Migratory Applications

Krishna A. Bharat
Graphics, Visualization & Usability Center
College of Computing, Georgia Tech.
Atlanta, GA 30332-0280
E-mail: kb@cc.gatech.edu

ABSTRACT

Weintroduce anew genreof user interface applicationsthat
can migrate from one machine to another, taking their user
interface and application contexts with them, and continue
from where they left off. Such applications are not tied to
one user or one machine, and can roam freely over the net-
work, rendering service to acommunity of users, gathering
human input and interacting with people. We envisage that
thiswill support many new agent-based collaboration met-
aphors. The ability to migrate executing programs has
applicability to mobile computing as well. Users can have
their applications travel with them, as they move from one
computing environment to another. We present an elegant
programming model for creating migratory applications
and describe animplementation. The biggest strength of our
implementation is that the details of migration are com-
pletely hidden from the application programmer; arbitrary
user interface applications can be migrated by a single
“migration” command. We address system issues such as
robustness, persistence and memory usage, and also human
factorsrelating to the application design process, the inter-
action metaphor and safety.

KEYWORDS: Application Migration, Collaborative
Work, Interactive Agents, Application Checkpointing,
Mobile Computing, Ubiquitous Computing, Safety.

1 INTRODUCTION

The goal of the human-computer interaction community is
to make powerful applications easy to use, while retaining
their full potential. For this purpose metaphors are used;
metaphors like overlapping windows, direct manipulation,
and hypermedia. A successful metaphor hides complexity,
and allows users to accomplish their tasks with little effort.
Often, ametaphor requires advancesin technol ogy beforeit
can beeffectively implemented. Conversely, anew technol-
ogy often needsthe introduction of new metaphorsto mas-
terit.

As the infrastructure for ubiquitous computing comes into
being, new demandswill be placed on the way applications

Space for ACM copyright notice

Luca Cardelli
Digital, Systems Research Center
130, Lytton Avenue
Palo Alto, CA 94301
E-mail: luca@src.dec.com

cope with the needs of mobile and distributed users. New
metaphorswill be necessary to cope with these demands.

We introduce a new genre of user interface applications:
migratory applications can migrate from one host to
another, maintaining intact the state of their user interface.
After migration, a former host may shut down without
affecting the application. We discuss how application
migration can be implemented at the programming lan-
guage/environment level. Our approach places some
demands on the programming environment, but amost
none on the application programmer. No restrictions are
placed on thetype of the application being migrated, and the
entire operation can be realized by the execution of asingle
command. The same technique can be used to save the run-
ning application tofileand transmit it over other channelsto
be resumed at alater time.

Oneof the best uses of migrationisto support user mobility.
Userscan havetheir applicationsmovewiththeminaworld
of ubiquitous computing — from home to work and to acol-
league’'s machine. Moreover, since memory is limited on
low-end portable computers, the ability to migrate an appli-
cation in and out of amachine can be highly valuable.

Section 2 describes our approach to programming migra-
tory applications. In Section 3, we show how this paradigm
was applied in the Visual Oblig environment [3] to support
the migration of (arbitrary) user interface applications. In
Section 4 we provide awalk-through of the process of cre-
ating amigratory application. In Section 5 we discuss some
issues relating to migration as a metaphor. Section 6 lists
related work. In Section 7 we draw some conclusions.

2 PROGRAMMING MODEL

Our programming model is based on thefacilities available
in the Obliq distributed scripting language [7].

2.1 Network Semantics

In Oblig, arbitrary data, including procedures, can betrans-
mitted over the network. A piece of Obliq data can be seen
asagraph where somenodesare mutabl e (meaning that they
have loca state that can be modified by assignment) and
where other nodes areimmutable (meaning that they cannot
be modified). For example, the program text of a procedure
is immutable and cannot be modified, while fields in an
object aremutabl e becausethey can beassigned new values.

Thic Aariimant wwiae rrastad wiith Cramallalar AN A

2.1.1 Network Transmission. When a data graph is
passed to a remote procedure, or returned from a remote
procedure, we say that it istransmitted over the network.

The meaning of transmitting a data graph is the following.
Starting from a given root, the graph is copied from the
source site to the target site up to the point where mutable
nodes or network references are found. Mutable nodes
(indicated by shaded boxes) are not copied; in their place,
network references to those nodes are generated. Existing
network references are transmitted unchanged, without fol-
lowing the reference. Sharing and circularities are pre-
served.

Transmit

£

To From

Figure 1: Transmission of adatagraph

For example, an Obliq object (one of the basic data struc-
tures) is never copied over the network on transmission,
since objects have state. A network pointer to the object is
transmitted in its place. The object can then be referenced
remotely through that network pointer; for example, one of
its methods may be remotely invoked.

Arrays and updatable variables are similarly not copied on
transmission, since they have state.

