool,Etc¶x)(String)(rcd(x=3,y=true,etc))("str")
 óïñ rcd(x="str",y=true,etc) : Rcd(x:String,y:Bool,Etc)

A restricted version, called consistent updating, preserves the type of the field
being updated.

 let updatex : Ó(X¶x) Ó(A) Rcd(x:A,X)îïñAîïñRcd(x:A,X) =
λ(X¶x) λ(A) λ(b:Rcd(x:A,X)) λ(a:A) rcd(x=a,b\x)

An interesting example of update occurs when “moving” the x field of a point. In
this case we want to preserve the type of the y field (whatever subtype of Int that may
be) and all the additional fields. If the input type of the x field is 0..9 (a proper subtype
of Int), the corresponding output type must be Int, otherwise we could exceed the
range 0..9 for x.

let movex : Ó(Y<:Int) Ó(Z¶x,y) Rcd(x:Int,y:Y,Z) îïñ Rcd(x:Int,y:Y,Z) =
λ(Y<:Int) λ(Z¶x,y) λ(p:Rcd(x:Int,y:Y,Z)) rcd(p.x+1,p\x)

p:Rcd(x:0..9,y:0..9,c:Color,Etc)

Page 28

movex(0..9)(c:Color,Etc)(p) : Rcd(x:Int,y:0..9,c:Color,Etc)

A more challenging task is to update “deep” in a structure, while preserving all the
type information of the input. Here it can be achieved as follows, for a second-level
boolean update.

let deep-updatexy :
Ó(X¶x) Ó(Y¶y) Rcd(x:Rcd(y:Bool,Y),X)îïñRcd(x:Rcd(y:Bool,Y),X) =
λ(X¶x) λ(Y¶y) λ(a:Rcd(x:Rcd(y:Bool,Y),X))

rcd(x=rcd(y=not(a.x.y),a.x\y),a\x)

deepUpdatexy(z:Nat,Etc¶x)(w:Nat,Etc¶y)(rcd(x=rcd(y=true,w=3,etc),z=4,etc))
 óïñ rcd(x=rcd(y=false,w=3,etc),z=4,etc)

: Rcd(x:Rcd(y:Bool,w:Nat,Etc),z:Nat,Etc)

¢ Updating a field of a record that is not known to possess it.
Again, “not knowing” is not a sufficient condition here.

 ¢ Renaming.
Renaming is not possible in general. Consider, for example,

Rcd(x:A,X)îïñRcd(y:A,X); what would be the constraint on X?

We now pass to standard examples of “class hierarchies” and “methods”. We use
parametric type definitions, explained in section 5.4, to model record type extension,
as in [Harper, Pierce 1990]. This technique compensates, up to a point, for the lack of
the type operations of [Cardelli, Mitchell 1991].

 ¢ Points and color points
A point has components x:Int, y:Int, while a color point also has a component

c:Color. The challenge is to define the ColorPoint type and values by reusing the
Point type and values. Here we can reuse types in two steps by defining a parametric
version of each type. (Similarly for values.) This is an instance of a powerful
generator technique, widely employed in [Cook 1989].

Let PointPlus[Z¶x,y] =
Rcd(x:Int, y:Int, Z)

Let Point =
PointPlus[Etc] (7 Rcd(x,y:Int, Etc))

Let ColorPointPlus[Z¶x,y,c] =
PointPlus[c:Color, Z] (7 Rcd(x,y:Int, c:Color, Z))

Let ColorPoint =
ColorPointPlus[Etc] (7 Rcd(x,y:Int, c:Color, Etc))

let originPlus: Ó(Z¶x,y) Z¶x,yîïñPointPlus[Z] =
λ(Z¶x,y) λ(zaZ¶x,y) rcd(x=0, y=0, z)

let origin : Point =
originPlus(Etc¶x,y)(etc¶x,y)

Page 29

let whiteOriginPlus : Ó(Z¶x,y,c) Z¶x,y,cîïñColorPointPlus[Z] =
λ(Z¶x,y,c) λ(zaZ¶x,y,c) originPlus(c:Color, Z ¶x,y)(c=white, z ¶x,y)

let whiteOrigin : ColorPoint =
whiteOriginPlus(Etc¶x,y,c)(etc¶x,y,c)

 ¢ Total orders
Here we have a record type TO of total orders. The ordering is represented as a

method leq: TOîïñBool, that compares another element of TO to the self value. The
type TO is then recursive in the input type of its only method.

The definition of TO is done in three steps; first we introduce a generator with
open recursion (the Self type parameter), then a generator derived from it where the
recursion is closed, and finally the actual type TO. In general, the last two steps are
obtained uniformly from the first. This technique is a bit complex, but it should be
seen as a standard way of translating a “class” written in some more amenable
language.

