
 1

The Modula-3 Type System

Luca Cardelli*
Jim Donahue†
Mick Jordan†
Bill Kalsow*
Greg Nelson*

Abstract

This paper presents an overview of the programming
language Modula-3, and a more detailed description of its
type system.

1 Introduction

The design of the programming language Modula-3 was a
joint effort by the Digital Systems Research Center and the
Olivetti Research Center, undertaken with the guidance and
inspiration of Niklaus Wirth. The language is defined by the
Modula-3 Report [3], and is currently being implemented by
the Olivetti Research Center. This paper gives an overview of
the language, focusing primarily upon its type system.

Modula-3 is a direct descendent of Mesa [8], Modula-2
[14], Cedar [5], and Modula-2+ [9, 10]. It also resembles its
cousins Object Pascal [13], Oberon [15], and Euclid [6].
Since these languages already have more raw material than
fits comfortably into a readable fifty-page language
definition, which we were determined to produce, we didn’t
need to be inventive. On the contrary, we had to leave many
good ideas out.

Instead of exploring new features, we studied the features
from the Modula family of languages that have proven
themselves in practice and tried to simplify them and fit them
into a harmonious language. We found that most of the
successful features were aimed at one of two main goals:
greater robustness, and a cleaner, more systematic type
system.

*DEC Systems Research Center (SRC)
†Olivetti Research Center

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 0-89791-294-2/89/0001/0202 $1.50

This paper begins with an overview of the language and
then focuses on three aspects of its type system: the uniform
description of type compatibility in terms of a subtype
relation, the use of structural equivalence, and an extension of
the type system to support object-oriented programming.

2 Language Overview

One of our main goals was increased robustness through
safety from unchecked runtime errors ��IRUELGGHQ�RSHUDWLRQV�

that violate an invariant of the runtime system and lead to an
unpredictable computation.

A classic unchecked runtime error is to free a record that is
referenced by active pointers. To avoid this danger, Modula-3
follows Cedar, Modula-2+, and Oberon by automatically
freeing unreachable records. This affects the type system,
since the type rules for references must be strict enough to
make garbage collection possible at runtime.

Another well-known unchecked runtime error is to assign
to the tag of a variant record in a way that subverts the type
system. Distinguishing subversive assignments from benign
assignments in the language definition is error-prone and
arbitrary. The objects and classes first introduced by Simula
[2] and adopted in Oberon and Object Pascal are more general
than variant records, and they are safe, so we have discarded
variant records and adopted objects.

In addition to being safer than variant records, objects
types allow a measure of polymorphism for data structures
like lists, queues, and trees. For example, a procedure that
reverses a list object can safely be applied both to lists of
integers and to lists of reals. All Modula-3 objects are
references (unlike in C++ [12]). Modula-3 allows only single
inheritance (unlike Owl [11]).

Generally the lowest levels of a system cannot be
programmed with complete safety. Neither the compiler nor
the runtime system can check the validity of a bus address for
a peripheral device, nor can they limit the ensuing havoc if it
is invalid. This presents the language designer with a
dilemma. If he holds out for safety, then low level code will
have to be programmed in another language. But if he adopts
unsafe features, then his safety guarantee becomes void
everywhere. In this area we have followed the lead of Cedar
and Modula-2+ by adopting a small number of unsafe

 2

features that are allowed only in modules that are explicitly
labeled unsafe. In a safe module, the compiler guarantees the
absence of unchecked runtime errors; in an unsafe module, it
is the programmer’s responsibility to avoid them.

From Modula-2+ we adopted exceptions. An exception
exits all procedure call levels between the point at which it is
“raised” and the point at which it is “handled”. Exceptions are
a good way to handle any runtime error that is not necessarily
fatal. The alternative is to use error return codes, but this has
the drawback that programmers don’t consistently test for
them. In the Unix/C world, the frequency with which
programs omit tests for error returns has become something
of a standing joke. Instead of breaking at an error, too many
programs continue on their unpredictable way. Raising an
exception is a more robust way to signal an error, since it will
stop the computation unless there is an explicit handler for it.

Naturally we retained modules, which are separate
program units with explicit interfaces. But we relaxed the
Modula-2 rule that there be a one-to-one correspondence
between interfaces and the modules that implement them. A
module can implement a collection of interfaces; an interface
can be implemented by a collection of modules.

We also retained opaque types, which hide the
representation of a type from its clients. In Modula-3, as in
some but not all implementations of Modula-2, variables with
opaque types must be references. If the hidden representation
changes but the interface remains the same, client modules
will not need to be reprogrammed, or even recompiled. A
type that is not opaque is called concrete. It is possible to
reveal some but not all of the structure of a type, by declaring
it to be an “opaque subtype” of a given concrete object type.