Oblig procedures are first-class data and, like other data,
have a value that can be manipulated and transmitted. The
valueof aprocedureiscalled aclosure; it consistsof thepro-
gramtext of the procedure, plusatable of valuesfor theglo-
bal variables of the procedure. Figure 2 shows the closure
for a procedure incrementing a global variable x; the vari-
able x denotes amutable location containing 0. The closure
table contains asingle entry, indicated by “wherex = ...":

x=e——» 0
[
proc() x:=x+1; x en(D
wherex = ¢—

Figure 2: Theclosure of aprocedure

The transmission of a closure (Figure 3) follows the same
rules as the transmission of any data graph. When aclosure
istransmitted, all theprogramtextiscopied, sinceit consists
of immutable data. The associated collection of values for
freevariablesiscopied according to the general rule. In par-
ticular, the locations of global updatable variables are not
copied: network references are generated to their location,
so that they can be remotely updated.

2.1.2 Network Copy. Incontrast tothedefault transmis-
sion mechanism, which stops at mutable nodes and network

Transmit

Figure 3: Transmission of aclosure

references, aspecia primitiveis provided to perform a net-
work copy of adatagraph. This primitive makesacomplete
local copy of apossibly mutable and distributed graph.

Copy

To From

Figure 4: Network Copy

Network copy is useful, for example, when moving a user
interface along with amigrating application.

A user interfaceisnormally closely bound to site-dependent
resources, such as windows and threads. Since these
resources cannot migrate, astand-al one snapshot of the user
interface is first assembled. The snapshot consists of some
complex data structure, including a representation of the
current state of al thelive windows of the application. This
data structure, resembling the graph in the picture above,
can becopied over tothetarget site, and then converted back
toaliveinterface.

2.2 Agents

Anagent isacomputation that may hop from siteto siteover
the network [19]. We review the concepts of agents, agent
servers, suitcases, and briefings. In Section 2.3, we describe
an Obliqg implementation of agent hopping.

A suitcaseisapiece of datathat an agent carrieswithit asit
movesfrom siteto site. It containsthe long-term memory of
theagent. It may includealist of sitestovisit, thetask to per-
form at each site, and the ongoing results of performing
those tasks.

A briefing is data that an agent receives at each site, as it
entersthe site. It may include advice for the agent (e.g. “too
busy now, try this other site”), and any site-dependent data
such aslocal file systems and databases.

An agent server, for agiven site, is a program that accepts
code over the network, executes the code, and provides it
with alocal briefing.

A hopinstruction isused by agentsto movefrom onesiteto
the next. Thisinstruction has as parameters an agent server,
the code of an agent, and a suitcase. The agent and the suit-
case are sent to the agent server for execution.

Finally, an agent is a user-defined piece of code parameter-
ized by a suitcase and a briefing. All the data needs of the
agents should be satisfied by what it findsin either the suit-
case or the briefing parameters. At each site, the agent
inspects the briefing and the suitcase to decide what to do.
After performing some tasks, it typically executes a hop
instruction to move to the next site.

If an agent has a user interface, it takes a snapshot of the
interface, stores it in the suitcase during the hop, and
rebuilds the interface from the snapshot at the destination.

2.3 Agent Migration

Aswe said in the previous section, an agent is a procedure
parameterized with a suitcase and a briefing; the suitcase
travel swith the agent from siteto site, whileafresh briefing
is provided at each site. We assume that the agent code is
self-contained (that is, it has no free variables).

Agents move from site to site by executing a hop instruc-
tion:

(* definition of recursive procedure agent *)
let rec agent =
proc(suitcase, briefing)
(* work at the current site *)
(* decide whereto go next *)

hop(nextSte, agent, suitcase);
(* runagent at next S t e with sui t case *)
end;

In Oblig, agents, suitcases, briefings, and hop instructions
are not primitive notions. They can be fully understood in
terms of the network semantics of Section 2.1.

Agent arejust procedures of two parameters. Suitcases and
briefings are arbitrary pieces of data, such as objects. Each
agentisresponsiblefor the contents of its suitcase, and each
agent server isresponsible for the contents of the briefing.
Agent servers are simple compute servers whose main task
it to run agents and supply them with appropriate briefings
(and maybe check the agent’s credentials).

Thehopinstruction can be programmed in Oblig asfollows:

let hop =
proc(agent Server, agent, suitcase)
agent Ser ver (
@ proc(bri efing)

fork(
@ proc()
d agent (copy(suitcase), briefing);
end);
ok
end);

end;

Suppose acall hop(agent Server, agent, suitcase) is

executed at asourcesite. Here, agent Server is(anetwork
reference to) aremote compute server at atarget site.

— Agent
agentServer = ¢
(1) Server Briefing
proc(briefing)
dfork(2)
en u ;
where agent = Transmit
and suitcase = e
proc(suitcase,
briefing)
Do work; hop(...);
end
Source| | Target

Figure5: Thehopinstruction - Part |

The call agent Server (. ..) hasthe effect of shipping the
procedure (1) to the remote agent server for execution. At
thetarget site, the agent server executes the closurefor pro-
cedure (1) by supplying it with alocal briefing.

