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Abstract 
 
This paper presents an overview of the programming 
language Modula-3, and a more detailed description of its 
type system. 
 
1  Introduction 
 
The design of the programming language Modula-3 was a 
joint effort by the Digital Systems Research Center and the 
Olivetti Research Center, undertaken with the guidance and 
inspiration of Niklaus Wirth. The language is defined by the 
Modula-3 Report [3], and is currently being implemented by 
the Olivetti Research Center. This paper gives an overview of 
the language, focusing primarily upon its type system. 

Modula-3 is a direct descendent of Mesa [8], Modula-2 
[14], Cedar [5], and Modula-2+ [9, 10]. It also resembles its 
cousins Object Pascal [13], Oberon [15], and Euclid [6]. 
Since these languages already have more raw material than 
fits comfortably into a readable fifty-page language 
definition, which we were determined to produce, we didn’t 
need to be inventive. On the contrary, we had to leave many 
good ideas out. 

Instead of exploring new features, we studied the features 
from the Modula family of languages that have proven 
themselves in practice and tried to simplify them and fit them 
into a harmonious language. We found that most of the 
successful features were aimed at one of two main goals: 
greater robustness, and a cleaner, more systematic type 
system. 
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This paper begins with an overview of the language and 
then focuses on three aspects of its type system: the uniform 
description of type compatibility in terms of a subtype 
relation, the use of structural equivalence, and an extension of 
the type system to support object-oriented programming. 
 
2  Language Overview 
 
One of our main goals was increased robustness through 
safety from unchecked runtime errors ��IRUELGGHQ�RSHUDWLRQV�

that violate an invariant of the runtime system and lead to an 
unpredictable computation. 

A classic unchecked runtime error is to free a record that is 
referenced by active pointers. To avoid this danger, Modula-3 
follows Cedar, Modula-2+, and Oberon by automatically 
freeing unreachable records. This affects the type system, 
since the type rules for references must be strict enough to 
make garbage collection possible at runtime. 

Another well-known unchecked runtime error is to assign 
to the tag of a variant record in a way that subverts the type 
system. Distinguishing subversive assignments from benign 
assignments in the language definition is error-prone and 
arbitrary. The objects and classes first introduced by Simula 
[2] and adopted in Oberon and Object Pascal are more general 
than variant records, and they are safe, so we have discarded 
variant records and adopted objects. 

In addition to being safer than variant records, objects 
types allow a measure of polymorphism for data structures 
like lists, queues, and trees. For example, a procedure that 
reverses a list object can safely be applied both to lists of 
integers and to lists of reals. All Modula-3 objects are 
references (unlike in C++ [12]). Modula-3 allows only single 
inheritance (unlike Owl [11]). 

Generally the lowest levels of a system cannot be 
programmed with complete safety. Neither the compiler nor 
the runtime system can check the validity of a bus address for 
a peripheral device, nor can they limit the ensuing havoc if it 
is invalid. This presents the language designer with a 
dilemma. If he holds out for safety, then low level code will 
have to be programmed in another language. But if he adopts 
unsafe features, then his safety guarantee becomes void 
everywhere. In this area we have followed the lead of Cedar 
and Modula-2+ by adopting a small number of unsafe 
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features that are allowed only in modules that are explicitly 
labeled unsafe. In a safe module, the compiler guarantees the 
absence of unchecked runtime errors; in an unsafe module, it 
is the programmer’s responsibility to avoid them. 

From Modula-2+ we adopted exceptions. An exception 
exits all procedure call levels between the point at which it is 
“raised” and the point at which it is “handled”. Exceptions are 
a good way to handle any runtime error that is not necessarily 
fatal. The alternative is to use error return codes, but this has 
the drawback that programmers don’t consistently test for 
them. In the Unix/C world, the frequency with which 
programs omit tests for error returns has become something 
of a standing joke. Instead of breaking at an error, too many 
programs continue on their unpredictable way. Raising an 
exception is a more robust way to signal an error, since it will 
stop the computation unless there is an explicit handler for it. 

Naturally we retained modules, which are separate 
program units with explicit interfaces. But we relaxed the 
Modula-2 rule that there be a one-to-one correspondence 
between interfaces and the modules that implement them. A 
module can implement a collection of interfaces; an interface 
can be implemented by a collection of modules. 

We also retained opaque types, which hide the 
representation of a type from its clients. In Modula-3, as in 
some but not all implementations of Modula-2, variables with 
opaque types must be references. If the hidden representation 
changes but the interface remains the same, client modules 
will not need to be reprogrammed, or even recompiled. A 
type that is not opaque is called concrete. It is possible to 
reveal some but not all of the structure of a type, by declaring 
it to be an “opaque subtype” of a given concrete object type. 