The concurrency features of Modula-2 provide runtime
support for coroutines. In Modula-3 we have upgraded these
features to support threads of control that can be executed
concurrently on a multiprocessor. The features are a
simplified version of the Mesa extensions to Hoare’s monitors
[4, 7] whose formal semantics have been specified in Larch
[1]. Waiting, signaling, and locking a monitor have Hoare’s
semantics, but the requirement that a monitored data structure
be an entire module is relaxed: it can be an individual record
or any set of variables instead. The programmer is responsible
for acquiring the appropriate lock before accessing the
monitored data.

The language provides a syntactic construct for acquiring a
lock, executing a statement, and releasing the lock. Except for
this statement, the concurrency features are all specified by
means of a “required interface”, which is just like an ordinary
interface except that all Modula-3 implementations must
implement it. Thus concurrency adds little linguistic
complexity.

Modula-3 provides a few convenience features that are not
provided by Modula-2: default values for procedure
arguments, keyword parameters in procedure calls,
constructors for record and array values, and the ability to
specify an initial value for a variable at the point of its
declaration.

3 The Subtype Relation

Modula-3 is “strongly-typed”. Ideally, this means that the
value space is partitioned into types, variables are restricted to
hold values of a single type, and operations are restricted to
apply to operands of a fixed sequence of types. In actuality,
things are more complicated. A variable of type [0..9] can
safely be assigned to a variable of type INTEGER, but not vice
versa. Operations like absolute value apply both to REALs and
INTEGERs, instead of to a single type (overloading). The
types of literals (for example, NIL) may be ambiguous. The
type of an expression may be determined by how it is used
(target-typing). Type mismatches may cause automatic
conversions instead of errors (as when a fractional real is
rounded upon assignment to an integer).

We adopted several principles in order to keep Modula-3’s
type system as uniform as possible. First, there are no
ambiguous types or target-typing: the type of every
expression is determined only by its subexpressions, not by its
use. Second, there are no automatic conversions. In some
cases the representation of a value changes when it is
assigned (for example, when assigning to a field of a packed
record) but the abstract value itself is transferred without
change. Third, the rules for type compatibility are defined in
terms of a single subtype relation, written “<: ”. A naive plan
for doing this goes as follows:

• define T <: U by rules relating to the syntax of T and U;

• define, for each type, the set of values of that type.

in such a way that these definitions satisfy

• Value set rule: T <: U if and only if every value of type
T is a value of type U;

• Natural assignment rule: A T is assignable to a U if and

only if T <: U .

This plan would lead to a highly uniform type system, but
unfortunately it is too simple. For example, the natural
assignment rule would forbid the assignment of an INTEGER
to a [0..9] ; but the conventional policy is to allow such an
assignment, compiling a runtime check. We have no doubts
that the conventional policy is the best one, so the natural
assignment rule will not do. Any assignment satisfying the
natural assignment rule is allowed, but in addition there are
more liberal rules for ordinal types (integers, enumerations,
and subranges), references, and arrays. These will be
described below.

We were also forced to drop half of the value set rule: if T

<: U , then every value of type T is also a value of type U,
but the converse does not hold. This still provides a criterion
for checking that a syntactic subtype rule is consistent with
the semantics of the types involved, but it allows us to leave

 3

out some subtype relations that are logically possible but
pragmatically unattractive, because they would force the
implementation to do too much work.

We will now describe the subtype rules for each class of
types.

3.1 Ordinal types.

Subrange types are subtypes of their “base” types, since each
member of a subrange is also a member of the corresponding
base type:

[n..m] <: INTEGER if n and m are integers
[a..b] <: E if a and b are from the

enumeration type E

Moreover, two subrange types are in subtype relation when
their respective sets of values are in inclusion relation:

[a..b] <: [c..d] if [a..b] is a (possibly empty)

 subset of [c..d]

Note that partially overlapping subranges are completely
unrelated.

3.2 Set types.

For the subtype rule for sets we simply use the value set rule:

 SET OF T <: SET OF T’ if T <: T’

This rule is very natural, although open to the objection that it
requires the implementation to convert between
representations for some assignment operations.

3.3 Reference types.

A reference type is either traced or untraced. A member of a
traced reference type is traced by the garbage collector; that
is, the implementation stores its referent in a system-managed
storage pool, determines at runtime when all traced references
to it are gone, and then reclaims its storage. A member of an
untraced reference type is not traced by the garbage collector.

The type REF T is the type of all traced references to
variables of type T; the type UNTRACED REF T is the type of
all untraced references to variables of type T. The type
REFANY is the type of all traced references; the type ADDRESS
is the type of all untraced references; and the type NULL is the
type containing only NIL .

The subtype rules for reference types are again determined
by the value set rule:

 NULL <: REF T <: REFANY
 NULL <: UNTRACED REF T <: ADDRESS

Notice that the value NIL is a member of all reference
types. This does not mean that the type of NIL is ambiguous:
its type is NULL, which is assignable to all reference types by
the natural assignment rule.

