Genetic Networks
in Stochastic m-Calculus

Luca Cardelli

Microsoft Research
Cambridge UK

2004-08-26

www.luca.demon.co.uk

Genetic Networks

Strange facts about genetic networks:

The output of each gate is fixed and pre-determined; it is never a function of the input!
(Except maybe the quantity of output is a function of the quantity of input.) This is not a
functional or operator calculus.

There are inputs and anti-inputs (inhibition). An anti-input is not the same as absence of an
input: it will block the gate in a specific way. Inhibition is widespread. This is not term-
rewriting, nor Petri nets.

Feedback is widespread: e.g. each gate can send input to itself. This requires an asynchronous
communication model to avoid immediate self-deadlocks. In particular, even the simplest gates
cannot be modeled as a single synchronous process. This is not Communicating Sequential
Processes.

Messages themselves have behavior (e.g., they will stochastically decay, and this is a
fundamental property), hence messages should really be modeled as processes as well. This is
not message-passing.

The apparently crude idea of broadcasting a whole bunch of asynchronous decaying messages to
activate a future gate is subtly clever: it means there are never any “pipeline full” deadlocks
propagating backwards, even in presence of abundant feedback loops. Any attempt to use data-
flow-style modeling of these circuits seems doomed because of loops. This is not data-flow.

The amount of output can be a function of the amount of input, but it is not clear how important
this really is in many cases. Gene circuits are robust w.r.t. radical changes in concentrations
(e.g. during cell growth), and in many cases seem to switch digitally (with steep sigmoids). The
combination of degradation and concentration-based interaction rates can produce reasonably
stable, normalized, signals in a noisy environment.

(The Classical Approach)

[Chen, He, Church]

Qegmda’ricD

n: number of genes

dr _ F(p) - Vr r mRNA concentrations (n-dim vector)
dt p protein concentrations (n-dim vector)
dp _
g " Lr-Ur 7 (p) transcription functions:

(n-dim vector polynomials on p)

Nullary Gate

Let's begin by modeling transcription factors as simple messages.

r=1.0,e=0.1
600

500

Nullary Gate - =

300

200 / Constitutive
I ng B =
go[b] 2 t.. (b.<> | go[b]) :

go] 1UIUU EUIUU 3[]'(]0 -‘H]IU[] EUIUU G000
(recursive, parametric) and repeat
process definition
gene product,

stochastic delay (t) of stochastic oo i
constitutive transcription rates

cf.. go[b] 2 b.>. go[b]

Not good for two reasons:

- we want to use r as the rate for the
binding of b, not for the production of b.
- does not extend to unary and binary
gates, where we want a t in front.

Unary Gates
a lE> b

pos

Designed to handle self-loops!

pos[a,b] &

a.(). (bs> | pos[a,b]) +
T.. (bs> | pos[a,b])

stimulated transcription

or constitutive transcription
to always get things started

pars, not dots, to
handle self-loops
without deadlock

i B g

neg

inhibition delay }\ugqiarb] A
a.(). 7. negla,b] +

Not my first attempt! 7. (bse> | negla,b])

N.B. inputs and outputs are one-to-one. We could put in an amplification factor,
but a similar effect can usually be obtained by adjusting the production rates or
the persistence rates: see later.

120

100

80

60

40

20

60

a0

40

30

20

10

0

" r=10,e=01

Stimulated

lao> | p?&eibj]
#’J

/_/r Constitutive

0 20 40 60 80 100 120

r=1.0,e=0.1, h=0.01 -

Constitutive /

neg[@/

7

=

Inhibited

/

la<> | negla,b]

0 100 200 300 400 500 600

Degradation

Product degradation is extremely important in general; it changes
unbounded growth into (roughly) stable signals.

i rotein product
pr‘o‘l‘em PPOdUC@r' I\ /I (canpadd Tr‘anscr'ippﬁon delay here)

ptn[p] £ p.<>.ptn[p] + dks<>

protein degradation site

degradation ’-\ !dks() protein interaction site

infrastructure
degradation rate

r=1.0,e=0.1, 86=0.01 -

call to producer \ . . ¥
B_MH RN %

b
{ golb 2 . (ptnlb] | go[b])

