The Modula-3 Type System

Luca Cardelli
Jim Donahug
Mick Jordar
Bill Kalsow'
Greg Nelson

Abstract This paper begins with an overview of the language and
then focuses on three aspects of its type system: the uniform
escription of type compatibility in terms of a subtype
felation, the use of structural equivalence, and an extension of

the type system to support object-oriented programming.

This paper presents an overview of the programmin
language Modula-3, and a more detailed description of it
type system.

1 Introduction 2 Language Overview

Egl)ne of our main goals was increased robustness through
gafety from unchecked runtime errersforbidden operations

H]at violate an invariant of the runtime system and lead to an
unpredictable computation.

A classic unchecked runtime error is to free a record that is
the Olivetti Research Center. This paper gives an overview J]eferenced by active pointers. To avoid this danger, Mo_dula-3
the language, focusing primarily upon its type system. foIonvs Cedar, Modula-2+, and _Oberon by automatically

freeing unreachable records. This affects the type system,

Modula-3 is a direct descendent of Mesa [Blpdula-2) :
[14], Cedar [5], and Modula-2+ [9, 10]. It also resembles itsSince the type rules for references must be strict enough to

cousins Object Pascal [13], Oberon [15], and Euclid [6]'make garbage collection possible at runtime.

Since these languages already have more raw material th?n?hnoiher v]\c/ell-kngwr; unchgc_ked runtlrtT]e terr%r IS tto tﬁss;gn
fits comfortably into a readable fifty-page language 0 he tag of a variant record in a way that SUbverts he type

definition, which we were determined to produce, we didn'tSystem. Distinguishing subversive assignments from benign

need to be inventive. On the contrary, we had to leave man s_ignments in '_[he language def".““of‘ is error-prone and
good ideas out ' rbitrary. The objects and classes first introduced by Simula

Instead of exploring new features, we studied the feature!]and qdopted in Oberon and Object Pascal are more_general
from the Modula family of languages that have provent an variant records, and they are safe, so we have discarded
variant records and adopted objects.

themselves in practice and tried to simplify them and fit them In addii bei fer th . d bi
into a harmonious language. We found that most of the M @ddition to being safer than variant records, objects

successful features were aimed at one of two main goaléy pes allow a measure of polymorphism for data structures

greater robustness, and a cleaner, more systematic ty, ge lists, qugues,_and trees. For examplg, a procedu_re that
system. reverses a list object can safely be applied both to lists of

integers and to lists of reals. All Modula-3 objects are
- ike in C++ . - i
DEC Systems Research Center (SRC) refergnces (unll_ke in C++ [12]). Modula-3 allows only single
1Olivetti Research Center inheritance (unlike Owl [11]).

Generally the lowest levels of a system cannot be
programmed with complete safety. Neither the compiler nor
the runtime system can check the validity of a bus address for

Permission to copy without fee all or part of this material is granted provided.a- p?”ph_eral dQVICe, nor can they limit the ensu!ng haVO_C if it
that the copies are not made or distributed for direct commercial advantagi§ invalid. This presents the language designer with a
the ACM copyright notice and the title of the publication and its date appeardilemma. If he holds out for safety, then low level code will
and notice is given that copying is by_ permission of t_he Assoqatlon forhave to be programmed in another |anguage' But if he adopts
Computing Machinery. To copy otherwise, or to republish, requires a fee . .
and/or specific permission. unsafe features, then his safety guarantee becomes void
everywhere. In this area we have followed the lead of Cedar

© 1989 ACM0-89791-294-2/89/0001/0202 $1.50 and Modula-2+ by adopting a small number of unsafe

The design of the programming language Modula-3 was
joint effort by the Digital Systems Research Center and th
Olivetti Research Center, undertaken with the guidance an
inspiration of Niklaus Wirth. The language is defined by the
Modula-3 Repor{3], and is currently being implemented by

features that are allowed only in modules that are explicity3 The Subtype Relation
labeled unsafe. In a safe module, the compiler guarantees the

absence of unchecked runtime errors; in an unsafe module, \if4,1a-3 is *

is the programmer’s responsibility to avou_j them. . value space is partitioned into types, variables are restricted to
From Modula-2+ we adopted exceptions. An excepliony,, 4 ajyes of a single type, and operations are restricted to
exits all procedure call levels between the point at which it 'sapply to operands of a fixed sequence of types. In actuality
“raised” and the point at which it is “handled”. Exceptions arethings are more complicated. A variable of types] can '
a good way to handle any runtime error that is not necessaril X

fatal. The alternative is to use error return codes, but this ha%/'s""fely be assigned to a variable of tyWEEGER but not vice

the drawback that programmers don't consistently test fof/ersa' Operations like absolute value apply bofk&als and
them. In the Unix/C world, the frequency with which NTEGERS, instead of to a single type (overloading). The

programs omit tests for error returns has become somethir?pes of literals (for exampleIL) may be ambiguous. The

