
1

Information and Computation 76, 138-164, 1988

A Semantics of Multiple Inheritance

Luca Cardelli1

AT&T Bell Laboratories, Murray Hill, NJ 07974

1. Introduction
There are two major ways of structuring data in programming languages. The first and

common one, used for example in Pascal, can be said to derive from standard branches of
mathematics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e.
unions or variant types) and function spaces (i.e. functions and procedures).

The second method can be said to derive from biology and taxonomy. Data is organized
in a hierarchy of classes and subclasses, and data at any level of the hierarchy inherits all the
attributes of data higher up in the hierarchy. The top level of this hierarchy is usually called
the class of all objects; every datum is an object and every datum inherits the basic properties
of objects, e.g. the ability to tell whether two objects are the same or not. Functions and
procedures are considered as local actions of objects, as opposed to global operations acting
over objects.

These different ways of structuring data have generated distinct classes of programming
languages, and induced different programming styles. Programming with taxonomically
organized data is often called object-oriented programming, and has been advocated as an
effective way of structuring programming environments, data bases, and large systems in
general.

The notions of inheritance and object-oriented programming first appeared in Simula 67
[Dahl 66]. In Simula, objects are grouped into classes and classes can be organized into a
subclass hierarchy. Objects are similar to records with functions as components, and elements
of a class can appear wherever elements of the respective superclasses are expected.
Subclasses inherit all the attributes of their superclasses. In Simula, the issues are somewhat
complicated by the use of objects as coroutines, so that communication between objects can
be implemented as message passing between processes.

Smalltalk [Goldberg 83] adopts and exploits the idea of inheritance, with some changes.
While stressing the message-passing paradigm, a Smalltalk object is not usually a separate
process. Message passing is realized by function calls, although the association of message
names to functions (called methods) is not straightforward. With respect to Simula, Smalltalk

1Present address: DEC SRC, 130 Lytton Ave, Palo Alto, CA 94301.

2

also abandons static scoping, to gain flexibility in interactive use, and strong typing, allowing
it to implement system introspection and to introduce the notion of meta-classes.

Inheritance can be single or multiple. In the case of single inheritance, as in Simula or
Smalltalk, the subclass hierarchy has the form of a tree, i.e. every class has a unique
superclass. A class can sometimes be considered a subclass of two incompatible superclasses;
then an arbitrary decision has to be made to determine which superclass to use. This problem
leads naturally to the idea of multiple inheritance.

Multiple inheritance occurs when an object can belong to several incomparable
superclasses: the subclass relation is no longer constrained to form a tree, but can form a dag.
Multiple inheritance is more elegant than simple inheritance in describing class hierarchies,
but it is more difficult to implement. So far, it has mostly been considered in the context of
type-free dynamically-scoped languages and implemented as Lisp or Smalltalk extensions
[Borning 82, Bobrow 83, Hullot 83, Steels 83, Weinreb 81], or as part of knowledge
representation languages [Attardi 81]. Exceptions are Galileo [Albano 85] and OBJ
[Futatsugi 85] where multiple inheritance is typechecked.

The definition of what makes a language object-oriented is still controversial. An
examination of the differences between Simula, Smalltalk and other languages suggest that
inheritance is the only notion critically associated with object-oriented programming.
Coroutines, message-passing, static/dynamic scoping, typechecking and single/multiple
superclasses are all fairly independent features which may or may not be present in languages
which are commonly considered object-oriented. Hence, a theory of object-oriented
programming should first of all focus on the meaning of inheritance.

The aim of this paper is to present a clean semantics of multiple inheritance and to show
that, in the context of strongly-typed, statically-scoped languages, a sound typechecking
algorithm exists. Multiple inheritance is also interpreted in a broad sense: instead of being
limited to objects, it is extended in a natural way to union types and to higher-order
functional types. This constitutes a semantic basis for the unification of functional and object-
oriented programming.

A clean semantics has the advantage of making clear which issues are fundamental and
which are implementation accidents or optimizations. The implementation of multiple
inheritance suggested by the semantics is very naïve, but does not preclude more
sophisticated implementation techniques. It should be emphasized that advanced
implementation techniques are absolutely essential to obtain usable systems based on
inheritance [Deutsch 84].

The first part of this paper is informal, and presents the basic notations and intuitions by
means of examples. The second part is formal: it introduces a language, a semantics, a type-
inference system and a typechecking algorithm. The algorithm is proved sound with respect
to the inference system, and the inference system is proved sound with respect to the
semantics [Milner 78].

2. Objects as records
There are several ways of thinking of what objects are. In the pure Smalltalk-like view,

objects recall physical entities, like boxes or cars. Physical entities are unfortunately not very

3

useful as semantic models of objects, because they are far too complicated to describe
formally.

Two simpler interpretations of objects seem to emerge from the implementations of
object-oriented languages. The first interpretation derives from Simula, where objects are
essentially records with possibly functional components. Message passing is achieved by
simple field selection (of functional record components) and inheritance has to do with the
number and type of fields possessed by a record.

The second interpretation derives from Lisp. An object is a function which receives a
message (a string or an atom) and dispatches on the message to select the appropriate method.
Here message passing is achieved by function application, and inheritance has to do with the
way messages are dispatched.

In some sense these two interpretations are equivalent because records can be represented
as functions from labels (messages) to values. However, to say that objects are functions is
misleading, because we must qualify that objects are functions over messages. Instead, we
can safely assert that objects are records, because labels are an essential part of records.

We also want to regard objects as records for typechecking purposes. While a (character
string) message can be the result of an arbitrary computation, a record selection usually
requires the selection label to be known at compile-time. In the latter case it is possible to
statically determine the set of messages supported by an object, and a compile-time type error
can be reported on any attempt to send unsupported messages. This property is true for
Simula, but has been lost in all the succeeding languages.

We shall show how the objects-as-records paradigm can account for all the basic features
of objects, provided that the surrounding language is rich enough. The features we consider
are multiple inheritance, message-passing, private instance variables and the concept of self.
However, the duality between records and functions remains: in our language objects are
records, but the semantics interprets records as functions.

3. Records
A record is a finite association of values to labels, for example:

{a = 3, b = true, c = "abc"}

This is a record with three fields a, b and c having as values an integer 3, a boolean true and a
string "abc" respectively. The labels a, b and c belong to a separate domain of labels; they are
not identifiers or strings, and cannot be computed as the result of expressions. Records are
unordered and cannot contain the same label twice.

