
1

Abstract
We introduce a calculus describing the movement of processes and devices, in-
cluding movement through administrative domains.

1 Introduction
There are two distinct areas of work in mobility: mobile computing, concerning com-
putation that is carried out in mobile devices (laptops, personal digital assistants, etc.),
and mobile computation, concerning mobile code that moves between devices (applets,
agents, etc.). We aim to describe all these aspects of mobility within a single framework
that encompasses mobile agents, the ambients where agents interact and the mobility of
the ambients themselves.

The inspiration for this work comes from the potential for mobile computation over
the World-Wide Web. The geographic distribution of the Web naturally calls for mo-
bility of computation, as a way of flexibly managing latency and bandwidth. Because
of recent advances in networking and language technology, the basic tenets of mobile
computation are now technologically realizable. The high-level software architecture
potential, however, is still largely unexplored.

The main difficulty with mobile computation on the Web is not in mobility per se,
but in the handling of administrative domains. In the early days of the Internet one could
rely on a flat name space given by IP addresses; knowing the IP address of a computer
would very likely allow one to talk to that computer in some way. This is no longer the
case: firewalls partition the Internet into administrative domains that are isolated from
each other except for rigidly controlled pathways. System administrators enforce poli-
cies about what can move through firewalls and how.

Mobility requires more than the traditional notion of authorization to run or to ac-
cess information in certain domains: it involves the authorization to enter or exit certain
domains. In particular, as far as mobile computation is concerned, it is not realistic to
imagine that an agent can migrate from any point A to any point B on the Internet. Rath-
er, an agent must first exit its administrative domain (obtaining permission to do so),
enter someone else’s administrative domain (again, obtaining permission to do so) and
then enter a protected area of some machine where it is allowed to run (after obtaining
permission to do so). Access to information is controlled at many levels, thus multiple
levels of authorization may be involved. Among these levels we have: local computer,
local area network, regional area network, wide-area intranet and internet. Mobile pro-
grams must be equipped to navigate this hierarchy of administrative domains, at every

* Current affiliation: Microsoft Research.

Luca Cardelli*

Digital Equipment Corporation
Systems Research Center

Andrew D. Gordon*

University of Cambridge
Computer Laboratory

Mobile Ambients

2

step obtaining authorization to move further. Similarly, laptops must be equipped to ac-
cess resources depending on their location in the administrative hierarchy. Therefore, at
the most fundamental level we need to capture notions of locations, of mobility and of
authorization to move.

With these motivations, we adopt a paradigm of mobility where computational am-
bients are hierarchically structured, where agents are confined to ambients and where
ambients move under the control of agents. A novelty of this approach is in allowing
the movement of self-contained nested environments that include data and live compu-
tation, as opposed to the more common techniques that move single agents or individual
objects. Our goal is to make mobile computation scale-up to widely distributed, inter-
mittently connected and well administered computational environments.

This paper is organized as follows. In the rest of Section 1 we introduce our basic
concepts and we compare them to previous and current work. In Section 2 we describe
a calculus based exclusively on mobility primitives, and we use it to represent basic no-
tions such as numerals and Turing machines, and to code a firewall-crossing protocol.
In Section 3 we extend our calculus with local communication, and we show how we
can represent more general communication mechanisms as well as the π-calculus.

1.1 Ambients
Ambients have the following main characteristics.

An ambient is a bounded placed where computation happens. The interesting prop-
erty here is the existence of a boundary around an ambient. If we want to move compu-
tations easily we must be able to determine what should move; a boundary determines
what is inside and what is outside an ambient. Examples of ambients, in this sense, are:
a web page (bounded by a file), a virtual address space (bounded by an addressing
range), a Unix file system (bounded within a physical volume), a single data object
(bounded by “self”) and a laptop (bounded by its case and data ports). Non-examples
are: threads (where the boundary of what is “reachable” is difficult to determine) and
logically related collections of objects. We can already see that a boundary implies
some flexible addressing scheme that can denote entities across the boundary; examples
are symbolic links, Uniform Resource Locators and Remote Procedure Call proxies.
Flexible addressing is what enables, or at least facilitates, mobility. It is also, of course,
a cause of problems when the addressing links are “broken”.

An ambient can be nested within other ambients. As we discussed, administrative
domains are (often) organized hierarchically. If we want to move a running application
from work to home, the application must be removed from an enclosing (work) ambient
and inserted into another enclosing (home) ambient. A laptop may need a removal pass
to leave a workplace, and a government pass to leave or enter a country.