Next, at the target site, the execution of the body of (1)
causes procedure (2) to be executed by a forked thread.
Immediately after thefork instruction, procedure (1) returns
adummy value (ok), thereby completing the call to hop that

originated at the source site.
Agent
[/ agent(copy(suitcase),\

briefing)
where briefing =¢—|

and agent =
\._and suitcase = 5 /
(suitcase Y« .
Copy » proc(suitcase,

briefing)
Target

Do work; hop(...);
d

Source

Figure6: Thehop instruction - Part 1

The source site is now disengaged, while the agent compu-
tation carrieson at thetarget site. Thethread of computation
at the target siteis driven by the agent server. At the target
site, the forked procedure (2) first executes copy(suit -

case) . Thesuitcase, at thispoint of the computation, isusu-
ally anetwork pointer to the former suitcase that the agent
had at the source site. The copy instruction (an Obliq prim-
itive) makes a complete local copy of the suitcase, as
described earlier. Therefore, copy(sui t case) isasuitcase
whosestateislocal tothetarget site, suitablefor local useby
the agent.

After the copying of the suitcase, the agent migration is
complete. The source site could now terminate or crash

without affecting the migrated agent.

Finally (3), the agent isinvoked with the local suitcase and
the local briefing as parameters. The program text of the
agent was copied over aspart of the closureof procedure(1).
Since the agent has no free variables, it can execute com-
pletely locally, based on the suitcase and the briefing.

In the special case when the suitcase contains the entire
application state, we have amigratory application.

3 APPLICATION MIGRATION

We used the agent migration paradigm described in the pre-
vious section to implement migratory applicationsin Visual
Ohlig.

3.1 Visual Obliq

Visual Obligisanenvironment for rapidly constructing user
interface applications by direct manipulation [18]. It con-
sists of:

* Aninteractive application builder that allows the user
interface to be drawn and programmed. The builder
generates code in Oblig.

e Runtime support, consisting of libraries and network
services.

In previouswork [3] we showed how the Visua Oblig envi-
ronment supported the construction of distributed, multi-
user applications (I1, in Figure 7), in addition to traditional,
non-distributed applications (1).

i

Static Migratory

Distributed

Non
Distributed

Figure 7: The space of networked applications

Here we describe how the environment was extended to
support the creation of migratory, non-distributed
applications (111). Thiswas donein amanner transparent to
the user, allowing any non-distributed application (in 1) to
be migrated by a single command. Migratory multi-user
applications (1V) are significantly more complicated to
implement, since connectivity needsto be maintained asthe
migration happens. We have yet to tackle this class of appli-
cations.

The support for distributionin Il (described in[3]) haslittle
in common with the support for migration. Hencewedo not
describeit here. However Visoblig, the GUI builder used to
draw and program the interface has remained the same.

3.1.1 Visoblig. Figure 8 shows Visobliq in action. The
window on the left (in the background) is called the design
window, and the window on the right (in the foreground) is
known as the attribute sheet. The design window hasapal-
ette of widgets at the top, and a drawing area below, where
widgets may be pieced together to form application win-
dows. The application windows thus designed are called
forms. Thefigure shows asingle form being designed, con-
taining the following widgets: a video-player, a button, a
browser, and afile-browser. Widget geometry and the hier-
archical nesting of widgets within a form can be manipu-
lated interactively. All other resources are specified viathe
attribute sheet.

B el ey T - -

-1} [

Pl | (PR [T
T R = | Pim o= 8 S
T gilma: | st ;= m |
T T

St | b i vl W] i e -

R Gemairflaes maw dmm | mee fas]

e | e e P—:—ih-r—-ll :!'!':',,""..,'."'! |h
el o B
TTT——— [iu B [y P B | S |
'] T .- — Fallad
d) Nien inama = SELF saratars JeTai{];
L liet image = SELF vid geiimeges]l
vl Bl aral paerBinFl ke Inama
. mage

Figure 8: The Visobliq application builder

Double-clicking on a widget causes the resources of the
widget to beloaded into the attribute sheet, for modification
by the programmer. This includes attributes that determine
the appearance and interactive behavior of the widget, as
well as any code that is attached to the widget. When the
resources have been modified, the programmer presses the
‘Apply’ button to make the changes take effect.

Pressing the * Run’ button causes the application to execute
within aninternal interpreter for testing and debugging. The
‘Code’ menu option provides a facility to output code in
Obliq, for stand-alone execution withinaVisual Obliginter-
preter. Wetalk more about theinterpreter and itsspecial fea
turesto support migration in Section 3.3.

3.1.2 Programming a single-user application. Each
form defines aclass of window objects, and can be multiply
instantiated at run-time. Every instance of aform receivesa
unique index, and can be referenced through aglobal array
that bears the form’s name. For example, if the form being
designed in Figure 8 were called MainWin, there would be
an array called Mai nWn[...], containing references to
instances of MainWin created at run-timeWidgets are
implemented as objects nested inside the form instance.
Suppose the button labeled ‘ Capture’ were named Cap-
tureBtn, the programmer would refer to the button within
instance n of MainWin as M nWn[n] . Capt ur eBt n.

While building a single-user application in Visobliq, the
programmer is asked to write four types of code in Oblig:

i. Callback code, which is attached to a widget
ii. Form support code, which is associated with aform.

iii. Global code. Any other code needed by the applica
tion can be placed here.

iv. Initialization code, which gets executed when the pro-
gram starts up and creates the initial form instances.
After thisthe execution isfully input driven.

The above programming framework is general enough for
the construction of most single-user Ul applications.