The concurrency features of Modula-2 provide runtime 
support for coroutines. In Modula-3 we have upgraded these 
features to support threads of control that can be executed 
concurrently on a multiprocessor. The features are a 
simplified version of the Mesa extensions to Hoare’s monitors 
[4, 7] whose formal semantics have been specified in Larch 
[1]. Waiting, signaling, and locking a monitor have Hoare’s 
semantics, but the requirement that a monitored data structure 
be an entire module is relaxed: it can be an individual record 
or any set of variables instead. The programmer is responsible 
for acquiring the appropriate lock before accessing the 
monitored data. 

The language provides a syntactic construct for acquiring a 
lock, executing a statement, and releasing the lock. Except for 
this statement, the concurrency features are all specified by 
means of a “required interface”, which is just like an ordinary 
interface except that all Modula-3 implementations must 
implement it. Thus concurrency adds little linguistic 
complexity. 

Modula-3 provides a few convenience features that are not 
provided by Modula-2: default values for procedure 
arguments, keyword parameters in procedure calls, 
constructors for record and array values, and the ability to 
specify an initial value for a variable at the point of its 
declaration. 

3  The Subtype Relation 
 
Modula-3 is “strongly-typed”. Ideally, this means that the 
value space is partitioned into types, variables are restricted to 
hold values of a single type, and operations are restricted to 
apply to operands of a fixed sequence of types. In actuality, 
things are more complicated. A variable of type [0..9]  can 
safely be assigned to a variable of type INTEGER, but not vice 
versa. Operations like absolute value apply both to REALs and 
INTEGERs, instead of to a single type (overloading). The 
types of literals (for example, NIL ) may be ambiguous. The 
type of an expression may be determined by how it is used 
(target-typing). Type mismatches may cause automatic 
conversions instead of errors (as when a fractional real is 
rounded upon assignment to an integer). 

We adopted several principles in order to keep Modula-3’s 
type system as uniform as possible. First, there are no 
ambiguous types or target-typing: the type of every 
expression is determined only by its subexpressions, not by its 
use. Second, there are no automatic conversions. In some 
cases the representation of a value changes when it is 
assigned (for example, when assigning to a field of a packed 
record) but the abstract value itself is transferred without 
change. Third, the rules for type compatibility are defined in 
terms of a single subtype relation, written “<: ”. A naive plan 
for doing this goes as follows: 
 

• define T <: U  by rules relating to the syntax of T and U; 
 
• define, for each type, the set of values of that type. 

 
in such a way that these definitions satisfy 
 

• Value set rule: T <: U  if and only if every value of type 
T is a value of type U; 

 
• Natural assignment rule: A T is assignable to a U if and 

only if T <: U . 
 

This plan would lead to a highly uniform type system, but 
unfortunately it is too simple. For example, the natural 
assignment rule would forbid the assignment of an INTEGER 
to a [0..9] ; but the conventional policy is to allow such an 
assignment, compiling a runtime check. We have no doubts 
that the conventional policy is the best one, so the natural 
assignment rule will not do. Any assignment satisfying the 
natural assignment rule is allowed, but in addition there are 
more liberal rules for ordinal types (integers, enumerations, 
and subranges), references, and arrays. These will be 
described below. 

We were also forced to drop half of the value set rule: if T 

<: U , then every value of type T is also a value of type U, 
but the converse does not hold. This still provides a criterion 
for checking that a syntactic subtype rule is consistent with 
the semantics of the types involved, but it allows us to leave 
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out some subtype relations that are logically possible but 
pragmatically unattractive, because they would force the 
implementation to do too much work. 

We will now describe the subtype rules for each class of 
types. 
 
3.1  Ordinal types. 
 
Subrange types are subtypes of their “base” types, since each 
member of a subrange is also a member of the corresponding 
base type: 
 
[n..m] <: INTEGER  if n and m are integers  
[a..b] <: E  if a and b are from the  

enumeration type E 
 
Moreover, two subrange types are in subtype relation when 
their respective sets of values are in inclusion relation: 
 
[a..b] <: [c..d]  if [a..b]  is a (possibly empty) 

 subset of [c..d]  
 
Note that partially overlapping subranges are completely 
unrelated. 
 
3.2  Set types. 
 
For the subtype rule for sets we simply use the value set rule: 
 
   SET OF T <: SET OF T’   if   T <: T’ 

 
This rule is very natural, although open to the objection that it 
requires the implementation to convert between 
representations for some assignment operations. 
 
3.3  Reference types. 
 
A reference type is either traced or untraced. A member of a 
traced reference type is traced by the garbage collector; that 
is, the implementation stores its referent in a system-managed 
storage pool, determines at runtime when all traced references 
to it are gone, and then reclaims its storage. A member of an 
untraced reference type is not traced by the garbage collector. 

The type REF T  is the type of all traced references to 
variables of type T; the type UNTRACED REF T is the type of 
all untraced references to variables of type T. The type 
REFANY is the type of all traced references; the type ADDRESS 
is the type of all untraced references; and the type NULL is the 
type containing only NIL . 

