@Title{MmL}
@section{Introduction and examples}

ML is an interactive language. The system repeatedly prompts for input

and reports the results of computations;

this interaction is said to happen at the @1talic{top Tevel} of evaluation.
At the top Tlevel one can evaluate expressions or perform declarations.

To give_a first impression of the system, we reproduce below a session at a
terminal in which simple uses of various ML constructs are illustrated.

To make the session easier to follow, it is split into a sequence

of sub-sessions displayed in boldface.

Each sub-session is accompanied by an explanation;

the complete session consists of the concatenation

of the boldface areas.

A complete description of the syntax of ML 1is given in ---, and of the
semantics in ---.

@subsection{Expressions}

The ML prompt is '- ', and so lines beginning with this contain the user's
contribution; all other Tines are output by the system.
@verbatim{
- 2+3;
5 : 1int
- it;
5 : 1int
}
ML prompted with '- '; the user then typed '2+3;' followed
by a return;
ML then responded with ' 5 : int', a new line, and then prompted again.

The user then typed 'it;' followed by a return, and the system responded
by typing ' 5 : int' again.

In general to evaluate

an expression e one types
e's value and type.

The value of the last expression evaluated at top Tlevel 1is remembered
in the identifier 'it'

e;' followed by a return; the system then prints

@subsection{Declarations}

The declaration 'let x = e' evaluates e and binds the resulting value to x.

@verbatim{

- Tet x = 2@*{}3;
> X =6 : 1int

- it = x;
false : bool

}

The prefix '>
to an evaluation which is prefixed by
Notice that declarations do not effect 'it'.

To bind x@sub{1},...,x@sub{n} simultaneously to the values
of e@sub{1},...,e@Sub{n} one

can perform either the declaration

' indicates that a new dec]arat1on is taking place, as opposed



'"Tet x@Sub{1}=e@sub{1l} and x@Sub{2}=e@sub{2} ... and x@Sub{n}=e@sub{n}'
or, equivalently, the declaration
'lTet x@sub{1l},...,x@sub{n} = e@sub{1l},...,e@sub{n}"'.
In the first case we use a @Italic{environment operator}
(or @1talic{declaration operator@Roman{)}}
'and', while in the second case we use a @Italic{structured variable}

(or @Italic{varstruct@Roman{)}} 'x@sub{l},...,x@Sub{n}'.
@verbatim{
- let y = 10 and z = x;
>y =10 : int
| z =6 : 1int
- Tet X,y = y,X;
> x =10 : 1int
| vy =6 :1int
3
Note that the declaration prefix '> ' converts to '| ' after the first

definition.

Cascaded declarations are obtained by the environment operator
(enclose) which makes

earlier declarations available in Tater declarations, and has otherwise the
same effect as 'and'.

enc

@verbatim{
- let x = 10 enc y = x+5;
> x =10 : 1int
| y =15 : 1int
- let x = 5 and y = x+5;
> X =51 1nt
| y =15 : 1int

}

Private_declarations are obtained by the environment operator 'ins'
(inside) which makes o ]
a declaration available inside another declaration, but not anywhere else.

@verbatim{

- let x = 7 ins y = x+5;
>y =12 : int

- X; .
5 : 1nt

}

complex declarations can be bracketed by '!{' and '!}'; otherwise

the 'and' operator binds stronger than 'enc' and 'ins' (which have the
same binding power) and all three operators are right associative.

In the following example declaration brackets make a difference.

@verbatim{
- let x = 10 and !{z = 5 ins y = 10+z!};
> x =10 : int
| y =15 : 1int



A declaration d_can be made Tocal to the evaluation of an expression e
by evaluating 'let d in e'. ] )
The expression 'e where d' 1is equivalent to 'let d in e'.

@verbatim{
- let x = 2 in x@*{}y;
30 : 1int
_X;
10 : int

- x@*{}y where x = 2;
30 : 1int

}
@subsection{Functions}

To define a function f with formal parameter x and body e one performs

the declaration: 'let f x = e'. )
To apply f to an actual parameter e one evaluates the expression: 'f e'.

@verbatim{

- Tet f x = 20*{}x;
> f =\ :1int -> int

Functions are printed as a '"\' followed by their type ('\' 1is chosen as
an ascii approximation of the greek letter lambda). Application

binds tighter than anything else in the language; thus, for example,

'f 3 + 4" means '(f 3)+4' not 'f(3+4)'.

Functions of several arguments can be defined:

@verbatim{

- let add x y = X+y;
> add =\ : int -> (int -> int)

- add 3 4;

Vo1

Application associates to the left so 'add 3 4' means '(add 3)4'.
In the expression 'add 3', add is partially applied to 3; the
resulting value is a function - the function of type

"int -> int' which adds 3 to its argument.