The basic operation on records is field selection, denoted by the usual dot notation:

{a = 3, b = true, c = "abc"} . a ≡ 3

An expression can have one or more types; we write

e : τ

4

to indicate that expression e has type τ.
Records have record types which are labeled sets of types with distinct labels, for

example we have:

 {a = 3, b = true} : {a : int, b : bool}

In general, we can write the following informal typing rule for records:

[Rule1] if e1 : τ1 and ... and en : τn then {a1 = e1 , ... , an = en} : {a1 : τ1 , ... , an :

τn}

This is the first of a series of informal rules which are only meant to capture our initial
intuitions about typing. They are not supposed to form a complete set or to be independent of
each other.

There is a subtype relation on record types which corresponds to the subclass relation of
Simula and Smalltalk. For example we may define the following types (type definitions are
prefixed by the keyword type):

type any = {}

type object = {age: int}

type vehicle = {age: int, speed: int}

type machine = {age: int, fuel: string}

type car = {age: int, speed: int, fuel: string}

Intuitively a vehicle is an object, a machine is an object and a car is a vehicle and a
machine (and therefore an object). We say that car is a subtype of machine and vehicle;
machine is a subtype of object; etc. In general a record type τ is a subtype (written ≤) of a
record type τ' if τ has all the fields of τ', and possibly more, and the common fields of τ and τ'
are in the ≤ relation. Moreover, all the basic types (like int and bool) are subtypes of
themselves:

[Rule2] • ι ≤ ι (ι a basic type)

• τ1 ≤ τ '1, ... , τn ≤ τ 'n ⇒ {a1 : τ1, ... , an+m : τn+m} ≤ {a1 : τ '1, ... , an :

τ'n}

Let us consider a particular car (value definitions are prefixed by the keyword value):

value mycar = {age = 4, speed = 140, fuel = "gasoline"}

Of course mycar: car (mycar has type car), but we might also want to assert mycar: object. To
obtain this, we say that when a value has a type τ, then it has also all the types τ' such that τ is
a subtype of τ'. This leads to our third informal type rule:

5

[Rule3] if a : τ and τ ≤ τ ' then a : τ '

If we define the function:

value age(x: object): int = x.age

we can meaningfully compute age(mycar) because, by [Rule3], mycar has the type required by
age. Indeed mycar has the types car, vehicle, machine, object, the empty record type and many
other ones.

When is it meaningful to apply a function to an argument? This is determined by the
following rules:

[Rule4] if f: σ → τ and a: σ then f(a) is meaningful, and f(a): τ
[Rule5] if f: σ → τ and a: σ', where σ' ≤ σ then f(a) is meaningful, and f(a): τ

[Rule5] is just a consequence of [Rule3] and [Rule4]. From [Rule3] and a: σ' we can deduce
that a:σ; then it is certainly meaningful to compute f(a) as f: σ→τ.

The conventional subclass relation is usually defined only on objects or classes. Our
subtype relation extends naturally to functional types. Consider the function

serial_number: int → car

We can argue that serial_number returns vehicles, as all cars are vehicles. In general, all car-
valued functions are also vehicle-valued functions, so that for any domain type t we can say
that t→car (an appropriate domain of functions from t to car) is a subtype of t→vehicle:

 t → car ≤ t → vehicle because car ≤ vehicle

Now consider the function:

speed: vehicle → int

As all cars are vehicles, we can use this function to compute the speed of a car. Hence speed

is also a function from car to int. In general every function on vehicles is also a function on
cars, and we can say that vehicle→int is a subtype of car→int:

vehicle → t ≤ car → t because car ≤ vehicle

Something interesting is happening here: note how the subtype relation is inverted on the
left hand side of the arrow. This happens because of the particular meaning we are giving to
the → operator, as explained formally in the following sections. (Semantically, we work in a
universal value domain V of all computable values. Every function f is a function from V to V,

6

written f: V − > V , where −> is the conventional continuous function space. By f: σ→τ we
indicate a function f: V −> V which whenever given an element of σ ⊆ V returns an element of τ
⊆ V; nothing is asserted about the behavior of f outside σ).

Given any function f: σ→τ from some domain σ to some codomain τ, we can always
consider it as a function from some smaller domain σ' ⊆ σ to some bigger codomain τ' ⊇ τ . For
example a function f: vehicle→vehicle can be used in the context age(f(mycar)), where it is used
as a function f : car→object (the application f(mycar) makes sense because every car is a
vehicle; v = f(mycar) is a vehicle; hence it makes sense to compute age(v) as every vehicle is an
object).

The general rule of subtyping among functional types can be expressed as follows:

[Rule6] if σ' ≤ σ and τ ≤ τ' then σ → τ ≤ σ' → τ'

As we said, the subtype relation extends to higher types. For example, the following is a
definition of a function mycar_attribute which takes any integer-valued function on cars and
applies it to my car.

value mycar_attribute(f: car → int): int = f(mycar)

We can then apply it to functions of any type which is a subtype of car→int, e.g.,
age:object→int. (Why? Because car is a subtype of object, hence object→int is a subtype of
car→int by [Rule6], hence (mycar_attribute: (car→int)→int)(age: object→int) makes sense by
[Rule5]).

mycar_attribute(age) ≡ 4

mycar_attribute(speed) ≡ 140

Up to now we proceeded by assigning certain types to certain values. However the
subtype relation has a very strong intuitive flavor of inclusion of types considered as sets of
objects, and we want to justify our type assignments on semantic grounds.

Semantically we could regard the type vehicle as the set of all the records with a field age

and a field speed having the appropriate types, but then cars would not belong to the set of
vehicles as they have three fields while vehicles have two. To obtain the inclusion that we
intuitively expect, we must say that the type vehicle is the set of all records which have at
least two fields as above, but may have other fields. In this sense a car is a vehicle, and the
set of all cars is included in the set of all vehicles, as we might expect. Some care is however
needed to define these "sets", and this will be done formally in the following sections.

We conclude this section with a pragmatic consideration about record notation. Record
types can have a large number of fields, hence we need some way of quickly defining a
subtype of some record type, without having to list again all the fields of the record type. The
following three sets of definitions are equivalent:

type object = {age: int}

7

type vehicle = {age: int, speed: int}

type machine = {age: int, fuel: string}

type car = {age: int, speed: int, fuel: string}

type object = {age: int}

type vehicle = object and {speed: int}

type machine = object and {fuel: string}

type car = vehicle and machine

type object = {age: int}

type car = object and {speed: int, fuel: string}

type vehicle = car ignoring fuel

type machine = car ignoring speed

The and operator forms the union of the fields of two record types; if two record types
have some labels in common (like in vehicle and machine), then the corresponding types must
match. At this point we do not specify exactly what match means, except that in the example
above matching is equivalent to being the same. In its full generality, and corresponds to a
meet operation on type expressions, as explained in a later section.