The subtype rules for reference types are again determined 
by the value set rule: 
 
   NULL <: REF T <: REFANY 
   NULL <: UNTRACED REF T <: ADDRESS 

Notice that the value NIL  is a member of all reference 
types. This does not mean that the type of NIL  is ambiguous: 
its type is NULL, which is assignable to all reference types by 
the natural assignment rule. 

The TYPECASE statement can be used to determine the 
referent type of a variable of type REFANY, but there is no 
corresponding operation for variables of type ADDRESS. This 
difference reflects the fact that traced references must be 
tagged for the benefit of the garbage collector. 

Untraced references are provided for several reasons. 
Low-level code may require pointers to device control blocks 
that do not reside in the system storage pool; linking with 
code that was compiled from another language may require 
pointers that are not valid traced references; and untraced 
references can provide significant performance advantages. 
Most operations on untraced references are type-safe. 
However, reclaiming the storage for an untraced reference is a 
potential unchecked runtime error, and so is not allowed in 
safe modules. 

Object types are also reference types, but their subtyping 
rules will be described in a later section. 
 
3.4  Procedure types. 
 
Modula-3’s procedure types are very similar to those in 
Modula-2, consisting essentially of a signature specifying the 
result type and the mode and type of each parameter. There 
are some minor differences: a Modula-3 procedure signature 
also specifies the set of exceptions that can be raised by the 
procedure, and allows the formal parameters to be named and 
given default values. 

The subtype rule for procedure types T and U is: 
 
   T <: U  if: 
 

• T and U have the same number of parameters, and 
corresponding parameters have the same type and mode. 

 
• T and U have identical return types, or neither has a 

return type. 
 

• The exception set of U contains the exception set of T. 
 

The reader may wonder why we did not follow the 
well-known “arrow rule”, in which (writing T -> U  for the 
type of all functions from type T to type U): 
 
(T -> U) <: (T’ -> U’) 

     if   T’ <: T   and  U <: U’  
 
The arrow rule cannot be used for VAR parameters, since they 
are in a sense both arguments and results. Even for value 
parameters and results the rule has undesirable consequences. 
Suppose for example that T <: U  and that T is a procedure 
that takes a U, while q is a procedure variable declared to take 
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a T. The arrow rule allows the assignment q := P , since P is 
less “choosy” than q. It follows that the actual of type U that 
the compiler produces in the calling sequence to q must also 
be a valid actual of type T, since this will be expected by the 
body of P. 

Thus if the arrow rule is used for procedure types, then 
whatever representation is used for variables of type U must 
also be used for variables of any subtype of U. This policy 
would rule out biased implementations of subrange types, for 
example. It is incompatible with the subtype rule given 
previously for sets. It would mean that fixed arrays passed by 
value would have to be treated like open arrays, that is, with 
an additional integer specifying the length. None of these 
consequences is decisively bad, but the arrow rule is not 
decisively good. We decided not to break with convention. 

On the other hand, the subtype rule for procedures does not 
require the exception sets to be equal. This generality has no 
undesirable consequences for the implementation. 

For convenience in handling procedure variables, NIL  is 
also allowed as a procedure; thus we have the additional rule: 
 
   NULL <: PROCEDURE(A): B RAISES E 

 
for any arguments A, result type B, and exception set E. 
 
3.5  Packed types. 
 
TYPE T = BITS n FOR U  declares that type T has the same 
values as U, but record fields and array elements of type T will 
occupy exactly n bits. The subtyping rules for packed types 
are: 
 
   BITS n FOR T <: T  
   T <: BITS n FOR T 

 
These rules are natural consequences of that fact that T and U 
have the same values. They make it possible to assign 
unpacked values to packed fields, and vice versa. It may seem 
surprising that T and U can be subtypes of one another without 
being identical, but this is appropriate when distinct types 
represent the same set of values. 
 
3.6  Array types. 
 
As in Modula-2, array types can be fixed or open. The length 
of a variable with a fixed array type is determined at compile 
time. The length of a variable with an open array type is 
determined at run time, when the variable is allocated or 
bound. It cannot be changed thereafter. Assignments are 
allowed between fixed and open arrays, with a run-time check 
that the lengths agree. 

TYPE T = ARRAY I OF E  declares T to be the type of 
fixed arrays with index type I  and element type E. The index 
type must be an ordinal type. The subtype rule is: 
 

   ARRAY I OF T <: ARRAY J OF T 

    if  NUMBER(I) = NUMBER(J) 

 
i.e. the arrays must have identical sizes and element types. 
Notice that the rule requires that the element types be 
identical, even though the value set rule would only require 
that the element type on the left be a subtype of the element 
type on the right. For example, consider: 
 
   TYPE  
      T = ARRAY [0..999] OF [0..255];  
      U = ARRAY [0..999] OF INTEGER; 

 
Every sequence of a thousand integers in the range [0..255]  
is a sequence of a thousand integers, so the value set rule 
would require T <: U . But this would require complicated 
conversions to implement assignment and parameter passing, 
at least if T is represented differently from U, as is likely in 
many implementations. This complexity is the main reason 
that we dropped half of the value set rule. 