An ambient can be moved as a whole. If we move a laptop to a different network,
all the address spaces and file systems within it move accordingly. If we move an agent
from one computer to another, its local data moves accordingly.

Each ambient has a name that is used to control access to the ambient. A name is
something that can be created and passed around, and from which access capabilities
can be extracted. In a realistic situation the true name of an ambient would be guarded
very closely, and only specific capabilities would be handed out.

3

1.2 Technical Context: Systems
Many software systems have explored and are exploring notions of mobility.

Obliq [5] attacks the problems of distribution and mobility for intranet computing.
Obliq works well for its intended application, but is not really suitable for computation
and mobility over the Web (like other distributed paradigms based on the remote pro-
cedure call model) because of the fragility of network proxies over the Web.

Our ambient model is partially inspired by Telescript [16], but is almost dual to it.
In Telescript, agents move whereas places stay put. Ambients, instead, move whereas
agents are confined to ambients. A Telescript agent, however, is itself a little ambient,
since it contains a “suitcase” of data. Some nesting of places is allowed in Telescript.

Java [11] provides a working framework for mobile computation, as well as a wide-
ly available infrastructure on which to base more ambitious mobility efforts.

Linda [6] is a “coordination language” where multiple processes interact in a com-
mon space (called a tuple space) by exchanging tokens asynchronously. Distributed
versions of Linda exist that use multiple tuple spaces and allow remote operations. A
dialect of Linda [7] allows nested tuple spaces, but not mobility of the tuple spaces.

1.3 Technical Context: Formalisms
Many existing calculi have provided inspiration for our work.

The π-calculus [15] is a process calculus where channels can “move” along other
channels. The movement of processes is represented as the movement of channels that
refer to processes. Therefore, there is no clear indication that processes themselves
move. For example, if a channel crosses a firewall (that is, if it is communicated to a
process meant to represent a firewall), there is no clear sense in which the process has
also crossed the firewall. In fact, the channel may cross several independent firewalls,
but a process could not be in all those places at once. Nonetheless, many fundamental
π-calculus concepts and techniques underlie our work.

The spi calculus [1] extends the π-calculus with cryptographic primitives. The need
for such extensions does not seem to arise immediately within our ambient calculus.
Some of the motivations for the spi calculus extension are already covered by the notion
of encapsulation within an ambient. However, we do not know yet how extensively we
can use our ambient primitives for cryptographic purposes.

The Chemical Abstract Machine [3] is a semantic framework, rather than a specific
formalism. Its basic notions of reaction in a solution and of membranes that isolate sub-
solutions, closely resemble ambient notions. However, membranes are not meant to
provide strong protection, and there is no concern for mobility of subsolutions. Still, we
adopt a “chemical style” in presenting our calculus.

The join-calculus [9] is a reformulation of the π-calculus with a more explicit no-
tion of places of interaction; this greatly helps in building distributed implementations
of channel mechanisms. The distributed join-calculus [10] adds a notion of named lo-
cations, with essentially the same aims as ours, and a notion of distributed failure. Lo-
cations in the distributed join-calculus form a tree, and subtrees can migrate from one
part of the tree to another. A main difference with our ambients is that movement may
happen directly from any active location to any other known location.

LLinda [8] is a formalization of Linda using process calculi techniques. As in dis-

4

tributed versions of Linda, LLinda has multiple distributed tuple spaces. Multiple tuple
spaces are very similar in spirit to multiple ambients, but Linda’s tuple spaces do not
nest, and there are no restrictions about accessing a tuple space from another one.

Finally, a growing body of literature is concentrating on the idea of adding discrete
locations to a process calculus and considering failure of those locations [2, 10]. Our
notion of locality is built into our basic calculus. It is induced by a non-trivial and dy-
namic topology of locations, in the sense that a location that is “far” from the current
one can only be reached through multiple individual moves. Failure of a location can be
represented as becoming forever unreachable.

2 Mobility
We begin by describing a minimal calculus of ambients that includes only mobility
primitives. Still, we shall see that this calculus is quite expressive. In Section 3 we then
add communication primitives.

2.1 Mobility Primitives
The syntax of the calculus is defined in the following table. The main syntactic catego-
ries are processes (including ambients and agents that execute actions) and capabilities.