The ignoring operator simply eliminates a component from a record type. Both and and
ignoring are undefined on types other than record types.

4. Variants
The two basic non-functional data type constructions in denotational semantics are

cartesian products and disjoint sums. We have seen that inheritance can be expressed as a
subtype relation on record types, which then extends to higher types. Record types are just
labeled cartesian products, and by analogy we can ask whether there is some similar notion
deriving from labeled disjoint sums.

A labeled disjoint sum is called here a variant. A variant type looks very much like a
record type: it is an unordered set of label-type pairs, enclosed in brackets:

 type int_or_bool = [a: int, b: bool]

An element of a variant type is a labeled value, where the label is one of the labels in the
variant type, and the value has a type matching the type associated with that label. An
element of int_or_bool is either an integer value labeled a or a boolean value labeled b.

value an_int = [a = 3] : int_or_bool

value a_bool = [b = true] : int_or_bool

The basic operations on variants are is, which tests whether a variant object has a
particular label, and as, which extracts the contents of a variant object having a particular
label:

8

an_int is a ≡ true

an_int is b ≡ false

an_int as a ≡ 3

an_int as b does not have a value

A variant type σ is a subtype of a variant type τ (written σ≤τ) if τ has all the labels of σ and
correspondingly matching types. Hence int_or_bool is a subtype of [a: int, b: bool, c: string].

When the type associated to a label is unit (the trivial type, whose only defined element is
the constant unity), we can omit the type altogether; a variant type where all fields have unit

type is also called an enumeration type. The following examples deal with enumeration
types.

type precious_metal = [gold, silver] (i.e. [gold: unit, silver: unit])
type metal = [gold, silver, steel]

A value of an enumeration type, e.g. [gold = unity], can similarly be abbreviated by
omitting the "= unity" part, e.g. [gold].

A function returning a precious metal is also a function returning a metal, hence:

 t → precious_metal ≤ t → metal because precious_metal ≤ metal

A function working on metals will also work on precious metals, hence:

 metal → t ≤ precious_metal → t because precious_metal ≤ metal

It is evident that [Rule6] holds unchanged for variant types. This justifies the use of the
symbol ≤ for both record and variant subtyping. Semantically the subtype relation on variants
is mapped to set inclusion, just as in the case of records: metal is a set with three defined
elements [gold], [silver] and [steel], and precious_metal is a set with two defined elements [gold]

and [silver].
There are two ways of deriving variant types from previously defined variant types. We

could have defined metal and precious_metal as:

type precious_metal = [gold, silver]

type metal = precious_metal or [steel]

or as:

type metal = [gold, silver, steel]

type precious_metal = metal dropping steel

9

The or operator makes a union of the cases of two variant types, and the dropping operator
removes a case from a variant type. The precise definition of these operators is contained in a
later section.

5. Inheritance idioms
In the framework described so far, we can recognize some of the features of what is called

multiple inheritance between objects, e.g. a car has (inherits) all the attributes of vehicle and
of machine. Some aspects are however unusual; for example the inheritance relation only
depends on the structure of objects and need not be declared explicitly.

This section compares our approach with other approaches to inheritance, and shows how
to simulate a number of common inheritance techniques. However we are not trying to
explain existing inheritance schemes (e.g. Smalltalk) in detail, but rather trying to present a
new perspective on the issues.

Some differences between this and other inheritance schemes result in net gains. For
example, we are not aware of languages where typechecking coexists with multiple
inheritance and higher order functions, with the exception of Galileo [Albano 85] and Amber
[Cardelli 86] which were developed in conjunction with this work. Typechecking provides
compile-time protection against obvious bugs (like applying the speed function to a machine
which is not a vehicle), and other less obvious mistakes. Complex type hierarchies can be
built where "everything is also something else", and it can be difficult to remember which
objects support which messages.

The subtype relation only holds on types, and there is no similar relation on objects. Thus
we cannot model directly the subobject relation used by, for example, Omega [Attardi 81],
where we could define the class of gasoline cars as the cars with fuel equal to "gasoline".

However, in simple cases we can achieve the same effect by turning certain sets of values
into variant types. For example, instead of having the fuel field of a machine be a string, we
could redefine:

type fueltype = [coal, gasoline, electricity]

type machine = {age: int, fuel: fueltype}

type car = {age: int, speed: int, fuel: fueltype}

Now we can have:

type gasoline_car = {age: int, speed: int, fuel: [gasoline]}

type combustion_car = {age: int, speed: int, fuel: [gasoline, coal]}

and we obtain gasoline_car ≤ combustion_car ≤ car. Hence a function over combustion cars, for
example, will accept a gasoline car as a parameter, but will give a compile-time type error
when applied to electrical cars.

It is often the case that a function contained in a record field has to refer to other
components of the same record. In Smalltalk this is done by referring to the whole record (i.e.

10

object) as self, and then selecting the desired components out of that. In Simula there is a
similar concept called this.

This self-referential capability can be obtained as a special case of the rec operator which
we are about to introduce. The rec operator is used to define recursive functions and data. For
example, the recursive factorial function can be written as:

rec fact: int → int. λn: int. if n=0 then 1 else n*fact(n-1)

(This is an expression, not a declaration.)
The body of rec is restricted to be a constructor; this is a vague term indicating that, in an

implementation, computation can be temporarily suspended thereby avoiding some looping
situations [Morris 80]. In the language we are considering, a constructor is either a constant, a
record, a variant, a function or a rec expression obeying this restriction.

Examples of circular data definitions are extremely common in object-oriented
programming. In the following example, a functional component of a record refers to its other
components. The functional component d, below, computes the distance of this active_point

from any other point.

type point =

{x: real, y: real}

type active_point =

point and {d: point → real}

value make_active_point(px: real, py: real): active_point =

rec self: active_point.