Another point to note about the array subtype rule is that 
the domain types I  and J  don’t need to be the same; they only 
need to have the same length. An array value is a sequence; 
an array variable consists of a value together with a method 
of indexing it: indexes are automatically decreased by the 
lower bound of the index set of the variable’s type. 
Consequently the set of values of an array variable depends 
only on the length of the index set, and the subtyping rule 
above is consistent with the half of the value set rule that we 
are keeping. The advantage of this approach is that it allows 
all open arrays to have lower bound zero, which reduces 
bookkeeping at runtime. This may seem overly parsimonious, 
but the approach comes from Modula-2, where it has worked 
well. 

The declaration TYPE T = ARRAY OF E  declares T to be 
an open array type. The values of T are sequences of variables 
of type E. Open array variables are always indexed by 
integers starting at zero. 

Obviously we need the rule 
 
   ARRAY I OF T <: ARRAY OF T 

 
which allows a fixed array actual to be bound to an open array 
formal. Since Modula-3 allows multidimensional open arrays, 
we also need the rules 
 
   ARRAY J OF ARRAY I OF T 
    <: ARRAY OF ARRAY OF T 
 
   ARRAY OF ARRAY I OF T 
    <: ARRAY OF ARRAY OF T 

 
These don’t follow from the first rule, because in general the 
array rule requires that the elements types be identical. 
Generalizing to n dimensions, we obtain the following rule, 
which subsumes the previous three: 
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   ARRAY I 1 OF ... ARRAY I n OF T 

     <: (ARRAY OF)
n
 T 

 
where the I i are ordinal types or omitted. (Omitted I ’s create 
open array types.) 

Finally, the relation <:  can be defined as the smallest 
reflexive and transitive relation that satisfies the rules 
presented above (and the rules for objects in Section 5). 
 
3.7  Assignment rules. 
 
A type T is assignable to a type U if one of the following 
conditions apply. 
 

•  T <: U  (The natural assignment rule). 
 

•  T and U are ordinal types with at least one member in 
common. 

 
• U <: T  and T is an array type or reference type 

(including an object type, but excluding ADDRESS in 
safe modules). 

 
In the first case, no run-time error is possible, since if T is a 

subtype of U, then every T is a U. 
In the second case, a conventional range check is made to 

ensure that the particular T is a member of U. 
The third case allows, for example, assigning a REFANY to 

a REF T . It also allows assigning an ARRAY OF T to an 
ARRAY I OF T . In this case a run-time check is required 
either on the type of the reference or on the length of the 
array. 

The third rule is unconventional: in Cedar, Modula-2+, and 
Oberon, the rules for references allow a supertype to be 
assigned to a subtype only by using an explicit NARROW 
operation. But this strictness with references is somewhat 
inconsistent with the lenient rule for ordinal types. 
Furthermore, based on our survey of Modula-2+ programs, 
the conventional rule does not seem to make programs safer 
or more readable. 
 
4  Type identity 
 
Two types are identical if their definitions are the same when 
expanded; that is, when all names in the type definition are 
replaced by their definitions. In the case of recursive types, 
the expansion is infinite. In other words, Modula-3 uses 
structural equivalence, while Modula-2 uses name 
equivalence. (The term “name equivalence” is a misnomer: it 
doesn’t mean that types are the same only if they have the 
same name; it means that each occurrence of a type 
constructor produces a new type. But it’s a popular misnomer, 
so we’ll use it.) 

This decision may be surprising. Of the languages 
mentioned in the introduction, only Euclid uses structural 
equivalence. It seems at first that structural equivalence is 
worse for the programmer, since it weakens typechecking by 
introducing the danger of accidental type coincidences, and 
worse for the implementation, since it requires a non-trivial 
computation to determine whether two types are structurally 
equivalent. So why not stick with name equivalence? 

The objection that structural equivalence weakens 
typechecking by creating accidental type coincidences has 
some truth in it, but the truth is more complicated than it first 
appears. For example, consider 
 
   TYPE 
     Subrange1 = [0..255];  
     Subrange2 = [0..255];  
     Ref1 = POINTER TO INTEGER;  
     Ref2 = POINTER TO INTEGER; 

 
In Modula-2, these declarations produce four distinct types. 

But although all types are created distinct, some types are 
more distinct than others. A variable of type Subrange1  can 
be assigned to a variable of type Subrange2 , since the 
assignment rule for ordinal types is based on the structure of 
the type. A variable of type Ref1 cannot be assigned to a 
variable of type Ref2 , since the assignment rule for 
references requires type identity, and ignores the structure of 
the type. 