3.2 Implementing Migration

The programmer makes the application migrate to a new
site by executing the migration command within acallback.
Specifically, one of the following commandsis executed:

e MgrateTo(Host)
 MagrateToServer (Server Nane, Hbst)

The first command migrates the application to a default
agent server caled ‘M grat €', on the machine named
Host . VOM gr at e continues the application from where it
left off, and does not provide any briefing. Thisis sufficient
for basic application migration. The second command
causes the application to migrate to a customized
agent server called Server Nane, on the machine named
Host . In both cases the agent server is run by the user who
receives the application after it migrates.

3.2.1 The Migration Command. The semantics of the
migration command isthat it returnst r ue if the application
is migrated successfully, and f al se upon failure. If it suc-
ceeds, the local instance of the application terminates the
moment the callback finishes. The user interface is
destroyed and the entire application state gets garbage-col-
lected. In the event of failure, the application continues to
execute locally asif nothing happened.

The migration command executes the following steps:

i. It first contacts the agent server at the destination to
ensure that the migration can happen. Upon failure it
returns immediately with af al se value.

Otherwise...

ii. It checkpoints the state of the user-interface into the
Obliq objects that make up the widget hierarchy.

This step is necessary because widgetsin Visual Obliq are
high-level “interface objects’ in Oblig, which realize their
presentation using lower-level interactors in the local Ul
toolkit. Currently, theonly toolkit that issupportedisTrestle
[12], but if Obliqwereported to adifferent environment, the
local toolkit would be used. Hence, Visual Obliqwidgetsdo
not maintain all of their state explicitly. In particular they do
not maintain an up-to-date copy of attributes that can be
changed interactively by the user (e.g. the geometry). These

attributes are retrieved from the underlying toolkit when-
ever needed; either when the programmer’s code requires
them, or when the user interface stateisbeing checkpointed.

iii. The user interface is destroyed, breaking links to the
UIMS.

iv. Linksto thelocal runtime are explicitly removed.

v. Visobliq prepares a suitcase, and executes the hop
instruction discussed in Section 2.3. Recall that a suit-
case is a data structure that gets copied to the destina-
tion. In this case, the suitcase contains a reference to
each of the form-instance arrays in the program.

If the hop instruction executes successfully, true is
returned. Upon failure (if the network operation raises an
exception), the command rebuilds the user interface from
the saved state, in the same way that the agent server at the
destination would have, and returnsf al se.

Thehop instruction causestheagent server to perform anet-
work copy of suitcase. Since the suitcase contains refer-
ences to al form-instance arrays, this involves copying
every pieceof datathat isreachablefrom aform-instance. It
iseasy to seethat thiswill copy over every pieceof theappli-
cation state that is relevant to future execution. If a piece of
datais not accessible from any form-instance, it will never
be used, and so it is not copied.

At the sourcesite, dueto stepiiii, all links between theinter-
preter’s Ul threads and the application are destroyed. Once
the existing callbacks exit, the application state becomes
inaccessible to any thread in the system. The Obliq inter-
preter has automati c garbage-collection. Hence shortly after
migration, the application state gets garbage collected.

Stepiv ensuresthat the application state hasno referencesto
theVisual Obliqg runtimewhenitiscopied. Thiswasdoneto
prevent the runtime from being copied as well. At the new
host, the local runtimeis patched in, causing the local envi-
ronment to take effect.

3.2.2 The Agent Server. The agent server is an
extended Visual Obliq interpreter. In addition to an internal
UIMS thread, the agent server has a ‘migration’ thread to
assist incoming agents.

, Ul , Ul ,
%Hylegd Created \ Deﬂroyec:i:
Migration A ﬁ :
Thread M Z .
. ior Garl')'e
if Migrat
Migrates o e Sollected

:' Duration of Visit:' @

Figure 9: Operation of an Agent Server

When an application migratesin (at step 1in Figure 9), the
agent performs the following operations:

i. It performs a network copy of suitcase, causing the
entire application state to be copied over.

ii. References to the local Visua Oblig runtime are
added.

iii. For each form-instance in the application, it rebuilds
its user interface based on its saved state. Callbacks
are re-attached. This sets up links between the appli-
cation and the local UIMS thread.

When an application migrates out (step 2), links from the
UIMS are broken, and soon its state is garbage-collected
(step 3). Inthismanner, the agent server alows applications
tomigratein and out of the host repeatedly, without running
out of memory. Multiple applications can co-exist within
the interpreter, because they will not have links to each
other.

User-defined agent servers are created by extending the
default agent server to provide application-specific briefing
and access control. To be useful, the agent server needs to
have auser interface of its own to help the user monitor and
regulate the activities of migratory applications. For exam-
ple, the user might stipulate: “1 will entertain only applica-
tions of type X”; “I will be back at timeY”; “If you get an
agent from so-and-so, providefileZ asinput”. This presup-
poses an underlying mechanism for authentication and
encryption. There is work in progress to provide secure
communication and authentication at the Network Objects
layer [5] —the transport layer for Visual Oblig.