Let TOGenPlus[Self, X¶leq] =
Rcd(leq: SelfîïñBool,X)

Let TOPlus[X¶leq] =
µ(Self) TOGenPlus[Self, X] (7 µ(Self) Rcd(leq: SelfîïñBool, X))

Let TO =
TOPlus[Etc] (7 µ(Self) Rcd(leq: SelfîïñBool, Etc))

Next we define the total order of Naturals (by reusing TOGenPlus), as:

Let NatTOGenPlus[Self, X¶leq,val,add] =
TOGenPlus[Self, (val:Nat, add:SelfîïñSelf, X)]

(7 Rcd(leq:SelfîïñBool, val:Nat, add:SelfîïñSelf, X))
Let NatTOPlus[X¶leq,val,add] =

µ(Self) NatTOGenPlus[Self, X]
(7 µ(Self) Rcd(leq:SelfîïñBool, val:Nat, add:SelfîïñSelf, X))

Let NatTO =
NatTOPlus[Etc]

(7 µ(Self) Rcd(leq:SelfîïñBool, val:Nat, add:SelfîïñSelf, Etc))

let zero : NatTO =
rcd(val=0, add=λ(other:NatTO) other,

leq=λ(other:NatTO) 0≤other.val, etc)

(The methods of zero are too specialized to be inherited; this problem can be amended
by defining a value generator with open recursion and, for example, leq=λ (other:
NatTO) self.val≤other.val.)

We now discover that, although NatTO was obtained by adding components to
TO, it is not a subtype of TO by the rules for recursive types. Hence we have the
unpleasant situation that operations defined on TO may not apply to particular total
orders.

Page 30

The solution is to define those operations on TOPlus instead of TO. (As pointed
out in [Harper, Pierce 1990] this can be done even without F-bounded quantification
[Canning, et al. 1989] in a calculus of “negative information”, such as F<:ρ.) We can
say that NatTOPlus is a subclass of TOPlus [Cook 1989].

let min : Ó(X¶leq) TOPlus[X]îïñTOPlus[X]îïñTOPlus[X] =
λ(X¶leq) λ(a: TOPlus[X]) λ(b: TOPlus[X])

if a.leq(b) then a else b

We can then specialize min to NatTO:

let minNat: NatTOîïñNatTOîïñNatTO =
min(val:Nat, add: NatTOîïñNatTO, Etc ¶leq)

to see that this typechecks, compute:

TOPlus[val:Nat, add: NatTOîïñNatTO, Etc]
7 µ(Self) TOGenPlus[Self, (val:Nat, add: NatTOîïñNatTO, Etc)]
7 µ(Self) Rcd(leq: SelfîïñBool, val:Nat, add: NatTOîïñNatTO, Etc) (A)
óïñ NatTO (B)

The step from formula A to formula B proceeds as follows, using the rules for
recursive types given in section 5.4. By unfolding, we have:

A óïñ Rcd(leq: AîïñBool, val:Nat, add: BîïñB, Etc)
B óïñ Rcd(leq: BîïñBool, val:Nat, add: BîïñB, Etc)

Consider the contractive context C[X]:

C[X] 7 Rcd(leq: XîïñBool, val:Nat, add: BîïñB, Etc)

Then A óïñ C[A] and B óïñ C[B]; hence AóïñB by the contract rule.

¢ Movables
Following the three-step schema, we now give type definitions for “things that can

be moved”. For added flexibility, the first step defines a row type instead of a record
type, using a label-set parameter (explained in section 5.4).

Let MovableGenPlus[Self, L πmove, X¶move.L] ¶L =
move: IntîïñIntîïñSelf, X

Let MovablePlus[X¶move] =
µ(Self) Rcd(MovableGenPlus[Self, , X])

(7 µ(Self) Rcd(move: IntîïñIntîïñSelf, X))
Let Movable =

MovablePlus[Etc] (7 µ(Self) Rcd(move: IntîïñIntîïñSelf,
Etc))

let translate : Ó(X¶move) MovablePlus[X]îïñIntîïñIntîïñMovablePlus[X] =
λ(X¶move) λ(m:MovablePlus[X]) λ(dx:Int) λ(dy:Int) m.move(dx)(dy)

Page 31

We can see that in this case Movable is a rather useless type. The interesting
definition is MovablePlus, which however must be instantiated before it can be used.
Hence, we combine movables with points:

Let PointPlus[Z¶x,y] =
Rcd(x:Int, y:Int, Z)

Let Point =
PointPlus[Etc] (7 Rcd(x:Int, y:Int, Etc))

Let MPointGenPlus[Self, X¶x,y,move] =
PointPlus[MovableGenPlus[Self, (x,y), X]]

(7 Rcd(x:Int, y:Int, move: IntîïñIntîïñSelf, X))
Let MPointPlus[X¶x,y,move] =

µ(Self) MPointGenPlus[Self, X]
(7 µ(Self) Rcd(x:Int, y:Int, move: IntîïñIntîïñSelf, X))

Let MPoint =
MPointPlus[Etc] (7 µ(Self) Rcd(x:Int, y:Int, move: IntîïñIntîïñSelf, Etc))

let move : Ó(X¶x,y,move) MPointPlus[X]îïñIntîïñIntîïñMPointPlus[X] =
λ(Z¶x,y,move) λ(self:MPointPlus[X] λ(dx:Int) λ(dy:Int)

rcd(x=self.x+dx, y=self.y+dy, self\x,y)

let mOrigin : MPoint =
µ(self:MPoint) rcd(x=0, y=0, move=move(Etc¶x,y,move)(self), etc)

translate(x:Int,y:Int,Etc ¶move)(mOrigin)(1)(1) : MPoint

Note that in MPointGenPlus we have successfully reused the definitions for both
points and movables. Moreover, move can be inherited by subclasses (as opposed to
subtypes) of MPointPlus, by defining appropriate generators.