Thus add takes its arguments one at a time; we could have

made 3dd take a single argument of the Cartesian product type
'int int':

@verbatim{



- let add(x,y) = x+y;
> add =\ : (int # int) -> 1int

- add(3,4);
7 @ int
- Tet z = (3,4) in add z;
7 : 1int
add 3;
Type clash 1in: (add 3)
Looking for: int # int
I have found: int

}

As well as taking structured arguments (e.g. '(3,4)') functions
may also return structured results.

@verbatim{

- let sumdiff(x,y) = (x+y,x-y);
> sumdiff =\ : (int # int) -> (int # int)

- sumdiff(3,4);
7,~1) : int # int

}

Incidentally, note that the unary negation operation on numbers is '~
instead of '-'; hence one should write '~3' for negative numbers and
'~(n-1)"' for the complement of n-1.

@subsection{Recursion}
The following is an attempt to define the factorial function:
@verbatim{

- Tet fact n = if n=0 then 1 else n@*{}fact(n-1);
Unbound Identifier: fact

}

The problem 1is that

any free variables in the body of a function have the bindings

they had just before the function was declared; 'fact' is such a free
variable 1in the body of the declaration above, and

since it isn't defined before its own dec1arat1on, an error results.
To make things clear consider:

@verbatim{

- Tet f n = n+1;
> f =\ :1int -> int

fn=1if n=0 then 1 else n@*{}f(n-1);
\ : int -> 1int

e

It

:
.F
- f
9

..w

1nt



Here 'f 3' results in the evaluation of '3@*{}f(2)', but

now the first f is used so 'f(2)' evaluates to 2+1=3,

hence the expression 'f 3' results in 3@*{}3=9.

To make a function declaration

hold within its own body 'let rec' instead of 'let' must be used.
The correct recursive definition of the factorial function is thus:

@verbatim{

- Tet rec fact n = if n=0 then 1 else n@*{}fact(n-1);
> fact = \ : int -> int

- fact 3;
6 : int
3
'rec' 1is another environment operator like 'and', 'enc' and 'ins'; it can be
nested
inside complex declarations, and it binds more weakly than 'and' but more
strongly

that 'enc' and 'ins'.

@subsection{Assignment and sequencing}

Assi%nment operations act on @Italic{reference} objects.

A reference is an updateble pointer to an object. References are the

only data objects which can be side effected; they can be inserted anywhere

an update operation is needed in variables or data structures.

References are created by the operator 'ref', updated by ':=' and dereferenced
by '"!'!'. The assignment operator ':=' always returns the trivial

value '"()' (called @rtalic{triv@Roman{),}} which is the only object of

the trivial type '.' (also called @italic{triv@Roman{).}}
@verbatim{

- let a = ref 3;

> a = (ref 3) : int ref
- a:=5;
O :
- Ila;
5 : 1nt
3
when several side-effecting operations have to be executed in sequence,
it is useful to use @italic{sequencing} '(e@sub{l}; ... ;e@Sub{n})’
(the parenthesis are needed), which
evaluates e@sub{1} ... e@sub{n} in turn and returns the value of e@Sub{n}.
@verbatim{
- (a:=!ta+l; a:=!'a/2; !'!la);
3 :1nt
ks

@Subsection{Iteration}

The construct 'if e@Sub{l} then e@sub{2} elseloop e@Sub{3}' is the same as
'if e@sub{1l} then e@sub{2} else e@sub{3}' in the true case;

when e@sub{1} evaluates to false,

e@sub{3} is evaluated and control loops back to the front of the construct



again.
As an illustration here is an iterative definition
of 'fact' wh1ch uses two local assignable variables:

'count' and 'result' (note that the prompt '-' changes to '=' when an
expression
spans several Tines).
@verbatim{
- let fact n =
= Tet count = ref n and result = ref 1
= in if !lcount=0
= then !!result
= elseloop (result := !lcount @*{} !!result;
= count := !!count-1);
> fact = \ : int -> int
- fact 4;
24 : int

}

The 'then' in 'if el then e2 else e3' may be rep]aced by 'thenloop'

to cause 1terat1on when el evaluates to true. Thus 'if el thenloop e2 else e3'
is equivalent to 'if not(el) then e3 elseloop e2'.

The cond1t1ona1/1oop construct can have a number of conditions,

each preceded by 'if'; the express1on guarded by

each condition may be preceded by 'then', or by 'thenloop' when

the whole construct is to be reevaluated after evaluating the

guarded expression:

@verbatim{

Tet gcd(x,y) =
let x,y = ref x, ref y

= in if !!x>!ly thenloop x:=!!x-Ily
= if !lx<!!ly thenloop y:=!ly-!Ix
= else !!x;
> gcd =\ : (int # int) -> int
- gcd(12,20);

4 : dint

}

The 'else' branch must always be present in normal conditionals and in
the iterative forms.