In practice, there are likely to be other locale-specific
resources, such as file-handles and network connections,
that need to be preserved during migration. The replication
of such resources cannot be automated since it is highly
application and situation dependent. For instance, it is not
clear how open files should betreated. One option would be
to have the system reopen al open files upon reaching the
destination, but often the two sites may not shareacommon
file-system. Hence, we let the application programmer deal
with the checkpointing and reinstantiation of such
resources. The programmer is given the option of adding
code to two system-defined routines: PreM grate() and
Post M gr at e() , which areinvoked before and after migra-
tion respectively.

3.3 The Visual Obliq runtime

The ‘Visual Obliq interpreter’ is simply the Obliq inter-
preter with aset of support libraries (known asthe runtime)
preloaded. The original purpose of the runtime was to pro-
vide access to the local Ul library and implement abstrac-
tions needed by distributed applications.

Recently the runtime was redesigned and extended to mest
the needs of migratory applications.

Firstly, sincetheruntimeisclosely tied to thelocal environ-

ment, it was decided that it would not be copied when the
application migrates. Hence, all access to the runtime is
through handles which are local to the interpreter in which
the application is currently resident. The handles are
removed before migration, and get patched in when the
application arrives at anew host. Hence, all operations that
involvelocal system resources such asthe network, proces-
sor, file-system and the Ul toolkit, are customized to the
local environment.

In addition, the runtime provides the following facilities:

3.3.1 Migration Support. 1t implements the migration
commands described earlier. The runtime at the source
accesses the agent server using a remote-object access
mechanism known as‘ Network Objects' [5]. Thenit check-
pointsthelocal interface. At thetarget site, the agent server
copies the application state over and uses the local runtime
to rebuild the interface.

The two operations on the interface are implemented thus:

a) Checkpointing the user interface. This is done
by walking the Visual Obliqwidget hierarchy for each
form-instance in the application, and copying relevant
state information from the Ul toolkit into the Obliq
widget. Any attribute that cannot be modified by the
user (and can only be modified under program con-
trol) need not be checkpointed, since the widget will
already have the latest value.

b) Rebuilding the user interface. The same mecha
nism used to create the original user interface is used
to rebuild it a new sites. The routine walks the Visua
Obliq widget hierarchy for each form-instance and
creates for each widget therein, a corresponding inter-
face using interactors in the local toolkit. In doing so
it may adhere to the checkpointed geometrical
attributes or decide to override them, e.g. if the appli-
cation migrates to a portable computer with a substan-
tially smaller screen, dimensions might shrink. This
provides the flexibility needed to cope with the differ-
ences between individual machines, while preserving
the appearance of the interface as far as possible.

In our present implementation, we have another inter-
vening layer, FormsVBT [2]. FormsVBT alows
Visual Obliqwidgets to be described in terms of sym-
bolic expressions representing the hierarchical
arrangement of (smaller) Ul components. The runtime
generates the symbolic expression corresponding to
each Visual Obliq widget by replacing tokens in a
template with the attributes of the widget. Users can
customize the appearance of the widgets displayed by
their agent server by manipulating the template.

Once the user interface has been rebuilt, the runtime
re-attaches callbacks so that interaction can resume.

3.3.2 Safety. The runtime is responsible for safety, and
protects the user from attacks and privacy violations by the
applications that migrate in. It does this by disabling al

unsafe commands (namely commands that could be used to
damagethe user’senvironment and/or violate privacy), and
instead provides safe alternatives that are subject to user-
specified checks before execution.

In Oblig, al unsafe operations are readily identified by the
fact that they require the use of “access’ handlesto system
resources. For instance a processor handle is needed by
routinesthat create new processes and execute system calls.
Similarly there are handles to provide various levels of
accesstothefile-system. The Visual Oblig runtimehidesall
system handles after having defined a“ safe” version of each
routine that uses a handle. The safe-routines have the han-
dlesbound insidethem. An aien program can accessasafe-
routine but not the handleswithin it. These routinesare con-
sidered safe because they compare their op-code and argu-
ment list with patternsin a user-specified configuration file
(called . vorestri ct), to decidewhich operations are to be
allowed and which are to be blocked.

v =

Start Process ;av 7
_>

o= Mo

#allow

processNew |s /tmp/*
fileWrOpen tmp/*
— #block
@roc&ssNew([XV]D processNew rm

Figure 10: Safe Routinesin Visual Oblig

Operationsthat areallowed by theconfigurationfileareexe-
cuted in the regular manner. When a blocked operation is
encountered, the runtime notifies the user that the program
is attempting something illegal and aborts the application.
When an unsafe operation fallsin neither category (whichis
the default case when no preferences have been specified)
the runtime rewrites the operation in a human intelligible
form, and pops up a notice to ask the user if it should be
allowed to go through.

Unlikein Safe-Tcl [13], whereaspecia “Safe” interpreteris
required, weare abletoimplement safety entirely at the user
level. Most userswould useadefault . vor estri ct filepro-
vided by the system administrator. The ability to customize
the file and relax the restrictions is useful within work-
groups, wherethereisahigh level of trust.

3.4 Variants

A variant of migration is cloning. An application is cloned
by network copying it to the new site, without destroying it
at the original site. One possible application of cloningisin
debugging. When abugisencountered inan application, the
user can send aclone of the application to the person respon-
sible for debugging it, instead of a mere ‘bug report’.
Another application would be a divide-and-conquer agent

mechanism, wherein an agent splitsinto multiple agentsthat
interact independently with various users, and later merge
or resynchronize.