Mobility Primitives

Syntactic conventions

The first four process primitives (restriction, inactivity, composition and replica-
tion) have the same meaning as in the π-calculus (see Section 2.3), namely: restriction
is used to introduce new names and limit their scope; 0 has no behavior; P | Q is the
parallel composition of P and Q; and !P is an unbounded number of parallel replicas of
P. The main difference with respect to the π-calculus is that names are used to name
ambients instead of channels. To these standard primitives we add ambients, n[P], and
the exercise of capabilities, M.P. Next we discuss these new primitives in detail.

2.2 Explanations
We begin by introducing the semantics of ambients informally. A reduction relation
P����Q describes the evolution of a process P into a new process Q.

P,Q ::=
(νn)P
0
P | Q
!P
n[P]
M.P

processes
restriction
inactivity
composition
replication
ambient
action

n

M ::=
in n
out n
open n

names

capabilities
can enter n
can exit n
can open n

(νn)P | Q = ((νn)P) | Q
!P | Q = (!P) | Q
M.P | Q = (M.P) | Q

(νn1...nm)P � (νn1)...(νnm)P
n[] � n[0]
M � M.0 (where appropriate)

5

Ambients
An ambient is written n[P], where n is the name of the ambient, and P is the process
running inside the ambient. In n[P], it is understood that P is actively running, and that
P can be the parallel composition of several processes. We emphasize that P is running
even when the surrounding ambient is moving. Running while moving may or may not
be realistic, depending on the nature of the ambient and of the communication medium
through which the ambient moves, but it is consistent to think in those terms. We ex-
press the fact that P is running by a rule that says that any reduction of P becomes a
reduction of n[P]:

In general, an ambient exhibits a tree structure induced by the nesting of ambient
brackets. Each node of this tree structure may contain a collection of (non-ambient) pro-
cesses running in parallel, in addition to subambients. We say that these processes are
running in the ambient, in contrast to the ones running in subambients.

Nothing prevents the existence of two or more ambients with the same name, either
nested or at the same level. Once a name is created, it can be used to name multiple am-
bients. Moreover, !n[P] generates multiple ambients with the same name. This way, for
example, one can easily model the replication of services.

Actions and Capabilities
Operations that change the hierarchical structure of ambients are sensitive. In particular
such operations can be interpreted as the crossing of firewalls or the decoding of cipher-
texts. Hence these operations are restricted by capabilities. Thanks to capabilities, an
ambient can allow other ambients to perform certain operations without having to re-
veal its true name. With the communication primitives of Section 3, capabilities can be
transmitted as values.

The process M. P executes an action regulated by the capability M, and then con-
tinues as the process P. The process P does not start running until the action is executed.
The reduction rules for M. P depend on the capability M, and are described below case
by case.

We consider three kinds of capabilities: one for entering an ambient, one for exiting
an ambient and one for opening up an ambient. Capabilities are obtained from names;
given a name n, the capability in n allows entry into n, the capability out n allows exit
out of n and the capability open n allows the opening of n. Implicitly, the possession of
one or all of these capabilities for n is insufficient to reconstruct the original name n.

An entry capability, in m, can be used in the action in m. P, which instructs the am-
bient surrounding in m. P to enter a sibling ambient named m. If no sibling m can be
found, the operation blocks until a time when such a sibling exists. If more than one m
sibling exists, any one of them can be chosen. The reduction rule is:

If successful, this reduction transforms a sibling n of an ambient m into a child of m.
After the execution, the process in m. P continues with P, and both P and Q find them-
selves at a lower level in the tree of ambients.

P ���� Q � n[P] ���� n[Q]

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]

6

An exit capability, out m, can be used in the action out m. P, which instructs the
ambient surrounding out m. P to exit its parent ambient named m. If the parent is not
named m, the operation blocks until a time when such a parent exists. The reduction rule
is:

If successful, this reduction transforms a child n of an ambient m into a sibling of m.
After the execution, the process in m. P continues with P, and both P and Q find them-
selves at a higher level in the tree of ambients.

An opening capability, open n, can be used in the action open n. P. This action pro-
vides a way of dissolving the boundary of an ambient named n located at the same level
as open, according to the rule:

If no ambient n can be found, the operation blocks until a time when such an ambient
exists. If more than one ambient n exists, any one of them can be chosen.

An open operation may be upsetting to both P and Q above. From the point of view
of P, there is no telling in general what Q might do when unleashed. From the point of
view of Q, its environment is being ripped open. Still, this operation is relatively well-
behaved because: (1) the dissolution is initiated by the agent open n. P, so that the ap-
pearance of Q at the same level as P is not totally unexpected; (2) open n is a capability
that is given out by n, so n[Q] cannot be dissolved if it does not wish to be.