¢ Concatenation
Record concatenation can be handled by adapting a technique of Rémy [Rémy

1992]. With an extra level of encoding, record concatenation can be modeled by
function composition; in our system, this idea can be realized as follows.

We first define segments, as extensible records parameterized by their potential
extensions:

Seg(l1:A1,..,ln:An) @ Ó(Z¶l1..ln) Z¶l1..lnîïñRcd(l1:A1,..,ln:An,Z)
seg(l1=a1,..,ln=an) @ λ(Z¶l1..ln) λ(zaZ¶l1..ln) rcd(l1=a1,..,ln=an,z)

A field of a segment can be extracted by precipitating the segment to a record:

s.li @ s(Etc¶l1..ln)(etc¶l1..ln).li where s : Seg(l1:A1,..,ln:An), iÏ1..n

Then, given two segments with distinct sets of labels:

s : Seg(l1:A1,..,ln:An) 7 Ó(Z¶l1..ln) Z¶l1..lnîïñRcd(l1:A1,..,ln:An,Z)
t : Seg(k1:B1,..,km:Bm) 7 Ó(Z¶k1..km) Z¶k1..kmîïñRcd(k1:B1,..,km:Bm,Z)

we can define their concatenation (∏) as follows:

Page 32

s ∏ t @
λ(Z¶l1..lnk1..km) λ(zaZ¶l1..lnk1..km)

s(k1:B1,..,km:Bm,Z ¶l1..ln)
 (t(l1:Top,..,ln:Top,Z ¶k1..km)(l1=top,..,ln=top,z ¶k1..km)\ l1..ln)

so that we have:

s ∏ t : Seg(l1:A1,..,ln:An,k1:B1,..,km:Bm)

It would now be possible to axiomatize an extension of F<:ρ with segments and
concatenation, and define a translation of this extended calculus into F<:ρ.

6. Translation of F<:ρ into F<:
In this section we define the promised translation from a calculus with rows to one

without rows. The basic idea is that row variables, row types, row values, and row
judgments become rows or sequences of, respectively, variables, types, values, and
judgments.

We start with some familiar notation from previous sections:

Notation
L the set of labels
ι : LîïñNat (a bijection) a fixed enumeration of labels
li @ ι -1(i) the label whose index is i in the fixed enumeration
L,M... finite sets of labels
#S size of a finite set

Next we define the set of indices of a set of labels, and its maximum index:

Definition (indices and maximum index of a set of labels)
ιL @ {ι (l)|lÏL} = {i|liÏL}
ÂL @ max(ιL), where Â{} @ -1

Finite sets of labels L are used mostly in contexts like ¶L, describing the labels a
row lacks. If we need to talk about the labels a row has, we can consider the
complement L-L . This, though, is an infinite set, and the part beyond ÂL is
uninteresting. Hence, it is natural to take its most interesting finite prefix, κL:

Definition (finite complement prefix of a finite set of labels)
κL @ {i|i<ÂL ∧ liÌL}

A central concept in the sequel is that of the dimension of (the tuple translation of)
a row. Take any row that is undefined at L; that is, any row whose tuple translation
sketched in section 4.2 has gaps at L. Then the labeled components to the right of the
last gap (ÂL) are contiguous, and they can be collected into a single tuple; we call the
result a normal row. The dimension ∂L of any row that has gaps at L is then defined
as the number of components of the corresponding normal row. We emphasize that
for any row raR ¶L or R ¶L, its dimension depends only on L, and not on the structure
of r or R. Hence ∂L can be defined very simply as:

Page 33

Definition (dimension of a row undefined at L)
∂L @ #(κL)+1

When adding a new item to a row, the row dimension changes depending on
whether the new item fills the last gap of the row or not. In the former case, a whole
set of components may be compacted in the final tuple and the dimension decreases;
in the latter case, the dimension increases by one. The following lemma is formulated
in terms of adding or removing a gap.

Lemma (row dimension)
For liÌL,

if i<ÂL then ∂(li.L)=∂L-1;
if i>ÂL then ∂(li.L)=∂L+(i-(ÂL+1)).

We now need some notation for describing complex sequences and rows, and for
this purpose we use a notation similar to set comprehension. For example, we use
iÜi|2≤i≤4á to denote the sequence 2,3,4 in this order; the idea is that the superscript
index i is increased monotonically to generate the elements of the sequence.

 Notation (sequences)
#(S) length of a sequence
S,S' sequence concatenation
iÜϕ(i)|Φ(i)á sequence comprehension; the sequence, generated by

increasing i, whose elements are ϕ(i) for iÏNat ∧ Φ(i).

A row is a sequence of labeled elements, sorted by label index, of length greater
than zero. The last element of a row is special; as discussed in section 4.2 this is the
rest of the row. For bookkeeping purposes, we use the special label  q for this last
element, where q is intuitively the index of the beginning of the uninteresting part of
the row (as we can see from the row structure lemma below).