The TYPECASE statement can be used to determine the
referent type of a variable of type REFANY, but there is no
corresponding operation for variables of type ADDRESS. This
difference reflects the fact that traced references must be
tagged for the benefit of the garbage collector.

Untraced references are provided for several reasons.
Low-level code may require pointers to device control blocks
that do not reside in the system storage pool; linking with
code that was compiled from another language may require
pointers that are not valid traced references; and untraced
references can provide significant performance advantages.
Most operations on untraced references are type-safe.
However, reclaiming the storage for an untraced reference is a
potential unchecked runtime error, and so is not allowed in
safe modules.

Object types are also reference types, but their subtyping
rules will be described in a later section.

3.4 Procedure types.

Modula-3’s procedure types are very similar to those in
Modula-2, consisting essentially of a signature specifying the
result type and the mode and type of each parameter. There
are some minor differences: a Modula-3 procedure signature
also specifies the set of exceptions that can be raised by the
procedure, and allows the formal parameters to be named and
given default values.

The subtype rule for procedure types T and U is:

 T <: U if:

• T and U have the same number of parameters, and
corresponding parameters have the same type and mode.

• T and U have identical return types, or neither has a

return type.

• The exception set of U contains the exception set of T.

The reader may wonder why we did not follow the
well-known “arrow rule”, in which (writing T -> U for the
type of all functions from type T to type U):

(T -> U) <: (T’ -> U’)

 if T’ <: T and U <: U’

The arrow rule cannot be used for VAR parameters, since they
are in a sense both arguments and results. Even for value
parameters and results the rule has undesirable consequences.
Suppose for example that T <: U and that T is a procedure
that takes a U, while q is a procedure variable declared to take

 4

a T. The arrow rule allows the assignment q := P , since P is
less “choosy” than q. It follows that the actual of type U that
the compiler produces in the calling sequence to q must also
be a valid actual of type T, since this will be expected by the
body of P.

Thus if the arrow rule is used for procedure types, then
whatever representation is used for variables of type U must
also be used for variables of any subtype of U. This policy
would rule out biased implementations of subrange types, for
example. It is incompatible with the subtype rule given
previously for sets. It would mean that fixed arrays passed by
value would have to be treated like open arrays, that is, with
an additional integer specifying the length. None of these
consequences is decisively bad, but the arrow rule is not
decisively good. We decided not to break with convention.

On the other hand, the subtype rule for procedures does not
require the exception sets to be equal. This generality has no
undesirable consequences for the implementation.

For convenience in handling procedure variables, NIL is
also allowed as a procedure; thus we have the additional rule:

 NULL <: PROCEDURE(A): B RAISES E

for any arguments A, result type B, and exception set E.

3.5 Packed types.

TYPE T = BITS n FOR U declares that type T has the same
values as U, but record fields and array elements of type T will
occupy exactly n bits. The subtyping rules for packed types
are:

 BITS n FOR T <: T
 T <: BITS n FOR T

These rules are natural consequences of that fact that T and U
have the same values. They make it possible to assign
unpacked values to packed fields, and vice versa. It may seem
surprising that T and U can be subtypes of one another without
being identical, but this is appropriate when distinct types
represent the same set of values.

3.6 Array types.

As in Modula-2, array types can be fixed or open. The length
of a variable with a fixed array type is determined at compile
time. The length of a variable with an open array type is
determined at run time, when the variable is allocated or
bound. It cannot be changed thereafter. Assignments are
allowed between fixed and open arrays, with a run-time check
that the lengths agree.

TYPE T = ARRAY I OF E declares T to be the type of
fixed arrays with index type I and element type E. The index
type must be an ordinal type. The subtype rule is:

 ARRAY I OF T <: ARRAY J OF T

 if NUMBER(I) = NUMBER(J)

i.e. the arrays must have identical sizes and element types.
Notice that the rule requires that the element types be
identical, even though the value set rule would only require
that the element type on the left be a subtype of the element
type on the right. For example, consider:

 TYPE
 T = ARRAY [0..999] OF [0..255];
 U = ARRAY [0..999] OF INTEGER;

Every sequence of a thousand integers in the range [0..255]
is a sequence of a thousand integers, so the value set rule
would require T <: U . But this would require complicated
conversions to implement assignment and parameter passing,
at least if T is represented differently from U, as is likely in
many implementations. This complexity is the main reason
that we dropped half of the value set rule.

Another point to note about the array subtype rule is that
the domain types I and J don’t need to be the same; they only
need to have the same length. An array value is a sequence;
an array variable consists of a value together with a method
of indexing it: indexes are automatically decreased by the
lower bound of the index set of the variable’s type.
Consequently the set of values of an array variable depends
only on the length of the index set, and the subtyping rule
above is consistent with the half of the value set rule that we
are keeping. The advantage of this approach is that it allows
all open arrays to have lower bound zero, which reduces
bookkeeping at runtime. This may seem overly parsimonious,
but the approach comes from Modula-2, where it has worked
well.