Obliq provides a pickle operation, which is very similar to
the network copy. Instead of replicating the data-graph, it
writesit to abuffer. The contents of the buffer can be saved
to afileor transmitted over another transport e.g. e-mail. At
alater point in time, it can be converted back into the origi-
nal data-graph, by the complementary unpickle operation.
ThisallowsVisual Oblig programsto checkpoint their state
tofilewhen necessary. If agentsare expected to be persistent
and endure machine crashes, they will need the ability to
periodically save their state to stable storage, and resume
from a saved configuration when the machine restarts.

4 A COMPLETE EXAMPLE

We present a small survey agent in its entirety, to demon-
strate how easy it is to create a migratory application in
Visual Oblig. The agent has an agendaconsisting of alist of
hoststo visit.

O)mmlnt sForm Gonment s
Y Y Camiremts |'orm L]
< Plesise (ype vour commenis heres
\J
TRAHECRT FT
| Suggest Somecns | | Draine
|
Suggest Btr—— Transcri pt DoneBt n
(read only)

Figure11: Comment sFor m atop-level form

At each host it presents the user with two top-level forms:
Goment sForm shown in Figure 11, and SurveyForm

shown in Figure 12" sur veyFor mhas two questions to be
answered by the user, and Gonment sFor mhasan editor wid-
get at the top, where comments may betypedin.

When auser finisheswith the questionnaire he clickson the
button labeled “Done” to send the agent on to the next user.
The read-only “Transcript” window maintains alog of the
input given by each user. When the agent has visited all
hosts in its agenda, it will return to the host where it
started.Theinitial list of users and hoststo visit is supplied
by the person who starts the application. Subsequently,

T The annotations represent widget names in Visoblig

- T'aea Camrsliwms...

Sur veyFor m—¢ 1

Whoald you be wiling be act a3 pregram chair for SIG0) 85 7

¥R Dby o 'you CEn fed oo ke i

Fualisale Thie Slccesd of last year's conlinen o o

- — — T
Poor Faac e
k1]

Success LQ12 (read only)

Figure 12: Sur veyFor m another top-level form

other usersmay add to the agenda. Usersand hostsare added
to the agenda via the Suggest form (Figure 13), which is
popped up by clicking onthe* Suggest Someone” button (in
Gomment sFor n).

| Giiggal s whe's ol on LGS = |

Mare Brewn (ash,pa.des.com)
Krishing Eharat { al phai. greu galeshoed

Suggest Form
|

-«——— Agenda

I'd Suggest:- |« AddBtn
2= Lt

Mama: «——— Nane
Hask: Host

Figure 13: Suggest For m apopupin Conment sFor m

By default, the application is configured to create one
instance of each top-level formwhenit startsup. Inthiscase
Gonment For nfi 0] and SurveyFor nf 0] will be created. So
no additional initialization code is hecessary.

The global code contains a counter, Num\ si t ed, to keep
track of the number of hosts visited, and the arrays, peo-
ple[...] andhostg[...],tokeeptrack of theagenda. The
host name of the originating siteis saved in O gi nal Host .

var Nimi sited = 0, people =[], hosts =[];
let Qigina Hst = voliblLocal . get Host Nane() ;

The following callbacks are added:

Clicking on Suggest Bt n causes Suggest For nto pop up. At
design time, Suggest For mis anchored to Gonment sForm
This causes Suggest Formt o become afield within Com
nent sFor m In Visual Oblig, SH.Fis used within a callback
to refer to the current form. Hence the callback for Sug-
gest Bt nisasfollows:

SH F. Suggest For m show() ;

When AddBt n is clicked, the contents of the typein fields,
Nane and Host, are appended to the arrays, peopl e and
host s respectively, and a so to the browser named Agenda.

l et nane = SELF. Nane. get Text () ;

l et host = SEHLF. Host. get Text();

peopl e : = peopl e @[nang] ;

hosts : = hosts @[host];

SH F. Agenda. append(nane & “ (“ & host &“)");

The callback for the slider named Success copies the cur-
rent slider value into the typein field named Qn2 :

let n = SAF Success. get Val ue();
SHF Q2. put Text (fnt_int(n));

When the button labeled “ Done” is clicked, the user’s com-
ments and responses (to the questions in Sur veyFor nji 0])

are appended to the editor Transcri pt. The editor, Com

nents, contains the user’'s comments. The answer to the
first question is the name of the currently selected choice
inside the frame named Q1. The names of the three choices
are Yes, Maybe and No (not shown). The answer to the sec-
ond question is the text inside the typein field named Q2.
Then thedestination host, dest , iscomputed and the migra-
tioncommand isinvoked. If the migration succeedstheloop
is exited; otherwiseit triesto migrate to the next host.