Notation (rows)
A type row R is a sequence of the form:

l1:A1..ln:An where n≥1 and ln 7  q for some q.
A value row r is a sequence of the form:

l1=a1..ln=an where n≥1 and ln 7  q for some q.

#(l1:A1..ln:An) @ n; #(l1=a1..ln=an) @ n size
li:Ai Ï l1:A1..ln:An; li=ai Ï l1=a1..ln=an membership (iÏ1..n)

l:A Òñ R @ iÜ(li:Ai)|(li:Ai)7(l:A) ∧ (li:Ai)ÏRá sorting (if l:BÌR for any B)
l=a Òñ r @ iÜ(li=ai)|(li=ai)7(l=a) ∧ (li=ai)Ïrá sorting (if l=bÌr for any b)

We can now define some basic sequences and rows that will be used in the
translation. All these have dimension ∂L.

Definition (basic sequences and rows)
VarSeq(X,¶L) @ iÜXi|iÏκLá, XÂL+1

VarRow(X,¶L) @ iÜ(li:Xi)|iÏκLá , ( ÂL+1:XÂL+1)
TopRow(¶L) @ iÜ(li:Top)|iÏκLá , ( ÂL+1:Top)

Page 34

varSeq(x,¶L) @ iÜxi|iÏκLá, xÂL+1

varRow(x,¶L) @ iÜ(li=xi)|iÏκLá , ( ÂL+1=xÂL+1)
topRow(¶L) @ iÜ(li=top)|iÏκLá , ( ÂL+1=top)
selRow(a,¶L) @ iÜ(li=a.i)|iÏκLá , ( ÂL+1=aÂL+1)

Examples
VarRow(X,¶()) =  0:X0 TopRow(¶()) =  0:Top
VarRow(X,¶l 0) =  1:X1 TopRow(¶l 0) =  1:Top
VarRow(X,¶l1) = l 0:X0,  2:X2 TopRow(¶l1) = l 0:Top,  2:Top
VarRow(X,¶l 0,l2) = l1:X1, 3:X3 TopRow(¶l 0,l2) = l1:Top,  3:Top

In defining the full translation, [-], we need an auxiliary translation, ^ - ¶L_, for
converting row types R ¶L, and row values r ¶L, into rows of types and values,
respectively. The results of ^ - ¶L_ are unnormalized, in the sense that they may have a
dimension greater than ∂L; that is, the final tupleable components of the results need
not be grouped together into a tuple. This auxiliary translation refers back to the
proper translation, [-], but for exposition purposes we present it first.

Definition (translation, part 1; auxiliary row translation)
^X ¶L_ @ VarRow(X,¶L)
^Etc ¶L_ @ TopRow(¶L)
^l:A,R ¶L_ @ l:[A] Òñ ^R ¶l.L_

^x ¶L_ @ varRow(x,¶L)
^etc ¶L_ @ topRow(¶L)
^l=a,r ¶L_ @ l=[a] Òñ ^r ¶l.L_
^a\ l1..ln ¶L_ @ selRow([a],¶L)

Hence, for the base cases ^X ¶L_ and ^Etc ¶L_ of the row type translation, we
produce rows of X's or Top's of size ∂L. For ^l:A,R ¶L_ we first compute ^R ¶l.L_,
which has an additional gap for l, and we sort l:[A] into the result.

Similarly for the row value translation. In addition, ^a\ l1..ln ¶L_ produces a row of
record selections; the idea here is that eliminating l1..ln from a is the same as selecting
and reassembling all the other components of a. (The type rules will ensure (l1..ln)7L,
if a\ l1..ln ¶L is well-typed.)

Here is an example of the translation:

^X ¶l 0,l1,l3,l6_ 7
l2:X2, l4:X4, l5:X5, 7:X7 (of size ∂(l 0,l1,l3,l6))

^(l1:A1, l6:A6, X) ¶l 0,l3_ 7
l1:A1, l2:X2, l4:X4, l5:X5, l6:A6, 7:X7 (of size greater than ∂(l 0,l3))

Next, we provide a kind of normal form for row types l1:A1..ln:An,ξ, based on the
translations ^R ¶L_ (under typing assumptions). As we have seen, the translation
returns rows whose length (which depends both on L and l1..ln) may exceed ∂L. The
normal form reveals that the portion beyond ∂L-1 has in fact no gaps and therefore
can be collected into a tuple to form a single ∂Lth element. Similarly for value rows.

Page 35

Lemma (row structure)
(1) Let R7l1:A1..ln:An,ξ where ξ=X or ξ=Etc.

Assume E ∫ρ R ¶L.
Then ^R ¶L_ has the following shape, for some B's:

iÜ(li:Bi)|iÏκLá , jÜ(l j:Bj)|ÂL<j<qá, ( q:Bq)
with q = (ÂL+1) + (∂(l1..ln.L)+n - ∂L) (q > ÂL)

(2) Let r7l1=a1..ln=an, ξ where ξ=x, ξ=etc, or ξ=a\M.
Assume E ∫ρ r a R ¶L.
Then ^r ¶L_ has the following shape, for some b's:

iÜ(li=bi)|iÏκLá , jÜ(l j=bj)|ÂL<j<qá, ( q=bq)
with q = (ÂL+1) + (∂(l1..ln.L)+n - ∂L) (q > ÂL)

Considering the previous example:

^(l1:A1, l6:A6, X) ¶l 0,l3_ 7
(l1:A1, l2:X2), (l4:X4, l5:X5, l6:A6),  7:X7

of size ∂(l 0,l3)-1
tupleable, ∂(l 0,l3)th item

 Now we are ready for the full translation. The translation of the F<: fragment of
F<:ρ is uninteresting, but we list it for completeness.