The declaration TYPE T = ARRAY OF E declares T to be
an open array type. The values of T are sequences of variables
of type E. Open array variables are always indexed by
integers starting at zero.

Obviously we need the rule

 ARRAY I OF T <: ARRAY OF T

which allows a fixed array actual to be bound to an open array
formal. Since Modula-3 allows multidimensional open arrays,
we also need the rules

 ARRAY J OF ARRAY I OF T
 <: ARRAY OF ARRAY OF T

 ARRAY OF ARRAY I OF T
 <: ARRAY OF ARRAY OF T

These don’t follow from the first rule, because in general the
array rule requires that the elements types be identical.
Generalizing to n dimensions, we obtain the following rule,
which subsumes the previous three:

 5

 ARRAY I 1 OF ... ARRAY I n OF T

 <: (ARRAY OF)
n
 T

where the I i are ordinal types or omitted. (Omitted I ’s create
open array types.)

Finally, the relation <: can be defined as the smallest
reflexive and transitive relation that satisfies the rules
presented above (and the rules for objects in Section 5).

3.7 Assignment rules.

A type T is assignable to a type U if one of the following
conditions apply.

• T <: U (The natural assignment rule).

• T and U are ordinal types with at least one member in
common.

• U <: T and T is an array type or reference type

(including an object type, but excluding ADDRESS in
safe modules).

In the first case, no run-time error is possible, since if T is a

subtype of U, then every T is a U.
In the second case, a conventional range check is made to

ensure that the particular T is a member of U.
The third case allows, for example, assigning a REFANY to

a REF T . It also allows assigning an ARRAY OF T to an
ARRAY I OF T . In this case a run-time check is required
either on the type of the reference or on the length of the
array.

The third rule is unconventional: in Cedar, Modula-2+, and
Oberon, the rules for references allow a supertype to be
assigned to a subtype only by using an explicit NARROW
operation. But this strictness with references is somewhat
inconsistent with the lenient rule for ordinal types.
Furthermore, based on our survey of Modula-2+ programs,
the conventional rule does not seem to make programs safer
or more readable.

4 Type identity

Two types are identical if their definitions are the same when
expanded; that is, when all names in the type definition are
replaced by their definitions. In the case of recursive types,
the expansion is infinite. In other words, Modula-3 uses
structural equivalence, while Modula-2 uses name
equivalence. (The term “name equivalence” is a misnomer: it
doesn’t mean that types are the same only if they have the
same name; it means that each occurrence of a type
constructor produces a new type. But it’s a popular misnomer,
so we’ll use it.)

This decision may be surprising. Of the languages
mentioned in the introduction, only Euclid uses structural
equivalence. It seems at first that structural equivalence is
worse for the programmer, since it weakens typechecking by
introducing the danger of accidental type coincidences, and
worse for the implementation, since it requires a non-trivial
computation to determine whether two types are structurally
equivalent. So why not stick with name equivalence?

The objection that structural equivalence weakens
typechecking by creating accidental type coincidences has
some truth in it, but the truth is more complicated than it first
appears. For example, consider

 TYPE
 Subrange1 = [0..255];
 Subrange2 = [0..255];
 Ref1 = POINTER TO INTEGER;
 Ref2 = POINTER TO INTEGER;

In Modula-2, these declarations produce four distinct types.

But although all types are created distinct, some types are
more distinct than others. A variable of type Subrange1 can
be assigned to a variable of type Subrange2 , since the
assignment rule for ordinal types is based on the structure of
the type. A variable of type Ref1 cannot be assigned to a
variable of type Ref2 , since the assignment rule for
references requires type identity, and ignores the structure of
the type.

We have met name-equivalence purists who get uneasy
about this, and even try to change the rules to prevent
assignments between Subrange1 and Subrange2 . After all,
it certainly is true that assignments between Subrange1 and
Subrange2 are sometimes bugs, and to let them slip by the
compiler seems like a concession of defeat by all who believe
in static typing. But this leads to type systems in which a
[0..10] can’t be assigned to a [0..11] , or to an INTEGER.
This is very awkward, and probably impractical.

There is a fundamental trade-off between convenience and
safety. If you want the convenience that a [0..255]
automatically inherits all the attributes of an INTEGER, then
you face the danger that you may accidentally use an
INTEGER attribute that is not an attribute of the type
represented by this instance of [0..255] . Modula-2 already
has a mechanism for hiding attributes of a type, namely the
opaque type machinery. It seems like a mistake for a subrange
declaration to be doing the work of an opaque type
declaration. So name-equivalence purists can relax: if a
programmer erroneously assigns a Subrange1 to a
Subrange2 and complains that the type system let it through,
they can tell her that she should have used an opaque type.

