
1

Mobility and Security

Luca Cardelli

Microsoft Research

Lecture Notes for the Marktoberdorf Summer School 1999,
from works by Luca Cardelli and Andrew D. Gordon

Abstract. We discuss the computational aspects of wide area networks, and we describe var-
ious facets of a process calculus devised to embody mobility, security, and wide area network
semantics. These lecture notes are an abridged version of [8, 11, 27, 12, 13].

Part I: Wide Area Computation

1 Introduction

The Internet and the World-Wide-Web provide a computational infrastructure that spans the
planet. It is appealing to imagine writing programs that exploit this global infrastructure. Un-
fortunately, the Web violates many familiar assumptions about the behavior of distributed
systems, and demands novel and specialized programming techniques. In particular, three
phenomena that remain largely hidden in local area network architectures become readily ob-
servable on the Web:

• (A) Virtual locations. Because of the presence of potential attackers, barriers are erect-
ed between mutually distrustful administrative domains. Therefore, a program must be
aware of where it is, and of how to move or communicate between different domains.
The existence of separate administrative domains induces a notion of virtual locations
and of virtual distance between locations.

• (B) Physical locations. On a planet-size structure, the speed of light becomes tangible.
For example, a procedure call to the antipodes requires at least 1/10 of a second, inde-
pendently of future improvements in networking technology. This absolute lower
bound to latency induces a notion of physical locations and physical distance between
locations.

• (C) Bandwidth fluctuations. A global network is susceptible to unpredictable conges-
tion and partitioning, which result in fluctuations or temporary interruptions of band-
width. Moreover, mobile devices may perceive bandwidth changes as a consequence
of physical movement. Programs need to be able to observe and react to these fluctua-
tions.

These features may interact among themselves. For example, bandwidth fluctuations may be
related to physical location because of different patterns of day and night network utilization,
and to virtual location because of authentication and encryption across domain boundaries.
Virtual and physical locations are often related, but need not coincide.

In addition, another phenomenon becomes unobservable on the Web:

• (D) Failures. On the Web, there is no practical upper bound to communication delays.
In particular, failures become indistinguishable from long delays, and thus undetect-

2

able. Failure recovery becomes indistinguishable from intermittent connectivity. Fur-
thermore, delays (and, implicitly, failures) are frequent and unpredictable.

These four phenomena determine the set of observables of the Web: the events or states
that can be in principle detected. Observables, in turn, influence the basic building blocks of
computation. In moving from local area networks to wide area networks, the set of observ-
ables changes, and so does the computational model, the programming constructs, and the
kind of programs one can write. The question of how to “program the Web” reduces to the
question of how to program with the new set of observables provided by the Web.

At least one general technique has emerged to cope with the observables characteristic of
a wide area network such as the Web. Mobile computation is the notion that running programs
need not be forever tied to a single network node. Mobile computation can deal in original
ways with the phenomena described above:

• (A) Virtual locations. Given adequate trust mechanisms, mobile computations can
cross barriers and move between virtual locations. Barriers are designed to impede ac-
cess, but when code is allowed to cross them, it can access local resources without the
impediment of the barriers.

• (B) Physical locations. Mobile computations can move between physical locations,
turning remote calls into local calls, and thus avoiding the latency limit.

• (C) Bandwidth fluctuations. Mobile computations can react to bandwidth fluctuations,
either by moving to a better-placed location, or by transferring code that establishes a
customized protocol over a connection.

• (D) Failures. Mobile computations can run away from anticipated failures, and can
move around presumed failures.

Mobile computation is also strongly related to recent hardware advances, since computa-
tions move implicitly when carried on portable devices. In this sense, we cannot avoid the is-
sues raised by mobile computation: more than an avant-garde software technique, it is an
existing hardware reality.

2 Three Mental Images

We begin by comparing and contrasting three mental images; that is, three abstracted views
of distributed computation. From the differences between these mental images we derive the
need for new approaches to global computation.

2.1 Local Area Networks

The first mental image corresponds to the now standard, and quickly becoming obsolete,
model of computation over local area networks.

When workstations and PCs started replacing mainframes, local networks were invented
to connect autonomous computers for the purpose of resource sharing. A typical local area
network consists of a collection of computers of about the same power (within a couple of
hardware generations) and of network links of about the same bandwidth and latency. This
environment is not always completely uniform: specialized machines may operate as servers
or as engineering workstations, and specialized subnetworks may offer special services. Still,
by and large, the structure of a LAN can be depicted as the uniform network of nodes (com-
puters) and links (connections) in Mental Image 1.

A main property of such a network is its predictability. Communication delays are bound-
ed, and processor response time can be estimated. Therefore, link and process failures can be
detected by time-outs and by “pinging” nodes.

3

Another important property of local area networks is that they are usually well-adminis-
tered and, in recent times, protected against attack. Network administrators have the task of
keeping the network running and protect it against infiltration. In the picture, the boundary
line represents an administrative domain, and the flames represent the protection provided by
a firewall. Protection is necessary because local area networks are rarely completely discon-
nected: they usually have slower links to the outside world, which are however enough to
make administrators nervous about infiltration.

The architecture of local area networks is very different from the older, highly central-
ized, mainframe architecture. This difference, and the difficulties implied by it, resulted in the
emergence of novel distributed computing techniques, such as remote-procedure-call, client-
server architecture, and distributed object-oriented programming. The combined aim and ef-
fect of these techniques is to make the programming and application environment stable and
uniform (as in mainframes). In particular, the network topology is carefully hidden so that any
two computers can be considered as lying one logical step apart. Moreover, computers can be
considered immobile; for example, they usually preserve their network address when physi-
cally moved.

Even in this relatively static environment, the notion of mobility has gradually acquired
prominence, in a variety of forms. Control mobility, found in RPC (Remote Procedure Call)
and RMI (Remote Method Invocation) mechanisms, is the notion that a thread of control
moves (in principle) from one machine to another and back. Data mobility is achieved in
RPC/RMI by linearizing, transporting, and reconstructing data across machines. Link mobil-
ity is the ability to transmit the end-points of network channels, or remote object proxies. Ob-
ject mobility is the ability to move objects between different servers, for example for load
balancing purposes. Finally, in Remote Execution, a computations can be shipped for execu-
tion to a server (this is an early version of code mobility, proposed as an extension of RPC
[41]).

In recent years, distributed computing has been endowed with greater mobility properties
and easier network programming. Techniques such as Object Request Brokers have emerged
to abstract over the location of objects providing certain services. Code mobility has emerged
in Tcl and other scripting languages to control network applications. Agent mobility has been
pioneered in Telescript [43], aimed towards a uniform (although wide area) network of ser-
vices. Closure mobility (the mobility of active and connected entities) has been investigated
in Obliq [7].

In due time, local area network techniques would have smoothly and gradually evolved
towards deployment on wide area networks, e.g. as was explicitly attempted by the CORBA
effort. But, suddenly, a particular wide area network came along that radically changed the
fundamental assumptions of distributed computing and its pace of progress: the Web.

Administrative Domain

Mental Image 1: Local Area Network

4

2.2 Wide Area Networks

Global computing evolved over the span of a few decades in the form of the Internet. But it
was not until the emergence of the Web that the peculiar characteristics of the Internet were
exposed in a way that anybody could verify with just a few mouse clicks. For clarity and sim-
plicity we will refer to the Web as the primary global information infrastructure, although it
was certainly not the first one.

We should remember that the notions of a global address space and of a global file system
have been popular at times as extensions of the mainframe architecture to wide area networks.
The first obvious feature of the Web is that, although it forms a global computational re-
source, it is nothing like a global mainframe, nor an extension of it. The Web does not support
a global (updatable) file system and, although it supports a global addressing mechanism, it
does not guarantee the integrity of addressing. The Web has no single reliable component, but
it also has no single failure point; it is definitely not the centralized all-powerful mainframe
of 1950’s science fiction novels that could be shut off by attacking its single “brain”.

The fact that the Web is not a mainframe is not a big concern; we have already success-
fully tackled distributed computing based on LANs. More distressing is the fact that the Web
does not behave like a LAN either. Many proposals have emerged along the lines of extend-
ing LAN concepts to a global environment; that is, in turning the Internet into a distributed
address space, or a distributed file system. However, since the global environment does not
have the stability properties of a LAN, this can be achieved only by introducing redundancy
(for reliability), replication (for quality of service), and scalability (for management) at many
different levels. Things might have evolved in this direction, but this is not the way the Web
came to be. The Web is, almost by definition, unreliable, unpredictable, and unmanageable
as a whole, and was not designed with LAN-like guarantees of service.

Therefore, the main problem with the Web is that it is not just a big LAN, otherwise, mod-
ulo issues of scale, we would already know how to deal with it. There are several ways in
which the Web is not a big LAN, and we will describe them shortly. But the fundamental rea-
son is that, unlike a LAN, the Web is not centrally administered. Instead, it is a dynamic col-
lection of countless independent administrative domains, all widely different and mutually
distrustful. This is represented in Mental Image 2.

In that picture, computers differ greatly in power and availability, while network links dif-
fer greatly in capacity and reliability. Large physical distances have visible effects, and so do
time zones. The architecture of a wide area network is yet again fundamentally different from
that of a local area network. Most prominently, the network topology is dynamic and non-
trivial. Computers become intrinsically mobile: they require different addressing when phys-

Mental Image 2: Wide Area Network (for example, the Web)

5

ically moved across administrative boundaries. Techniques based on mobility become more
important and sometimes essential. For example, mobile Java applets provided the first dis-
ciplined mechanism for running code able to (and allowed to) systematically penetrate other
people’s firewalls. Countless projects have emerged in the last few years with the aim of sup-
porting mobile computation over wide areas, and are beginning to be consolidated.

At this point, our architectural goal might be to devise techniques for managing compu-
tation over an unreliable collection of far-flung computers. However, this is not yet the full
picture. Not only are network links and nodes widely dispersed and unreliable; they are not
even liable to stay put, as we discuss next.

2.3 Mobile Computing

A different global computing paradigm has been evolving independently of the Web. Instead
of connecting together all the LANs in the world, another way of extending the reach of a
LAN is to move individual computers and other gadgets from one LAN to another, dynami-
cally.

We discussed in the Introduction how the main characteristics of the Web point towards
mobile computation. However, that is meant as mobile computation over a fixed (although
possibly flaky) network. A more interesting picture emerges when the very components of
the network can move about. This is the field of mobile computing. Today, laptops and per-
sonal organizers routinely move about; in the future entire networks will go mobile (as in
IBM’s Personal Area Network). Existing examples of this kind of mobility include: a smart
card entering a network computer slot; an active badge entering a room; a wireless PDA or
laptop entering a building; a mobile phone entering a phone cell.