Definition (translation, part 2; F<: fragment)

Environments Values
[∫ρ E env] @ ∫ [E] env [E ∫ρ a : A] @ [E] ∫ [a] : [A]
[] @  [x] @ x
[E,x:A] @ [E],x:[A] [top] @ top
[E,X<:A] @ [E],X<:[A] [λ(x:A)b] @ λ(x:[A])[b]

Types [b(a)] @ [b]([a])
[E ∫ρ A type] @ [E] ∫ [A] type [λ(X<:A)b] @ λ(X<:[A])[b]
[X] @ X [b(A)] @ [b]([A])
[Top] @ Top Value equivalence
[AîïñB] @ [A]îïñ[B] [E ∫ρ a óïñ a' : A] @ [E] ∫ [a] óïñ [a'] : [A]
[Ó(X<:A)B] @ Ó(X<:[A])[B]

Subtypes
[E ∫ρ A<:B] @ [E] ∫ [A] <: [B]

Finally, we can give the translation of the proper F<:ρ judgments and terms. An
F<:ρ judgment E ∫ρ ϑ ¶L becomes a sequence of size ∂L of F<: judgments. A row
variable X¶L in an environment becomes a sequence of ∂L type variables. The
domain of row function space R¶LîïñB becomes a sequence of ∂L domains; similarly
for λ(xaR¶L), with b(r¶L) becoming a sequence of ∂L applications. A row quantifier
Ó(X¶L) becomes a nesting of ∂L type quantifiers; similarly for an abstraction λ(X¶L),
with b(R¶L) becoming a nesting of ∂L type applications. Record types and values are
translated by applying ^ - ¶L_ to the respective rows, and then normalizing the results
to size ∂L.

Page 36

Definition (translation, part 3; F<:ρ proper)

Environments (continued)
[E,X¶L] @ let X1..X∂L =VarSeq(X,¶L) in [E],X1,..,X∂L
[E,xaR¶L] @

let x1..x∂L= varSeq(x,¶L) and A1..A∂L=[R ¶L] in [E],x1:A1..x∂L:A∂L
Types (continued)

[Rcd(R)] @ [R ¶()]
[R¶LîïñB] @ let A1..A∂L =[R ¶L] in A1îïñ..îïñA∂Lîïñ[B]
[Ó(X¶L)B] @ let X1..X∂L = VarSeq(X,¶L) in Ó(X1)..Ó(X∂L)[B]

Type rows
[E ∫ρ R ¶L] @ let A1..A∂L = [R ¶L] in [E] ∫ A1 type ... [E] ∫ A∂L type
[R ¶L] @ let (l1:A1..l∂L:A∂L..ln:An) =^R ¶L_ in A1..A∂L-1,Tuple(A∂L..An)

Subrows
[E ∫ρ R<aS ¶L] @

let A1..A∂L = [R ¶L] and B1..B∂L = [S ¶L]
in [E] ∫ A1 <: B1 ... [E] ∫ A∂L <: B∂L

Values (continued)
[rcd(r)] @ [r ¶()]
[a.l] @ [a].ι (l)
[λ(xaR¶L) b] @

let x1..x∂L=varSeq(x,¶L) and A1..A∂L=[R ¶L] in λ(x1:A1)..λ(x∂L:A∂L) [b]
[b(r¶L)] @ let a1..a∂L =[r ¶L] in [b](a1)..(a∂L)
[λ(X¶L)b] @ let X1..X∂L = VarSeq(X,¶L) in λ(X1)..λ(X∂L)[b]
[b(R¶L)] @ let A1..A∂L =[R ¶L] in [b](A1)..(A∂L)

Value rows
[E ∫ρ raR ¶L] @

let a1..a∂L = [r ¶L] and A1..A∂L = [R ¶L] in [E] ∫ a1:A1 ... [E] ∫ a∂L:A∂L
[r ¶L] @ let (l1=a1..l∂L=a∂L..ln=an) =^r ¶L_ in a1..a∂L-1,tuple(a∂L..an)

Value row equivalence
[E ∫ρ r óïñ r' a R ¶L] @

let a1..a∂L = [r ¶L] and a'1..a'∂L = [r' ¶L] and A1..A∂L = [R ¶L]
in [E] ∫ a1óïña'1:A1 ... [E] ∫ a∂Lóïña'∂L:A∂L

Examples

[λ(xa(l 0:A,Etc)¶l1) rcd(l1=b,x)] =
λ(x0:[A]) λ(x2:Top) tuple(x0,[b],x2)

[λ(xa(l2:A,Etc)¶l1) rcd(l1=b,x)] =
λ(x0: Top) λ(x2:Tuple([A],Top)) tuple(x0,[b],x2)

[λ(X¶l 0,l1) λ(xa(l 0:A,X)¶l1) rcd(l1=b,x)] =
λ(X2) λ(x0:[A]) λ(x2:X2) tuple(x0,[b],x2)

[λ(X¶l1,l2) λ(xa(l2:A,X)¶l1) rcd(l1=b,x)] =
λ(X0) λ(X3) λ(x0: X0) λ(x2:Tuple([A],X3)) tuple(x0,[b],x2)

Page 37

Using the row structure lemma, we can now show that the translation is well-
defined, provided that the translated terms are well-typed.