If this argument applies to Subrange1 and Subrange2 ,
why not to Ref1 and Ref2 ? In Modula-3, the rule for
assigning references is based on the subtype relation (like all
assignment rules). Because of objects, Modula-3 reference
types have a rich subtype structure, just like the ordinal types.
The subtype rules make a Ref1 a subtype of Ref2 , and

 6

therefore assignable to Ref2 , whether they are distinct types
or not.

Of course, a language with structure-based assignment
rules can still use name equivalence. For example, in
Modula-2 the types Subrange1 and Subrange2 are distinct,
even though they are assignable. The results are a little odd:
consider passing an actual parameter of type Subrange1 to a
formal of type Subrange2 . In Modula-2, this is legal for a
value parameter, but not for a variable parameter. This seems
more of a quirk than a useful protection.

In other words, the more structure-based assignment rules,
the weaker the argument that name equivalence prevents
accidental type coincidences. Since Modula-3’s type system
is based on a subtype relation, this argument for retaining
name equivalence was not persuasive.

In contrast, there is a strong argument for switching to
structural equivalence, which is that structural equivalence
makes sense between types that occur in different programs,
while name equivalence makes sense only between types that
occur in the same program. This advantage becomes
significant when type safety is extended to distributed
systems (via remote procedure call) or to permanent data
storage systems.

For example, DEC SRC’s Topaz system includes a package
called Pickles for storing typed data on the disk. The call
Pickle.Write(r, f) writes the data structure referenced
by r into the file f , preserving any circularities, substructure
sharing, and the types of the records involved. The preserved
data is called a “pickle”. The call Pickle. Read(r, f)
sets the reference r to a reconstruction of the value pickled in
the file f . (The run-time information that makes this possible
consists of a a single “typecode” that identifies the type of
each reference, which needs to be maintained for the garbage
collector, anyway.) The question now arises: when is it type-
safe for a pickle written by program A from a variable of type
T to be read by another program B into a variable of type U?

With structural equivalence, the answer is obvious: the
operation is type-safe if T and U are the same type. that is, if
they have the same structure. Without structural equivalence,
there is no satisfactory answer. Requiring that T and U have
the same name doesn’t work, since in different programs
different types can have the same name. Requiring that T and
U have the same structure (that is, using name equivalence
within a program but structural equivalence for pickles)
doesn’t work, since it would allow two structurally equivalent
references with distinct typecodes to be pickled and then read
back into two references with identical typecodes. Requiring
that T and U have the same name and the same structure
works after a fashion; it is the current policy for the pickles
package. But it has serious drawbacks. It means that changing
the name of a type can invalidate a previously-created pickle.
Since names have to be generated arbitrarily for anonymous
types that appear in pickles, a pickle can also be invalidated
just by reordering type declarations or by giving a name to a
previously anonymous type. This is not just a theoretical

problem, as programmers who have been bitten by it can
testify.

5 Object types

The object types of Modula-3 are essentially Simula classes.
The challenge we faced is to integrate them into the type
system so that they fit well with the existing procedure and
reference types. This section first motivates the two essential
aspects of object types, inheritance and methods, then
describes how they fit together in Modula-3, and finally
sketches an efficient implementation.

5.1 Inheritance.

Consider the type declarations

 TYPE

 A = REF RECORD a: REAL END;
 AB = REF RECORD a: REAL; b: BOOLEAN END;

Loosely speaking, a value x has type AB if it is the address

of a word in memory containing an a field of type REAL
followed by a word containing a b field of type BOOLEAN.
Similarly, a value x has type A if it is the address of a word in
memory containing an a field of type REAL. Thus every AB is
an A; that is, loosely speaking, AB <: A .

In fact, in any conventional implementation, passing an AB
actual to a procedure whose formal is of type A is safe and
meaningful: the procedure operates on the a field of the
record, without disturbing the b field.

This example illustrates the basic idea of inheritance of
object types. In Modula-3, the type constructor OBJECT is
like REF RECORD, but while the referent of a REF RECORD
must consist exactly of the fields declared in the record type,
the referent of the object type may have additional fields not
mentioned in the object type. Also, the OBJECT type
constructor can be used to extend an object type with
additional fields as well as to create a new type from scratch.
For example, to achieve the subtype relation AB <: A , the
types above should be declared:

 TYPE A = OBJECT a: REAL END;
 TYPE AB = A OBJECT b: BOOLEAN END;

Here is an example of inheritance used to produce a

reusable queue implementation. First, the interface:

 TYPE
 Queue = RECORD head, tail: QueueElem END;
 QueueElem = OBJECT link: QueueElem END;

 PROCEDURE
 Insert(VAR q: Queue; x: QueueElem);
 Delete(VAR q: Queue): QueueElem;
 Clear(VAR q: Queue);