We have met name-equivalence purists who get uneasy 
about this, and even try to change the rules to prevent 
assignments between Subrange1  and Subrange2 . After all, 
it certainly is true that assignments between Subrange1  and 
Subrange2  are sometimes bugs, and to let them slip by the 
compiler seems like a concession of defeat by all who believe 
in static typing. But this leads to type systems in which a 
[0..10]  can’t be assigned to a [0..11] , or to an INTEGER. 
This is very awkward, and probably impractical. 

There is a fundamental trade-off between convenience and 
safety. If you want the convenience that a [0..255]  
automatically inherits all the attributes of an INTEGER, then 
you face the danger that you may accidentally use an 
INTEGER attribute that is not an attribute of the type 
represented by this instance of [0..255] . Modula-2 already 
has a mechanism for hiding attributes of a type, namely the 
opaque type machinery. It seems like a mistake for a subrange 
declaration to be doing the work of an opaque type 
declaration. So name-equivalence purists can relax: if a 
programmer erroneously assigns a Subrange1 to a 
Subrange2  and complains that the type system let it through, 
they can tell her that she should have used an opaque type. 

If this argument applies to Subrange1  and Subrange2 , 
why not to Ref1  and Ref2 ? In Modula-3, the rule for 
assigning references is based on the subtype relation (like all 
assignment rules). Because of objects, Modula-3 reference 
types have a rich subtype structure, just like the ordinal types. 
The subtype rules make a Ref1  a subtype of Ref2 , and 
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therefore assignable to Ref2 , whether they are distinct types 
or not. 

Of course, a language with structure-based assignment 
rules can still use name equivalence. For example, in 
Modula-2 the types Subrange1  and Subrange2  are distinct, 
even though they are assignable. The results are a little odd: 
consider passing an actual parameter of type Subrange1  to a 
formal of type Subrange2 . In Modula-2, this is legal for a 
value parameter, but not for a variable parameter. This seems 
more of a quirk than a useful protection. 

In other words, the more structure-based assignment rules, 
the weaker the argument that name equivalence prevents 
accidental type coincidences. Since Modula-3’s type system 
is based on a subtype relation, this argument for retaining 
name equivalence was not persuasive. 

In contrast, there is a strong argument for switching to 
structural equivalence, which is that structural equivalence 
makes sense between types that occur in different programs, 
while name equivalence makes sense only between types that 
occur in the same program. This advantage becomes 
significant when type safety is extended to distributed 
systems (via remote procedure call) or to permanent data 
storage systems. 

For example, DEC SRC’s Topaz system includes a package 
called Pickles  for storing typed data on the disk. The call 
Pickle.Write(r, f)  writes the data structure referenced 
by r  into the file f , preserving any circularities, substructure 
sharing, and the types of the records involved. The preserved 
data is called a “pickle”. The call Pickle. Read(r, f)  
sets the reference r  to a reconstruction of the value pickled in 
the file f . (The run-time information that makes this possible 
consists of a a single “typecode” that identifies the type of 
each reference, which needs to be maintained for the garbage 
collector, anyway.) The question now arises: when is it type- 
safe for a pickle written by program A from a variable of type 
T to be read by another program B into a variable of type U? 

With structural equivalence, the answer is obvious: the 
operation is type-safe if T and U are the same type. that is, if 
they have the same structure. Without structural equivalence, 
there is no satisfactory answer. Requiring that T and U have 
the same name doesn’t work, since in different programs 
different types can have the same name. Requiring that T and 
U have the same structure (that is, using name equivalence 
within a program but structural equivalence for pickles) 
doesn’t work, since it would allow two structurally equivalent 
references with distinct typecodes to be pickled and then read 
back into two references with identical typecodes. Requiring 
that T and U have the same name and the same structure 
works after a fashion; it is the current policy for the pickles 
package. But it has serious drawbacks. It means that changing 
the name of a type can invalidate a previously-created pickle. 
Since names have to be generated arbitrarily for anonymous 
types that appear in pickles, a pickle can also be invalidated 
just by reordering type declarations or by giving a name to a 
previously anonymous type. This is not just a theoretical 

problem, as programmers who have been bitten by it can 
testify. 
 
5  Object types 
 
The object types of Modula-3 are essentially Simula classes. 
The challenge we faced is to integrate them into the type 
system so that they fit well with the existing procedure and 
reference types. This section first motivates the two essential 
aspects of object types, inheritance and methods, then 
describes how they fit together in Modula-3, and finally 
sketches an efficient implementation. 
 
5.1  Inheritance. 
 
Consider the type declarations 
 
   TYPE 

   A = REF RECORD a: REAL END; 
   AB = REF RECORD a: REAL; b: BOOLEAN END; 

 
Loosely speaking, a value x  has type AB if it is the address 

of a word in memory containing an a field of type REAL 
followed by a word containing a b field of type BOOLEAN. 
Similarly, a value x  has type A if it is the address of a word in 
memory containing an a field of type REAL. Thus every AB is 
an A; that is, loosely speaking, AB <: A . 