{x = px, y = py,

 d = λp: point. sqrt((p.x - self.x)**2 + (p.y - self.y)**2)}

Objects often have private variables, which are useful to maintain and update the local
state of an object while preventing arbitrary external interference. Here is a counter object
which starts from some fixed number and can only be incremented one step at a time. cell n is
an updatable cell whose initial contents is n; a cell can be updated by := and its contents can
be extracted by get (side-effects will not be treated in the formal semantics). Here, λ().e is an
abbreviation for λx:unit.e, where x does not occur in e, and let x = a in b introduces a new
variable x (initialized to a) local to the scope of b, whose value is returned.

type counter =

{increment: unit → unit, fetch: unit → int}

value make_counter(n: int): counter =

let count = cell n

in {increment = λ(). count := (get count)+1,

 fetch = λ(). get count}

11

Private variables are obtained in full generality by the above well known static scoping
technique.

In the presence of side-effects, it can be useful to cascade operations on objects. For
example we might want to define a different kind of counter, which could be used in the
following way (where f() is an abbreviation for f(unity)):

make_counter(0).increment().increment().fetch() ≡ 2

In this case, a local record operation must be able to return its record. This requires both
recursive objects and recursive types:

 type counter =

rec counter. {increment: unit → counter, fetch: unit → int}

value make_counter(n: int): counter =

let count = cell n

in rec self: counter.

{increment = λ(). count := (get count)+1; self,

 fetch = λ(). get count}

where ";" is sequencing of operations. (Recursive types will not be treated in the formal
semantics; we believe they can be dealt with, but the complications would distract us from
the major topic of this paper.)

In Smalltalk terminology, a subclass automatically inherits the methods of all its
superclasses. A subclass can also redefine inherited methods. In any case all the objects
created as members of a particular class or subclass will share the same methods. Here is an
example where a class called Class_A is defined to have methods f and g; a make_A function
creates objects of class Class_A by forming records with f and g components.

type Class_A = {f: X → X', g: Y → Y'}

value fOfA(a: X): X' = ...

value gOfA(a: Y): Y' = ...

value make_A(): Class_A = {f = fOfA, g = gOfA}

Now we define a subclass of Class_A, called A_Subclass_B, which has an extra h method.
The make_B function assembles objects of the subclass from the f component of the
superclass, explicitly inheriting it, a newly defined g component, modifying an inherited
method, and a new h component, local to the subclass.

type A_Subclass_B = Class_A and {h: Z → Z'}

value gOfB(a: Y): Y' = ...

value hOfB(a: Z): Z' = ...

value make_B(): A_Subclass_B = {f = fOfA, g = gOfB, h = hOfB}

12

Contrarily to Simula and Smalltalk, nothing prevents us from having totally different
methods in different objects of the same class, as long as those methods have the prescribed
type.

Both Simula and Smalltalk allow objects to access methods of their superclasses. This
cannot be simulated in any general and direct way in our framework, partially because of the
presence of multiple superclasses.

6. Typechecking anomalies
The style of inheritance typechecking we have presented has a few unexpected aspects.

These have to do with the lack of parametric polymorphism and with side-effects.
Consider the following identity function on records having an integer component a:

type A = {a: int}

value id(x: A): A = x

It is possible to apply id to a subtype B of A, but type information is lost in the process, as the
result will have type A, not B. For example, the following expression will not typecheck:

(id({a = 3, b = true})).b

While this does not have serious consequences in practice, one is forced to adopt a less
polymorphic style than one would like: in the previous example it is necessary to write many
identity functions for different types.

The following example shows that inheritance polymorphism can sometime achieve the
effect of parametric polymorphism, but not quite:

type anyList = rec list. [nil: unit, cons: {rest: list}]

type intList = rec list. [nil: unit, cons: {first: int, rest: list}]

type intPairList = rec list. [nil: unit, cons: {first: int, second: int, rest: list}]

value rest(l: anyList): anyList = (l as cons).rest

value intFirst(l: intList): int = (l as cons).first

value intSecond(l: intPairList): int = (l as cons).second

value rec length(l: anyList): int =

if l is nil then 0 else (1 + length(rest l))

Here intPairList is a subtype of intList, which is a subtype of anyList. The rest operator can work
on any of these lists, and it can be used to define a polymorphic length function. But it is not
possible to define a polymorphic first operator. The intFirst function above works on intList and
intPairList, and intSecond works only on intPairList. A solution to this problem is proposed in
[Cardelli 85], where multiple inheritance and parametric polymorphism are merged.

13

Inheritance typechecking has to be restricted to preserve soundness in presence of side-
effects. Parametric polymorphism also has to be restricted in order to deal with side-effects,
but the problem seems to be rather different in nature. Consider the following example (due
to Antonio Albano), where we assume that it is possible to update record fields by a :=

operator (this is a different update mechanism than the one used in the previous section):

value f(r: {a: {}}): unit =

 r.a := {}

value r =

 {a = {b = 3}}

f(r)

r.a.b

The last expression will cause a run-time error, as the a component of r has been changed to {}
by f. To prevent this, it is sufficient to distinguish syntactically between updatable and non-
updatable record fields, and to require type equivalence (instead of type inclusion) while
checking inclusion of updatable fields. Again, this discussion is informal; side-effects will not
be dealt with in the rest of the paper.

7. Expressions
We now begin the formal treatment of multiple inheritance. First, we define a simple

applicative language supporting inheritance. Then a denotational semantics is presented, in a
domain of values V. Certain subsets of V are regarded as types, and inheritance corresponds
directly to set inclusion among types. A type inference system and a typechecking algorithm
are then presented. The soundness of the algorithm is proved by showing that the algorithm is
consistent with the inference system, and that the inference system is in turn consistent with
the semantics.

Our language is a variant of the typed lambda calculus with type inclusion, recursion and
a data domain including records and variants. The following notation is often used for records
(and similarly for record and variant types):

{a1 = e1, ... , an = en} ≡ {ai = ei} i ∈ 1..n

{a1 = e1, ... , an = en , a'1 = e'1, ... , a'm = e'm} ≡ {ai = ei , a'j = e'j} i ∈ 1..n, j ∈ 1..m

Here is the syntax of expressions and type expressions:

e ::= expressions
x | identifiers
b | constants
if e then e else e | conditionals
{ai = ei} | e.a | (i ∈ 1..n, n ≥ 0) records
[a = e] | e is a | e as a | variants
λx: τ . e | e e | functions

14

rec x: τ . e | recursive data
e: τ | type specs
(e)

τ ::= type expressions
ι | type constants
{ai : τ i} | (i ∈ 1..n, n ≥ 0) record types
[ai : τ i] | (i ∈ 1..n, n ≥ 0) variant types
τ → τ | function types
(τ)

where i ≠ j ⇒ ai ≠ aj

take ι0 = unit, ι1 = bool, ι2 = int, etc.