 7

The implementation of the procedures relies only on the

link field of a QueueElem ; it does not depend on any
additional fields that might be present in particular subtypes.
The implementation is obvious and will not be listed. Here is
an example client:

 TYPE IntQueueElem =
 QueueElem OBJECT val: INTEGER END;

 VAR
 q: Queue;
 x: IntQueueElem;

 ...
 Clear(q);
 NEW(x, val := 6);
 Insert(q, x);
 ...
 x := Delete(q)

Passing x to Insert is safe, since every IntQueueElem is a
QueueElem . Assigning the result of Delete to x cannot be
guaranteed valid at compile-time, but the assignment will
produce a checked runtime error if the source value is not a
member of the target type. Thus IntQueueElem bears the
same relation to QueueElem as [0..9] bears to INTEGER.
Notice that the runtime check on the result of Delete(q) is
not redundant, since other subtypes of QueueElem can be
inserted into q.

5.2 Methods.

We begin with a simple example: how to implement a
closure, which is simply a procedure bundled up with an
argument record. For example, the formal parameter to
Thread.Fork , which creates a new thread of control, is a
closure. The first definition that comes to mind is:

TYPE Closure =
 OBJECT proc: PROCEDURE(self: Closure) END;

where the idea is that each subtype of Closure will extend
the record with whatever additional data fields are appropriate
to that subtype. In this representation, a closure cl is
activated by calling cl.proc(cl) .

To test this definition, let us try to build a closure which,
when activated, will compute and print the greatest common
divisor of 111 and 259:

TYPE GCDClosure =
 Closure OBJECT n, m: INTEGER END;

PROCEDURE PrintGCD(cl: GCDClosure);
 BEGIN Print(GCD(cl.n, cl.m)) END PrintGCD;

VAR gcd: GCDClosure;

NEW(gcd,
 proc := PrintGCD, n := Ill, m := 259)

Unfortunately, the initialization of gcd.proc in the last line
is illegal, since the declared argument type for gcd.proc is
an arbitrary closure, while PrintGCD demands a
GCDClosure . Even if Modula-3 had used the arrow rule for
procedure subtyping, storing a choosy procedure value into a
permissive procedure variable would not be type-safe.

It is awkward to work around this: we have to change
PrintGCD to take an arbitrary closure and narrow it at
runtime to a GCDClosure . (By “narrowing”, we mean
checked runtime type conversion.) The code would have to
look like this:

 PROCEDURE PrintGCD(cl: Closure);
 VAR gcl: GCDClosure := cl;
 BEGIN

 Print (GCD(gcl.n, gcl.m))
 END PrintGCD;

It is irritating as well as awkward, since in the program at
hand it actually is safe to store the choosy procedure value in
the permissive variable. The reason is that the only argument
that the program ever supplies to cl.proc is cl itself. Given
this, it is easy to see that the initialization of gcd.proc to
PrintGCD “ought to be” type-safe: at the time it is compiled,
the type of gcd is known to be not just a Closure but also a
GCDClosure . By assumption, gcd is the only value that will
ever be passed to gcd.proc , so it is all right for it to demand
a GCDClosure .

This problem illustrates the typechecking aspects of the
role of “methods” in object-oriented programming. The idea
behind methods is that a general operation P is applied to a
specific object v by calling a version of P that is customized
for v (called v ’s P method). That is, P(v, ...) simply
translates to v.P(v, ...) . The Closure example is the
special case in which there is only one method and the
method’s only argument is the object itself.

This method approach is most useful in conjunction with
inheritance, since the suite of methods for a particular subtype
of v will generally require extra data fields in addition to the
data fields of the supertype. But, as we can see from the
Closure example, the subtype methods will always need to
be declared to accept objects of the supertype, and to narrow
their arguments to the subtype at runtime. Thus errors that
could be caught at compile time will not be caught until run
time, which is unfortunate.

5.3 Objects in Modula-3.

The solution to the problem is to extend the type system to
support object-oriented programming. Here’s how this is done
in Modula-3.

 8

An object is either NIL or a reference to a data record
paired with a method suite, which is a record of procedures
that will each accept the object as a first argument. We will
just describe traced objects; untraced objects, which are
produced by adding the keyword UNTRACED to the type
declaration, are entirely analogous.

The signatures of the initial methods of the method suite
are determined by the object type, but the method suite can
contain additional methods, just like the data record. Methods
are simply procedures; there is no separate space of method
values.

Since the only way to call a method in an object’s method
suite is to pass the object itself as the first argument, the first
parameter can be of any type that contains the object. The rest
of the method’s signature must determine a subtype of the
method declaration in the object type. More precisely, a
procedure p satisfies a method declaration with signature sig
for an object x if p is NIL or if:

• p is a top-level procedure whose first parameter has
mode VALUE and whose type contains the value x , and

• if p’s first parameter is dropped, the resulting procedure

type is a subtype of the procedure type determined by
sig .