I
go[b] [1dk()

500 1000 1500 2000 2500

r=10,e=0.1, 6=0.01 -

" la<> | posf[a,b] | Idk()
pOS[a/b] é 120 1“1 h Stimulated

a E b a.(). (ptn[b] | pos[a,b]) + 1227“' i
pos t.. (ptn[b] | pos[a,b]) jﬂ ! poslabT T 19k

Q 500 1000 1500 2000 2500

pos[a,b]
pos[b,c]

| a
3

A

Non-Linear Response

b . pos[a,b] £

a.(). (ptn[b] | pos[a,b]) +

t.. (ptn[b] | pos[a,b])

E.g. 1 a that
interacts twice
before decay can
produces 2 b that

pos

Without degradation

pos

r=1.0, e=0.001, 8=0.0

ptn[p] £ p.<>.ptn[p] + dky<>

Full on (very unstable)

each interact twice
before decay, which
produce 4 c...

r=1.0, e=0.001, 6=0.17

4000 =l

3500 St

3000 300 - b |
2500 250

2000 200 o

1500 150

1000 b Ll

5 50 +— A
DUE - ————a . R
0 5 10 15 20 25 30 100 150 200

|ptn[a] | pos[a,b] | pos[b,c]

Iptnfa] | pos[a,b]

| pos[b,c] | !dks()

Pulsed r=1.0, £20,001, 5=0.1 Pulsed r=1.0, £20,001, 5=0.1
5 1600
200 1400
2en 1200
ab 1000 ab
200
800
150 s00 49—
100 +— 400
50 200 T~
I il | | o4
. o B . e 0 20 40 &0 80 100 120

|ptn[a] | pos[a,b] | pos[b,c] | !dks()

|5°ptn[a] | pos[a,b] | pos[b,c] | !dky()

Signal Normalization

negla,b] | a b c
neg[b,c] [1[0

neg neg

The input level (a), whether weak or strong, is
renormalized to a standard level (c).

r=1.0, e=0.1, h=0.01, 5=0.001
140

120

e A AN ab
o | Ir”" AN

w
20 'Jf
o o]

a 5000 10000 15000 20000

|29ptn[a] | negla,b] | neg[b,c] | !dks()

pos[a,a]

Self Feedback Circuits

d1c

pos[a,b] £

pos

a.(). (ptn[b] | pos[a,b]) +
t.. (ptn[b] | pos[a,b])

ptn[p]l 2 p.<>.ptn[p] + dky<>

3500

r=10,e=0.1,8=0.01 -

3000

2500

2000

1500

1000

500

0

0 5
pos[a,a] | Idks()

10

20

negla,a] .
neg
hegla,b] £

a.(). 7,. negla,b] +

7.. (ptn[b] | negla,bl)
ptn[p] 2 p.<>.ptn[p] + dks<>

high, fo raise
the signal

r=1.0, £210.0, h=1.0, 5=0.005 e

Less degradation $=0.0005 -

140

120
100 ‘”F

a0 "/
60 J

40

0 1000 2000 3000 4000 5000

. And a bit less 6=0.0001 -

300

frw"-/’“\-mf

J/ﬂ

200
150 /
100

0 500 1000

negla,a] | !dks()

1500

2000

2500 =0

0

0 5000 10000 15000 20000

Two-gate Feedback Circuits

b
| 1

pos neg

pos[b,a] |
hegla,b]

N.B. unlike the neg-self feedback loop, this circuit does not
require high-¢ gates. It is a model of transcription-translation.

For some degradation rates is quite stable:

r=1.0, e=0.1, h=0.01, 6=0.0005

700 700
600 600
500 \ 500
400 \ 400
300 300
N a [{]
oty PV Vil
200 Vwrh'w e, v 200 "MW"M"
. " J/,N
: . — ____h

: : : , .
0 10000 20000 30000 40000 80000 5 qpggp 20000 30000 40000 50000

pos[b,a] | negla,b] | !dks()

But with a small change in degradation, it goes wild:

r=10,e=0.1, h=0.01, 5=0.0001
6000

5000
‘/,/’,’ a

4000

3000 //f/,

2000

1000

A hint for
D052?

b

2000 4000 6000 8000

| negla,b] | dks()