In fact, in any conventional implementation, passing an AB 
actual to a procedure whose formal is of type A is safe and 
meaningful: the procedure operates on the a field of the 
record, without disturbing the b field. 

This example illustrates the basic idea of inheritance of 
object types. In Modula-3, the type constructor OBJECT is 
like REF RECORD, but while the referent of a REF RECORD 
must consist exactly of the fields declared in the record type, 
the referent of the object type may have additional fields not 
mentioned in the object type. Also, the OBJECT type 
constructor can be used to extend an object type with 
additional fields as well as to create a new type from scratch. 
For example, to achieve the subtype relation AB <: A , the 
types above should be declared: 
 
   TYPE A = OBJECT a: REAL END;  
   TYPE AB = A OBJECT b: BOOLEAN END; 

 
Here is an example of inheritance used to produce a 

reusable queue implementation. First, the interface: 
 
   TYPE  
     Queue = RECORD head, tail: QueueElem END; 
     QueueElem = OBJECT link: QueueElem END; 
 
   PROCEDURE  
     Insert(VAR q: Queue; x: QueueElem); 
     Delete(VAR q: Queue): QueueElem;  
     Clear(VAR q: Queue); 
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The implementation of the procedures relies only on the 

link  field of a QueueElem ; it does not depend on any 
additional fields that might be present in particular subtypes. 
The implementation is obvious and will not be listed. Here is 
an example client: 
 
   TYPE IntQueueElem = 
     QueueElem OBJECT val: INTEGER END; 
 
   VAR 
     q: Queue; 
     x: IntQueueElem; 
 
   ... 
   Clear(q);  
   NEW(x, val := 6);  
   Insert(q, x); 
   ... 
   x := Delete(q) 

 
Passing x  to Insert  is safe, since every IntQueueElem  is a 
QueueElem . Assigning the result of Delete  to x  cannot be 
guaranteed valid at compile-time, but the assignment will 
produce a checked runtime error if the source value is not a 
member of the target type. Thus IntQueueElem  bears the 
same relation to QueueElem  as [0..9]  bears to INTEGER. 
Notice that the runtime check on the result of Delete(q)   is 
not redundant, since other subtypes of QueueElem  can be 
inserted into q. 
 
5.2  Methods. 
 
We begin with a simple example: how to implement a 
closure, which is simply a procedure bundled up with an 
argument record. For example, the formal parameter to 
Thread.Fork , which creates a new thread of control, is a 
closure. The first definition that comes to mind is: 
 
TYPE Closure = 
  OBJECT proc: PROCEDURE(self: Closure) END; 

 
where the idea is that each subtype of Closure  will extend 
the record with whatever additional data fields are appropriate 
to that subtype. In this representation, a closure cl  is 
activated by calling cl.proc(cl) . 

To test this definition, let us try to build a closure which, 
when activated, will compute and print the greatest common 
divisor of 111 and 259: 
 
TYPE GCDClosure = 
  Closure OBJECT n, m: INTEGER END; 

 
PROCEDURE PrintGCD(cl: GCDClosure); 
  BEGIN Print(GCD(cl.n, cl.m)) END PrintGCD; 

 
VAR gcd: GCDClosure; 

 
NEW(gcd, 
  proc := PrintGCD, n := Ill, m := 259) 

 
Unfortunately, the initialization of gcd.proc  in the last line 
is illegal, since the declared argument type for gcd.proc  is 
an arbitrary closure, while PrintGCD  demands a 
GCDClosure . Even if Modula-3 had used the arrow rule for 
procedure subtyping, storing a choosy procedure value into a 
permissive procedure variable would not be type-safe. 

It is awkward to work around this: we have to change 
PrintGCD  to take an arbitrary closure and narrow it at 
runtime to a GCDClosure . (By “narrowing”, we mean 
checked runtime type conversion.) The code would have to 
look like this: 
 
   PROCEDURE PrintGCD(cl: Closure);  
     VAR gcl: GCDClosure := cl;  
     BEGIN 

     Print (GCD(gcl.n, gcl.m))  
   END PrintGCD; 

 
It is irritating as well as awkward, since in the program at 
hand it actually is safe to store the choosy procedure value in 
the permissive variable. The reason is that the only argument 
that the program ever supplies to cl.proc  is cl  itself. Given 
this, it is easy to see that the initialization of gcd.proc  to 
PrintGCD  “ought to be” type-safe: at the time it is compiled, 
the type of gcd  is known to be not just a Closure  but also a 
GCDClosure . By assumption, gcd  is the only value that will 
ever be passed to gcd.proc , so it is all right for it to demand 
a GCDClosure .  