strongly-typed”. Ideally, this means that the

of a standing joke. Instead of breaking at an error, too manfyP€ Of an expression may be determined by how it is used
programs continue on their unpredictable way. Raising aft@/9éttyping). Type mismatches may cause automatic

exception is a more robust way to signal an error, since it wilfOnversions instead of errors (as when a fractional real is
stop the computation unless there is an explicit handler for it.ounded upon assignment to an integer). ’
Naturally we retained modules, which are separate We adopted several principles in order to keep Modula-3's
program units with explicit interfaces. But we relaxed thelYP® System as uniform as possible. First, there are no
Modula-2 rule that there be a one-to-one correspondenc@MPiguous types or target-typing: the type of every
between interfaces and the modules that implement them. BXPression is determined only by its subexpressions, not by its

module can implement a collection of interfaces; an interfac&S€: S?Eond, ther? ?re ?0 autolmatlchconversmr?s. I_r: some
can be implemented by a collection of modules. cases therepresentationot a valué changes wnen it 1S

We also retained opaque types, which hide theassigned (for example, when as;igning to a field of a p_acked
representation of a type from its clients. In Modula-3, as iprecord) but_ the abstract value itself |s.tr_a.1nsferred ywtho_ut
some but not all implementations of Modula-2, variables withchange. Third, the rules for type compatibility are defined in
opaque types must be references. If the hidden representatifims of a single subtype relation, written *. A naive plan
changes but the interface remains the same, client moduld@r doing this goes as follows:
will not need to be reprogrammed, or even recompiled. A i .
type that is not opaque is called concrete. It is possible to *defineT <:U by rules relating to the syntax dfandy
reveal some but not all of the structure of a type, by declaring i
it to be an “opaque subtype” of a given concrete object type. * define, for each type, the set of values of that type.

The concurrency features of Modula-2 provide runtime. o]
support for coroutines. In Modula-3 we have upgraded thesi such a way that these definitions satisfy
features to support threads of control that can be executed . .
concurrently on a multiprocessor. The features are a *ValuesetruleT <:U if and only if every value of type
simplified version of the Mesa extensions to Hoare’s monitors T IS @ value of typ#);

[4, 7] whose formal semantics have been specified in Larch

[1]. Waiting, signaling, and locking a monitor have Hoare’s * Natural assignment rule: A is assignable to d if and
semantics, but the requirement that a monitored data structure only if T<: U

be an entire module is relaxed: it can be an individual record

or any set of variables instead. The programmer is responsible This plan would lead to a highly uniform type system, but
for acquiring the appropriate lock before accessing theinfortunately it is too simple. For example, the natural
monitored data. assignment rule would forbid the assignment ofNTEGER

The language provides a syntactic construct for acquiring &0 a[0..9] ; but the conventional policy is to allow such an
lock, executing a statement, and releasing the lock. Except fassignment, compiling a runtime check. We have no doubts
this statement, the concurrency features are all specified kthat the conventional policy is the best one, so the natural
means of a “required interface”, which is just like an ordinaryassignment rule will not do. Any assignment satisfying the
interface except that all Modula-3 implementations mustaturalassignment rule is allowed, but in addition there are
implement it. Thus concurrency adds little linguistic more liberal rules for ordinal types (integers, enumerations,
complexity. and subranges), references, and arrays. These will be

Modula-3 provides a few convenience features that are natescribed below.
provided by Modula-2: default values for procedure We were also forced to drop half of the value set rul€: if
arguments, keyword parameters in procedure callss: U , then every value of typ€ is also a value of type,
constructors for record and array values, and the ability tut the converse does not hold. This still provides a criterion
specify an initial value for a variable at the point of its for checking that a syntactic subtype rule is consistent with
declaration. the semantics of the types involved, but it allows us to leave

out some subtype relations that are logically possible but Notice that the valu&iL is a member of all reference
pragmatically unattractive, because they would force theypes. This does not mean that the typaliaf is ambiguous:

implementation to do too much work. its type iSNULL, which is assignable to all reference types by
We will now describe the subtype rules for each class ofhe natural assignment rule.
types. The TYPECASEstatement can be used to determine the
referent type of a variable of tygREFANY but there is no
3.1 Ordinal types. corresponding operation for variables of tyfi@DRESSThis

difference reflects the fact that traced references must be
Subrange types are subtypes of their “base” types, since eat#gged for the benefit of the garbage collector.
member of a subrange is also a member of the correspondingUntraced references are provided for several reasons.

base type: Low-level code may require pointers to device control blocks
that do not reside in the system storage pool; linking with

[n..m] <: INTEGER if n andmare integers code that was compiled from another language may require
[a.b] < E if a andb are from the pointers that are not valid traced references; and untraced
enumeration type references can provide significant performance advantages.