We could draw a picture similar to Mental Image 1, but with mobile devices moving with-
in the confines of a single LAN. This notion of a dynamic LAN is a fairly minor extension of
the basic LAN concepts, and presents few conceptual problems (wireless LANs are already
common). A much more interesting picture emerges when we think of mobile gadgets over a
WAN, because administrative boundaries and multiple access pathways then interact in com-
plex ways, as anybody who travels with a laptop knows all too well.

Mental Image 3 focuses on two domains: the United States and the European Union, each
enclosed by a political boundary that regulates the movement of people and computers. With-
in a political boundary, private companies and public agencies may further regulate the flow
of people and devices across their doors. Over the Atlantic we see a third domain, represent-
ing Air France flight 81 travelling from San Francisco to Paris. AF81 is a very active mobile
computational environment: it is full of people working with their laptops and possibly con-
necting to the Internet through airphones. (Not to mention the hundreds of computers that
control the airplane and let it communicate with a varying stream of ground stations.)

Abstracting a bit from people and computation devices, we see here a hierarchy of bound-
aries that enforce controls and require permissions for crossing. Passports are required to

US

N SASFO

AF 81

EU
CDG

Mental Image 3: Mobile Computing

6

cross political boundaries, tickets are required for airplanes, and special clearances are re-
quired to enter (and exit!) agencies such as the NSA. Sometimes, whole mobile boundaries
cross in and out of other boundaries and similarly need permissions, as the mobile environ-
ment of AF81 needs permission to enter an airspace. On the other hand, once an entity has
been allowed across a boundary, it is fairly free to roam within the confines of the boundary,
until another boundary needs to be crossed.

2.4 General Mobility

We have described two different notions of mobility. The first, mobile computation, has to do
with virtual mobility (mobile software). The second, mobile computing, has to do with phys-
ical mobility (mobile hardware). These two fields are today almost disconnected, the first
dominated by a software community, and the second dominated by a hardware community.
However, the borders between virtual and physical mobility are fuzzy, and eventually we will
have to treat all kinds of mobility in a uniform way. Here are two examples where the differ-
ent forms of mobility interact.

The first example is one of virtual mobility achieved by physical means. Consider a soft-
ware agent in a laptop. The agent can move by propagating over the network, but can also
move by being physically transported with the laptop from one location to another. In the first
case, the agent may have to undergo security checks (e.g., bytecode verification) when it
crosses administrative domains. In the second case the agent may have to undergo security
checks (e.g., virus detection) when the laptop is physically allowed inside a new administra-
tive domain. Do we need two completely separate security infrastructures for these two cases,
or can we somehow find a common principle? A plausible security policy for a given domain
would be that a physical barrier (a building door) should provide the same security guarantees
as a virtual barrier (a firewall).

The second example is one of physical mobility achieved by virtual means. Software ex-
ists that allows remote control of a computer, by bringing the screen of a remote computer on
a local screen. The providers of such software may claim that this is just as good as moving
the computer physically, e.g. to access its local data. Moreover, if the remote computer has a
network connection, this is also equivalent to “stringing wire” from the remote location, since
the remote network is now locally accessible. For example, using remote control over a phone
line to connect from home to work where a high-bandwidth Internet connection is available,
is almost as good as having a high-bandwidth Internet connection brought into the home.

The other side of the coin of being mobile is of becoming disconnected or intermittently
connected. Even barring flaky networks, intermittent connectivity can be caused by physical
movement, for example when a wireless user moves into some form of Faraday cage. More
interestingly, intermittent connectivity may be caused by virtual movement, for example
when an agent moves in and out of an administrative domain that does not allow communi-
cation. Neither case is really a failure of the infrastructure; in both cases, lack of connectivity
may in fact be a desirable security feature. Therefore, we have to assume that intermittent
connectivity, caused equivalently by physical or virtual means, is an essential feature of mo-
bility.

In the future we should be prepared to see increased interactions between virtual and
physical mobility, and we should develop frameworks where we can discuss and manipulate
these interactions.

2.5 Barriers and Action-at-a-Distance

The unifying difficulty in both mobile computing and mobile computation is the proliferation
of barriers, and the problems involved in crossing them. This central difficulty implies that
we must regard barriers as fundamental features of our computational models.

7

In general, we can forget about the notion of action-at-a-distance computing: the idea that
resources are available transparently at any time, no matter how far away. Instead, we have
to get used to the notion that movement and communication are step-by-step activities, and
that they are visibly so: the multiple steps involved cannot be hidden, collapsed, or rendered
atomic.

The action-at-a-distance paradigm is still prevalent within LANs, and this is another rea-
son why LANs are different from WANs, where such an assumption cannot hold.

2.6 WAN Postulates

We summarize this section by a collection of postulates that capture the main properties of
the reality we are interested in modeling:

• Separate locations exist.

• Different locations have different properties, hence both people and programs will want
to move between them.

• Barriers to mobility will be erected to preserve the properties of certain locations.

• Some people and some programs will still need to cross those barriers.

The point of these postulates is to stress that mobility and barrier crossing are inevitable re-
quirements of our current and future computing infrastructure.

The observables that are characteristic of wide area networks have the following implica-
tions:

• Distinct virtual locations are observed because of the existence of distinct administra-
tive domains, which are produced by the inevitable existence of attackers. Distinct vir-
tual locations preclude the unfettered execution of actions across domains, and require
a security model.

• Distinct physical locations are observed, over large distances, because of the inevitable
latency limit given by the speed of light. Distinct physical locations preclude instanta-
neous action at a distance, and require a mobility model.

• Bandwidth fluctuations (including hidden failures) are observed because of the inevi-
table exercise of free will by network users, both in terms of communication and move-
ment. Bandwidth fluctuations preclude reliance on response time, and require an
asynchronous communication model.

3 Modeling Wide Area Computation

Section 2 was dedicated to showing that the reality of mobile computation over a WAN does
not fall into familiar categories. Therefore, we need to invent a new model that can help us in
understanding and eventually in taking advantage of this reality.

3.1 Barriers

We believe that the most fundamental new notion is that of barriers; this is the most promi-
nent aspect of post-LAN computing environments.

Many of the basic features of WANs have to do with barriers: Locality (the existence of
different virtual or physical locations, and the notion of being in the same or different loca-
tions) is induced by a topology of barriers. Mobility is barrier crossing. Security has to do
with the ability or inability to cross barriers. Communication is partitioned by barriers: local
communication happens within barriers, while long-distance communication is a combina-
tion of local communication and movement across barriers. Action at a distance (immediate
interaction across many barriers) is forbidden.

8

We have chose barriers as the most important feature of an abstract model of computation
for wide area networks, the Ambient Calculus [11], which we briefly outline here and inves-
tigate in the remaining sections.

3.2 Ambients

The current literature on wide area network languages can be broadly classified into agent-
based languages (e.g., Telescript [43]), and place-based languages (e.g., Linda [14]). An am-
bient is a generalization of both notions. Like an agent, an ambient can move across places
(also represented by ambients) where it can interact with other agents. Like a place, an ambi-
ent supports local undirected communication, and can receive messages (also represented by
ambients) from other places. Ambients can be arbitrarily nested, generalizing the limited
place-agent-data nesting of most agent languages, and the nesting of places allowed in some
Linda dialects.

Briefly, an ambient is a place that is delimited by a boundary and where multi-threaded
computation happens. Each ambient has a name, a collection of local processes, and a collec-
tion of subambients. Ambients can move in and out of other ambients, subject to capabilities
that are associated with ambient names. Ambient names are unforgeable, this fact being the
most basic security property.

In further detail, an ambient has the following main characteristics.

• An ambient is a bounded place where computation happens.

If we want to move computations easily we must be able to determine what parts should
move. A boundary determines what is inside and what is outside an ambient, and there-
fore determines what moves. A boundary implies some flexible addressing scheme that
can denote entities across the boundary; examples are symbolic links, URLs (Uniform
Resource Locators) and Remote Procedure Call proxies. Flexible addressing is what
enables, or at least facilitates, mobility. It is also, of course, a cause of problems when
the addressing links are “broken”.

• Ambients can be nested within other ambients, forming a tree structure.

As we discussed, administrative domains are (often) organized hierarchically. Mobility
is represented as navigation across a hierarchy of ambients. For example, if we want to
move a running application from work to home, the application must be removed from
an enclosing (work) ambient and inserted in a different enclosing (home) ambient.

• Each ambient has a collection of local running processes.

A local process of an ambient is one that is contained in the ambient but not in any of
its subambients. These “top level” local processes have direct control of the ambient,
and in particular they can instruct the ambient to move. In contrast, the local processes
of a subambient have no direct control on the parent ambient: this helps guaranteeing
the integrity of the parent.

• Each ambient moves as a whole with all its subcomponents.

The activity of a single local process may, by causing movement of its parent, influence
the location, and therefore the activity, of other local processes and subambients. For
example, if we move a laptop and reconnect it to a different network, then all the
threads, address spaces, and file systems within it move accordingly and automatically,
and have to cope with their new surrounding. Agent mobility is a special case of ambi-
ent mobility, since agents are usually single-threaded. Ambients, like agents, automat-
ically carry with them a collection of private data as they move.

9

• Each ambient has a name.

The name of an ambient is used to control access (entry, exit, communication, etc.). In
a realistic situation the true name of an ambient would be guarded very closely, and
only specific capabilities based on the name would be handed out.

3.3 Ideas for Wide Area Languages

Ambients represent our understanding of the fundamental properties of mobile computation
over wide area networks. Our final goal, though, is to program the Internet in some conve-
nient high-level language. Therefore, we aim to find programming constructs that are seman-
tically compatible with the ambient principles, and consequently with wide area networks.

These compatibility requirements include (A) WAN-soundness: a wide area network lan-
guage cannot adopt primitives that entail action-at-a-distance, continued connectivity, global
consensus, or security bypasses, and (B) WAN-completeness: a wide area network language
must be able to express the behavior of web surfers and of mobile agents and users, and of
any other entities that routinely roam those networks.

More specifically, we believe the following are necessary ingredients of wide area lan-
guages.

• Naming. Names are symbolic ways of referring to entities across a barrier. Names are
detached from their corresponding entities; one may possess a name without having im-
mediate access to any entity of that name. To enable mobility and disconnected opera-
tion, all entities across a barrier should be denoted by names, not by “hard” pointers.

• Migration. Active hardware and software components should be able to migrate. Mi-
gration of certain active hardware components is possible today, but the ability to au-
tomatically disconnect and reconnect those components to surrounding (possibly
multiple) networks is not currently available. Migration of active software components
is even harder, typically for lack of system facilities for migrating live individual
threads and groups of threads.