Notice that this definition allows the type of the first
parameter of the method to vary with the type of the object
containing the method. The notion of “satisfies” is used to
define the set of values of an object type. First we consider
the declaration of an object type without a supertype, which
has the form:

 TYPE T =
 OBJECT
 FieldList
 METHODS
 MethodList
 END

where FieldList is a list of field declarations, exactly as in
a record type, and MethodList is a list of method
declarations. Each method declaration has the form:

 m sig := proc

where m is an identifier (the method name), sig is a
procedure signature, and proc is a top-level procedure
constant.

An object x is a member of the type T if it is NIL or a
traced reference to a data record that contains the fields
declared in FieldList , possibly followed by other fields,
paired with a method suite that contains procedures that
satisfy the method declarations in MethodList , possibly
followed by other procedures.

The “:= proc ” is optional. If present, it specifies a default
method value used when allocating objects of type T; if
absent, the default method value is NIL .

Using methods, the type Closure would be defined like
this:

 TYPE Closure = OBJECT METHODS proc() END;

The rest of the example needs no change. The initialization of
the proc method to PrintGCD is allowed, since the type of
the first parameter to the method (GCDClosure) is a
supertype of the type of the object being allocated (also
GCDClosure).

A consequence of this design is that the method signatures
are statically determined by an object’s type (except for the
first argument), but the method values are not determined
until the object is allocated. The values cannot be changed
thereafter.

The declaration of an object type with a supertype has the
form:

 TYPE T =
 Supertype OBJECT
 FieldExtension
 METHODS
 MethodRevision
 END

where Supertype is an object type, FieldExtension is a
list of additional field declarations, and MethodRevision is
a list of additional declarations and method overrides of the
form:

 m : = proc

where m is the name of a method of the supertype and proc is
a top-level procedure that is a legal default for method m in
type T. Each method override specifies that proc is the
default value used for method m when allocating objects of
type T. If a method is not overridden, its default in T is the
same as its default in the supertype.

An object is a member of the type T if its data record
contains the fields of the supertype, followed by the fields
declared in FieldExtension , possibly followed by other
fields; and its method suite contains procedures that satisfy
the method declarations in the supertype, followed by
procedures that satisfy the method declarations in
MethodRevision , possibly followed by other procedures.

Notice that all Modula-3 methods are “virtual methods”. If
it is known that a certain method will have a constant value
for all objects of some type, then it might as well be declared
as an ordinary procedure in the interface containing the type
declaration.

The subtype rule for objects is simply the value set rule:

 NULL <: T OBJECT ... END <: T

 9

 OBJECT ... END <: REFANY
 UNTRACED OBJECT ... END <: ADDRESS

That is, NIL is a member of every object type, and every
supertype contains its subtypes. Also, every object is a
reference, traced or untraced.

5.4 Notation and examples.

If r is an object, then r.f designates the data field named f

in r ’s data record. If m is one of r ’s methods, then the
expression r.m(...) denotes the procedure application (r ’s

m method)(r,...) . If T is an object type and m is the name
of one of T’s methods, then T.m denotes T’s default m
method. The last notation is convenient when a subtype
method must invoke a default method of one of its
supertypes.

As an example, consider the following declarations:

 TYPE
 A = OBJECT a: INTEGER; METHODS p() END;
 AB = A OBJECT b: INTEGER END;

 PROCEDURE Pa(self: A) = ... ;
 PROCEDURE Pab(self: AB) = ... ;

 VAR a: A; ab: AB; ...

Obviously AB <: A . Since neither A nor AB has default
method values, the method values must be specified when the
objects are allocated. The procedures Pa and Pab are suitable
values for the p methods of objects of types A and AB. For
example:

 NEW(ab, p := Pab)

creates an object with an AB data record and a method that
expects an AB; it is an example of an object of type AB.
Similarly,

 NEW(a, p := Pa)

creates an object with an A data record and a method that
expects an A; it is an example of an object of type A. A more
interesting example is:

 NEW(ab, p := Pa)

which creates an object with an AB data record and a method
that expects an A. Since every AB is an A, the method is not
too choosy for the object in which it is placed. The result is a
valid object of type AB. In contrast,

 NEW(a, p := Pab)

attempts to create an object with an A data record and a
method that expects an AB; since not every A is an AB, the
method is too choosy for the object in which it is placed. The
result would not be a member of the type AB, so this call to
NEW is a static error.