This problem illustrates the typechecking aspects of the 
role of “methods” in object-oriented programming. The idea 
behind methods is that a general operation P is applied to a 
specific object v  by calling a version of P that is customized 
for v  (called v ’s P method). That is, P(v, ...)  simply 
translates to v.P(v, ...) . The Closure  example is the 
special case in which there is only one method and the 
method’s only argument is the object itself. 

This method approach is most useful in conjunction with 
inheritance, since the suite of methods for a particular subtype 
of v  will generally require extra data fields in addition to the 
data fields of the supertype. But, as we can see from the 
Closure  example, the subtype methods will always need to 
be declared to accept objects of the supertype, and to narrow 
their arguments to the subtype at runtime. Thus errors that 
could be caught at compile time will not be caught until run 
time, which is unfortunate. 
 
5.3  Objects in Modula-3. 
 
The solution to the problem is to extend the type system to 
support object-oriented programming. Here’s how this is done 
in Modula-3. 
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An object is either NIL  or a reference to a data record 
paired with a method suite, which is a record of procedures 
that will each accept the object as a first argument. We will 
just describe traced objects; untraced objects, which are 
produced by adding the keyword UNTRACED to the type 
declaration, are entirely analogous. 

The signatures of the initial methods of the method suite 
are determined by the object type, but the method suite can 
contain additional methods, just like the data record. Methods 
are simply procedures; there is no separate space of method 
values. 

Since the only way to call a method in an object’s method 
suite is to pass the object itself as the first argument, the first 
parameter can be of any type that contains the object. The rest 
of the method’s signature must determine a subtype of the 
method declaration in the object type. More precisely, a 
procedure p satisfies a method declaration with signature sig  
for an object x  if p is NIL  or if: 
 

•  p is a top-level procedure whose first parameter has 
mode VALUE and whose type contains the value x , and 

 
• if p’s first parameter is dropped, the resulting procedure 

type is a subtype of the procedure type determined by 
sig . 

 
Notice that this definition allows the type of the first 
parameter of the method to vary with the type of the object 
containing the method. The notion of “satisfies” is used to 
define the set of values of an object type. First we consider 
the declaration of an object type without a supertype, which 
has the form: 
 
   TYPE T = 
    OBJECT 
     FieldList 
    METHODS 
     MethodList 
    END 

 
where FieldList  is a list of field declarations, exactly as in 
a record type, and MethodList  is a list of method 
declarations. Each method declaration has the form: 
 
   m sig := proc 

 
where m is an identifier (the method name), sig  is a 
procedure signature, and proc  is a top-level procedure 
constant. 

An object x  is a member of the type T if it is NIL  or a 
traced reference to a data record that contains the fields 
declared in FieldList , possibly followed by other fields, 
paired with a method suite that contains procedures that 
satisfy the method declarations in MethodList , possibly 
followed by other procedures. 

The “:= proc ” is optional. If present, it specifies a default 
method value used when allocating objects of type T; if 
absent, the default method value is NIL . 

Using methods, the type Closure  would be defined like 
this: 
 
   TYPE Closure = OBJECT METHODS proc() END; 

 
The rest of the example needs no change. The initialization of 
the proc  method to PrintGCD  is allowed, since the type of 
the first parameter to the method (GCDClosure ) is a 
supertype of the type of the object being allocated (also 
GCDClosure ). 

A consequence of this design is that the method signatures 
are statically determined by an object’s type (except for the 
first argument), but the method values are not determined 
until the object is allocated. The values cannot be changed 
thereafter. 

The declaration of an object type with a supertype has the 
form: 

 
   TYPE T = 
     Supertype OBJECT 
       FieldExtension 
     METHODS 
       MethodRevision 
     END 

 
where Supertype  is an object type, FieldExtension  is a 
list of additional field declarations, and MethodRevision  is 
a list of additional declarations and method overrides of the 
form: 
 
   m : = proc 

 
where m is the name of a method of the supertype and proc  is 
a top-level procedure that is a legal default for method m in 
type T. Each method override specifies that proc  is the 
default value used for method m when allocating objects of 
type T. If a method is not overridden, its default in T is the 
same as its default in the supertype. 

An object is a member of the type T if its data record 
contains the fields of the supertype, followed by the fields 
declared in FieldExtension , possibly followed by other 
fields; and its method suite contains procedures that satisfy 
the method declarations in the supertype, followed by 
procedures that satisfy the method declarations in 
MethodRevision , possibly followed by other procedures. 

Notice that all Modula-3 methods are “virtual methods”. If 
it is known that a certain method will have a constant value 
for all objects of some type, then it might as well be declared 
as an ordinary procedure in the interface containing the type 
declaration. 

The subtype rule for objects is simply the value set rule: 
 
   NULL <: T OBJECT ... END <: T 
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   OBJECT ... END <: REFANY 
   UNTRACED OBJECT ... END <: ADDRESS 

 
That is, NIL  is a member of every object type, and every 
supertype contains its subtypes. Also, every object is a 
reference, traced or untraced. 
 