Syntactic restriction: the body e of rec x: τ . e can only be a constant, a record, a variant, a
lambda expression, or another rec expression obeying this restriction.

Labels a and identifiers x have the same syntax, but are distinguishable by the syntactic
context. Among the type constants we have unit (the domain with one defined element), bool

and int. Among the constants we have unity (of type unit), booleans (true, false) and numbers
(0, 1, ...).

Instead of the two operations is and as on variants, one could use a single case construct.
The former are more direct and illustrate the semantic handling of exceptions, while the latter
is more elegant (one construct instead of two) and avoids dealing with exceptions.

Standard abbreviations are (the last two can only appear after a let):

let x: τ = e in e' for (λx: τ . e') e

f(x: τ): τ' = e for f: τ → τ ' = λx: τ . (e: τ')

rec f(x: τ): τ' = e for f: τ → τ ' = rec f: τ → τ '. λx: τ . e

Record and variant type expressions are unordered, so for any permutation π(n) of 1..n, we
identify:

{ai : τ i} ≡ {aπ(n)(i) : τπ(n)(i)} i ∈ 1..n

[ai : τ i] ≡ [aπ(n)(i) : τπ(n)(i)] i ∈ 1..n

8. The semantic domain
The semantics of expressions is given in the recursively defined domain V of values. The

domain operators used below are disjoint sum (+), cartesian product (×), and continuous
function space (->).

V = B0 + B1 + ... + R + U + F + W

R = L −> V

U = L × V

15

F = V −> V

W = {w}

where L is a flat domain of character strings, called labels, and Bi are flat domains of basic
values. We take:

B0 ≡ O ≡ {⊥ O , unity}

B1 ≡ T ≡ {⊥ T , true, false}

B2 ≡ N ≡ {⊥ N , 0, 1, ... }

bij is the j-th element of the basic domain Bi

W is a domain which contains a single element w, the wrong value. The value w is used to
model run-time type errors (e.g. trying to apply an integer as if it were a function) which we
want a compiler to trap before execution. It is not used to model run-time exceptions (like
trying to extract the head of an empty list); in our context these can only be generated by the
as operator. The name wrong is used to denote w as a member of V (instead of simply a
member of W). Run-time exceptions should be modeled by an extra summand of V, but for
simplicity we shall instead use the undefined element of V, ⊥ V (often abbreviated as ⊥).

R = L −> V
is the domain of records, which are associations of values to labels.

U = L × V
is the domain of variants which are pairs <l,v> with a label l and a value v.

F = V −> V
is the domain of the continuous functions from V to V, used to give semantics to lambda

expressions.

9. Semantics of expressions
The semantic function is EE ∈ Exp −> Env −> V , where Exp are syntactic expressions

according to our grammar, and Env = Id −> V are environments for identifiers. The semantics
of basic values is given by BB ∈ Exp −> V, whose obvious definition is omitted.

 Using the conventions below, we define:

EE[x]η = η[x]

EE[bij]η = BB[bij]

EE[if e then e' else e"]η =

if EE[e] η ε T then (if (EE[e]η | T) then EE[e'] η else EE [e"]η) else wrong

EE[{a1 = e1, ... , an = en}]η =

(λb. if b=a1 then EE[e1]η else ... if b=an then EE[en]η else wrong) in V

EE[e.a]η = if EE[e]η ε R then (EE[e]η | R)(a) else wrong

EE[[a = e]]η = <a, EE[e] η> in V

EE[e is a]η = if EE[e]η ε U then (fst(EE[e] η | U) = a) in V else wrong

EE[e as a]η =

16

if EE[e] η ε U then (let <b,v> be (EE[e] η | U) in if b = a then v else ⊥) else wrong

EE[λx: τ . e]η = (λv. EE[e]η{v/x}) in V

EE[e e']η =

if EE[e] η ε F then (if EE[e']η ε W then wrong else (EE[e] η | F)(EE[e']η)) else wrong

EE[rec x: τ . e]η = Y(λv. EE[e]η{v/x})

EE[e: τ]η = EE[e]η

Comments on the equations:
• d in V (where d ∈ D and D is a summand of V) is the injection of d in the appropriate
summand of V . Hence d in V ∈ V. This is not to be confused with the let ... be ... in ... notation
for local variables.
• v ε D (where v ∈ V and D is a summand of V) is a function yielding: ⊥ T if v = ⊥ V; true if v
= d in V for some d ∈ D ; false otherwise.
• v | D (where D is a summand of V) is a function yielding: d if v = d in V for some d ∈ D; ⊥ D

otherwise.
• if ... then ... else ... is syntax for a function cond: T −> V −> V −> V mapping ⊥ T to ⊥ V.
• equality in L yields ⊥ T whenever either argument is ⊥ L.
• fst extracts the first element of a pair, snd extracts the second one.
• Y is the fixpoint operator of type (V −> V) −> V.
• EE defines a call by value semantics, but it allows circular structures to be built.

Intuitively, a well-typed program will never return the wrong value at run-time. For
example, consider the occurrence of wrong in the semantics of records. The typechecker will
make sure that any record selection will operate on records having the appropriate field,
hence that instance of wrong will never be returned. A similar reasoning applies to all the
instances of wrong in the semantics: wrong is a run-time type error which can be detected at
compile-time. Run-time exceptions which cannot be detected are represented as ⊥ ; the only
instance of this in the above semantics is in the equation for e as a.

Having defined EE so that it satisfies the above intuitions about run-time errors, we
procede in the following sections by interpreting "e is semantically well-typed" to mean "EE[e
]η ≠ wrong", and finally we give an algorithm which statically checks well-typing.

10. Semantics of type expressions
The semantics of types is given in the weak ideal model [MacQueen 86] ℑ (V) (the set of

non-empty left-closed subset of V which are closed under least upper bounds of increasing
sequences and do not contain wrong). ℑ (V) is a lattice of domains, where the ordering is set
inclusion. ℑ (V) is closed under intersections and finite unions, as well as the usual domain
operations.

Here DD ∈ TypeExp −> ℑ (V):

DD [ι i] = Bi in V

DD [{ai : τ i}] = ∩ i {r ∈ R | r(ai) ∈ DD [τi]} in V (where DD [{}] = R in V)
DD [[ai : τ i]] = ({<⊥ L , v> | v ∈ V } ∪ ∪ i {<ai , v> ∈ U | v ∈ DD [τi]}) in V

DD [σ → τ] = {f ∈ F | v ∈ DD [σ] ⇒ f(v) ∈ DD [τ]} in V

17

where D in V = {d in V | d ∈ D} ∪ {⊥ V}

Theorem (DD properties)
∀ τ. DD [τ] is an ideal (hence ⊥ ∈ DD [τ])
∀ τ ,v. v ∈ DD [τ] ⇒ v ≠ wrong

The wrong value is deliberately left out of the type domains so that if a value has a type,
then that value is not a run-time type error. Another way of saying this is that wrong has no
type.