Movement from the Inside or the Outside: Subjective vs. Objective
There are two natural kinds of movement primitives for ambients. The distinction is be-
tween “I make you move” from the outside (objective move) or “I move” from the inside
(subjective move). Subjective moves have been described above. Objective moves (in-
dicated by an mv prefix), obey the rules:

These two kinds of move operations are not trivially interdefinable. The objective
moves have simpler rules. However, they operate only on ambients that are not active;
they provide no way of moving an existing running ambient. The subjective moves, in
contrast, cause active ambients to move and, together with open, can approximate the
effect of objective moves (as we discuss later).

In evaluating these alternative operations, one should consider who has the author-
ity to move whom. In general, the authority to move rests in the top-level agents of an
ambient, which naturally act as control agents. Control agents cannot be injected purely
by subjective moves, since these moves handle whole ambients. With objective moves,
instead, a control agent can be injected into an ambient simply by possessing an entry
capability for it. As a consequence, objective moves and entry capabilities together pro-
vide the unexpected power of entrapping an ambient into a location it can never exit:

m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]

open n. P | n[Q] ���� P | Q

mv in m. P | m[R] ���� m[P | R] m[mv out m. P | R] ���� P | m[R]

entrap m � (ν k) (k[] | mv in m. in k. 0)
entrap m | m[P] ����* (νk) k[m[P]]

7

The open capability confers the right to dissolve an ambient from the outside and
reveal its contents. It is interesting to consider an operation that dissolves an ambient
form the inside, called acid:

Acid gives a simple encoding of objective moves:

Therefore, acid is as dangerous as objective moves, providing the power to entrap am-
bients. We shall see that open can be used to define a capability-restricted version of
acid that does not lead to entrapment.

2.3 Operational Semantics
We now give an operational semantics of the calculus of section 2.1, based on a struc-
tural congruence between processes, �, and a reduction relation ����. This is a semantics
in the style of Milner’s reaction relation [14] for the π-calculus, which was itself in-
spired by the Chemical Abstract Machine of Berry and Boudol [3].

Structural Congruence

Processes of the calculus are grouped into equivalence classes by the relation �,
which denotes structural congruence (that is, equivalence up to trivial syntactic restruc-
turing). In addition, we identify processes up to renaming of bound names: (νn)P =
(νm)P{n←m} if m � fn(P). By this we mean that these processes are understood to be
identical (for example, by choosing an appropriate representation), as opposed to struc-
turally equivalent.

Note that the following terms are in general distinct:

The behavior of processes is given by the following reduction relations. The first
three rules are the one-step reductions for in, out and open. The next three rules propa-
gate reductions across scopes, ambient nesting and parallel composition. The final rule
allows the use of equivalence during reduction. Finally, ����* is the reflexive and transi-
tive closure of ����.

m[acid. P | Q] ���� P | Q

mv in n.P � (νq) q[in n. acid. P]
mv out n.P � (νq) q[out n. acid. P]]

P � P
P � Q � Q � P
P � Q, Q � R � P � R

P � Q � (νn)P � (νn)Q
P � Q � P | R � Q | R
P � Q � !P � !Q
P � Q � n[P] � n[Q]
P � Q � M.P � M.Q

P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P
(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n � fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

P | 0 � P
(νn)0 � 0
!0 � 0

!(νn)P � (νn)!P replication creates new names
n[P] | n[Q] � n[P | Q] multiple n ambients have separate identity

8

Reduction

2.4 Example: Locks
We can use open to encode locks that are released and acquired:

This way, two agents can “shake hands” before proceeding with their execution:

2.5 Example: Firewall Access
In this example, an agent crosses a firewall by means of previously arranged passwords
k, k’, and k”. The agent exhibits the password k’ by using a wrapper ambient that has k’
as its name. The firewall, which has a secret name w, sends out a pilot ambient, k[out w.
in k’. in w], to guide the agent inside. The pilot ambient enters an agent by performing
in k’ (therefore verifying that the agent knows the password), and is given control by
being opened. Then, in w transports the agent inside the firewall, where the password
wrapper is discarded. The third name, k”, is needed to confine the contents Q of the
agent and to prevent Q from interfering with the protocol.