Lemma (translation dimensions)
#(VarSeq(X,¶L)) = #(VarRow(X,¶L)) = #(TopRow(¶L))

= #(varSeq(x,¶L)) = #(topRow(¶L)) = #(varRow(x,¶L)) = #(selRow(a,¶L))
= ∂L.

If E ∫ρ R ¶L then #(̂ R ¶L_) ≥ ∂L.
If E ∫ρ R ¶L then #([R ¶L]) = ∂L.
If E ∫ρ raR ¶L then #(̂ r ¶L_) ≥ ∂L.
If E ∫ρ raR ¶L then #([r ¶L]) = ∂L.

Lemma (good translation)
If a judgment J is derivable, then the translation [J] is well-defined.
That is, all the assumptions made in the translation about sizes of rows,
are justified.

The row structure lemma is also the key to the following row analysis lemma,
which is then used in the proof of all the technical lemmas in the next section. The
row analysis lemma describes in detail what happens when a single element is added
to a row, or removed from it.

Lemma (row analysis)
(1) Assume E ∫ρ l:A,R ¶L.

Let B1..B∂l.L = [R ¶l.L] and C1..C∂L = [l:A,R ¶L].
If ι (l)<ÂL then ∂(l.L)=∂L-1, and:

C1..C∂L = B1..Bk-1,[A],Bk..B∂L-1
where k = #{i|iÏκL ∧ i<ι (l)} ≤ ∂L-1.
If ι (l)>ÂL then ∂(l.L)=∂L+(ι (l)-(ÂL+1)), and:

C1..C∂L-1 = B1..B∂L-1 C∂L = Tuple(B∂L..B∂l.L-1,[A],B∂l.L)
where ∂(l.L) ≥ ∂L.

(2) Assume E ∫ρ l=a,raR ¶L.
Let b1..b∂l.L = [r ¶l.L] and c1..c∂L = [l=a,r ¶L].
If ι (l)<ÂL then ∂(l.L)=∂L-1, and:

c1..c∂L = b1..bk-1,[a],bk..b∂L-1
where k = #{i|iÏκL ∧ i<ι (l)} ≤ ∂L-1.
If ι (l)>ÂL then ∂(l.L)=∂L+(ι (l)-(ÂL+1)), and:

c1..c∂L-1 = b1..b∂L-1 c∂L = tuple(b∂L..b∂l.L-1,[a],b∂l.L)
where ∂(l.L) ≥ ∂L.

(3) Assume E ∫ρ a\LaR ¶L.
Let b1..b∂l.L = [a\ l.L ¶l.L] and c1..c∂L = [a\L ¶L].
If ι (l)<ÂL then ∂(l.L)=∂L-1, and:

c1..c∂L = b1..bk-1,[a.l],bk..b∂L-1
where k = #{i|iÏκL ∧ i<ι (l)} ≤ ∂L-1.
If ι (l)>ÂL then ∂(l.L)=∂L+(ι (l)-(ÂL+1)), and:

c1..c∂L-1 = b1..b∂L-1 c∂L = tuple(b∂L..b∂l.L-1,[a.l],b∂l.L)

Page 38

where ∂(l.L) ≥ ∂L.

7. The translation preserves derivations
In this section we show that the translation from ∫ρ to ∫ is sound. That is, if a

judgment J is derivable in ∫ρ, then all the judgments in the sequence [J] are derivable
in ∫.

The following group of lemmas is used in the hardest cases of the soundness
proof. These lemmas are complicated by the fact that the translations are well-defined
only under typing assumptions. First we have lemmas regarding rows; they have the
structure of some of the inference rules, but concern the translation of those rules.

Lemma (soundness of row inference rules)

(type row cons)
Assume E ∫ρ R' ¶l.L and E ∫ρ A type.
If [E ∫ρ R' ¶l.L] and [E ∫ρ A type] then [E ∫ρ l:A,R' ¶L].

(sub row cons)
Assume E ∫ρ A<:B and E ∫ρ R'<aS' ¶l.L.
If [E ∫ρ A<:B] and [E ∫ρ R'<aS' ¶l.L] then [E ∫ρ l:A,R' <a l:B,S' ¶L].

(row cons)
Assume E ∫ρ a:A and E ∫ρ raR ¶l.L.
If [E ∫ρ a:A] and [E ∫ρ raR ¶l.L] then [E ∫ρ l=a,ral:A,R ¶L].

(selection)
Assume E ∫ρ a : Rcd(l:A,S).
If [E ∫ρ a : Rcd(l:A,S)] then [E ∫ρ a.l : A].

(restriction)
Assume E ∫ρ a\L a l:A,S ¶L.
If [E ∫ρ a\L a l:A,S ¶L] then [E ∫ρ a\ l.L a S ¶l.L].