The codeto do thisis asfollows:

| et cooments = SHF. Gomment s. get Text () ;
SH F. Gorment s. put Text (
“<H ease Type Your Gonments Here>");
SHF. Transcri pt . appendText (peopl €] Numi si t ed]
& " saidin” & coments & “\n”
&" @ 1. * & SurveyFornj0] . Qhl. get Choi ce()
&" 2 “ &SurveyForniQ]. Q2. get Text ());
| oop
NumMi sited := Nimdsited + 1;
if SHF. Agenda. nunt enents() is Num/i sited

t hen
dest := Qiginal Host;
el se
dest : = hosts[NumM si ted];
end;
if MgrateTo(dest) then exit end
end;

The application programmer perceives the migration com-
mand as a primitive operation. In reality the operation
M gr at eTo(dest) involves:

* Contacting the VCM gr at e agent server on dest .

¢ Checkpointing and destroying the user interface.

e Performing a network copy of suitcase, an array
containing references to CommentsForni...] and
SurveyFornj...]. Thiscauses Comrment sFor nfi0],

SurveyForni 0] and all the global code to be copied
over aswell.

* Rebuilding the interface at dest and reattaching call-
backs.

5 MIGRATION AS A METAPHOR

The ability to migrate applications can substantially change
the way we view programs, and the way we interact with
them.

Interaction Techniques. In addition to self-induced
migration as described so far, it is equally easy to
migrate a program under external control. We could
“drag-and-drop” programs from one machine to
another in the same manner that we move files
between folders, and windows between screens.

* Privacy. The ability to operate on an application from
afar raises privacy and access-control issues. Does the
person who started the application have “yank” and
“kill” privileges? Most people would not like others
to know what applications they have on their desktop;
yet users would like to keep track of the agents they
have sent out. It should be possible to restrict access
to users within a group.

e Secrecy. Then there is the issue of privacy in the
reverse direction. The user who receives an agent may
violate the privacy of the sender by examining its hid-
den agenda. For instance a car dealership may wish to
send an agent to aclient, with alist of cars and a strat-
egy to negotiate the price. It should not be possible for
the client to learn what the strategy is, by examining
the agent code or modifying the interpreter. It seems
impossible to prevent this from happening in soft-
ware. It could possibly be achieved by having a
trusted third-party implement the interpreter in hard-
ware, with encryption of the agent code.

» Protocal. In any agent-human interaction there is the
issue of protocol. How long does an agent wait for a
user to respond before deciding to move on? Does it
leave a note? How does it know if the user is busy or
away? It could look at the idle time. How does a user
prevent unwanted agents from bothering him, while
keeping the door open for acceptable agents? Do
agents have a classification?

* Heterogeneity. If applications are to migrate between
diverse architectures, the widget set needs to be cho-
sen carefully so that it can rendered efficiently in all
environments. When rebuilding an interface, the
checkpointed state needs to be re-interpreted in the
light of the available resources and local preferences.
Fonts and label s should change to match the language
used at the local site.

6 RELATED WORK

Application migration most closely resembles the work on
process migration in Operating Systems [14, 20], although
the aim of process migration is to do load-balancing and
improve parallelism. Process migration is usually imple-

mented at a low level, making no assumptions about the
application structure, or even about the programming lan-
guage. The machine architecture and environment are
assumed to be very similar, if not identical, at the two ends
of the migration. Process migration is unable to cope
directly with applications that keep part of their state exter-
nally, e.g. when much of the user interface stateinformation
isstored withinawindow system server (asinthe X window
system).

Our priorities are very different. We expect heterogeneity
(interoperabilty with diverse machine architectures), cus-
tomization to the local environment (the user interface
should be built using thelocal Ul toolkit), and the flexibility
that comes with implementing migration at the program-
ming language level. In our system, the application pro-
grammer can implement new migration strategies by re-
programming the migration mechanism. For instance
migration could belimited to selected partsof anapplication
by appropriately modifying the suitcase. Split and merge
techniques could be used to deploy agentsin parallel.

One of the strengths of our design isthat migration is com-
pletely captured by the semantics of the programming lan-
guage. This makes it easy to comprehend the program and
troubleshoot it if it does not behave as expected. Also, het-
erogeneity is not a problem, since correct implementations
of the language are guaranteed to interoperate.

Migratory applicationsmay a so beviewed asmobile, inter-
active agents. The term “agent” has been used with many
different meanings. Thereare agentsinAl, in databases, and
in application software; classification and search agents
(robots and knowbots) in information retrieval [10, 11, 15];
agents within adaptive applications and |earning-by-dem-
onstration systems[9]; and assistants in design automation
and help systems[4]. Typically, these mobile agents are not
interactive; for example, search agents operate silently on
behalf of aclient which interactswith the user. Conversely,
interactive agents are usually not mobile across machines,
they areusually “symbiotic” and exist within some applica-
tion context or workspace; for example, helpersinlearning-
by-demonstration systems such as Eager [8], and “Balloon
Help” on the Macintosh desktop [1].

Agents that support collaborative work on the other hand
require to be mobile or at least distributed, and also need a
user interface to interact with users. A major advantage of
our designisthat any single-user applicationin Visual Obliq
can be turned into a mobile, interactive agent by invoking
themigration command. When not in use, an agent canwrite
its state to disk and be restarted when needed.