The final effect is that the agent physically crosses into the firewall; this can be seen
below by the fact that Q is finally placed inside w. (For simplicity, this example is writ-
ten to allow a single agent to enter.) Assume (fn(P) ∪ fn(Q)) ∩ {k, k’, k”} = � and w �
fn(Q):

There is no guarantee here that any particular agent will make it inside the firewall.
Rather, the intended guarantee is that if any agent crosses the firewall, it must be one
that knows the passwords.

To express the security property of the firewall we introduce a notion of contextual
equivalence, 	. Let a context C[] be a process containing zero or more holes, and for
any process P, let C[P] be the process obtained by filling each hole in C with a copy of
P (names free in P may become bound). Then define:

If (fn(P) ∪ fn(Q)) ∩ {k, k’, k”} = � and w � fn(Q), then we can show that the inter-
action of the agent with the firewall produces the desired result up to contextual equiv-
alence.

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]
open n. P | n[Q] ���� P | Q

P ���� Q � (νn)P ���� (νn)Q
P ���� Q � n[P] ���� n[Q]
P ���� Q � P | R ���� Q | R

P’ � P, P ���� Q, Q � Q’ � P’ ���� Q’

acquire n. P � open n. P release n. P � n[] | P

acquire n. release m. P | release n. acquire m. Q

Firewall� (νw) w[k[out w. in k’. in w] | open k’. open k”. P]
Agent � k’[open k. k”[Q]]

P
n � P � (ν m1...mi) (n[P’] | P”) where n � {m1...mi}
P�n � P ����* Q and Q
n
P 	 Q � for all n and C[], C[P]�n ⇔ C[Q]�n

9

Since contextual equivalence takes into account all possible contexts, the equation
above states that the firewall crossing protocol works correctly in the presence of any
possible attacker (that does not know the passwords) that may try to disrupt it.

2.6 Example: Objective Moves and Dissolution
Objective moves are not directly encodable. However, specific ambients can explicitly
allow objective moves by using open:

These definitions are to be used, for example, as follows:

Similarly, the acid primitive discussed previously is not encodable via open. How-
ever, we can code a form of planned dissolution:

to be used with a helper process open acid as follows:

This form of acid is sufficient for uses in many encodings where it is necessary to
dissolve ambients. Encodings are carefully planned, so it is easy to add the necessary
open instructions. The main difference with the liberal form of acid is that acid n must
name the ambient it is dissolving. More precisely, the encoding of acid n requires both
an exit and an open capability for n.

2.7 Example: External Choice
A major feature of CCS [13] is the presence of a non-deterministic choice operator (+).
We do not take + as a primitive, in the spirit of the asynchronous π-calculus, but we can
approximate some aspects of it by the following definitions. The intent is that n�P +
m�Q reduces to P in the presence of an n ambient, and reduces to Q in the presence of
an m ambient.

For example, assuming {p, q, r} ∩ fn(R) = �, we have:

(ν k k’ k”) (Agent | Firewall) 	 (νw) w[Q | P]

allow n � !open n
mv in n.P � (νk) k[in n. in[out k. open k. P]]
mv out n.P � (νk) k[out n. out[out k. open k. P]
n�[P] � n[P | allow in] (n� allows mv in)
n[P] � n[P] | allow out (n allows mv out)
n�[P] � n[P | allow in] | allow out (n� allows both mv in and mv out)

mv in n.P | n�[Q] ����* n�[P | Q]
n�[mv out n.P | Q] ����* P | n�[Q]

acid n. P � acid[out n. open n. P]

n[acid n. P | Q] | open acid ����* P | Q

n�P + m�Q � (ν p q r) (
 p[in n. out n. q[out p. open r. P]] |
 p[in m. out m. q[out p. open r. Q]] |
 open q | r[])

10

where the relation ����*	 is the relational composition of ����* and 	.

2.8 Example: Numerals
We represent the number i by a stack of nested ambients of depth i. For any natural num-
ber i, let i be the numeral for i:

The open op process is needed to allow ambients named op to enter the stack of ambi-
ents to operate on it. To show that arithmetic may be programmed on these numerals,
we begin with an ifzero operation to tell whether a numeral represents 0 or not.

Next, we can encode increment and decrement operations.

These definitions satisfy:

Given that iterative computations can be programmed with replication, any arith-
metic operation can be programmed with inc, dec and iszero.

2.9 Example: Turing Machines
We emulate Turing machines in a “mechanical” style. A tape consists of a nested se-
quence of squares, each initially containing the flag ff[]. The first square has a distin-
guished name to indicate the end of the tape to the left:

The head of the machine is an ambient that inhabits a square. The head moves right by
entering the next nested square and moves left by exiting the current square. The head
contains the program of the machine and it can read and write the flag in the current
square. The trickiest part of the definition concerns extending the tape. Two tape-
stretchers are placed at the beginning and end of the tape and continuously add squares.