Most operations on untraced references are type-safe.
Moreover, two subrange types are in subtype relation whekiowever, reclaiming the storage for an untraced reference is a
their respective sets of values are in inclusion relation: potential unchecked runtime error, and so is not allowed in
safe modules.
Object types are also reference types, but their subtyping

[a..b] <:[c..d] if [a..b] s a (possibly empty) rules will be described in a later section.

subset ofc..d]

Note that partially overlapping subranges are completely-4 Procedure types.
unrelated.
Modula-3's procedure types are very similar to those in
Modula-2, consisting essentially of a signature specifying the
result type and the mode and type of each parameter. There
For the subtype rule for sets we simply use the value set ruleare some rminor differences: a MOdUIa_S procedurg signature
also specifies the set of exceptions that can be raised by the
i procedure, and allows the formal parameters to be named and
SETOFT<:SETOFT if T<T given default values.
The subtype rule for procedure types T and U is:

This rule is very natural, although open to the objection that it
requires the implementation to convert between if:

. . . T<U
representations for some assignment operations.

3.2 Set types.

T and U have the same number of parameters, and
3.3 Reference types. corresponding parameters have the same type and mode.

A reference type is eithéracedor untraced.A member of a « T and U have identical return types, or neither has a

traced reference type is traced by the garbage collector; that return type.

is, the implementation stores its referent in a system-managed

storage pool, determines at runtime when all traced references « The exception set af contains the exception setf

to it are gone, and then reclaims its storage. A member of an

untraced reference type is not traced by the garbage collector. The reader may wonder why we did not follow the
The typeREF T is the type of all traced references to well-known “arrow rule”, in which (writingr -> U for the

variables of typd’; the typeUNTRACED REF T is the type of type of all functions from typ& to typeu):

all untraced references to variables of type The type

REFANYis the type of all traced references; the tgp®RESS (T -> U) < (T ->U))

is the type of all untraced references; and the e is the if T<T andu< UV

type containing onlyIL .
The subtype rules for reference types are again determinethe arrow rule cannot be used &R parameters, since they

by the value set rule: are in a sense both arguments and results. Even for value
parameters and results the rule has undesirable consequences.
NULL <: REF T <t REFANY Suppose for example that<: U and thatT is a procedure
NULL < UNTRACED REF T <: ADDRESS that takes &, while q is a procedure variable declared to take

aT. The arrow rule allows the assignmgnt P, sinceP is ARRAY | OF T < ARRAY JOF T
less “choosy” thany. It follows that the actual of type that if NUMBER(l) = NUMBER(J)
the compiler produces in the calling sequence to g must also
be a valid actual of typ&, since this will be expected by the i.€. the arrays must have identical sizes and element types.
body ofP. Notice that the rule requires that the element types be
Thus if the arrow rule is used for procedure types, theridentical, even though the value set rule would only require
whatever representation is used for variables of typeust that the element type on the left be_a subtype of the element
also be used for variables of any subtypeUofThis policy ~ YP€ on the right. For example, consider:
would rule out bi_ased imp_lemen_tations of subrange types, for TYPE
example. It is incompatible with the subtype rule given 1 - ARRAY [0..999] OF [0..255]:
previously for sets. It would mean that fixed arrays passed by y = ARRAY [0..999] OF INTEGER;
value would have to be treated like open arrays, that is, with
an additional integer specifying the length. None of thesgvery sequence of a thousand integers in the rangss]
consequences is decisively bad, but the arrow rule is ng§ 5 sequence of a thousand integers, so the value set rule
decisively good. We decided not to break with convention. \yould requireT <: U . But this would require complicated
On the other hand, the subtype rule for procedures does nggnyersions to implement assignment and parameter passing,
require the exception sets to be equal. This generality has ng |east ifT is represented differently from, as is likely in

undesirable consequences fqr the implementaﬁ_on- . many implementations. This complexity is the main reason
For convenience in handling procedure variabigsg, is that we dropped half of the value set rule.

also allowed as a procedure; thus we have the additional rule: another point to note about the array subtype rule is that
the domain types andJ don’t need to be the same; they only

NULL <: PROCEDURE(A): B RAISES E need to have the same length. An awajue isa sequence;
) an arrayvariable consists of a value together with a method
for any arguments, result types, and exception s&t of indexing it: indexes are automatically decreased by the
lower bound of the index set of the variable’'s type.
3.5 Packed types. Consequently the set of values of an array variable depends

only on the length of the index set, and the subtyping rule
above is consistent with the half of the value set rule that we
are keeping. The advantage of this approach is that it allows
all open arrays to have lower bound zero, which reduces
bookkeeping at runtime. This may seem overly parsimonious,