0

pos[Ioo,a]

160

140

120

100

80
60
40
20

0

120

100

80

60

40

20

b
|

neg neg

neg[b,a] |
hegla,b]

Bistable:

r=1.0, e=0.1, h=0.01, 5=0.001
140

Jﬁ w (Jl 80 ;& ; I:)

/ 60 /‘f‘

40

b a

0 5000

10000 15000 20000 0 5000 10000 15000

neg[b.a] | negla,b] | ldks()

20000

€=0.1, h=0.01, $=0.001

5 runs with r(a)=0.1,

— b1:l.<=
—bw21<| n(b)=1.0 shows that
b3:1.<= . ea o .
wie| Circuit is now biased
—w1<| towards expressing b

/
|

5000 10000 15000 20000 25000

Repressilator

negla,b] | ﬁne_ negla,b] £

neg[b,c] | ¢ 9 b a.(). t,. negla,b] +

neg[c,a] 1l [al t.. (ptn[b] | negla,bl)
neg neg

I dk;()

Same circuit, three different degradation models:

A
P-rn [p] = pr<> r=1.0, e=0.1, h=0.04 r=1.0, e=0.1, h=0.04, 3=0.0001

1200

| ptn[p] 2 p.<> + dk5<>

= ab A ab
e — icm,f\\//\\//\\//\\f/

0

140
120
100
20
S0
20
20

10000 20000 30000 40000 50000 80000 10000 20000 20000 40000 Soooo £0000

ptn[p]l 2 p.<>.ptn[p] + dky<>

Ly J.I'.I*ﬂhl'l Jﬂhu y j M. A) ab
i orhal | h"{ ! AT T wil L el . VAL i
£ M A \ r [T | aalY 4 i
f4 / /. i P y N FE] { i '| :
] A | AN f I 1 f r N
N~ | | [N 1 N Y B | N ,

Subtle.. at any point one gate is inhibited and the other two can fire constitutively. If one of them
fires first, nothing really changes, but if the other one fires first, then the cycle progresses.

Repressilator in SPiM

new ptn:<<>> (* Protein *)

new dk:0.001:<> (* Decay rate ¥*)

new neg:<<>,<>> (* Neg Gate *)

new tInh:0.001:<> (* Inhibition rate *)
new tCst:0.1:<> (* Constitutive rate ¥*)

(* Protein-Gene interactions ¥*)
new a:1.0:<> new b:1.0:<> new c:1.0:<>

C !'ptn(p); (p<>;ptn<p>+dk<>;())
| 1dk(Q)

| 'neg(a,b);
(aQ; (tInh(Q; neg<a,b>) +
tCst(); (ptn | neg<a,b>))
| !'tCst<> | !tInh<>

(* The circuit *)
| neg<a,b> | neg<b,c> | neg<c,a>

)

And-gate with
two positive inputs

and*[ab,c] &
a.().b.().(c;¢> | and**[a,b,c]) +
b.().a.().(c;<> | and*[a,b,c]) +
7..(¢c;<> | and*[a,b,c])

pos[a,b] £

Binary Gates

b
a3V [©
and** unbinding delay
of first input
and*[a,b,c} =

a.(). (t,.and*[a,b,c] + b,().(c,«> | and*[a,b,c])) +
b.(). (r,.and*[a,b,c] + a.().(c;<> | and*[a,b,c])) +
1..(c;<> | and**[a,b,c])

Here we could model collaborative binding by increasing the binding rate of
the second input. Moreover, the strength of the second binding could
differ depending on which input is bound first..

<= Wrong: we cannot ignore stochastic unbinding of inputs, otherwise
a spurious input would become a persistent state so that a second
spurious input at a much later time would trigger the gate. (In the
case of unary gates, we could factor unbinding into the binding time.)
Hence the solution above . But then notice that inputs can now really
get LOST, so we need to generate enough of them to keep things

going.

<= A revised unary gate, for consistency

a,(). (t,.pos[a,b] + (b<> | pos[a,b])) + with binary gates?