• Dynamic connectivity. A wide area network cannot be started or stopped all at once.
Therefore, it is necessary to dynamically connect components. This is contrary to the
current prominence in programming languages of static binding, static module compo-
sition, and static linking. The ambient calculus provides an example of a novel mixture
of ordinary static scoping of names (which enables typechecking) with dynamic bind-
ing of operations to names (which enables dynamic linking).

• Communication. Communication on wide area networks must in general be asynchro-
nous. However, local communication (within or even across a single barrier) can use-
fully be synchronous. Moreover, in the presence of mobility, it is necessary to have
some level of synchronization between communication and movement operations. This
remains an interesting design area for mobile languages.

• Security. Security abstractions should be provided at the programming-language level,
that is, above the fundamental cryptographic primitives. Programmers need to operate
with reliable high-level abstractions, otherwise subtle security loopholes can creep in.
We believe that barriers are one such high-level security abstraction, which can be sup-
ported by programming constructs that can be mechanically analyzed (e.g., via type
systems [10]).

Summary

The ambient semantics naturally suggests unusual programming constructs that are well-suit-
ed for wide area computation. The combination of mobility, security, communication, and

10

dynamic binding issues has not been widely explored yet at the language-design level, and
certainly not within a unifying semantic paradigm. We hope our unifying foundation will fa-
cilitate the design of such new languages.

Part II: Ambient Calculus

4 Mobility

We describe a minimal calculus of ambients that includes only mobility primitives. Still, this
calculus is already quite expressive. In Section 5 we then introduce communication primi-
tives that allow us to write more natural examples.

4.1 Mobility Primitives

We first introduce a calculus in its entirety, and then we comment on the individual construc-
tions. The syntax of the calculus is defined in the following table. The main syntactic catego-
ries are processes (including both ambients and agents that execute actions) and capabilities.

Table 1: Mobility Primitives

Table 2: Free names

We write P{ n←m} for the substitution of the name m for each free occurrence of the
name n in the process P. Similarly for M{ n←m}.

Table 3: Syntactic conventions

n names

P,Q ::=
(νn)P
0
P | Q

processes
restriction
inactivity
composition

!P replication
n[P]
M.P

ambient
action

M ::=
in n
out n
open n

capabilities
can enter n
can exit n
can open n

fn((νn)P) $ fn(P) – {n}
fn(0) $ Ô
fn(P | Q) $ fn(P) ∪ fn(Q)
fn(!P) $ fn(P)
fn(n[P]) $ { n} ∪ fn(P)
fn(M.P) $ fn(M) ∪ fn(P)

fn(in n) $ { n}
fn(out n) $ { n}
fn(open n) $ { n}

(νn)P | Q is read ((νn)P) | Q
!P | Q is read (!P) | Q
M.P | Q is read (M.P) | Q

(νn1...nm)P $ (νn1)...(νnm)P
n[] $ n[0]
M $ M.0 (where appropriate)

11

The first four process primitives (restriction, inactivity, composition and replication) are
commonly found in process calculi. To these we add ambients, n[P], and the exercise of ca-
pabilities, M.P. Next we discuss these primitives in detail.

4.2 Explanations

We begin by introducing the semantics of ambients informally. A reduction relation PxyyzQ
describes the evolution of a process P into a new process Q.

Restriction

The restriction operator:

creates a new (unique) name n within a scope P. The new name can be used to name ambients
and to operate on ambients by name.

As in the π-calculus [35], the (νn) binder can float outward as necessary to extend the
scope of a name, and can float inward when possible to restrict the scope. Unlike the π-cal-
culus, the names that are subject to scoping are not channel names, but ambient names.

The restriction construct is transparent with respect to reduction; this is expressed by the
following rule:

Inaction

The process:

is the process that does nothing. It does not reduce.

Parallel

Parallel execution is denoted by a binary operator that is commutative and associative:

It obeys the rule:

This rule directly covers reduction on the left branch; reduction on the right branch is obtained
by commutativity.

Replication

Replication is a technically convenient way of representing iteration and recursion. The pro-
cess:

denotes the unbounded replication of the process P. That is, !P can produce as many parallel
replicas of P as needed, and is equivalent to P | !P. There are no reduction rules for !P; in
particular, the term P under ! cannot begin to reduce until it is expanded out as P | !P.

Ambients

An ambient is written:

where n is the name of the ambient, and P is the process running inside the ambient.

(νn)P

P xyyz Q ⇒ (νn)P xyyz (νn)Q

0

P | Q

P xyyz Q ⇒ P | R xyyz Q | R

!P

n[P]

12

In n[P], it is understood that P is actively running, and that P can be the parallel compo-
sition of several processes. We emphasize that P is running even when the surrounding am-
bient is moving. Running while moving may or may not be realistic, depending on the nature
of the ambient and of the communication medium through which the ambient moves, but it
is consistent to think in those terms. We express the fact that P is running by a rule that says
that any reduction of P becomes a reduction of n[P]:

In general, an ambient exhibits a tree structure induced by the nesting of ambient brackets.
Each node of this tree structure may contain a collection of (non-ambient) processes running
in parallel, in addition to subambients. We say that these processes are running in the ambient,
in contrast to the ones running in subambients. The general shape of an ambient is, therefore:

To emphasize structure we may display ambient brackets as boxes. Then the general
shape of an ambient is:

Nothing prevents the existence of two or more ambients with the same name, either nested
or at the same level. Once a name is created, it can be used to name multiple ambients. More-
over, !n[P] generates multiple ambients with the same name. This way, for example, one can
easily model the replication of services.

Actions and Capabilities
Operations that change the hierarchical structure of ambients are sensitive. In particular such
operations can be interpreted as the crossing of firewalls or the decoding of ciphertexts.
Hence these operations are restricted by capabilities. Thanks to capabilities, an ambient can
allow other ambients to perform certain operations without having to reveal its true name.
With the communication primitives of Section 5, capabilities can be transmitted as messages.

The process:

executes an action regulated by the capability M, and then continues as the process P. The
process P does not start running until the action is executed. For each kind of capability M we
have a specific rule for reducing M. P. These rules are described below case by case.

We consider three kinds of capabilities: one for entering an ambient, one for exiting an
ambient and one for opening up an ambient. Capabilities are obtained from names; given a
name m, the capability in m allows entry into m, the capability out m allows exit out of m and
the capability open m allows the opening of m. Implicitly, the possession of one or all of these
capabilities is insufficient to reconstruct the original name m from which they were extracted.

Entry Capability
An entry capability, in m, can be used in the action:

which instructs the ambient surrounding in m. P to enter a sibling ambient named m. If no
sibling m can be found, the operation blocks until a time when such a sibling exists. If more
than one m sibling exists, any one of them can be chosen. The reduction rule is:

P xyyz Q ⇒ n[P] xyyz n[Q]

n[P1 | ... | Pp | m1[...] | ... | mq[...]] (Pi ≠ ni[...])

M. P

in m. P

...

m1

n

P1 | ... | Pp | ...

mq

 | ... |

13

Or, by representing ambient brackets as boxes:

If successful, this reduction transforms a sibling n of an ambient m into a child of m. After
the execution, the process in m. P continues with P, and both P and Q find themselves at a
lower level in the tree of ambients.

Exit Capability

An exit capability, out m, can be used in the action:

which instructs the ambient surrounding out m. P to exit its parent ambient named m. If the
parent is not named m, the operation blocks until a time when such a parent exists. The reduc-
tion rule is:

That is:

If successful, this reduction transforms a child n of an ambient m into a sibling of m. After
the execution, the process in m. P continues with P, and both P and Q find themselves at a
higher level in the tree of ambients.

Open Capability
An opening capability, open m, can be used in the action:

This action provides a way of dissolving the boundary of an ambient named m located at the
same level as open, according to the rule:

That is:

If no ambient m can be found, the operation blocks until a time when such an ambient ex-
ists. If more than one ambient m exists, any one of them can be chosen.

An open operation may be upsetting to both P and Q above. From the point of view of P,
there is no telling in general what Q might do when unleashed. From the point of view of Q,
its environment is being ripped open. Still, this operation is relatively well-behaved because:
(1) the dissolution is initiated by the agent open m. P, so that the appearance of Q at the same
level as P is not totally unexpected; (2) open m is a capability that is given out by m, so m[Q]

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]

out m. P

m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]

open m. P

open m. P | m[Q] xyyz P | Q

in m.P | Q

n

R

m

| xyyz P | Q

n

 | R

m

xyyzout m. P | Q

n

 | R

m

P | Q

n

R

m

|

xyyzQ

m

open m. P | P | Q

14

cannot be dissolved if it does not wish to be (this will become clearer later in the presence of
communication primitives).

4.3 Operational Semantics

We now give an operational semantics of the calculus of section 4.1, based on a structural
congruence between processes, �, and a reduction relation xyyz. We have already discussed all
the reduction rules, except for one that connects reduction with equivalence. This is a seman-
tics in the style of Milner’s reaction relation [34] for the π-calculus, which was itself inspired
by the Chemical Abstract Machine of Berry and Boudol [3].

Processes of the calculus are grouped into equivalence classes by the following relation,
�, which denotes structural congruence (equivalence up to trivial syntactic restructuring).

Table 4: Structural Congruence

In addition, we identify processes up to renaming of bound names:

By this we mean that these processes are understood to be identical (for example, by choosing
an appropriate representation), as opposed to structurally equivalent.

Note that the following terms are distinct:

The behavior of processes is given by the following reduction relation. The first three
rules are the one-step reductions for in, out and open. The next three rules propagate reduc-
tions across scopes, ambient nesting and parallel composition. The final rule allows the use
of equivalence during reduction. Finally, xyyz* is the chaining of multiple reduction steps.

Table 5: Reduction

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νn)P � (νn)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ n[P] � n[Q]
P � Q ⇒ M.P � M.Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)

P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)

(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n Ñ fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
(νn)0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

(νn)P = (νm)P{ n←m} if m Ñ fn(P)

!(νn)P # (νn)!P replication creates new names
n[P] | n[Q] # n[P | Q] multiple n ambients have separate identity

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q

(Red In)
(Red Out)
(Red Open)

15

5 Communication

Although the pure mobility calculus is powerful enough to be Turing-complete, it has no
communication or variable-binding operators. Such operators seem necessary, for example,
to comfortably encode other formalisms such as the λ-calculus and the π-calculus.

Therefore, we now have to choose a communication mechanism to be used to exchange
messages between ambients. The choice of a particular mechanism is to some degree orthog-
onal to the mobility primitives: many such mechanisms can be added to the mobility core.
However, we should try not to defeat with communication the restrictions imposed by capa-
bilities. This suggests that a primitive form of communication should be purely local, and that
the transmission of non-local messages should be restricted by capabilities.

To focus our attention, we pose as a goal the ability to encode the asynchronous π-calcu-
lus. For this it is sufficient to introduce a simple asynchronous communication mechanism
that works locally within a single ambient.