TYPET=BITSnFORU declares that type has the same
values a4J, but record fields and array elements of typeill
occupy exactlyn bits. The subtyping rules for packed types

are. but the approach comes from Modula-2, where it has worked
BITSNFORT<: T well. .
T<BITSNFORT The declaratiomYPE T = ARRAY OF E declaresT to be

an open array type. The valuesTadire sequences of variables
These rules are natural consequences of that fact #radU of type E. Open array variables are always indexed by
have the same values. They make it possible to assigntegers starting at zero.
unpacked values to packed fields, and vice versa. It may seemObviously we need the rule
surprising that anduU can be subtypes of one another without
being identical, but this is appropriate when distinct types ARRAY I OF T <: ARRAY OF T

represent the same set of values.))
which allows a fixed array actual to be bound to an open array

formal. Since Modula-3 allows multidimensional open arrays,

3.6 Array types. we also need the rules

As in Modula-2, array types can firedor open.The length ARRAY J OF ARRAY | OF T
of a variable with a fixed array type is determined at compile <: ARRAY OF ARRAY OF T
time. The length of a variable with an open array type is

determined at run time, when the variable is allocated or ARRAY OF ARRAY | OF T
bound. It cannot be changed thereafter. Assignments are <'ARRAY OF ARRAY OF T

allowed between fixed and open arrays, with a run-time check _ _
that the lengths agree. These don't follow from the first rule, because in general the

TYPE T = ARRAY | OF E declaresT to be the type of array rule requires that the elements types be identical.
fixed arrays with index type and element type. The index Ge_nerallzmg ton dlmenspns, we obtain the following rule,
type must be an ordinal type. The subtype rule is: which subsumes the previous three:

ARRAY | 1 OF ... ARRAY | nOF T This decision may be surprising. Of the languages
<: (ARRAY OF) no mentioned in the introduct_ion, only Euclid uses _structura!
equivalence. It seems at first that structural equivalence is
worse for the programmer, since it weakens typechecking by
open array types.) introducing the danger of accidental type coincidences, and
worse for the implementation, since it requires a non-trivial

Finally, the relation<: can be defined as the smallest .)
) " . e computation to determine whether two types are structurally
reflexive and transitive relation that satisfies the rules

; : . equivalent. So why not stick with name equivalence?
presented above (and the rules for objects in Section 5). the objectiony that structural equﬂvalence weakens

. typechecking by creating accidental type coincidences has
3.7 Assignment rules. some truth in it, but the truth is more complicated than it first
appears. For example, consider

where the ; are ordinal types or omitted. (Omittets create

A typeT is assignabldo a typeU if one of the following

conditions apply. TYPE

Subrangel =[0..255];
Subrange?2 = [0..255];

Refl = POINTER TO INTEGER,;
Ref2 = POINTER TO INTEGER;

e T<:U (The natural assignment rule).

e T andu are ordinal types with at least one member in

common. In Modula-2, these declarations produce four distinct types.

But although all types are created distinct, some types are
more distinct than others. A variable of typgbrangel can

be assigned to a variable of tymmbrange2 , since the
assignment rule for ordinal types is based on the structure of
, . . . L the type. A variable of typ®efl cannot be assigned to a

In the first case, no run-time error is possible, singeisfa variable of type Ref2, since the assignment rule for

subtype ol, then everyr is au. . . references requires type identity, and ignores the structure of
In the second case, a conventional range check is made % type

ensure that the particulans a member od. We have met name-equivalence purists who get uneasy
The third case allows, for example, assignirREEANYIO apoyt this, and even try to change the rules to prevent
a REF T. It also allows assigning aARRAY OF T {0 an agsignments betweeSubrangel andSubrange2 . After all,
ARRAY | OF T . In this case a run-time check is required jt certainly is true that assignments betwsebrangel and
either on the type of the reference or on the length of th%ubrangez are sometimes bugs, and to let them slip by the
array. compiler seems like a concession of defeat by all who believe

The third rule is unconventional: in Cedar, Modula-2+, andi;, giatic typing. But this leads to type systems in which a
Oberon, the rules for references allow a supertype to bﬁ)..lO] can't be assigned to[@..11] or to anINTEGER

assigned to a subtype only by using an expBMRROW Tps is very awkward, and probably impractical.

operation. But this strictness with references is somewhat There is a fundamental trade-off between convenience and
inconsistent with the lenient rule for ordinal types. safety. If you want the convenience that [@.255]

Furthermore_, based on our survey of Modula-2+ programsalutomatically inherits all the attributes of NTEGER then
the conventional rule does not seem to make programs saf%u face the danger that you may accidentally use an

or more readable. INTEGER attribute that is not an attribute of the type
)] represented by this instance[0f255] . Modula-2 already
4 Type |dent|ty has a mechanism for hiding attributes of a type, namely the
opaque type machinery. It seems like a mistake for a subrange
Two types are identical if their definitions are the same whertleclaration to be doing the work of an opaque type
expanded; that is, when all names in the type definition ardeclaration. So name-equivalence purists can relax: if a
replaced by their definitions. In the case of recursive typesprogrammer erroneously assigns a Subrangel to a
the expansion is infinite. In other words, Modula-3 usesSubrange2 and complains that the type system let it through,
structural equivalence, while Modula-2 uses namethey can tell her that she should have used an opaque type.
equivalence. (The term “name equivalence” is a misnomer: it If this argument applies tSubrangel and Subrange2 ,
doesn’t mean that types are the same only if they have thehy not to Refl and Ref2? In Modula-3, the rule for
same name; it means that each occurrence of a typsssigning references is based on the subtype relation (like all
constructor produces a new type. But it's a popular misnomegssignment rules). Because of objects, Modula-3 reference
so we'll use it.) types have a rich subtype structure, just like the ordinal types.
The subtype rules make Refl a subtype ofRef2, and