(n�P + m�Q) | n[R] ����*	 P�| n[R]

0 � zero[] i+1 � succ[open op | i]

ifzero P Q � zero�P + succ�Q
0 | ifzero P Q ����*	 0 | P
i+1 | ifzero P Q ����*	 i+1 | Q

inc.P � ifzero (inczero.P) (incsucc.P)
inczero.P � open zero. (1 | P)
incsucc.P � (ν p q) (p[succ[open op]] | open q. open p. P |

 op[in succ. in p. in succ. (q[out succ. out succ. out p] |
 open op)])

dec.P � (ν p) (op[in succ. p[out succ]] | open p. open succ. P)

i | inc.P ����*	 i+1 | P i+1 | dec.P ����*	 i | P

end�[ff[] | sq�[ff[] | sq�[ff[] | sq�[ff[] | ...]]]]

if tt P, if ff Q � tt � open tt. P + ff � open ff. Q

head �
head[!open S1. state #1 (example)

11

3 Communication
Although the pure mobility calculus is powerful enough to be Turing-complete, it has
no communication or variable-binding operators. Such operators seem necessary, for
example, to comfortably encode other formalisms such as the π-calculus.

Therefore, we now have to choose a communication mechanism to be used to ex-
change messages between ambients. The choice of a particular mechanism is somewhat
orthogonal to the mobility primitives. However, we should try not to defeat with com-
munication the restrictions imposed by capabilities. This suggests that a primitive form
of communication should be purely local, and that the transmission of non-local mes-
sages should be restricted by capabilities.

3.1 Communication Primitives
To focus our attention, we pose as a goal the ability to encode the asynchronous π-cal-
culus. For this it is sufficient to introduce a simple asynchronous communication mech-
anism that works locally within a single ambient.

Mobility and Communication Primitives

We again start by displaying the syntax of a whole calculus. The mobility primi-

mv out head. jump out to read flag
if tt (ff[] | mv in head. in sq. S2[]), head right, state #2
if ff (tt[] | mv in head. out sq. S3[]) | head left, state #3

 ... | more state transitions
 S1[]] initial state

stretchRht � stretch tape right
(νr) r[!open it. mv out r. (sq�[ff[]] | mv in r. in sq. it[]) | it[]]

stretchLft � stretch tape left
!open it. mv in end.

(mv out end. end�[sq�[] | ff[]] |
 in end. in sq. mv out end. open end. mv out sq. mv out end. it[])

| it[]

machine � stretchLft | end�[ff[] | head | stretchRht]

P,Q ::=
(νn)P
0
P | Q
!P

processes
restriction
inactivity
composition
replication

M ::=
x
n
in M
out M

capabilities
variable
name
can enter into M
can exit out of M

M[P]
M.P
(x).P
�M�

ambient
capability action
input action
async output action

open M
ε
M.M’

can open M
null
path

12

tives are essentially those of section 2, but the addition of communication variables
changes some of the details. More interestingly, we add input ((x).P) and output (�M�)
primitives and we enrich the capabilities to include paths. We identify capabilities up to
the following equations: L.(M.N) = (L.M).N and M.ε = M = ε.M. As a new syntactic con-
vention, we have that (x).P | Q = ((x).P) | Q.

3.2 Explanations

Communicable Values
The entities that can be communicated are either names or capabilities. In realistic sit-
uations, communication of names should be rather rare, since knowing the name of an
ambient gives a lot of control over it. Instead, it should be common to communicate re-
stricted capabilities to allow controlled interactions between ambients.

It now becomes useful to combine multiple capabilities into paths, especially when
one or more of those capabilities are represented by input variables. To this end we in-
troduce a path-formation operation on capabilities (M. M’). For example, (in n. in m). P
is interpreted as in n. in m. P.

We distinguish between ν-bound names and input-bound variables. Variables can
be instantiated with names or capabilities. In practice, we do not need to distinguish
these two sorts lexically, but we often use n, m, p, q for names and w, x, y, z for variables.