5.1 Communication Primitives

We again start by displaying the syntax of a whole calculus. The mobility primitives are es-
sentially those of section 4, but the addition of communication variables changes some of the
details. More interestingly, we add input ((x).P) and output (jMk) primitives and we enrich the
capabilities to include paths.

Table 6: Mobility and Communication Primitives

P xyyz Q ⇒ (νn)P xyyz (νn)Q
P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’ (Red �)

xyyz* reflexive and transitive closure of xyyz

P,Q ::=
(νn)P
0
P | Q
!P
M[P]
M.P
(x).P
jMk

processes
restriction
inactivity
composition
replication
ambient
capability action
input action
async output action

M ::=
x
n
in M
out M
open M
ε
M.M’

messages
variable
name
can enter into M
can exit out of M
can open M
null
path

16

Table 7: Free names (revisions and additions)

Table 8: Free variables

We write P{ x←M} for the substitution of the capability M for each free occurrence of the
variable x in the process P. Similarly for M{ x←M’ }.

Table 9: New syntactic conventions

5.2 Explanations

Messages

The entities that can be communicated are either names or capabilities. In realistic situations,
communication of names should be rather rare, since knowing the name of an ambient gives
a lot of control over it. Instead, it should be common to communicate restricted capabilities
to allow controlled interactions between ambients.

It now becomes useful to combine multiple capabilities into paths, especially when one
or more of those capabilities are represented by input variables. To this end we introduce a
path-formation operation on capabilities (M. M’). For example, (in n. in m). P is interpreted
as in n. in m. P.

Note also that, for the purpose of communication, we have added names to the collection
of messages. A communicated name can be used as a capability to create ambients of that
name.

We distinguish between ν-bound names and input-bound variables. Variables can be in-
stantiated with names or capabilities. In practice, we do not need to distinguish these two sorts
lexically, but we often use n, m, p, q for names and w, x, y, z for variables.

Ambient I/O

The simplest communication mechanism that we can imagine is local anonymous communi-
cation within an ambient (ambient I/O, for short):

An output action releases a message into the local ether of the surrounding ambient. An input
action captures a message from the local ether and binds it to a variable within a scope. We
have the reduction:

fn(M[P]) $ fn(M) ∪ fn(P)
fn((x).P) $ fn(P)
fn(jMk) $ fn(M)

fn(x) $ Ô
fn(n) $ { n}
fn(ε) $ Ô
fn(M.M’) $ fn(M) ∪ fn(M’)

fv((νn)P) $ fv(P)
fv(0) $ Ô
fv(P | Q) $ fv(P) ∪ fv(Q)
fv(!P) $ fv(P)
fv(M[P]) $ fv(M) ∪ fv(P)

fv(x) $ { x}
fv(n) $ Ô
fv(in M) $ fv(M)
fv(out M) $ fv(M)
fv(open M) $ fv(M)

fv(M.P) $ fv(M) ∪ fv(P)
fv((x).P) $ fv(P) – {x}
fv(jMk) $ fv(M)

fv(ε) $ Ô
fv(M.M’) $ fv(M) ∪ fv(M’)

(x).P | Q is read ((x).P) | Q

(x).P input action
jMk async output action

(x).P | jMk xyyz P{ x←M}

17

This local communication mechanism fits well with the ambient intuitions. In particular,
long-range communication, like long-range movement, should not happen automatically be-
cause messages may have to cross firewalls.

Still, this simple mechanism is sufficient to emulate communication over named chan-
nels, and more generally to provide an encoding of the asynchronous π-calculus [11].

A Syntactic Anomaly
To allow both names and capabilities to be output and input, there is a single syntactic sort
that includes both. Hence, a meaningless term of the form n. P can arise, for instance, from
the process ((x). x. P) | jnk. This anomaly is caused by the desire to denote movement capa-
bilities by variables, as in (x). x. P, and from the desire to denote names by variables, as in
(x). x[P]. We permit n. P to be formed, syntactically, in order to make substitution always
well defined. In sections 8, 9, and 10, we develop a type system that distinguishes names from
capabilities, and that solves this anomaly.

5.3 Operational Semantics

For the extended calculus, the structural congruence relation is defined as in section 4.3, with
the understanding that P and M range now over larger classes, and with the addition of the
following equivalences:

Table 10: Structural Congruence

We now also identify processes up to renaming of bound variables:

Finally, we have a new reduction rule for communication:

Table 11: Reduction

Part III: Equivalence

6 A Theory of Equivalence

Morris-style contextual equivalence [36] (otherwise known as may-testing equivalence [19])
is a standard way of saying that two processes have the same behavior: two processes are con-
textually equivalent if and only if they admit the same elementary observations whenever
they are inserted inside any arbitrary enclosing process. In the setting of the ambient calculus,
we shall define contextual equivalence in terms of observing the presence, at the top-level of
a process, of an ambient whose name is not restricted.

We say that a process P exhibits an ambient named n, and write P�n, just if P is a process
containing a top-level ambient named n, that is not restricted. We say that a process P con-
verges to a name n, and write PÈn, just if after some number of reductions, P exhibits an am-
bient named n. Formally, we define:

P � Q ⇒ M[P] � M[Q] (Struct Amb)
P � Q ⇒ (x).P � (x).Q (Struct Input)
ε.P � P
(M.M’).P � M.M’ .P

(Struct ε)
(Struct .)

(x).P = (y).P{ x←y} if y Ñ fv(P)

(x).P | jMk xyyz P{ x←M} (Red Comm)

P�n $ P � (ν m1...mi) (n[P’] | P”) for some m1...mi, P’, P” where n Ñ {m1...mi}
PÈn $ either P�n or P xyyz P’ for some P’ and P’Èn

18

Next we define contextual equivalence in terms of the predicate PÈn. Let a context C()
be a process containing zero or more holes. We write holes as (). For any process P, let C(P)
be the process obtained by filling each hole in C with a copy of P. Names free in P may be-
come bound; for example, if P = n[jxk] and C() = (νn)(x).(), the variable x and the name n have
become bound in C(P) = (νn)(x).n[jxk]. Hence, we do not identify contexts up to renaming of
bound variables and names.

Let contextual equivalence be the relation P � Q defined by:

The following two propositions state some basic properties enjoyed by contextual equiv-
alence. Let a relation 5 be a precongruence if and only if, for all P, Q, and C(), if P 5 Q then
C(P) 5 C(Q). If, in addition, 5 is reflexive, symmetric, and transitive, we say it is a congru-
ence. For example, the structural congruence relation has these properties. Moreover, by a
standard argument, so has contextual equivalence:

6-1 Proposition
Contextual equivalence is a congruence.

Structural congruence preserves exhibition of or convergence to a name, and hence is includ-
ed in contextual equivalence:

6-2 Lemma
Suppose P � Q. If P�n then Q�n. Moreover, if PÈn then QÈn with the same depth of in-
ference.

6-3 Proposition
If P � Q then P � Q.

7 Examples

In [27] we present convenient proof techniques for contextual equivalence, and we give a
proof of the “perfect firewall equation” described in this section.

7.1 Simple examples

Here are some easy inequivalences:

As in most process calculi, reduction does not imply equivalence:

Finally, a general law:

7.2 Example: Perfect firewalls

Consider a process (νn)n[P], where n is not free in P. Since the name n is known neither in-
side the ambient n[P], nor outside it, the ambient n[P] is a “perfect firewall” that neither al-
lows another ambient to enter nor to exit. Such a process could be used to abstractly model
an internet firewall named n enclosing a group of machines P, or a sandbox named n enclos-
ing a group of applets P.

The intended property of a perfect firewall can be expressed as an equation; the Perfect
Firewall Equation below, which expresses the fact that nobody can externally observe a per-

P � Q $ for all n and C(), C(P)Èn ⇔ C(Q)Èn

p[] and q[] are distinguished by the context ()
open p.0 and open q.0 are distinguished by the context p[n[]] | ()
in p.0 and out p.0 are distinguished by the context m[n[() | out p. out m] | p[]]

n[] | open n.0 xyyz 0 but n[] | open n.0 0

(νn)(n[] | open n.P) � (νn)P

19

fect firewall, even though the processes inside the firewall may be active and even cause the
firewall to move around.

7.3 Example: Perfect encryption

An ambient of the form k[jMk] can be used to abstractly model a ciphertext {M} k obtained by
encrypting a plaintext M with a key k (we assume that k does not occur in M). The idea is that
the key k (or, more precisely the capability open k) is needed to access the plaintext M. The
intuition that a ciphertext is incomprehensible if one does not know the key can be expressed
as the following Perfect Encryption Equation. This equation says that any two ciphertexts are
indistinguishable (equally unusable) if one does not know their keys. Knowledge of the keys
by the context is prevented by the restrictions.

The equation simply follows from the perfect firewall equation, because (νk)k[jMk] � 0 �
(νk’)k’[jM’ k] if k Ñ� fn(M) and k’ Ñ� fn(M’). It should be compared with the equation
(νk)cj{ M} kk � (νk’)cj{ M’ } k’k from the spi calculus [1].

7.4 Example: An agent crossing a firewall

A perfect firewall is not very useful, since it does not let anything pass through. In general we
want permeable firewalls that filter traffic according to some security policy. Even these per-
meable firewalls can be described by equations, although the equations need to become more
sophisticated.

In this example, we describe a protocol that allows a “friend” agent to enter a firewall. We
assume that the agent and the firewall share some prearranged passwords k, k’, k"; these could
have been privately generated during a previous visit of the agent to the firewall.

Assuming k, k’, k” do not occur in C or P and w does not occur in C, we get the following
safety property, expressed as an equation:

Contextual equivalence here means that the agent may successfully cross the firewall (the
residual C of the agent may end up inside w). In addition, the agent may successfully cross
the firewall under any attack, since equivalence “in every context” includes both “in parallel
with any attacking process” and “inside any attacking environment”.

The main caveat is that only high level attacks by ambient calculus processes are covered
by this analysis, not low-level attacks such as disassembling the agent in transit. Still, the
analysis holds in situation such as applet-to-applet interactions within a trusted server.

Part IV: Types

8 Type Systems

Java has demonstrated the utility of type systems for mobile code, and in particular their use
and implications for security. Security properties rest on the fact that a well-typed Java pro-
gram (or the corresponding verified bytecode) cannot cause certain kinds of damage.

We now provide a type system for mobile computation, that is, for computation that is
continuously active before and after movement. We show that a well-typed mobile computa-

n Ñ�fn(P) ⇒ (νn)n[P] � 0 (Alternatively: (νn)n[(νn)P] � 0.)

(νk)k[jMk] � (νk’)k’[jM’ k]

Firewall $ (νw)w[k[out w. in k’. in w] | open k’. open k”.P]
Agent $ k’[open k.k”[C]]

(νk k’ k”) (Agent | Firewall) � (νw)w[C | P]

20

tion cannot cause certain kinds of run-time fault: it cannot cause the exchange of values of the
wrong kind, anywhere in a mobile system.