U< T andT is an array type or reference type
(including an object type, but excludingDDRESSINn
safe modules).

therefore assignable ®ef2 , whether they are distinct types problem, as programmers who have been bitten by it can
or not. testify.

Of course, a language with structure-based assignment
rules can still use name equivalence. For example, i ;
Modula-2 the typeSubrangel andSubrange2 are distinct, 5 ObJeCt types
even though they are assignable. The results are a little od
consider passing an actual parameter of §yigangel to a
formal of typeSubrange2 . In Modula-2, this is legal for a
value parameter, but not for a variable parameter. This see
more of a quirk than a useful protection.

ﬁihe object types of Modula-3 are essentially Simula classes.
The challenge we faced is to integrate them into the type
system so that they fit well with the existing procedure and
M&ference types. This section first motivates the two essential

. aspects of object types, inheritance and methods, then
In other words, the more structure-based assignment rule§oqribes how they fit together in Modula-3, and finally
the weaker the argument that name equivalence preveni§ i-hes an efficient implementation

accidental type coincidences. Since Modula-3's type system
is based on a subtype relation, this argument for retainin% .
name equivalence was not persuasive. .1 Inheritance.

In contrast, there is a strong argument for switching to
structural equivalence, which is that structural equivalencéonsider the type declarations
makes sense between types that occur in different programs
while name equivalence makes sense only between types tha
occur in the same program. This advantage becomes
significant when type safety is extended to distributed
systems (via remote procedure call) or to permanent data
storage systems.

For example, DEGRC's Topaz system includes a package
called Pickles for storing typed data on the disk. The call
Pickle.Write(r, f) writes the data structure referenced
by r into the filef , preserving any circularities, substructure
sharing, and the types of the records involved. The preservé”H1
data is called a “pickle”. The caRickle. Read(r, f)
sets the referenaeto a reconstruction of the value pickled in
the filef . (The run-time information that makes this possible
consists of a a single “typecode” that identifies the type of) ; .))
each reference, which needs to be maintained for the garbacb]eTh'S example illustrates the basic idea of inheritance of
collector, anyway.) The question now arises: when is it type2PJ€Ct types. In Modula-3, the type construcBBJIECT is
safe for a pickle written by programfrom a variable of type llké REF RECORDbut while the referent of REF RECORD
T to be read by another prograinto a variable of type? must consist exactly (_)f the fields declared in _the rec_ord type,

With structural equivalence, the answer is obvious: thdhe rgferent _of the Obje.Ct type may have additional fields not
operation is type-safe if andU are the same type. that is, if Mentioned in the object type. Also, theBJECT type
they have the same structure. Without structural equivalenc&Onstructor can be used to extend an object type with
there is no satisfactory answer. Requiring thand U have additional fields as well as to create a new_type from scratch.
the same name doesn’t work, since in different program§&©f €xa@mple, to achieve the subtype rela#@n<: A , the
different types can have the same name. Requiring'taatl YP€S above should be declared:

U_he_lve the same structure (that is, u;ing name equ_ivalencerYPEA: OBJECT a: REAL END:

within a program but structural equivalence for pickles) Tvpg AB = A OBJECT b: BOOLEAN END:

doesn’t work, since it would allow two structurally equivalent

references with distinct typecodes to be pickled and then read yere is an example of inheritance used to produce a
back into two references with identical typecodes. Requiringesaple queue implementation. First, the interface:
that T and U have the same name and the same structure

works after a fashion; it is the current policy for the pickles TYPE

package. But it has serious drawbacks. It means that changing Queue = RECORD head, tail: QueueElem END;

the name of a type can invalidate a previously-created pickle. QueueElem = OBJECT link: QueueElem END;

Since names have to be generated arbitrarily for anonymous

types that appear in pickles, a pickle can also be invalidated PIROCEDURE, o i

.) h - nsert(VAR g: Queue; x: QueueElem);

just by reordering type declarations or by giving a name to a Delete(VAR q: Queue): QueueElem:

previously anonymous type. This is not just a theoretical clear(VAR g: Queue);

YPE
A = REF RECORD a: REAL END;
AB = REF RECORD a: REAL; b: BOOLEAN END;

Loosely speaking, a valuehas typeAB if it is the address
of a word in memory containing aa field of type REAL
followed by a word containing b field of type BOOLEAN
Similarly, a valuex has typea if it is the address of a word in
memory containing aa field of typeREAL Thus evenaBis
A, that is, loosely speakingB <: A .