Ambient I/O
The simplest communication mechanism that we can imagine is local anonymous com-
munication within an ambient (ambient I/O, for short):

An output action releases a capability (possibly a name) into the local ether of the sur-
rounding ambient. An input action captures a capability from the local ether and binds
it to a variable within a scope. We have the reduction:

This local communication mechanism fits well with the ambient intuitions. In par-
ticular, long-range communication, like long-range movement, should not happen au-
tomatically because messages may have to cross firewalls. Still, this simple mechanism
is sufficient, as we shall see, to emulate communication over named channels, and more
generally to provide an encoding of the asynchronous π-calculus.

Remark
To allow both names and capabilities to be output and input, there is a single syntactic
sort that includes both. Then, a meaningless term of the form n. P can then arise, for
instance, from the process ((x). x. P) | �n�. This anomaly is caused by the desire to denote
movement capabilities by variables, as in (x). x. P, and from the desire to denote names
by variables, as in (x). x[P]. We permit n. P to be formed, syntactically, in order to make
substitution always well defined. A simple type system distinguishing names from
movement capabilities would avoid this anomaly.

(x).P input action �M� async output action

(x).P | �M� ���� P{x←M}

13

3.3 Operational Semantics
The structural congruence relation is defined as in section 2.3, with the understanding
that P and M range now over larger classes, and with the addition of the following equiva-
lences:

Structural Congruence

We now identify processes up to renaming of bound variables: (x).P = (y).P{x←y} if
y � fv(P). Finally, we have a new reduction rule:

Reduction

3.4 Example: Cells
A cell cell c w stores a value w at a location c, where a value is a capability. The cell is
set to output its current contents destructively, and is set to be “refreshed” with either
the old contents (by get) or a new contents (by set). Note that set is essentially an output
operation, but it is a synchronous one: its sequel P runs only after the cell has been set.
Parallel get and set operations do not interfere.

It is possible to code an atomic get-and-set primitive:

Named cells can be assembled into ambients that act as record data structures.

3.5 Example: Routable Packets and Active Networks
We define packet pkt as an empty packet of name pkt that can be routed repeatedly to
various destinations. We also define route pkt with P to M as the act of placing P inside
the packet pkt and sending the packet to M; this is to be used in parallel with packet pkt.
Note that M can be a compound capability, representing a path to follow. Finally, for-
ward pkt to M is an abbreviation that forwards any packet named pkt that passes by to
M. Here we assume that P does not interfere with routing.

Since our packets are ambients, they may contain behavior that becomes active
within the intermediate routers. Therefore we can naturally model active networks,
which are characterized by routers that execute code carried by packets.

P � Q � M[P] � M[Q]
P � Q � (x).P � (x).Q

ε.P � P
(M.M’).P � M.M’.P

(x).P | �M� ���� P{x←M}

cell c w � c�[�w�]
get c (x). P � mv in c. (x). (�x� | mv out c. P)
set c �w�. P � mv in c. (x). (�w� | mv out c. P)

get-and-set c (x) �w�. P � mv in c. (x). (�w� | mv out c. P)

packet pkt � pkt[!(x). x | !open route]
route pkt with P to M � route[in pkt. �M� | P]
forward pkt to M � route pkt with 0 to M

14

3.6 Communication Between Ambients
Our basic communication primitives operate only within a given ambient. We now dis-
cuss one example of communication across ambients. In addition, in section 3.7 we treat
the specific case of channel-based communication across ambients.

It is not realistic to assume direct long-range communication. Communication, like
movement, is subject to access restrictions due to the existence of administrative do-
mains. Therefore, it is convenient to model long-range communication as the move-
ment of “messenger” agents that must cross administrative boundaries. Assume, for
simplicity, that the location M allows I/O by !open io. By M–1 we indicate a given return
path from M.

To avoid transmitting P all the way there and back, we can write input as:

To emulate Remote Procedure Call we write (assuming res contains the result):

This is essentially an implementation of a synchronous communication (RPC) by two
asynchronous communications (�a� and �x�).

3.7 Encoding the π-calculus
The encoding of the asynchronous π-calculus is moderately easy, given our I/O primi-
tives. A channel is simply represented by an ambient: the name of the channel is the
name of the ambient. This is very similar in spirit to the join-calculus [9] where chan-
nels are rooted at a location. Communication on a channel is represented by local com-
munication inside an ambient. The basic technique is a variation on objective moves. A
conventional name, io, is used to transport input and output requests into the channel.
The channel opens all such requests and lets them interact.