In the previous sections we have introduced the (untyped, monadic) ambient calculus, a
process calculus for mobile computation and mobile devices. That calculus is able to express,
via encodings, standard computational constructions such as channel-based communication,
functions, and agents [11].

The type system presented here is able to provide typings for those encodings, recovering
familiar type systems for processes and functions. In addition, we obtain a type system for
mobile agents and other mobile computations [12,10]. The type system is obtained by deco-
rating the untyped calculus with type information.

Our type system tracks the typing of messages exchanged within an ambient. For exam-
ple, the following system consists of two ambients, named a and b:

The ambient named a contains a process (x:Int).P that is ready to read an integer message into
a variable x and proceed with P, and a process open b that is ready to open (dissolve the
boundary) of an ambient b found within a. The ambient named b contains a process in a. j3k
that moves the ambient b inside a (by executing in a) and then outputs the message 3. The
ambient b is opened after moving into a, so the output comes into direct contact with the read-
ing process within a. The result is the binding of an integer message to an integer variable,
yielding the state:

The challenge of the type system is to verify that this exchange of messages is well-typed.
Note that in the original system the input and the output were contained in separate locations.

Our ambient calculus is related to earlier distributed variants of the π-calculus, some of
which have been equipped with type systems. The type system of Amadio [2] prevents a
channel from being defined at more than one location. Sewell's system [40] tracks whether
communications are local or non-local, so as to allow efficient implementation of local com-
munication. In Riely and Hennessy's calculus [38], processes need appropriate permissions
to perform actions such as migration; a well-typed process is guaranteed to possess the ap-
propriate permission for any action it attempts. Other work on typing for mobile agents in-
cludes a type system by De Nicola, Ferrari, and Pugliese [18] that tracks the access rights an
agent enjoys at different localities; type-checking ensures that an agent complies with its ac-
cess rights.

9 The Polyadic Ambient Calculus

We slightly extend the ambient calculus of section 5. In that calculus, communication is based
on the exchange of single values. Here we extend the calculus with communication based on
tuples of values (polyadic communication), since this simple extension greatly facilitates the
task of providing an expressive type system. The process jM1, ..., Mkk represents the output of
a tuple of values, with no continuation. The process (n1:W1, ..., nk:Wk).P represents the input
of a tuple of values, with continuation P. In addition, we annotate bound variables with type
information.

Communication is used to exchange both names and capabilities, which share the same
syntactic class M of messages. One of the main tasks of our type system is to distinguish the
Ms that are names from the Ms that are capabilities, so that each is guaranteed to be used in
an appropriate context. In general, the type system might distinguish other kinds of messages,
such as integer and boolean expressions, but we do not include those in our basic calculus.

a[(x:Int).P | open b] | b[in a. j3k]

a[P{x ←3}]

21

Table 12: Polyadic Ambient Calculus

The following tables describe the operational semantics of the extended calculus. The
type annotations present in the syntax do not play a role in reduction; they are simply carried
along by the reductions and will be explained in the next section.

Table 13: Free names

Table 14: Structural Congruence

P,Q ::=
(νn:W)P
0
P | Q
!P
M[P]
M.P
(n1:W1, ..., nk:Wk).P
jM1, ..., Mkk

processes
restriction
inactivity
composition
replication
ambient
action
input
async output

M ::=
n
in M
out M
open M
ε
M.M’

messages
name
can enter into M
can exit out of M
can open M
null path
composite path

fn((νn:W)P) $ fn(P) – {n}
fn(0) $ Ô
fn(P|Q) $ fn(P) ∪ fn(Q)

fn(n) $ { n}
fn(in M) $ fn(M)
fn(out M) $ fn(M)

fn(!P) $ fn(P)
fn(M[P]) $ fn(M) ∪ fn(P)
fn(M.P) $ fn(M) ∪ fn(P)

fn(open M) $ fn(M)
fn(ε) $ Ô
fn(M.M’) $ fn(M) ∪ fn(M’)

fn((n1:W1, ..., nk:Wk).P) $ fn(P) – {n1, ..., nk}
fn(jM1, ..., Mkk) $ fn(M1) ∪ ... ∪ fn(Mk)

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νn:T)P � (νn:T)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q

(Struct Res)
(Struct Par)
(Struct Repl)

P � Q ⇒ M[P] � M[Q]
P � Q ⇒ M.P � M.Q

(Struct Amb)
(Struct Action)

P � Q ⇒ (n1:T1, ..., nk:Tk).P � (n1:T1, ..., nk:Tk).Q (Struct Input)

P | Q � Q | P
(P | Q) | R � P | (Q | R)

(Struct Par Comm)
(Struct Par Assoc)

!P � P | !P (Struct Repl Par)
(νn:T)(νm:U)P � (νm:U)(νn:T)P if n ≠ m
(νn:T)(P | Q) � P | (νn:T)Q if n Ñ fn(P)
(νn:T)m[P] � m[(νn:T)P] if n ≠ m

(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

22

Table 15: Reduction

10 Exchange Types

An ambient is a place where other ambients can enter and exit, and where processes can ex-
change messages. The first aspect, mobility, is regulated by run-time capabilities and will not
be restricted by our type system (but see [10]). The second aspect, communication, is what
we now concentrate on.

10.1 Topics of Conversation

Within an ambient, multiple processes can freely execute input and output actions. Since the
messages are undirected, it is easily possible for a process to utter a message that is not ap-
propriate for some receiver. The main idea of our type system is to keep track of the topic of
conversation that is permitted within a given ambient, so that talkers and listeners can be cer-
tain of exchanging appropriate messages.

The range of topics is described in the following table by message types, W, and exchange
types, T. The message types are Amb[T], the type of names of ambients that allow exchanges
of type T, and Cap[T], the type of capabilities that when used may cause the unleashing of T
exchanges (as a consequence of opening ambients that exchange T). The exchange types are
Shh, the absence of exchanges, and W1×...×Wk, the exchange of a tuple of messages with el-
ements of the respective message types. For k=0, the empty tuple type is called 1; it allows
the exchange of empty tuples, that is, it allows pure synchronization. The case k=1 allows any
message type to be an exchange type.

Table 16: Types

For example:

• A quiet ambient: Amb[Shh]

• A harmless capability: Cap[Shh]

P | 0 � P
(νn:Amb[T])0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

ε.P � P
(M.M’).P � M.M’ .P

(Struct ε)
(Struct .)

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q
(n1:W1, ..., nk:Wk).P | jM1, ..., Mkk xyyz�P{ n1←M1, ..., nk←Mk}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P xyyz Q ⇒ (νn:W)P xyyz (νn:W)Q
P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’ (Red �)

W ::=
Amb[T]
Cap[T]

message types
ambient name allowing T exchange
capability unleashing T exchange

T ::=
Shh
W1×...×Wk

exchange types
no exchange
tuple exchange

23

• A synchronization ambient: Amb[1]

• An ambient that allows the exchange of harmless capabilities: Amb[Cap[Shh]]

• A capability that may unleash the exchange of names of quiet ambients:
Cap[Amb[Shh]]

10.2 Intuitions

Before presenting the formal type rules, we discuss the intuitions that lead to them.

Typing of Processes

If a message M has message type W, then jMk is a process that outputs (exchanges) W mes-
sages. Therefore, we will have a rule stating that:

If P is a process that may exchange W messages, then (x:W).P is also a process that may ex-
change W messages. Therefore:

The process 0 exchanges nothing, so it naturally has exchange type Shh. However, we may
also consider 0 as a process that may exchange any type. This is useful when we need to place
0 in a context that is already expected to exchange some given type.

If P and Q are processes that may exchange T, then P | Q is also such a process. Similarly for
!P.

Therefore, by keeping track of the exchange type of a process, T-inputs and T-outputs are
tracked so that they match correctly when placed in parallel.

Typing of Ambients

An ambient n[P] is a process that exchanges nothing at the current level, so, like 0, it can have
any exchange type, and can be placed in parallel with any process.

There needs to be, however, a connection between the type of n and the type of P. We give
to each ambient name a type Amb[T], meaning that only T exchanges are allowed in any am-
bient of that name. Ambients of different names may permit internal exchanges of different
types.

By tagging the name of an ambient with the type of exchanges, we know what kind of ex-
changes to expect in any ambient we enter. Moreover, we can tell what happens when we
open an ambient of a given name.

Typing of Open

Tracking the type of I/O exchanges is not enough by itself. We also need to worry about open,
which might open an ambient and unleash its exchanges inside the surrounding ambient.

M : W ⇒ jMk : W

P : W ⇒ (x:W).P : W

0 : T for any T

P : T, Q : T ⇒ P | Q : T
P : T ⇒ !P : T

n[P] : T for any T

n : Amb[T], P : T ⇒ n[P] is well-formed (and can have any type)

24

If ambients named n permit T exchanges, then the capability open n may unleash those T
exchanges. We then say that open n has a capability type Cap[T], meaning that it may unleash
T exchanges when used:

As a consequence, any process that uses a Cap[T] must be a process that is already willing
to participate in exchanges of type T, because further T exchanges may be unleashed.

The capability types Cap[T] do not keep track of any information concerning in and out
capabilities; only the effect of open is tracked.

10.3 Typing Rules

We base our type system on three judgments. The main judgment tracks the exchange type
of a process, that is the type of the I/O operations of the process, and of the I/O operations that
the process may unleash by opening other ambients.

Judgments

Based on the discussion in the previous section, we can formalize the type system as de-
scribed in the following table. Convention: a list of assumptions E � J1 ... E � Jk for k=0 means
E ��/.

Table 17: Rules

• Example: A process that outputs names of quiet ambients:

n : Amb[T] ⇒ open n : Cap[T]

M : Cap[T], P : T ⇒ M.P : T

E ��/ good environment
E � M�: W good expression of message type W
E � P�:�T good process of exchange type T

(Env Ô) (Env n) (Exp n)

E � / nÑdom(E) E’, n:W, E” � /

Ô ��/ E, n:W ��/ E’, n:W, E” � n : W

(Exp ε) (Exp .)