In fact, in any conventional implementation, passingABn
actual to a procedure whose formal is of types safe and
meaningful: the procedure operates on thdield of the
ecord, without disturbing the field.

6

The implementation of the procedures relies only on theNEw(gcd,
link field of a QueueElem; it does not depend on any proc :=PrintGCD, n := Ill, m := 259)
additional fields that might be present in particular subtypes.
The implementation is obvious and will not be listed. Here isUnfortunately, the initialization ofcd.proc in the last line
an example client: is illegal, since the declared argument typedat.proc is
an arbitrary closure, while PrintGCD demands a
GCDClosure . Even if Modula-3 had used the arrow rule for
procedure subtyping, storing a choosy procedure value into a

TYPE IntQueueElem =
QueueElem OBJECT val: INTEGER END;

VAR permissive procedure variable would not be type-safe.
q: Queue; It is awkward to work around this: we have to change
x: IntQueueElem; PrintGCD to take an arbitrary closure and narrow it at

runtime to a GCDClosure . (By “narrowing”, we mean
checked runtime type conversion.) The code would have to

l(flear(q); ; .
NEW(x. val := 6 look like this:
Insert(q, x); .
PROCEDURE PrintGCD(cl: Closure);
x := Delete(q) VAR gcl: GCDClosure := cl;
BEGIN
. . . . Print (GCD(gcl. l.
Passing to Insert is safe, since evetytQueueElem is a Eerg] P(rich(:gDc. n, gel.m))

QueueElem. Assigning the result dbelete to x cannot be

guaranteed valid at compile-time, but the assignment willt js jrritating as well as awkward, since in the program at
produce a checked runtime error if the source value is not ganq jt actually is safe to store the choosy procedure value in
member of the target type. ThugQueueElem bears the the permissive variable. The reason is that the only argument
same relation t@ueueElem as[0.9] bears tONTEGER that the program ever suppliesctproc iscl itself. Given
Notice that the runtime check on the resulDefete(q) is this, it is easy to see that the initializationgafi.proc to

not redundant, since other subtypesQuleueElem can be printgeD “ought to be” type-safe: at the time it is compiled,

inserted intay. the type ofgcd is known to be not just @losure but also a
GCDClosure . By assumptiongcd is the only value that will

5.2 Methods. ever be passed td.proc , so it is all right for it to demand
aGCDClosure .

We begin with a simple example: how to implement a This problem illustrates the typechecking aspects of the
closure, which is simply a procedure bundled up with arrole of “methods” in object-oriented programming. The idea
argument record. For example, the formal parameter tbehind methods is that a general operatas applied to a
Thread.Fork , which creates a new thread of control, is aspecific object by calling a version oP that is customized
closure. The first definition that comes to mind is: for v (called v's P method). That ispP(v, ...) simply
translates tov.P(v, ...) . The Closure example is the
special case in which there is only one method and the
method’s only argument is the object itself.

This method approach is most useful in conjunction with
inheritance, since the suite of methods for a particular subtype
Bf v will generally require extra data fields in addition to the
data fields of the supertype. But, as we can see from the
Closure example, the subtype methods will always need to
be declared to accept objects of the supertype, and to narrow
their arguments to the subtype at runtime. Thus errors that
could be caught at compile time will not be caught until run
time, which is unfortunate.

TYPE Closure =
OBJECT proc: PROCEDURE(self: Closure) END;

where the idea is that each subtypeCfsure will extend
the record with whatever additional data fields are appropriat
to that subtype. In this representation, a closdre is
activated by callingl.proc(cl)

To test this definition, let us try to build a closure which,
when activated, will compute and print the greatest common
divisor of 111 and 259:

TYPE GCDClosure =

Closure OBJECT n, m: INTEGER END; . .
5.3 Objects in Modula-3.

PROCEDURE PrintGCD(cl: GCDClosure);

BEGIN Print(GCD(cl.n, cl.m)) END PrintGCD; The solution to the problem is to extend the type system to
support object-oriented programming. Here's how this is done
VAR gcd: GCDClosure; in Modula-3.

An object is eithemIL or a reference to a data record The “=proc ”is optional. If present, it specifies a default
paired with a method suite, which is a record of proceduremethod value used when allocating objects of typeif
that will each accept the object as a first argument. We wilhbsent, the default method valua\is .
just describe traced objects; untraced objects, which are Using methods, the typelosure would be defined like
produced by adding the keywordNTRACEDto the type this:
declaration, are entirely analogous.