Oblig resembles Java [17], with its object oriented, multi-
threaded features, but also hasintegrated support for distrib-
uted objects. HotJava [16] and Safe-Tcl [13] have taken
steps to ensure safe execution of external code. Safe-Tcl
supports virtually no end-user customization; HotJava
allowsusersto restrict the execution of incoming programs,

based on the host they came from (using access-lists). A dif-
ference between the execution of external programsinthese
systems and the migratory applications in Visual Obliq is
that intheformer casethe applications alwaysbegin execut-
ing from a default (start) state when they arrive at an inter-
preter, instead of continuing from where they left off asin
our case. Henceit would not be possibleto forward an arbi-
trary program to a new user after interacting with it, as one
could with a piece of annotated electronic mail.

7 CONCLUSIONS

Application migration is useful in the context of many
agent-based collaboration metaphors. For example:

1. Applicationsthat follow auser across physical locations:
the ubiquitous computing metaphor. For “eager” behavior,
some applications could use alocation sensing device such
asan “active badge”, to automatically follow the user.

2. Applicationsthat serve agroup of people by travelling to
each person’s site in turn (e.g. a meeting scheduler): the
electronic secretary metaphor.

3. Applications that interact with people on a user’s behalf
and carry out an agenda: the interactive agent metaphor.

4. Communication over email that isinteractive and intelli-
gent: the interactive message metaphor. Unlike previous
implementationsof “activemail” [6], therecipientisableto
forward the interactive message after interacting with it.

We have presented a distributed language semantics that
supports application migration, and an architecture for
migratory applications. The architecture has been incorpo-
rated into the Visual Obliq application programming envi-
ronment [3]. We haveyet to explore the full potential of this
paradigm in collaborative work, but we have successfully
migrated anumber of small to medium size applications. In
these cases, the migration operation took between 5 and 45
seconds over alocal area network, depending on the pro-
gram size and network traffic.

8 ACKNOWLEDGEMENTS

We thank Marc H. Brown for founding the Visual Obliq
project and being agreat source of help and encouragement.

9 REFERENCES

[1] Apple, “Human Interface Guidelines’, Addison-

Wesley, 1994,

Avrahami, G., Brooks, K.P, and Brown, M.H., “A
Two-View Approach to Constructing User Inter-
faces’, Computer Graphics, 23(3):137-146, 1989.
Bharat, K., and Brown, M.H., “Building Distributed
Multi-User Applications By Direct Manipulation”,
Proc. ACM Symposium on User Interfaces Software
and Technology, MarinaDel Rey, 1994, pp. 71-82.

Bharat, K. and Sukaviriya, P, “ Animating User Inter-

(2]

(3]

[4]

10

(3]

(6]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

faces with Animation Servers’, Proc. of UIST 93.
pp. 69-79.

Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber,
“Network objects’. Proc. 14th Symposium on Oper-
ating Systems Principles. 1993.

Borenstein, N. and M.T. Rose, “MIME Extensions
for Mail-Enabled Applications. application/Safe-Tcl
and multipart/enabled-mail”, Draft, Bellcore, Dover
Beach Consulting, September, 1993.

Carddlli, L., “A Language with Distributed Scope”,
Computing Systems, 8(1), 27-59. MIT Press. 1995.
Cypher, A., “EAGER: Programming Repetitive
Tasks by Example”, Proc. of CHI ‘91, 1991, pp. 33-
39.

Cypher, A. [Ed], “Watch What | Do - Programming
by Demonstration”, MIT Press, 1993.

Emtage, A. and Deutsch, P, “Archie: An Electronic
Directory Service for the Internet”, Proc. USENIX
Winter 1992 Conference, 1992, pp. 93-110.
Goldberg, D., Nichals, D., Oki, B. and Terry, D.,
“Using Collaborative Filtering to Weave an Informa-
tion Tapestry” , Communications of the ACM, 35(12),
pp. 61-70, 1992.

Manasse, M.S. and G. Nelson, “Trestle reference
manual”. Research Report #68. Digital Equipment
Corporation, Systems Research Center. 1991.

Qusterhout, John K., “Scripts and Agents: The New
Software High Ground”, Invited Talk at the Winter
1995 USENIX Conference, New Orleans, LA, Janu-
ary 19, 1995,

Powell, M. and Miller, B., “Process Migration in
DEMOS/MP’, Proc. of 9th ACM Symposium on
Operating System Principles, 1983, pp. 110-119.

Sheth, B., and Maes, P, “ Evolving Agentsfor Person-
alized Information Filtering”, Proc. of IEEE Confer-
ence on Al for Applications. 1993.

Sun Microsystems, “HotJava Browser: A White
Paper”, Sun Microsystems White Paper, 1994.
Sun Microsystems, “The Java Language: A White
Paper”, un Microsystems White Paper, 1994.

Shneiderman, B., “Direct Manipulation: A Step
Beyond Programming Languages’, Computer, 16(8),
1983, pp. 57-68

White, J.E., “Telescript technology: the foundation
for the electronic marketplace”, White Paper, Gen-
eral Magic, Inc. 1994.

Zayas, E., “Attacking the Process Migration Bottle-
neck”, Proc. of 11th ACM Symposium on Operating
Systems Principles, 1987, pp. 13-24.