E ��/ E � M : Cap[T] E � M’ : Cap[T]

E � ε : Cap[T] E � M.M’ : Cap[T]

(Exp In) (Exp Out) (Exp Open)

E � M : Amb[S] E � M : Amb[S] E � M : Amb[T]

E � in M : Cap[T] E � out M : Cap[T] E � open M : Cap[T]

(Proc Action) (Proc Amb)

E � M : Cap[T] E � P : T E � M : Amb[T] E � P : T

E � M.P : T E � M[P] : S

(Proc Res) (Proc Zero) (Proc Par) (Proc Repl)

E, n:Amb[T] � P : S E ��/ E � P : T E � Q : T E � P : T

E � (νn:Amb[T])P : S E � 0 : T E � P | Q : T E � !P : T

(Proc Input) (Proc Output)

E, n1:W1, ..., nk:Wk � P : W1×...×Wk E � M1 : W1 ... E � Mk : Wk

E � (n1:W1, ..., nk:Wk).P : W1×...×Wk E � jM1, ..., Mkk : W1×...×Wk

25

• Example: A capability that may unleash S-exchanges. Note that the in n action contributes
nothing to the type of the path; only the open m action does:

The correctness of the type system is expressed by the following proposition:

10-1 Proposition (Subject Reduction)
If E � P�:�U and P xyyz Q then E � Q�:�U.

1

Certain “run-time error” expressions are allowed in the syntax but are nonsensical be-
cause they confuse names with capabilities. Examples are in n[P], (νn:Amb[T])n.P, and jin
(in n)k. Such expressions are not initially typeable, and they cannot be produced by well-typed
processes because Proposition 10-1 says that the evolution of well-typed processes leads only
to well-typed processes.

Part V: Logic

11 Modal Logics for Mobile Ambients

In the course of our ongoing work on mobility, we have often struggled to express precisely
certain properties of mobile computations. Informally, these are properties such as “the agent
has gone away”, “eventually the agent crosses the firewall”, “every agent always carries a
suitcase”, “somewhere there is a virus”, or “there is always at most one agent called n here”.
There are several conceivable ways of formalizing these assertions. It is possible to express
some of them in terms of equations, as in sections 6 and 7, but this is sometimes difficult or
unnatural. It is easier to express some of them as properties of computational traces, but this
is very low-level.

Modal logics (particularly, temporal logics) have emerged in many domains as a good
compromise between expressiveness and abstraction. In addition, many modal logics support
useful computational applications, such as model checking. In our context, it makes sense to
talk about properties that hold at particular locations, and it becomes natural to consider spa-
tial modalities for properties that hold at a certain location, at some location or at every loca-
tion. For example, we have the following correspondence between spatial constructs in the
ambient calculus and certain formulas:

We have a logical constant 0 that is satisfied by the process 0 representing void. We have log-
ical propositions of the form n[$] (meaning that $ holds at location n) that are satisfied by
processes of the form n[P] (meaning that process P is located at n) provided that P satisfies
$. We have logical propositions of the form $ª | $¨ (meaning that $ª�and $¨�hold contigu-
ously) which are satisfied by contiguous processes of the form P’ | P” if P’ satisfies $ª�and
P” satisfies $¨, or vice versa.

Spatial modalities have an intensional flavor that distinguishes our logic from other modal
logics for concurrency. Previous work in the area concentrates on properties that are invariant
up to strong equivalences such as bisimulation [29,17], while our properties are invariant only
up to simple spatial rearrangements. Some of our techniques can be usefully applied to other
process calculi, even ones that do not have locations, such as CCS.

Ô � !(νn:Amb[Shh])jnk :�Amb[Shh]

Ô, n:Amb[T], m:Amb[S] � in n. open m :�Cap[S]

Processes
0
n[P]
P | Q

(void)
(location)
(composition)

Formulas
0
n[$]
$ | %

(there is nothing here)
(there is one thing here)
(there are two things here)

26

Starting from a solid computational intuition, a process calculus, we derive logical infer-
ence rules, including the rules of modalities for time, space, and satisfiability, and novel rules
for locations and process composition. In [13], based on the satisfaction relation between pro-
cesses and formulas, we investigate model checking of mobile programs.

12 The Ambient Calculus with Public Names

We consider only ambients having public names; that is we do not deal with name restriction
and scope extrusion. Handling of private names in a logic is a very interesting topic, but we
leave it for future work.

12.1 Ambients

We modify the basic ambient calculus of section 5. The changes consist in removing name
restriction, and in strengthening the definition of structural congruence so that it characterizes
the intended equivalence of spatial configurations. We also remove the distinction between
names and variables (particularly since we no longer have name binders), and we use a single
predicate to characterize free names.

The following table summarizes the syntax of processes. We have separated the process
constructs into spatial and temporal; this is similar to the distinction between static and dy-
namic constructs in CCS [32].

Table 18: Processes

The set of free names of a process P, written fn(P), is defined as usual; the only binder is in
the input action.

12.2 Structural Congruence and Reduction

Structural congruence is used heavily in the logic, as well as in the reduction semantics.

Table 19: Structural Congruence

P,Q,R ::=
0
P | Q
!P
M[P]
M.P
(n).P
jMk

processes
void
composition
replication
ambient
capability action
input action
output action

M ::=
n
in M
out M
open M
ε
M.M’

messages
name
can enter into M
can exit out of M
can open M
null
path

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]

P | Q � Q | P
(P | Q) | R � P | (Q | R)
P | 0 � P

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Par)
(Struct Repl)
(Struct Amb)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)

!(P | Q) � !P | !Q
!0 � 0

(Struct Repl Par)
(Struct Repl Zero)

spatial

temporal

27

Spatial configurations are ambient configurations consisting only of spatial operators.
For example, a[b[0] | !c[0 | 0] | !0] is a spatial configuration. These configurations have a nat-
ural interpretation as edge-labeled finite-depth trees, where replication introduces infinite
branching. The rules for structural congruence are sound and complete for equivalence of
these trees. We do not elaborate this further, but it suffices to say that this completeness result
motivated the choice of axioms for structural congruence, and particularly the new axioms
for replication (which are the same as in Engelfriet's work on the π-calculus [21]).

Table 20: Reduction

13 The Logic

In a modal logic, the truth of a formula is relative to a state (or world). In our case, the truth
of a space-time modal formula is relative to the here and now. Each formula talks about the
current time, that is, the current state of execution, and the current place, that is, the current
location. For example, the formula n[0] is read: there is here and now an empty location
called n. The operator n[$] represents a single step in space, allowing us to talk about the
place one step down into n. Another operator, �$, allows us to talk about an arbitrary num-
ber of steps in space; this is akin to the temporal eventuality operator, 2$.

13.1 Logical Formulas

The syntax of logical formulas is summarized below. This is a modal predicate logic with
classical negation. As usual, many standard connectives are interdefinable. The meaning of
the formulas will be given shortly in terms of a satisfaction relation. Informally, the first three
formulas (true, negation, disjunction) give propositional logic. The next three (void, location,
composition) capture spatial configurations, as we discussed. Then we have quantification
over names, the two spatial and temporal modalities, and two further operators that we ex-
plain later. Quantified variables range only over names: these variables may appear in the lo-
cation and location adjunct constructs.

The free names of a formula, fn($), are easily defined since there are no name binders.
The free variables of a formula, fv($), are defined along standard lines: only quantifiers bind
variables. A formula $ is closed if fv($) = Ô.

!P � P | !P
!P � !!P

P � Q ⇒ M.P � M.Q
P � Q ⇒ (n).P � (n).Q
ε.P � P
(M.M’).P � M.M’ .P

(Struct Repl Copy)
(Struct Repl Repl)

(Struct Action)
(Struct Input)
(Struct ε)
(Struct .)

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q
(n).P | jMk xyyz P{ n←M}

P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R
P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’

xyyz* is the reflexive and transitive closure of xyyz

(Red In)
(Red Out)
(Red Open)
(Red Comm)

(Red Amb)
(Red Par)
(Red �)

28

Table 21: Logical Formulas

13.2 Satisfaction

The satisfaction relation P � $�means that the process P satisfies the closed formula $. This
relation is defined inductively in the following table, where Π is the sort of processes, Φ is
the sort of formulas, ϑ is the sort of variables, and Λ is the sort of names. We are very explicit
about quantification and sorting of meta-variables because of subtle scoping issues, particu-
larly in the definition of P � Òx.$. We use the same syntax for logical connectives at the
meta-level and object-level, but this is unambiguous.

The meaning of the temporal modality is given by reductions in the operational semantics
of the ambient calculus. For the spatial modality, we need the following definition: the rela-
tion P�P’ indicates that P contains P’ within exactly one level of nesting; that is, P’ is one
step away from P in space, in some downward direction.

Then, P�*P’ is the reflexive and transitive closure of the previous relation, indicating that P
contains P’ at some nesting level. Note that P’ consists of either the top level P, or the entire
contents of an enclosed ambient.

Table 22: Satisfaction

We spell out some of these definitions. A process P satisfies the formula n[$] if there ex-
ists a process P’ such that P has the shape n[P’] with P’ satisfying $. A process P satisfies
the formula $ª | $¨ if there exist processes P’ and P” such that P has the shape Pª | P¨ with
P’ satisfying $ª and P¨ satisfying $¨. A process P satisfies the formula 2$ if $ holds in the

η is a name n or a variable x

$, %, & ::=
T true
¬$ negation
$ ∨ % disjunction
0 void
η[$] location
$ | % composition
Òx.$ universal quantification over names
2$ sometime modality (temporal)
�$ somewhere modality (spatial)
$@η location adjunct
$©% composition adjunct

P�P’ iff Ón, P”. P � n[P’] | P”

ÒP:Π.
ÒP:Π, $:Φ.

P � T
P � ¬$ $ ¬ P � $

ÒP:Π, $,%:Φ. P � $∨% $ P � $ ∨ P � %
ÒP:Π.
ÒP:Π, n:Λ, $:Φ.
ÒP:Π, $,%:Φ.
ÒP:Π, x:ϑ, $:Φ.
ÒP:Π, $:Φ.
ÒP:Π, $:Φ.

P � 0
P � n[$]
P � $ | %
P � Òx.$
P � 2$
P � �$

$ P � 0
$ ÓP’:Π. P � n[P’] ∧ P’ � $
$ ÓP’,P” :Π. P � P’|P” ∧ P’ � $ ∧ P” � %
$ Òm:Λ. P � ${ x←m}
$ ÓP’:Π. Pxyz*P’ ∧ P’ � $
$ ÓP’:Π. P�*P’ ∧ P’ � $

ÒP:Π, $:Φ.
ÒP:Π, $,%:Φ.

P � $@n
P � $©%

$ n[P] � $
$ ÒP’:Π. P’ � $ ⇒ P|P’ � %

29

future for some residual P’ of P, where “residual” is defined by Pxyz*P’. A process P satisfies
the formula �$ if $ holds at some sublocation P’ within P, where “sublocation” is defined
by P�*P’.

The last two connectives, @ and ©, can be used to express context/system specifications;
they were inspired by the wish to express security properties. A reading of P � $@n is that
P (together with its context) manages to satisfy $ even when placed into a location called n.
A reading of P � $©% is that P (together with its context) manages to satisfy % under any
possible attack by an opponent that is bound to satisfy $. Moreover, P � (4$)©(4$) can be
interpreted as saying that P preserves the invariant $. We will see that these two connectives
arise as natural adjuncts to the location and composition connectives.