(eq-cons)
Assume E ∫ρ r óïñ r' a R ¶l.L, and E ∫ρ aóïña':A.
If [E ∫ρ r óïñ r' a R ¶l.L] and [E ∫ρ aóïña':A]
then [E ∫ρ l=a,r óïñ l=a',r' a l:A,R ¶L]

(eq-selection)
Assume E ∫ρ aóïña' : Rcd(l:A,S).
If [E ∫ρ aóïña' : Rcd(l:A,S)] then [E ∫ρ a.l óïñ a'.l : A].

(eval-selection)
Assume E ∫ρ raR ¶l and E ∫ρ aóïña':A.
If [E ∫ρ raR ¶l] and [E ∫ρ aóïña':A] then [E ∫ρ rcd(l=a,r).l óïñ a' : A].

(eq-restriction)
Assume E ∫ρ a\Lóïña'\L a l:A,S ¶L.
If [E ∫ρ a\Lóïña'\L a l:A,S ¶L] then [E ∫ρ a\ l.Lóïña'\ l.L a S ¶l.L].

Page 39

(eval-restriction)
(1) Assume E ∫ρ r óïñ r' a R ¶().

If [E ∫ρ r óïñ r' a R ¶()] then [E ∫ρ rcd(r)\ óïñ r' a R ¶()].
(2) Assume E ∫ρ rcd(l=a,r)\L óïñ l=a,r' a l:A,R ¶L.

If [E ∫ρ rcd(l=a,r)\L óïñ l=a,r' a l:A,R ¶L]
then [E ∫ρ rcd(l=a,r)\ l.L óïñ r' a R ¶l.L].

Next we have substitution lemmas for all possible combinations of variables and
terms.

Lemma (soundness of substitution)

(type in type)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ B type.
Then [B{XóïôA'}] is well-defined.
Then [B]{Xóïô[A']} 7 [B{XóïôA'}].

(type in row-type)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ S ¶M.
Then [S{XóïôA'} ¶M] is well-defined.
Let B1..B∂M = [S ¶M] and C1..C∂M = [S{XóïôA'} ¶M].
Then B1{Xóïô[A']} 7 C1 ... B∂M{Xóïô[A']} 7 C∂M .

(row-type in type)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ B type.
Then [B{XóïôR}] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Then [B]{X1óïôA1}..{X∂LóïôA∂L} 7 [B{XóïôR}].

(row-type in row-type)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ S ¶M.
Then [S{XóïôR} ¶M] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Let B1..B∂M = [S ¶M] and C1..C∂M = [S{XóïôR} ¶M]
Then Bi{X1óïôA1}..{X∂LóïôA∂L} 7 Ci for i in 1..∂M.

(type in value)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ b : B
Then [b{XóïôA'}] is well-defined.
Then [b]{Xóïô[A']} 7 [b{XóïôA'}].

(type in row-value)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ s a S ¶¶¶M
Then [s{XóïôA'} ¶M] is well-defined.
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{XóïôA'} ¶M] .
Then b1{Xóïô[A']} 7 c1 ... b∂M{Xóïô[A']} 7 c∂M

(row-type in value)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ c : C.

Page 40

Then [c{XóïôR}] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Then [c]{X1óïôA1}..{X∂LóïôA∂L} 7 [c{XóïôR}].

(row-type in row-value)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ s a S ¶M.
Then [s{XóïôR} ¶M] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{XóïôR} ¶M]
Then bi{X1óïôA1}..{X∂LóïôA∂L} 7 ci for i in 1..∂M.

(value in value)
Assume E ∫ρ a : A and E,x:A,E' ∫ρ b : B
Then [b{xóïôa}] is well-defined.
Then [b]{xóïô[a]} 7 [b{xóïôa}].

(value in row-value)
Assume E ∫ρ a : A and E,x:A,E' ∫ρ s a S ¶M
Then [s{xóïôa} ¶M] is well-defined.
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{xóïôa} ¶M]
Then b1{xóïô[a]} 7 c1 ... b∂M{xóïô[a]} 7 c∂M .

(row-value in value)
Assume E ∫ρ r a R ¶L and E,xaR¶L,E' ∫ρ c : C.
Then [c{xóïôr}] is well-defined.
Let x1..x∂L = varSeq(x,¶L) and a1..a∂L = [r ¶L]
Then [c]{x1óïôa1}..{x∂Lóïôa∂L} 7 [c{xóïôr}].

(row-value in row-value)
Assume E ∫ρ r a R ¶L and E,xaR ¶L,E' ∫ρ s a S ¶M.
Then [s{xóïôr} ¶M] is well-defined.
Let x1..x∂L = varSeq(x,¶L) and a1..a∂L = [r ¶L]
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{xóïôr} ¶M]
Then bi{x1óïôa1}..{x∂Lóïôa∂L} 7 ci for i in 1..∂M.

Finally we have the soundness theorem, divided into mutual induction groups.