These definitions satisfy the expected reduction n(x).P | n�M������* P{x←M} in the pres-
ence of a channel ch n. Therefore, we can write the following encoding of the π-calcu-
lus:

Encoding of the Asynchronous π-calculus

@M�a� � io[M. �a�] remote output at M
@M(x)M–1. P � (νn) (io[M. (x). n[M–1. P]] | open n) remote input at M

@M(x)M–1. P � (νn) (io[M. (x). n[M–1. �x�]] | open n) | (x). P

@M arg�a� res(x) M–1. P �
(νn) (io[M. (�a� | open res. (x). n[M–1. �x�])] | open n) | (x). P

ch n � n[!open io] a channel
(ch n)P � (νn) (ch n | P) a new channel
n(x).P � (νp) (io[in n. (x). p[out n. P]] | open p) channel input
n�M� � io[in n. �M�] async channel output

�(νn)P� � (νn) (n[!open io] | �P�)
�n(x).P� � (νp) (io[in n. (x). p[out n. �P�]] | open p)
�n�m�� � io[in n. �m�]

�P | Q� � �P� | �Q�
�!P� � !�P�

15

This encoding includes the choice-free synchronous π-calculus, since it can itself be en-
coded within the asynchronous π-calculus [4, 12].

We can fairly conveniently use these definitions to embed communication on
named channels within the ambient calculus (provided the name io is not used for other
purposes). Communication on these named channels, though, only works within a sin-
gle ambient. In other words, from our point of view, a π-calculus process always inhab-
its a single ambient. Therefore, the notion of mobility in the π-calculus (communication
of names over named channels) is different from our notion of mobility.

4 Conclusions and Future Work
We have introduced the informal notion of mobile ambients, and we have discussed
how this notion captures the structure of complex networks and the behavior of mobile
computation. We have then investigated an ambient calculus that formalizes this notion
simply and powerfully. Our calculus is no more complex than common process calculi,
but supports reasoning about mobility and, at least to some degree, security.

This paper concentrates mostly on examples and intuition. In ongoing work we are
developing theories of equivalences for the ambient calculus, drawing on earlier work
on the π-calculus. These equivalences will allow us to reason about mobile computa-
tion, as briefly illustrated in the firewall crossing example.

On this foundation, we can envision new programming methodologies, program-
ming libraries and programming languages for global computation.

Acknowledgments
Thanks to Cédric Fournet, Paul McJones and Jan Vitek for comments on early drafts.
Stuart Wray suggested an improved definition of external choice.

Gordon held a Royal Society University Research Fellowship for most of the time
we worked on this paper.

References
[1] Abadi, M. and A.D. Gordon, A calculus for cryptographic protocols: the spi calculus.

Proc. Fourth ACM Conference on Computer and Communications Security, 36-47, 1997.
[2] Amadio, R.M., An asynchronous model of locality, failure, and process mobility. Proc.

COORDINATION 97, Berlin, 1997.
[3] Berry, G. and G. Boudol, The chemical abstract machine. Theoretical Computer Science

96(1), 217-248, 1992.
[4] Boudol, G., Asynchrony and the π-calculus. TR 1702, INRIA, Sophia-Antipolis, 1992.
[5] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT

Press. 1995.
[6] Carriero, N. and D. Gelernter, Linda in context. CACM, 32(4), 444-458, 1989.
[7] Carriero, N., D. Gelernter, and L. Zuck, Bauhaus Linda, in LNCS 924, 66-76, Springer-

Verlag, 1995.
[8] De Nicola, R., G.-L. Ferrari and R. Pugliese, Locality based Linda: programming with

explicit localities. Proc. TAPSOFT’97. 1997.

16

[9] Fournet, C. and G. Gonthier, The reflexive CHAM and the join-calculus. Proc. 23rd An-
nual ACM Symposium on Principles of Programming Languages, 372-385. 1996.

[10] Fournet, C., G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy, A calculus of mobile agents.
Proc. CONCUR'96, 406-421. 1996.

[11] Gosling, J., B. Joy and G. Steele, The Java language specification. Addison-Wesley. 1996.
[12] Honda., K. and M. Tokoro, An object calculus for asynchronous communication. Proc.

ECOOP’91, LNCS 521, 133-147, Springer Verlag, 1991.
[13] Milner, R., A calculus of communicating systems. LNCS 92. Springer-Verlag. 1980.
[14] Milner, R., Functions as processes. Mathematical Structures in Computer Science 2, 119-

141. 1992.
[15] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, Parts 1-2. Informa-

tion and Computation, 100(1), 1-77. 1992
[16] White, J.E., Mobile agents. In Software Agents, J. Bradshaw, ed. AAAI Press / The MIT

Press. 1996.