The following table lists some derived connectives, and it illustrates properties that can
be expressed in the logic. The informal meanings can be understood better by expanding out
the definitions from the table above.

Table 23: Derived Connectives

Some syntactic conventions: ‘©’ and the modalities binds more strongly than ‘|’ ; they all bind
more strongly than the standard logical connectives, which have standard precedences. Quan-
tifiers extend to the right as far as possible.

The following is a fundamental property of the satisfaction relation; it states that satisfac-
tion is invariant under structural congruence of processes. In other words, logical formulas
can only express properties that are invariant up to structural congruence.

13-1 Proposition (Satisfaction is up to �)
(P � $�∧ P � P’) ⇒ P’ � $

The definition of satisfaction is based heavily on the structural congruence relation. This
use of structural congruence may appear arbitrary: other equivalence relations could be used
in its place. We have tried to motivate the choice of structural congruence by discussing in
Section 12.2 how structural congruence precisely captures the intuition of ambients as spatial
configurations. Moreover, structural congruence is easily decidable, which is useful in mod-
el-checking applications [13].

F $ ¬T
$ ∧ % $ ¬(¬$ ∨ ¬%)
$ ⇒ % $ ¬$ ∨ %
$ ⇔ % $

($ ⇒ %) ∧ (% ⇒ $)
$ || % $ ¬(¬$ | ¬%)

$Ò $ $ || F

$Ó $ $ | T

Óx.$ $ ¬Òx.¬$

false
conjunction
implication
logical equivalence

decomposition (for every split, one part satisfies $ or the other
satisfies %)
every component satisfies $.

Ex., each n contains just m: (n[T]⇒n[m[T]])Ò

some component satisfies $.
Ex., there is an n containing an m: n[m[T]Ó]Ó

existential quantification over names. Ex., Óx.x[x[T]]
4 $ $ ¬2¬$

�$ $ ¬�¬$

$ ∝ % $ ¬(% © ¬$)
$ |⇒ % $ ¬($ | ¬%)

everytime modality.
Ex., n is stable: 4n[T]

everywhere modality.
Ex., there is no n: �¬(n[T]Ó)

fusion (there is a context satisfying %�that helps ensuring $)
fusion adjunct (for every split, if one part satisfies $ the other
satisfies %)

30

14 Validity

In this section, we study valid formulas, valid sequents, and valid logical inference rules. All
these are based on the satisfaction relation given in the previous section. Once the definition
of satisfaction is fixed, we are basically committed to whatever logic comes out of it. There-
fore, it is important to stress that the satisfaction relation appears very natural to us. In partic-
ular, the definitions of 0, n[$], and $ | % seem inevitable, once we accept that formulas
should be able to talk about the tree structure of locations, and that they should not distinguish
processes that are surely indistinguishable (up to �). The connectives $@n and $©%�have
natural security motivations. The modalities 2$�and �$�talk about process evolution and
structure in an undetermined way, which is good for mobility specifications. The rest is clas-
sical predicate logic, with the ability to quantify over location names.

Through the satisfaction relation, our logic is based on solid computational intuitions. We
should now approach the task of discovering the rules of the logic without preconceptions.
As we shall see, what we get has familiar as well as novel aspects.

14.1 The Meaning of Rules

A closed formula is valid if it is satisfied by every process. (For the moment, we consider only
validity for closed formulas, i.e., propositional validity.) We use validity for interpreting log-
ical inference rules, as described in the next definition. We use a linearized notation for infer-
ence rules, where the usual horizontal bar separating antecedents from consequents is written
‘’ in-line, and ‘;’ is used to separate antecedents.

Table 24: Validity, Sequents, and Rules

We adopt a non-standard formulation of sequents, where each sequent has exactly one as-
sumption and one conclusion: $�L} %. Our intention in doing so is to avoid pre-judging the
interpretation of the structural operator “,” in standard sequents. In our logic, by taking ∧ on
the left and ∨ on the right of�L} as structural operators (i.e., as “,”), all the standard rules of
sequent and natural deduction systems with multiple premises/conclusions can be derived. In-
stead, by taking | on the left of�L} as a structural operator, all the rules of intuitionistic linear
logic can be derived. Finally, by taking nestings of ∧ and | on the left of L} as structural “bunch-
es”, we obtain a bunched logic [37].

14.2 Rules of the Logic

In the sequel, we organize our results into tables of Rules, which are validated in the model,
and into tables of Corollaries, which are derived purely logically from the inference rules.

Propositions

The following is a non-standard presentation of the propositional sequent calculus [26], based
on our single-assumption single-conclusion sequents. In this presentation, the rules of prop-
ositional logic become very symmetrical, and many proofs become more regular, having to
consider only single formulas instead of sequences of formulas.

vld($) $ ÒP:Π. P � $ ($, closed, is valid)

$�L} % $ vld($ ⇒ %)

$1�L} %1; ...; $n�L} %n� $0�L} %0 $ $1�L} %1 ∧ ... ∧ $n�L} %n ⇒ $0�L} %0 (n≥0)

$1�L} %1 $2�L} %2 $ $1�L} %1 $2�L} %2 ∧ $2�L} %2 $1�L} %1

$1�L} %1; ...; $n�L} %n� $�xML} % $
$1�L} %1; ...; $n�L} %n $�L} % ∧ $1�L} %1; ...; $n�L} %n %�L} $

31

Table 25: Propositional Rules

The standard deduction rules of propositional logic, both for the sequent calculus and for nat-
ural deduction (interpreting “,” as ∧ on the left and ∨ on the right), are derivable from the rules
in the table.

Composition

The composition rules apply not only to our calculus but also, for example, to CCS.

Table 26: Composition Rules

The converse of |-∨ distribution, $ | &�∨ % | & L} ($∨%) | &, is derivable, and so is a |-∧
distribution rule, ($∧%) | & L} $ | &�∧ % | &. However, the converse of that, namely $ | &�∧
% | & L} ($∧%) | &, is not sound. (Take $ = n[m[T]], % = n[p[T]], & = n[T], and P = n[m[]] |
n[p[]]; then P � $ | & and P � % | &, but ¬ P � ($∧%) | &.) As a consequence, one cannot
always “push | inside ∧” on the left-hand side of a sequent. In particular, after an application
of (| L}) one cannot in general renormalize a sequent to bring ∧’s to the top level.

The decomposition axiom, (| ||), can be used to analyze a composition $ª | $¨ with re-
spect to arbitrarily chosen %ª�and %¨. An easy consequence of it is ¬($ | %) L} ($ | T) ⇒ (T
| ¬%), which means that if a process cannot be decomposed into parts that satisfy $ and %,
but can be decomposed in such a way that a part satisfies $, then it can also be decomposed
in such a way that a part does not satisfy %. An even simpler consequence is that ¬(T | %) L}
T | ¬%, which is one of the few cases in which one can push ¬ across |.

The rule (| ©) states that $©%�and $ | % are adjuncts. This has a large number of inter-
esting consequences, most of them deriving from the adjunction along standard lines, for ex-
ample:

Table 27: Some Composition Corollaries

It is worth pointing out that some composition rules produce interesting interactions be-
tween the ∧ and | fragments of the logic. For example, ($ | %) ∧ 0 L} $�is derivable using (|
||) and (| ¬0).

(A-L) $∧(&∧')�L} % ($∧&)∧'�L} %
(A-R) $�L} (&∨')∨% $�L} &∨('∨%)
(X-L) $∧&�L} % &∧$�L} %
(X-R) $�L} &∨% $�L} %∨&

(W-R) $�L} % $�L} &∨%
(Id) $�L} $
(Cut) $�L} &∨%; $ª∧&�L} %ª $∧$ª�L} %∨%ª

(T) $∧T�L} % $ L} %
(C-L) $∧$�L} % $�L} %
(C-R) $�L} %∨% $�L} %

(F) $�L} F∨% $ L} %
(¬-L) $�L} &∨% $∧¬&�L} %

(W-L) $�L} % $∧&�L} % (¬-R) $∧&�L} % $�L} ¬&∨%

(| 0) $ | 0 xML} $
(| ¬0) $ | ¬0 L} ¬0
(A |) $ | (% | &) xML} ($ | %) | &
(X |) $ | % L} % | $
(| L}) $ª�L} %ª; $¨�L} %¨ $ª | $¨ L} %ª | %¨

(| ∨) ($∨%) | & L} $ | &�∨ % | &
(| ||) $ª | $¨ L} ($ª | %¨)�∨ (%ª | $¨)�∨ (¬%ª | ¬%¨)
(| ©) $ | &�L} % $�L} &©%

0 is nothing
if a part is non-0, so is the whole
| associativity
| commutativity
| congruence
|-∨ distribution
decomposition
|-© adjunction

(©�L}) $ª�L} $; %�L} %ª $©%�L} $ª©%ª

(©�|) ($©%) | $ L} %
(©©) ($©%) | (%©&) L} $©&
(©-L) ' L} $; % L} & ' | ($©%) L} &

32

Locations

The location rules are very specific to the ambient calculus.

Table 28: Location Rules

The rule (n[] @) states that $@n and n[$] are adjuncts. Note that (n[] �L}) holds in both
directions, and that the inverse directions of (n[] ∧) and (n[] ∨) are derivable; hence, the lo-
cation fragment of the logic is particularly simple to handle. Some consequences are: n[$@n]
L} $, and $�xML} n[$]@n, and¬n[$]�xML} ¬n[T] ∨ n[¬$].

Time and Space Modalities

The “somewhere” modality was our starting point in developing our logic. We can now in-
vestigate its properties.

Table 29: Time and Space Modality Rules

The operators 2 and � obey the rules of S4 modalities (the first 5 rules in each column);
these follow simply from reflexivity and transitivity of xyyz* and �*. These operators, however,
are not S5 modalities, that is, 2$ L} 42$ is not valid (if $ may happen along some reduction
branch, it will not necessarily happen starting from every reduction point), and neither is �$

L} ��$ (if $ holds in some sublocation, it does not necessarily hold in some sublocation of
every sublocation).

The two modalities permute in one direction (somewhere sometime implies sometime
somewhere), but the other direction is not sound. (Consider P = (open n. m[p[]]) | n[]. Then
P ��2�p[0], but P ¡��2p[0]). The modalities differ prominently in the way they distribute
over compositions and locations, as seen in the bottom rules.