11. Type inclusion
A subtyping relation can be defined syntactically on the structure of type expressions.

This definition formalizes our initial discussion of subtyping for records, variants and
functions.

 ι i ≤ ι i
{ai : σi , aj : σj} ≤ {ai: σ'i} iff σi ≤ σ'i (i ∈ 1..n, n ≥ 0; j ∈ 1..m, m ≥ 0)

[ai : σi] ≤ [ai : σ'i , aj : σ'j] iff σi ≤ σ'i (i ∈ 1..n, n ≥ 0; j ∈ 1..m, m ≥ 0)

σ → τ ≤ σ' → τ' iff σ' ≤ σ and τ ≤ τ '

no other type expressions are in the ≤ relation

 Proposition
 ≤ is a partial order.

It is possible to extend type expressions by two constants anything and nothing, such that
nothing ≤ τ ≤ anything for any τ . Then, ≤ defines a lattice structure on type expressions, which
is a sublattice of ℑ (V). Although this is mathematically appealing, we have chosen not to do
so in view of our intended application. For example, the expression if x then 3 else true, should
produce a type error because of a conflict between int and bool in the two branches of the
conditional. If we have the full lattice of type expression, it is conceivable to return anything

as the type of the expression above, and carry on typechecking. This is bad for two reasons.
First, no use can be made of objects of type anything (at least in the present framework).
Second, type errors are difficult to localize as their presence is only made manifest by the
eventual occurrence of anything or nothing in the resulting type.

As we said, the ordering of domains in the ℑ (V) model is set inclusion. This allows us to
give a very direct semantics to subtyping, as simple set inclusion of domains.

 Theorem (Semantic Subtyping)
τ ≤ τ' ⇔ DD [τ] ⊆ DD [τ'] .

The proof is by induction on the structure of τ and τ'. We shall only need the ⇒ direction in
the sequel.

18

12. Type inference rules
In this section we formally define the notion of a syntactically well-typed expression. An

expression is well-typed when a type can be deduced for it, according to a set of type rules
forming an inference system. If no type can be deduced, then the expression is said to contain
type errors.

In general, many types can be deduced for the same expression. Provided that the
inference system is consistent, all those types are in some sense compatible. A typechecking
algorithm can then choose any of the admissible types as the type of an expression, with
respect to that algorithm (in some type systems there may be a best, or most general, or
principal type). Inference systems may be shown to be consistent with respect to the
semantics of the language, as we shall see at the end of this section.

Here is the inference system for our language. It is designed so that (1) it contains exactly
one type rule for each syntactic construct; (2) it satisfies the intuitive subtyping property
expressed by the syntactic subtyping theorem below; and (3) it satisfies a semantic soundness
theorem, relating it to the semantics of the language.

The use of the subtyping predicate ≤ is critical in many type rules. However it should be
noted that subtyping does not affect the fundamental λ-calculus typing rules, [ABS] and
[COMB]. This indicates that our style of subtyping merges naturally with functional types.

[VAR] A.x: τ ∫ x: τ' where τ ≤ τ'

[BAS] A ∫ bij : ι i

 [COND] A ∫ e: bool A ∫ e': τ A ∫ e": τ
—————————————

A ∫ (if e then e' else e"): τ

[RECORD] A ∫ e1 : τ1 ... A ∫ en : τn where i ∈ I ⊆ 1..n
—————————————

A ∫ {a1 = e1, ... , an = en} : {ai : τ i}

[DOT] A ∫ e: { ... a: τ ... }
———————

A ∫ e.a : τ

[VARIANT] A ∫ e: τ
—————————

A ∫ [a = e] : [... a: τ ...]

[IS] A ∫ e: [...]
———————

A ∫ (e is a) : bool

[AS] A ∫ e: [... a: τ ...]
———————

A ∫ (e as a) : τ

19

[ABS] A.x: σ ∫ e: τ
————————

A ∫ (λx: σ. e) : σ → τ

[COMB] A ∫ e: σ → τ A ∫ e': σ
—————————

A ∫ (e e') : τ

[REC] A.x: σ ∫ e: ρ where ρ ≤ σ and ρ ≤ τ
———————

A ∫ (rec x: σ . e): τ

[SPEC] A ∫ e: σ where σ ≤ τ
—————

A ∫ (e: σ) : τ

Some comments on the rules:
• A (called a set of assumptions) is a finite mapping of variables to types; A(x) is the type
associated with x in A; A.x:τ is the set of assumptions A extended with the association x:τ, i.e. it
maps x to τ and any other y to A(y).
• If there are some non-trivial inclusions in the basic types (e.g. int ≤ real) then [BAS] must
be changed to A ∫ bij : τ where ι i ≤ τ.
• In [RECORD], the derived record type can have fewer fields than the corresponding
record object.
• In [VARIANT], the derived variant type can have any number of fields, as long as it
includes a field corresponding to the variant object.
• The [IS] rule assumes that the set of basic types does not contain a supertype of bool,
otherwise a more refined rule is needed. Similarly, [COND] assumes that there are no
subtypes of bool.

The basic syntactic property of this inference system is expressed in the syntactic
subtyping theorem below: if an expression has a type τ , and τ is a subtype of τ ', then the
expression has also type τ '. The lemma is required to prove the [ABS] case of the theorem.
Both the lemma and the theorem are proved by induction on the structure of the derivations.

 Lemma (Syntactic Subtyping)
A.x: σ ∫ e: τ and σ' ≤ σ ⇒ A.x: σ' ∫ e: τ .

 Theorem (Syntactic Subtyping)
 A ∫ e: τ and τ ≤ τ' ⇒ A ∫ e: τ'.

The next theorem states the soundness of the type system with respect to the semantics: if
it is possible to deduce that e has type τ , then the value denoted by e belongs to the domain
denoted by τ. A set of assumptions A agrees with an environment η if for all x in the domain
of A, A(x) = τ implies η[x] ∈ DD [τ].

Theorem (Semantic Soundness)
if A ∫ e: τ and A agrees with η then EE[e]η ∈ DD[τ] .