The signatures of the initial methods of the method suite TYPE Closure = OBJECT METHODS proc() END;
are determined by the object type, but the method suite can
contain additional methods, just like the data record. Methodghe rest of the example needs no change. The initialization of
are simply procedures; there is no separate space of meth@gk proc method toPrintGCD is allowed, since the type of
values. the first parameter to the methodsQDClosure) is a

Since the only way to call a method in an object’s methodsypertype of the type of the object being allocated (also
suite is to pass the object itself as the first argument, the firg§cpciosure).

parameter can be of any type that contains the object. The rest consequence of this design is that the method signatures

of the method's signature must determine a subtype of thgye statically determined by an object's type (except for the

method declaration in the object type. More precisely, &rst argument), but the method values are not determined
procedurep satisfies a method declaration with signasige il the object is allocated. The values cannot be changed
for an objeck if p isNIL or if: thereafter.

The declaration of an object type with a supertype has the
* p is a top-level procedure whose first parameter hasorm:
modeVALUE and whose type contains the valyeand
TYPET=
« if p’s first parameter is dropped, the resulting procedure Supertype OBJECT

type is a subtype of the procedure type determined by _FieldExtension
sig . METHODS

MethodRevision

Notice that this definition allows the type of the first
parameter of the method to vary with the type of the Objeq}vhereSupertype is an object typeFieldExtension is a

containing the method. The notion of “satisfies” is used 10t o 4qditional field declarations, andethodRevision is

define the set of values.of an Obje.Ct type. First we cons@eé list of additional declarations and method overrides of the
the declaration of an object type without a supertype, Wh'd?orm'

has the form:

m : = proc
TYPET =
OBJECT . .
FieldList wheremis the name of a me_thod of the supertypemod is
METHODS a top-level procedure that is a legal default for metinoith
MethodList type T. Each method override specifies thabc is the
END default value used for methodwhen allocating objects of
o . _ ~ typeT. If a method is not overridden, its defaultTinis the
whereFieldList is a list of field declarations, exactly as in same as its default in the supertype.
a record type, andvethodlist is a list of method An object is a member of the typeif its data record
declarations. Each method declaration has the form: contains the fields of the supertype, followed by the fields
. declared inFieldExtension , possibly followed by other
m sig = proc fields; and its method suite contains procedures that satisfy

the method declarations in the supertype, followed by
where m is an identifier (the method namegig is a procedures that satisfy the method declarations in
procedure signature, anproc is a top-level procedure MethodRevision , possibly followed by other procedures.
constant. Notice that all Modula-3 methods are “virtual methods”. If
An objectx is a member of the type if it is NIL or a it is known that a certain method will have a constant value
traced reference to a data record that contains the fieldsr all objects of some type, then it might as well be declared

declared inFieldList , possibly followed by other fields, as an ordinary procedure in the interface containing the type
paired with a method suite that contains procedures thateclaration.
satisfy the method declarations MethodList , possibly The subtype rule for objects is simply the value set rule:

followed by other procedures.
NULL <: TOBJECT ... END < T

OBJECT ... END <: REFANY attempts to create an object with andata record and a
UNTRACED OBJECT ... END <: ADDRESS method that expects akB; since not evenA is anAB, the
))) method is too choosy for the object in which it is placed. The
That is,NIL is a member of every object type, and every eyt would not be a member of the tyl@ so this call to
supertype contains its subtypes. Also, every object is Qgewis a static error.

reference, traced or untraced. Here is an example that illustrates the use of default

) method values and method overrides:
5.4 Notation and examples.

TYPE Window =
If r is an object, thenf designates the data field nanfed OBJECT
in r's data record. Ifmis one ofr’s methods, then the extent: Rectangle
expression.m(...) der_lotes thg procedure a_pplicatimrs(MnE;—Li(Z(l)e:SCIiCkEvent) .= IgnoreClick:
m methodjr,...) . If T is an object type anais the name expose(e: ExposeEvent) := IgnoreExpose
of one of T's methods, therT.m denotesT's default m END;

method. The last notation is convenient when a subtype
method must invoke a default method of one of its TYPE Textwindow =

supertypes. Window OBJECT
As an example, consider the following declarations: text: Text.T;
style: TextWindowStyle

TYPE METHODS

A = OBJECT a: INTEGER; METHODS p() END; expose := ExposeTextWindow

AB = A OBJECT b: INTEGER END; END;
PROCEDURE Pa(self: A) = ... ; If no methods are specified when an object of type
PROCEDURE Pab(self: AB) = ... ; TextWindow is allocated, its mouse method will be

IgnoreClick and its expose method will be

VAR a: A; ab: AB; ... ExposeTextWindow . These procedures must be de-clared

)]) elsewhere. The proceduBxposeTextwWindow can demand
Obviously AB <: A . Since neitherA nor AB has default 5 textwindow as its first parameter, bugnoreExpose

method values, the method values must be specified when t'?:\‘?mdlgnorecnck must accept anwindow.
objects are allocated. The procedurasandPab are suitable

values for thep methods of objects of types and AB. For .
example: 5.5 Implementation.