Satisfiability

Validity and satisfiability can be reflected into the logic by means of the $F�operator (here
we use $¬ for ¬$):

(n[] �¬0) n[$]�L} ¬0
(n[] �¬ |) n[$]�L} ¬(¬0 | ¬0)
(n[] �L}) $�L} % n[$]�L} n[%]

locations exist
locations are not decomposable
n[] congruence

(n[] ∧) n[$]∧n[%]�L} n[$∧%] n[]-∧ distribution
(n[] ∨) n[$∨%] L} n[$]∨n[%] n[]-∨ distribution
(n[] @) n[$]�L} % $�L} %@n n[]-@ adjunction
(¬ @) $@n�xML} ¬((¬$)@n) location adjunct is self-dual

(2) 2$ xML} ¬4¬$

(4 K) 4($ ⇒ %) L} 4$ ⇒ 4%
(4 T) 4$ L} $
(4 4) 4$ L} 44$
(4 T) T L} 4T
(4 L}) $�L} % 4$�L} 4%

(�2) �2$ L} 2�$

(2 n[]) n[2$]�L} 2n[$]
(2 |) 2$ | 2%�L} 2($ | %)

(�) �$ xML} ¬�¬$

(� K) �($ ⇒ %) L} �$ ⇒ �%

(� T) �$ L} $
(� 4) �$ L} ��$

(� T) T L} �T
(� L}) $�L} % �$�L} �%

(� n[]) n[�$]�L} �$

(� |) �$ | %�L} �($ | T)

$F $ $©F
Vld $ $ $¬F

Sat $ $ $F¬

P � $F� iff ÒP’:Π. ¬P’ � $
P � Vld $� iff ÒP’:Π. P’ � $
P � Sat $� iff ÓP’:Π. P’ � $

$ is unsatisfiable
$ is valid
$ is satisfiable

33

From the definitions of ©�and F, we obtain that P � $F ⇔ (ÒP’:Π. P’ � $ ⇒ P|P’ � F) ⇔
(ÒP’:Π. ¬P’ � $), i.e., iff $�is unsatisfiable independently of P.

One of the main properties of $F is that $ | $F L} F, by (©�|). That is, $�cannot be both
satisfiable and unsatisfiable. In addition we obtain, from the model, the following rules, from
which it is possible to show within the logic that Vld and Sat obey the rules of S5 modal op-
erators:

Table 30: Satisfiability Rules

Predicates

So far we have considered only propositional validity; when considering quantifiers, we need
to extend our notion of validity. If fv($)={x1, ..., xk} are the free variables of $ and
ϕÐfv($)→Λ is a substitution of variables for names, we write $ϕ� for ${ x1←ϕ(x1), ...,
xk←ϕ(xk)}, and we define:

This definition of predicate validity generalizes the previous definition of vld, which was re-
stricted to the case of fv($) = Ô. It similarly generalizes the definitions of sequents and rules.
(Remark: the rules of propositional logic extend to predicate logic.)

Table 31: Quantifier Rules

As an example, �Òx.¬(x[T]Ó) is the formula for “somewhere there are no ambients”.
Since there are no infinite spatial paths P1 � P2 � P3 � ..., we can show in the model that this
formula is valid. On the other hand, its temporal dual, “sometime there are no ambients”,
2Òx.¬(x[T]Ó), is invalid; for instance, it is not satisfied by n[].

Name Equality

It is possible to encode name equality within the logic in terms of location adjuncts, by taking
η�= µ $ η[T]@µ. We obtain that for all ϕÐfv(η,µ)→Λ and all P:Π, P � (η�= µ)ϕ ⇔ ϕ(η)
= ϕ(µ). As an example, the following formula means “any two ambients here have different
names”, which can be read as a no-spoofing security property:

15 Conclusions

The global computational infrastructure has evolved in fundamental ways beyond standard
notions of sequential, concurrent, and distributed computational models. The notion of ambi-
ents captures the structure and properties of wide area networks, of mobile computing, and of
mobile computation. The ambient calculus [11] formalizes these notions simply and power-
fully, supporting reasoning about mobility and security. On this foundation, we can envision
new programming methodologies, libraries and languages for wide area computation.

(©F ¬) $F L} $¬

(¬ ©F) $F¬ L} $FF
if $ is unsatisfiable then $�is false
if $ is satisfiable then $F�is unsatisfiable

vld($) $ ÒϕÐfv($)→Λ. ÒP:Π. P � $ϕ

(Ò-L) ${ x←η} �L} % Òx.$�L} % where η is a name or a variable
(Ò-R) $�L} % $�L} Òx.% where x Ñ�fv($)

Òx. Òy. x[T] | y[T] | T ⇒ ¬ x = y

34

References
[1] Abadi, M. and A.D. Gordon, A calculus for cryptographic protocols: the spi calculus. Proc. of the

Fourth ACM Conference on Computer and Communications Security, 36-47, 1997.
[2] Amadio, R.M., An asynchronous model of locality, failure, and process mobility. Proc. COORDINA-

TION 97, Lecture Notes in Computer Science 1282, Springer Verlag. 1997.
[3] Berry, G. and G. Boudol, The chemical abstract machine. Theoretical Computer Science 96(1), 217-248,

1992.
[4] Bharat, K. and L. Cardelli: Migratory applications , Proc. of the ACM Symposium on User Interface Soft-

ware and Technology '95. 133-142. 1995.
[5] Boudol, G., Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia-Antipolis, 1992.
[6] Bracha, G. and S. Toueg, Asynchronous consensus and broadcast protocols. J.ACM 32(4), 824-840.

1985.
[7] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT Press. 1995.
[8] Cardelli, L., Abstractions for mobile computation, in Secure Internet Programming: Security Issues for

Distributed and Mobile Objects, Jan Vitek and Christian Jensen (Eds.). Springer. 1999.
[9] Cardelli, L. and R. Davies. Service combinators for web computing. Proc. of the First Usenix Confer-

ence on Domain Specific Languages, Santa Barbara. 1997.
[10] Cardelli, L., Ghelli, G., Gordon, A.D.: Mobility types for mobile ambients. ICALP’99. LNCS 1644, 230-

239, Springer, 1999.
[11] Cardelli, L. and A.D. Gordon, Mobile ambients, in Foundations of Software Science and Computational

Structures, Maurice Nivat (Ed.), LNCS 1378, Springer, 140-155. 1998
[12] Cardelli, L., and A.D. Gordon, Types for mobile ambients. Proc. 26th Annual ACM Symposium on Prin-

ciples of Programming Languages, 79-92. 1999.
[13] Cardelli, L., and A.D. Gordon, Anytime, anywhere. Modal logics for mobile ambients. Proc. 27th An-

nual ACM Symposium on Principles of Programming Languages, 2000. (To appear.)
[14] Carriero, N. and D. Gelernter, Linda in context. Communications of the ACM, 32(4), 444-458. 1989.
[15] Carriero, N., D. Gelernter, and L. Zuck, Bauhaus Linda, in Object-Based Models and Languages for Con-

current Systems, P. Ciancarini, O. Nierstrasz and A. Yonezawa (Ed.), Lecture Notes in Computer Science
924, Springer Verlag, 66-76. 1995.

[16] Chandra, T.D., S.Toueg, Unreliable failure detectors for asynchronous systems. ACM Symposium on
Principles of Distributed Computing, 325-340. 1991.

[17] Dam, M.: Relevance logic and concurrent composition. LICS'88, 178-185, 1988.
[18] De Nicola, R., G.-L. Ferrari and R. Pugliese, Locality based Linda: programming with explicit locali-

ties. Proc. TAPSOFT’97. Lecture Notes in Computer Science 1214, 712-726, Springer Verlag. 1997.
[19] De Nicola, R., and M.C.B. Hennessy. Testing equivalences for processes. Theoretical Computer Science,

34, 83-133, 1984.
[20] Engberg, U.H., Winskel, G.: Linear logic on Petri nets. BRICS Report RS-94-3, 1994.
[21] Engelfriet, J.: A multiset semantics for the π-calculus with replication. TCS (153)65-94, 1996.
[22] Fischer, M.J., N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus with one faulty

process. J.ACM 32(2), 374-382. 1985.
[23] Fournet, C. and G. Gonthier, The reflexive CHAM and the join-calculus. Proc. 23rd Annual ACM Sym-

posium on Principles of Programming Languages, 372-385. 1996.
[24] Fournet, C., G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy, A calculus of mobile agents. Proc. 7th Inter-

national Conference on Concurrency Theory (CONCUR'96), 406-421. 1996.
[25] Girard, J-Y., Lafont, Y.: Linear logic and lazy computation. TAPSOFT 87, LNCS 250 vol 2, 53-66,

Springer, 1987.
[26] Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and types. Cambridge University Press, 1989.
[27] Gordon, A.D, and L. Cardelli, Equational properties of mobile ambients. Proc. FOSSACS’99, Lecture

Notes in Computer Science 1578, 212-226, Springer Verlag, 1999.
[28] Gosling, J., B. Joy and G. Steele, The Java language specification. Addison-Wesley. 1996.
[29] Hennessy, H., Milner, R.: Algebraic laws for nondeterminism and concurrency. JACM, 32(1)137-161,

1985.
[30] Honda., K. and M. Tokoro, An object calculus for asynchronous communication. Proc. ECOOP’91,

Lecture Notes in Computer Science 521, 133-147, Springer Verlag, 1991.
[31] Lafont, Y.: The linear abstract machine. TCS (59)157-180, 1988.

35

[32] Milner, R.: Flowgraphs and flow algebras. JACM 26(4), 1979.
[33] Milner, R., A calculus of communicating systems. Lecture Notes in Computer Science 92. Springer Ver-

lag. 1980.
[34] Milner, R., Functions as processes. Mathematical Structures in Computer Science 2, 119-141. 1992.
[35] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, Parts 1-2. Information and Com-

putation, 100(1), 1-77. 1992
[36] Morris, J.H., Lambda-calculus models of programming languages. Ph.D. Thesis, MIT, Dec 1968.
[37] O'Hearn, P.W., Pym, D.: The logic of bunched implications. Bulletin of Symbolic Logic. To appear,

1999.
[38] Riely, J., and M. Hennessy, A typed language for distributed mobile processes. Proc. 25th Annual ACM

Symposium on Principles of Programming Languages, 378-390, 1998.
[39] Sander, A. and C. F. Tschudin, Towards mobile cryptography, ICSI technical report 97-049, November

1997. Proc. IEEE Symposium on Security and Privacy, Spring 1998.
[40] Sewell, P., Global/local subtyping and capability inference for a distributed π-calculus. Proc.

ICALP'98. Lecture Notes in Computer Science 1443, 695-706, Springer, 1998.
[41] Stamos, J.W. and D.K. Gifford, Remote evaluation. ACM Transactions on Programming Languages and

Systems 12(4), 537-565. 1990.
[42] Urquhart, A.: Semantics for relevant logics. Journal of Symbolic Logic 37(1)159-169, 1972.
[43] White, J.E., Mobile agents. In Software Agents, J. Bradshaw, ed. The MIT Press. 1996.