20

The proof is by induction on the structure of the derivation of A ∫ e: τ, using the semantic
subtyping and DD-properties theorems.

In words, if e is syntactically well-typed (i.e. for some τ , A ∫ e: τ), then it is also
semantically well-typed (i.e. for some η such that A agrees with η , EE [e]η ∈ DD [τ], which
implies that EE[e]η ≠ wrong).

13. Join and meet types
In the examples at the beginning of the paper we used the and and or type operators, and

we are now going to need them in the definition of the typechecking algorithm. However
those operators are not part of the syntax of type expressions, nor are ignoring and dropping.

This is because the above operators only work on restricted kinds of type expressions.
Applied to arbitrary type expressions they either are undefined, or can be eliminated by a
normalization process. If we have a type expression containing the above operators we can
process the expression checking that the operators can indeed be used in that context, and in
such case we can normalize them away obtaining a normal type expression.

The and operator is interpreted as a (partial) meet operation on types (written ↓), and or is
interpreted as (partial) join (written ↑). Joins and meets are taken in the partial order
determined by ≤, when they exist.

The definition of the operators also immediately defines the normalization process which
eliminates them:

ι i ↑ ι i = ι i
{ai : τ i , bj : σj} ↑ {ai : τ 'i, ck : ρ k} = {ai : τ i ↑ τ'i}

if all τi ↑ τ'i are defined (∀ j,k. bj ≠ ck)

[ai : τ i , bj : σj] ↑ [ai : τ 'i, ck : ρk] = [ai : τ i ↑ τ'i , bj : σj , ck : ρk]

if all τi ↑ τ'i are defined (∀ j,k. bj ≠ ck)

(σ → τ) ↑ (σ' → τ') = (σ ↓ σ') → (τ ↑ τ')

τ ↑ τ' undefined otherwise

 ι i ↓ ι i = ι i
{ai : τ i , bj : σj} ↓ {ai : τ 'i, ck : ρk} = {ai : τ i ↓ τ'i , bj : σj , ck : ρk}

if all τi ↓ τ'i are defined (∀ j,k. bj ≠ ck)

[ai : τ i , bj : σj] ↓ [ai : τ 'i, ck : ρk] = [ai : τ i ↓ τ'i]

if all τi ↓ τ'i are defined (∀ j,k. bj ≠ ck)

(σ → τ) ↓ (σ' → τ') = (σ ↑ σ') → (τ ↓ τ')

τ ↓ τ' undefined otherwise

{ai : τ i} ignoring a = {aj : τ j} (i ∈ 1..n, j ∈ 1..n - {k | ak = a})

τ ignoring a undefined otherwise

[ai : τ i] dropping a = [aj : τ j] (i ∈ 1..n, j ∈ 1..n - {k | ak = a})

τ dropping a undefined otherwise

21

Note that ↑ may be undefined even if there is a least upper bound with respect to ≤ for its
operands; similarly for ↓ .

Proposition (↑ and ↓ properties)
If σ ↑ τ is defined, then it is the smallest ρ (w.r.t. ≤) such that σ ≤ ρ and τ ≤ ρ.

If σ ↓ τ is defined, then it is the largest ρ (w.r.t. ≤) such that ρ ≤ σ and ρ ≤ τ.

Let S be the set of ideals denoted by ordinary type expressions (without ↓ (and) and ↑ (or)
operators) where r/a = (λb. if b = a then ⊥ else r(b)).

Proposition
DD [σ and τ] = the largest ideal in S contained in DD[σ] ∩ DD [τ] when defined
DD [τ ignoring a] = {r ∈ R | ((r / a) in V) ∈ DD[τ]} in V when defined
DD [σ or τ] = the smallest ideal in S containing DD [σ] ∪ DD[τ] when defined
DD [τ dropping a] = DD [τ] − ({<a, v> ∈ U} in V) when defined.

14. Typechecking
The (partial) typechecking function is TT ∈ Exp − > TypeEnv −> TypeExp, where Exp and

TypeExp are respectively expressions and type expressions according to our grammar, and
TypeEnv = Id −> TypeExp are type environments for identifiers.

The following description is to be intended as a scheme for a program that returns a type
expression denoting the type of a term, or fails in case of type errors. The fail word is a global
jump-out: when a type error is detected the program stops. Similarly, typechecking fails when
the ↑ and ↓ operations are undefined. When we assert that TT [e]µ = τ, we imply that the
typechecking of e does not fail.

TT [x]µ = µ [x]

TT [bij]µ = ι i
TT [if e then e' else e"]µ = if TT [e]µ = bool then TT[e']µ ↑ TT[e"]µ else fail

TT [{a1 = e1, ... , an = en}]µ = {a1 : TT [e1]µ , ... , an : TT [en]µ}

TT [e.a]µ = if TT [e]µ = { ... a: τ ... } then τ else fail

TT [[a = e]]µ = [a: TT[e]µ]

TT [e is a]µ = if TT [e]µ = [... a: τ ...] then bool else fail

TT [e as a]µ = if TT[e]µ = [... a: τ ...] then τ else fail

TT [λx: τ . e]µ = τ → TT[e]µ{τ / x}

TT [e e']µ = if TT [e]µ = (τ → τ') and TT[e']µ ≤ τ then τ' else fail

TT [rec x: σ . e]µ = if TT[e]µ{σ / x} = τ and τ ≤ σ then τ else fail

TT [e: σ]µ = if TT[e]µ = τ and τ ≤ σ then σ else fail

This typechecking algorithm is correct with respect to the type inference system: if the
algorithm succeeds and returns a type τ for an expression e, then it is possible to prove that e

22

has type τ. A type environment µ agrees with a set of assumptions A if for every x in the
domain of A, µ[x] = A(x).

Theorem (Syntactic Soundness)
if TT[e]µ = τ then µ agrees with some A such that A ∫ e: τ .

The proof of the theorem is by induction on the structure of e, using the properties of ↑ , ↓ and
≤.

Combining the syntactic soundness, semantic soundness and DD-properties theorems we
immediately obtain:

Corollary (Typechecking prevents type errors):
if TT [e]µ = τ then EE [e]η ≠ wrong (when η[x] ∈ DD [µ [x]] for all x).

i.e. if e can be successfully typechecked, then e cannot produce run-time type errors.
The typechecking algorithm is intentionally more restrictive than the type inference

system; it is possible to deduce A.x:bool ∫ if x then {a=true} else {a=3} : {}, but in practice we
want this to be a type error for the same reasons that made us rule out the anything type. This
restriction is enforced by the definitions of ↑ and ↓ . Similarly, one can infer any type for
[a=3] as b, while the typechecker fails; this is justified since [a=3] as b will always fail at run-
time.