Here is an example that illustrates the use of default
method values and method overrides:

 TYPE Window =
 OBJECT
 extent: Rectangle
 METHODS
 mouse(e: ClickEvent) := IgnoreClick;
 expose(e: ExposeEvent) := IgnoreExpose
 END;

 TYPE TextWindow =
 Window OBJECT
 text: Text.T;
 style: TextWindowStyle
 METHODS
 expose := ExposeTextWindow
 END;

If no methods are specified when an object of type

TextWindow is allocated, its mouse method will be
IgnoreClick and its expose method will be
ExposeTextWindow . These procedures must be de-clared
elsewhere. The procedure ExposeTextWindow can demand
a TextWindow as its first parameter, but IgnoreExpose

and IgnoreClick must accept any Window.

5.5 Implementation.

To solidify the preceding ideas we sketch one possible
implementation of objects.

An object can be represented as the address of the first
word of its data record. The preceeding word stores an object
header containing a type code unique to the object type.
These type codes are small integers; there is one of them for
each object type and for each traced reference type. (A similar
object header can be used for all records in the heap, whether
they are objects or not.) The word before the object header
stores a reference to the method suite for the object. An
advantage of this scheme is that if the object has no methods,
this word can be omitted. It also allows objects to share
method suites, which will be the common case.

If o is an object, d one of its data fields, and m one of its
methods, then in this representation:

 o.d is Mem[o + d]

 o.m is Mem[Mem[o – 2] + m]

 TYPECODE(o) is Mem[o – 1]

where we assume that fields and methods are represented by
offsets in the natural way.

 10

The more interesting problem is to efficiently test if an
object o has type T, as is required for narrowing and typecase
statements.

The simplest implementation of narrowing main-tains an
array st indexed by typecode; st[tc] is the typecode for the
supertype of the object type whose typecode is tc , or NIL if
there is no supertype. To test if o is a T, a loop is used to
compute whether the typecode for T appears in the sequence

 TYPECODE(o), st[TYPECODE(o)],
 st[st[TYPECODE(o)]], ... NIL

Let us call this sequence the supertype path for o’s type, and
its length the depth of o’s type. Faster implementations of
narrowing exploit the observation that the depth of each type
is determined at compile time, and can therefore be stored
with the corresponding typecode. Thus if the typecode for T
appears in the supertype path for a type U, it does so at the
position depth(U) - depth(T) . This means that narrowing
can be implemented in constant time, if the supertype path for
each type is represented as a sequential array. Since supertype
paths are not usually too long, this is an attractive strategy. In
the unusual case of an object type with a very long supertype
chain, only a prefix of the chain, up to some maximum length,
would be stored sequentially. If at runtime the difference in
depth exceeds the length of the sequentially stored prefix of
the chain, the implementation must fall back on the linked
list.

References

[1] A.D. Birrell, J.V. Guttag, J.J. Horning, R. Levin.

Synchronization Primitives for a Multiprocessor: A
Formal Specification. Operating Systems Review 21 5,
November 1987. Also published as SRC Research Report
20, August 1987.

[2] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug,

and Kristen Nygaard. Simula Begin. Auerbach,
Philadelphia PA, 1973.

[3] Luca Cardelli, Jim Donahue, Lucille Glassman, Mick

Jordan, Bill Kalsow, and Greg Nelson. Modula-3 Report.
Digital Systems Research Center, SRC-31, 1988.

[4] C.A.R. Hoare. Monitors: An Operating System
Structuring Concept. Communications of the ACM 17 10,
October 1974.

[5] Butler W. Lampson. A Description of the Cedar

Language. Xerox Palo Alto Research Center, CU-83-15,
December 1983.

[6] Butler W. Lampson, James J. Horning, Ralph L. London,

James G. Mitchell, and Gerald J. Popek. Report on the
Programming Language Euclid. Xerox Palo Alto
Research Center, CSL81-12, October 1981.

[7] Butler W. Lampson and David D. Redell. Experience

with Processes and Monitors in Mesa. Communications
of the ACM 23 2, February 1980.

[8] James G. Mitchell, William Maybury, and Richard

Sweet. Mesa Language Manual. Xerox Palo Alto
Research Center, CSL-78-1, February 1978.

[9] Paul Rovner, Roy Levin, and John Wick. On Extending

Modula-2 For Building Large, Integrated Systems.
Digital Systems Research Center, SRC-3, January 1985.

[10] Paul Rovner. Extending Modula-2 to Build Large,

Integrated Systems. IEEE Software 3 6, November
1986.

[11] Craig Schaffert, Topher Cooper, and Carrie Wilpolt.

Trellis Object-Based Environment Language Reference
Manual. DEC Eastern Research Lab, DEC-TR-372,
1985.

[12] Bjarne Stroustrup. The C++ Programming
 Language. Addison-Wesley, 1986.

[13] Larry Tesler, Apple Computers. Object Pascal
 Report. Structured Language World 9 3, 1985.

[14] Niklaus Wirth. Programming in Modula-2.
 Springer-Verlag, Third Edition, 1985.

[15] N. Wirth. From Modula to Oberon and The

Programming Language Oberon. Institut fur Informatik,
ETH Zurich 82, September 1987.