7. (bs> | pos[a,b])

Feed Forward Loop

pos[a,b] £ posfa.b] |
a,ﬂ()j(rna[b] | pos[a,b]) + and{ab.c] pos
t..(rha[b] | pos[a,b])

and*[a,b,c] 2
a.(). (t,.and*[a,b,c]+ b.().(rna[c] | and**[a,b,c])) +
b.(). (t,.and**[a,b,c] + a.().(rha[c] | and*[a,b,c])) +
t..(c.<> | and**[a,b,c])

//I transcription delay (not rate)

rna[p] £ A o-pTnlp]
ptn[p] 2 p.<>.ptn[p] + dks<>

I Nl

and**

I d k5() r=1.0, £=0.0001, $=0.01, u=0.1, tran=50.0

L 0 70

80 i0 80

50 0 ab o ab

40 0 40

30 J‘J‘]L\W 0 ml 30

20 r \?H 0 fj 15\"“\,\ 20

10 0 5 10 -.
USRS , T N 0 —
0 200 400 800 ¢ 200 400 600 : 600

stimuli —— a«;% a<>;100 a<>;200

140

120

100

80

60

40

20

0

120

100

80

60

40

20

0

A pretty straightforward antimonotonic gate.

Signal Response of Low-Delay Gate

120 140 140
I m
100 hfﬁq\l 120 120
W i 20 | ;/ T 100 ‘(‘/WH I y
f 80 A 80
f ! J
Wil i / °
J 40 J‘ ’ 40 40 /
’ . 20 / 20 }
' ' ' 0 . ' ' 0 M : : o Jz :I ' '
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 2000 0 5000 10000 15000 20000
input = 0 input = 1 input = 5 input = 10
140 140 140
hag M 120 120 120
Wi t
}wl]‘w'“N w 100 /WA"M'\ NM'L}""W 100 ”\ mﬂfkuhvh\wmﬁvw 100
Hj 80)f } 80 v 80
/ 60 f, 60] f 60
/{ 40 : 40 \ / 40
M 20 v 20 H 20
v me
' ' ' 0 ' ' ' —_ : : 0 ' : .
0 5000 10000 15000 20000 0 5000 10000 15000 20000 ’ 0 5000 10000 15000 20000 0 5000 10000 15000 20000
input = 20 input = 50 input = 100 input = output

r=1.0, e=0.1, h=1.0, 6=0.001

Total# input a<> for each
plot (except first and
last): 4000.

140

120

100

80

60

40

20

160
140

120

100 1

80

60

40
20

0+

Signal Response of High-Delay Gate

120

input = 1 x (400 a<>
spaced by delays=2*h)

input = 1 x (400
consecutive a<>)

] 140 140
J‘r“‘k\) fr 100 W 120 gL
I AL AT v 1 1 i — Wiy
f 80 * ‘“lh | 80 J ! l %0 (
{j ‘ h o - T
40 1 .
f il o Lt LR | w0 1y |
. | - LA Yy
UBARN A
. . - 0 t t T t T sttt i ks . - T 0 T T u T T
0 5000 10000 15000 20000 0 20000 40000 60000 B0DOD 100000 120000 ;4499 49000 6pOQ BOOCO 100000 120000 0 20000 40000 6000O 80O 100000 120000
ot = 0 input = 1 x (400 a<> input = 2 x (200 a<> input = 1 x (400 a<>
input = spaced by delays=0.5*h) spaced by delays=0.5*h) <naced. by delays=h)
140 140
120 T - 120
‘lu Al WW
100 100
5 e — i)
40 } 40
. M 2 (20
: . : : : 0 bl 2 . . . 0 . : .
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000 O 5000 10000 15000 20000

input = output

r=1.0, e=0.1, h=0.01, 6=0.001

Conclusions

I don't know how the parameters I have been using reflect reality. The
point was to show that there exists a reasonably stable (within 1 order of
magnitude) set of parameters that gives the “"expected” behavior, even
for a very simplified model. Therefore there is hope that further
refinements will work as well.

Biggest architectural surprise: designing the components so that arbitrary
feedback patterns are handled without deadlocks. This does not reflect
any common software concurrency paradigm. The closest analogy seems to
be with hardware [McAdams&Shapiro].

Biggest engineering surprise: the stabilizing and destabilizing effects of
degradation, and the cost of keeping it running on purpose.