For these reasons, we do not have a (perhaps desirable) syntactic completeness theorem
of the form: if A ∫ e: τ and µ agrees with A, then TT [e]µ is defined and TT [e]µ ≤ τ. One could
strive for syntactic completeness by using the (partial) ∨ and ∧ (w.r.t. ≤) instead of ↑ and ↓ in
the typechecking algorithm (then the modified algorithm computes TT[if x then {a=true} else

{a=3}]µ = {}), and by replacing the is and as primitives by a case construct.

15. Conclusions
This work originated as an attempt to justify the multiple inheritance constructs present in

the Galileo data base language [Albano 85] and to provide a sound typechecking algorithm
for that language. The Amber language [Cardelli 86] was then devised to experiment, among
other things, with inheritance typechecking. I believe this paper adequately solves the basic
problems, although some practical and theoretical issues may require more work.

Parametric polymorphism has not been treated in this paper. The intention was to study
multiple inheritance problems in the cleanest possible framework, without interaction with
other features. Side-effects and circular types should also be integrated in a full formal
treatment.

Some confusion may arise from the fact that languages like Smalltalk are often referred to
as polymorphic languages. This is correct, if by polymorphism we mean that an object or a
function can have many types. However it now appears that there are two subtly different
kinds of polymorphism: inheritance polymorphism, based on type inclusion, and parametric
polymorphism, based on type variables and type quantifiers.

23

These two kinds of polymorphism are not incompatible. We have seen here that
inheritance can be explained in the semantic domains normally used for parametric
polymorphism. Moreover the technical explanation of polymorphism is the same in both
cases: domain intersection. Merging these two kinds of polymorphism does not seem to
introduce new semantic problems. The interactions of inheritance and parametric
polymorphism in typechecking are addressed in [Cardelli 85].

There are now several competing (although not totally independent) styles of parametric
polymorphism, noticeably in [Milner 78], [Reynolds 74, McCracken 84] and [MacQueen 86].
Inheritance is orthogonal to all of these, so it seems better to study it independently, at least
initially. However, the final goal is to achieve full integration of parametric polymorphism
and multiple inheritance, merging functional programming with object-oriented programming
at the semantic and typing levels; this problem is currently receiving much attention.

16. Related work and acknowledgements
I would like to mention here [Reynolds 80, Oles 84] which expose similar semantic ideas

in a different formal framework, [Ait-Kaci 83] again exposing very similar ideas in a Prolog-
related framework, [Mitchell 84] this time presenting different, but related, ideas in the same
formal framework, and [Futatsugi 85] whose OBJ system implements a first-order multiple
inheritance typechecker, and whose subsorts have much to do with subtypes.

Finally, I would like to thank David MacQueen for many discussions, John Reynolds and
the referees for detailed suggestions and corrections, and Antonio Albano and Renzo Orsini
for motivating me to carry out this work.

References

[Ait-Kaci 83] H.Ait-Kaci: Outline of a calculus of type subsumptions, Technical report MS-CIS-83-34, Dept

of Computer and Information Science, The Moore School of Electrical Engineering, University of

Pennsylvania, August 1983.

[Albano 85] A.Albano, L.Cardelli, R.Orsini: Galileo: a strongly typed, interactive conceptual language,

IEEE Transactions on Database Systems, June 1985.

[Attardi 81] G.Attardi, M.Simi: Semantics of inheritance and attributions in the description system Omega,

M.I.T. A.I. Memo 642, August 1981.

[Bobrow 83] D.G.Bobrow, M.J.Stefik: The Loops manual, Memo KB-VLSI-81-13, Xerox PARC.

[Cardelli 85] L.Cardelli, P.Wegner: On understanding types, data abstraction and polymorphism,

Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985.

[Cardelli 86] L.Cardelli: Amber, Combinators and Functional Programming Languages, Proc. of the 13th

Summer School of the LITP, Le Val D'Ajol, Vosges (France), May 1985. Lecture Notes in Computer

Science n. 242, Springer-Verlag, 1986.

[Dahl 66] O.Dahl, K.Nygaard: Simula, an Algol-based simulation language, Comm. ACM, Vol 9, pp. 671-

678, 1966.

[Deutsch 84] P.Deutsch: An efficient implementation of Smalltalk-80, Proc. POPL '84.

[Futatsugi 85] K.Futatsugi, J.A.Goguen, J.P.Jouannaud, J.Meseguer: Principles of OBJ2, Proc. POPL '85.

[Goldberg 83] A.Goldberg, D.Robson: Smalltalk-80. The language and its implementation, Addison-Wesley,

1983.

24

[Hullot 83] J-M.Hullot: Ceyx: a Multiformalism programming environment, IFIP 83, R.E.A.Mason (ed),

North Holland, Paris 1983.

[McCracken 84] N.McCracken: The typechecking of programs with implicit type structure, in Semantics of

Data Types, Lecture Notes in Computer Science n.173, Springer-Verlag 1984.

[MacQueen 86] D.B.MacQueen, G.D.Plotkin, R.Sethi: An ideal model for recursive polymorphic types,

Information and Control 71, pp. 95-130, 1986.

[Milner 78] R.Milner: A theory of type polymorphism in programming, Journal of Computer and System

Science 17, pp. 348-375, 1978.

[Oles 84] F.J.Oles: Type algebras, functor categories, and block structure, in Algebraic semantics, M.Nivat

and J.C.Reynolds ed., Cambridge University Press 1984.

[Reynolds 74] J.C.Reynolds: Towards a theory of type structure, in Colloquium sur la programmation pp.

408-423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974.

[Reynolds 80] J.C.Reynolds: Using category theory to design implicit type conversions and generic

operators, in Semantics-directed compiler generation, Lecture Notes in Computer Science 94, pp. 211-258,

Springer-Verlag 1980.

[Morris 80] L.Morris, J.Schwarz: Computing cyclic list structures, Conference Record of the 1980 Lisp

Conference, pp.144-153.

[Steels 83] L.Steels: Orbit: an applicative view of object-oriented programming, in: Integrated Interactive

Computing Systems, pp. 193-205, P.Degano and E.Sandewall editors, North-Holland 1983.

[Weinreb 81] D.Weinreb, D.Moon: Objects, Message Passing, and Flavors, chapter 20 of Lisp machine

manual, Fourth Edition, Symbolics Inc., 1981.