Theorem (soundness)
(1) ∫ρ E env öõú [∫ρ E env]

E ∫ρ A type öõú [E ∫ρ A type]
E ∫ρ R ¶L öõú [E ∫ρ R ¶L]

(2) E ∫ρ A <: B öõú [E ∫ρ A <: B]
E ∫ρ R <a S ¶L öõú [E ∫ρ R <a S ¶L]

(3) E ∫ρ a : A öõú [E ∫ρ a : A]
E ∫ρ r a R ¶L öõú [E ∫ρ r a R ¶L]

(4) E ∫ρ a óïñ a' : A öõú [E ∫ρ a óïñ a' : A]
E ∫ρ r óïñ r' a R ¶L öõú [E ∫ρ r óïñ r' a R ¶L]

Page 41

Proof
The proof is by simultaneous induction on the derivations, using the lemmas

above in the hard cases. M

8. Conclusions
We have defined a calculus of row variables, F<:ρ, and translated it into a simpler

calculus with subtyping, F<:. The constraints imposed by the translation have forced
us into a restricted subset of the features that have been proposed for calculi of
extensible records, but we can still express many benchmark examples.

The particular mixture of features chosen for F<:ρ is not uniquely determined. For
example we might have attempted to incorporate bounds on row quantifiers
(Ó(X<aR¶L)B), row-valued functions (Aîïñ¶LR), or record concatenation (sketched in
section 5.5). The point is that many possible variations can be described and evaluated
within a single basic framework. Underlying all these variations and bridging between
them there is F<:, often extended with recursion. This approach could provide us with
a fundamental and unified framework in which to study complex features of object-
oriented languages.

Acknowledgements
I would like to thank Martín Abadi for his careful reading of the draft.

Page 42

References

[Amadio, Cardelli 1993] R.M. Amadio and L. Cardelli, Subtyping recursive types. ACM
Transactions on Programming Languages and Systems (to appear).

[Böhm, Berarducci 1985] C. Böhm and A. Berarducci, Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science 39, 135-154.

[Breazu-Tannen, et al. 1989] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance
and explicit coercion. Proc. 4th Annual IEEE Symposium on Logic in Computer Science.

[Canning, et al. 1989] P. Canning, W. Cook, W. Hill, W. Olthoff, and J.C. Mitchell. F-bounded
polymorphism for object-oriented programming. Proc. ACM Conference on Functional
Programming and Computer Architecture. ACM Press.

[Cardelli 1988] L. Cardelli, A semantics of multiple inheritance. Information and Computation 76,
138-164.

[Cardelli, Mitchell 1991] L. Cardelli and J.C. Mitchell, Operations on records. Mathematical
Structures in Computer Science 1(1), 3-48.

[Cardelli, et al. 1991] L. Cardelli, J.C. Mitchell, S. Martini, and A. Scedrov. An extension of system F
with subtyping. Proc. Theoretical Aspects of Computer Software. Lecture Notes in Computer
Science 526. Springer-Verlag.

[Cardelli, Wegner 1985] L. Cardelli and P. Wegner, On understanding types, data abstraction and
polymorphism. Computing Surveys 17(4), 471-522.

[Cook 1989] W.R. Cook. A denotational semantics of inheritance. Ph.D. Thesis, Computer Science
Dept., Brown University.

[Curien, Ghelli 1991] P.-L. Curien and G. Ghelli. Subtyping + extensionality: confluence of βη-
reductions in F≤. Proc. Theoretical Aspects of Computer Software. Sendai, Japan. Lecture Notes
in Computer Science 526. Springer-Verlag.

[Curien, Ghelli 1992] P.-L. Curien and G. Ghelli, Coherence of subsumption, minimum typing and
type-checking in F≤. Mathematical Structures in Computer Science 2(1), 55-91.

[de Bruijn 1972] N.G. de Bruijn, Lambda-calculus notation with nameless dummies. Indag. Math.
34(5), 381-392.

[Fairbairn 1989] J. Fairbairn. Some types with inclusion properties in ∀ , →, µ. Technical Report
n.171. University of Cambridge, Computer Laboratory.

[Girard 1971] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’élimination des coupures dans l’analyse et la théorie des types. Proc. Second
Scandinavian Logic Symposium. North-Holland.

[Harper, Pierce 1990] R. Harper and B. Pierce. A record calculus with symmetric concatenation.
Technical Report CMU-CS-90-157. CMU.

[Jategaonkar, Mitchell 1988] L.A. Jategaonkar and J.C. Mitchell. ML with extended pattern
matching and subtypes. ACM Conference on Lisp and Functional Programming.

[Martini 1990] S. Martini, Personal communication.
[Rémy 1989] D. Rémy. Typechecking records and variants in a natural extension of ML. Proc.

16th Annual ACM Symposium on Principles of Programming Languages.
[Rémy 1992] D. Rémy. Typing record concatenation for free. Proc. 19th Annual ACM Symposium

on Principles of Programming Languages.
[Reynolds 1974] J.C. Reynolds. Towards a theory of type structure. Proc. Colloquium sur la

programmation. Lecture Notes in Computer Science 19. Springer-Verlag.
[Wand 1987] M. Wand. Complete type inference for simple objects. Proc. 2nd Annual IEEE

Symposium on Logic in Computer Science.
[Wand 1989] M. Wand. Type inference for record concatenation and multiple inheritance. Proc.

4th Annual IEEE Symposium on Logic in Computer Science.