 
 

5.4  Notation and examples. 
 
If r  is an object, then r.f  designates the data field named f  

in r ’s data record. If m is one of r ’s  methods, then the 
expression r.m(...)  denotes the procedure application (r ’s 

m method)(r,...) . If T is an object type and m is the name 
of one of T’s methods, then T.m denotes T’s default m 
method. The last notation is convenient when a subtype 
method must invoke a default method of one of its 
supertypes. 

As an example, consider the following declarations: 
 

   TYPE 
     A = OBJECT a: INTEGER; METHODS p() END; 
     AB = A OBJECT b: INTEGER END; 
 
   PROCEDURE Pa(self: A) = ... ; 
   PROCEDURE Pab(self: AB) = ... ; 

 
   VAR a: A; ab: AB; ... 

 
Obviously AB <: A . Since neither A nor AB has default 
method values, the method values must be specified when the 
objects are allocated. The procedures Pa and Pab are suitable 
values for the p methods of objects of types A and AB. For 
example: 
 
   NEW(ab, p := Pab) 

 
creates an object with an AB data record and a method that 
expects an AB; it is an example of an object of type AB. 
Similarly, 
 
   NEW(a, p := Pa) 

 
creates an object with an A data record and a method that 
expects an A; it is an example of an object of type A. A more 
interesting example is: 
 
   NEW(ab, p := Pa) 

which creates an object with an AB data record and a method 
that expects an A. Since every AB is an A, the method is not 
too choosy for the object in which it is placed. The result is a 
valid object of type AB. In contrast, 
 
   NEW(a, p := Pab) 

 

attempts to create an object with an A data record and a 
method that expects an AB; since not every A is an AB, the 
method is too choosy for the object in which it is placed. The 
result would not be a member of the type AB, so this call to 
NEW is a static error. 

Here is an example that illustrates the use of default 
method values and method overrides: 
 
  TYPE Window = 
    OBJECT  
      extent: Rectangle 
    METHODS  
      mouse(e: ClickEvent) := IgnoreClick;  
      expose(e: ExposeEvent) := IgnoreExpose 
    END; 

 
  TYPE TextWindow = 
    Window OBJECT  
      text: Text.T;  
      style: TextWindowStyle 
    METHODS  
      expose := ExposeTextWindow 
    END; 

 
If no methods are specified when an object of type 

TextWindow  is allocated, its mouse method will be 
IgnoreClick  and its expose method will be 
ExposeTextWindow . These procedures must be de-clared 
elsewhere. The procedure ExposeTextWindow  can demand 
a TextWindow  as its first parameter, but IgnoreExpose  

and IgnoreClick  must accept any Window. 
 
5.5 Implementation. 
 
To solidify the preceding ideas we sketch one possible 
implementation of objects. 

An object can be represented as the address of the first 
word of its data record. The preceeding word stores an object 
header containing a type code unique to the object type. 
These type codes are small integers; there is one of them for 
each object type and for each traced reference type. (A similar 
object header can be used for all records in the heap, whether 
they are objects or not.) The word before the object header 
stores a reference to the method suite for the object. An 
advantage of this scheme is that if the object has no methods, 
this word can be omitted. It also allows objects to share 
method suites, which will be the common case. 

If o is an object, d one of its data fields, and m one of its 
methods, then in this representation: 
 
   o.d is Mem[o + d] 

   o.m is Mem[Mem[o – 2] + m] 

   TYPECODE(o) is Mem[o – 1] 

 
where we assume that fields and methods are represented by 
offsets in the natural way. 
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The more interesting problem is to efficiently test if an 
object o has type T, as is required for narrowing and typecase 
statements. 

The simplest implementation of narrowing main-tains an 
array st  indexed by typecode; st[tc]  is the typecode for the 
supertype of the object type whose typecode is tc , or NIL  if 
there is no supertype. To test if o is a T, a loop is used to 
compute whether the typecode for T appears in the sequence 
 
   TYPECODE(o), st[TYPECODE(o)], 
  st[st[TYPECODE(o)]], ... NIL 

 
Let us call this sequence the supertype path for o’s type, and 
its length the depth of o’s type. Faster implementations of 
narrowing exploit the observation that the depth of each type 
is determined at compile time, and can therefore be stored 
with the corresponding typecode. Thus if the typecode for T 
appears in the supertype path for a type U, it does so at the 
position depth(U) - depth(T) . This means that narrowing 
can be implemented in constant time, if the supertype path for 
each type is represented as a sequential array. Since supertype 
paths are not usually too long, this is an attractive strategy. In 
the unusual case of an object type with a very long supertype 
chain, only a prefix of the chain, up to some maximum length, 
would be stored sequentially. If at runtime the difference in 
depth exceeds the length of the sequentially stored prefix of 
the chain, the implementation must fall back on the linked 
list. 
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