NEW(ab, p = Pab) To solidify the preceding ideas we sketch one possible
implementation of objects.

An object can be represented as the address of the first
word of its data record. The preceeding word stores an object
header containing a type code unique to the object type.
These type codes are small integers; there is one of them for
each object type and for each traced reference type. (A similar
object header can be used for all records in the heap, whether
they are objects or not.) The word before the object header
stores a reference to the method suite for the object. An
advantage of this scheme is that if the object has no methods,
this word can be omitted. It also allows objects to share
method suites, which will be the common case.

NEW(ab, p:=Pa) _ If o is an objectd one of its data fields, and one of its
which creates an object with a® data record and a method ethods. then in this representation:

that expects an. Since evenAB is anA, the method is not
too choosy for the object in which it is placed. The result is a
valid object of typeAB. In contrast,

creates an object with a&B data record and a method that
expects amAB; it is an example of an object of type.
Similarly,

NEW(a, p := Pa)

creates an object with af data record and a method that
expects am,; it is an example of an object of type A more
interesting example is:

o.d is Memjo + d]

o.m is Mem[Mem[o— 2]+ m]

TYPECODE is M -1

NEW(a, p := Pab) © em{o - 1]
where we assume that fields and methods are represented by
offsets in the natural way.

The more interesting problem is to efficiently test if an[4]
objecto has typeT, as is required for narrowing and typecase
statements.

The simplest implementation of narrowing main-tains an
arrayst indexed by typecodetf[tc] is the typecode for the
supertype of the object type whose typecode isor NIL if
there is no supertype. To testoifis aT, a loop is used to
compute whether the typecode foappears in the sequence

[5]

C.A.R. Hoare. Monitors: An Operating System
Structuring ConcepCommunications of the ACW 10,
October 1974.

Butler W. Lampson. A Description of the Cedar
Language. Xerox Palo Alto Research Center, CU-83-15,
December 1983.

6] Butler W. Lampson, James J. Horning, Ralph L. London,

TYPECODE(0), stTYPECODE(0)],
StstTYPECODE(0)]], ... NIL

Let us call this sequence tkapertype patifor o’s type, and

its length thedepth of o’s type. Faster implementations of [7]
narrowing exploit the observation that the depth of each type
is determined at compile time, and can therefore be stored
with the corresponding typecode. Thus if the typecodé for
appears in the supertype path for a typét does so at the [8]
positiondepth(U) - depth(T) . This means that narrowing

can be implemented in constant time, if the supertype path for
each type is represented as a sequential array. Since supertxtg]e

the unusual case of an object type with a very long supertype
chain, only a prefix of the chain, up to some maximum length,
would be stored sequentially. If at runtime the difference in
depth exceeds the length of the sequentially stored prefix 4110]
the chain, the implementation must fall back on the linked
list.

[11]
References

[1] A.D. Birrell, J.V. Guttag, J.J. Horning, R. Levin.
Synchronization Primitives for a Multiprocessor: A
Formal SpecificationOperating Systems Reviezt 5, [12]
November 1987. Also published as SRC Research Report
20, August 1987.

[13]
[2] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug,
and Kristen Nygaard. Simula Begin. Auerbach,
Philadelphia PA, 1973. [14]

Luca Cardelli, Jim Donahue, Lucille Glassman, Mick
Jordan, Bill Kalsow, and Greg NelsdWlodula-3 Report.
Digital Systems Research Center, SRC-31, 1988.

(3] (15]

10

James G. Mitchell, and Gerald J. Popek. Report on the
Programming Language Euclid. Xerox Palo Alto
Research Center, CSL81-12, October 1981.

Butler W. Lampson and David D. Redell. Experience
with Processes and Monitors in Me§zommunications
of the ACM23 2, February 1980.

James G. Mitchell, Wiliam Maybury, and Richard
Sweet. Mesa Language Manual. Xerox Palo Alto
Research Center, CSL-78-1, February 1978.

Paul Rovner, Roy Levin, and John Wick. On Extending
Modula-2 For Building Large, Integrated Systems.
Digital Systems Research Center, SRC-3, January 1985.

Paul Rovner. Extending Modula-2 to Build Large,
Integrated SystemslEEE Software3 6, November
1986.

Craig Schaffert, Topher Cooper, and Carrie Wilpolt.
Trellis Object-Based Environment Language Reference
Manual. DEC Eastern Research Lab, DEC-TR-372,
1985.

Bjarne StroustrupThe C++ Programming
LanguageAddison-Wesley, 1986.

Larry Tesler, Apple Computers. Object Pascal
Report. Structured Language World 9 3, 1985.

Niklaus Wirth.Programming in Modula-2.
Springer-Verlag, Third Edition, 1985.

N. Wirth. From Modula to Oberon and The
Programming Language Oberon. Institut fur Informatik,
ETH Zurich 82, September 1987.

