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Genetic Networks

Strange facts about genetic networks:

The output of each gate is fixed and pre-determined; it is never a function of the input!
(Except maybe the quantity of output is a function of the quantity of input.) This is not a
functional or operator calculus.

There are inputs and anti-inputs (inhibition). An anti-input is not the same as absence of an
input: it will block the gate in a specific way. Inhibition is widespread. This is not term-
rewriting, nor Petri nets.

Feedback is widespread: e.g. each gate can send input to itself. This requires an asynchronous
communication model to avoid immediate self-deadlocks. In particular, even the simplest gates
cannot be modeled as a single synchronous process. This is not Communicating Sequential
Processes.

Messages themselves have behavior (e.g., they will stochastically decay, and this is a
fundamental property), hence messages should really be modeled as processes as well. This is
not message-passing.

The apparently crude idea of broadcasting a whole bunch of asynchronous decaying messages to
activate a future gate is subtly clever: it means there are never any “pipeline full” deadlocks
propagating backwards, even in presence of abundant feedback loops. Any attempt to use data-
flow-style modeling of these circuits seems doomed because of loops. This is not data-flow.

The amount of output can be a function of the amount of input, but it is not clear how important
this really is in many cases. Gene circuits are robust w.r.t. radical changes in concentrations
(e.g. during cell growth), and in many cases seem to switch digitally (with steep sigmoids). The
combination of degradation and concentration-based interaction rates can produce reasonably
stable, normalized, signals in a noisy environment.



(The Classical Approach)

[Chen, He, Church]
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Nullary Gate

Let's begin by modeling transcription factors as simple messages.
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Not good for two reasons:

- we want to use r as the rate for the
binding of b, not for the production of b.
- does not extend to unary and binary
gates, where we want a t in front.



Unary Gates
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Designed to handle self-loops!
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N.B. inputs and outputs are one-to-one. We could put in an amplification factor,
but a similar effect can usually be obtained by adjusting the production rates or
the persistence rates: see later.
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Degradation

Product degradation is extremely important in general; it changes
unbounded growth into (roughly) stable signals.
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Non-Linear Response
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Signal Normalization
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The input level (a), whether weak or strong, is
renormalized to a standard level (c).
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pos[a,a]

Self Feedback Circuits
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Two-gate Feedback Circuits
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N.B. unlike the neg-self feedback loop, this circuit does not
require high-¢ gates. It is a model of transcription-translation.

For some degradation rates is quite stable:
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But with a small change in degradation, it goes wild:

r=10,e=0.1, h=0.01, 5=0.0001
6000

5000
‘/,/’,’ a

4000

3000 //f/,

2000

1000

A hint for
D052?

b

2000 4000 6000 8000

| negla,b] | dks()

0

pos[Ioo,a]

160

140

120

100

80
60
40
20

0

120

100

80

60

40

20

b
|

neg neg

neg[b,a] |
hegla,b]

Bistable:

r=1.0, e=0.1, h=0.01, 5=0.001
140

Jﬁ w (Jl 80 ;& ; I:)

/ 60 /‘f‘

40

b a

0 5000

10000 15000 20000 0 5000 10000 15000

neg[b.a] | negla,b] | ldks()

20000

€=0.1, h=0.01, $=0.001

5 runs with r(a)=0.1,

— b1:l.<=
—bw21<|  n(b)=1.0 shows that
b3:1.<= . ea o .
wie| Circuit is now biased
—w1<| towards expressing b

/
|

5000 10000 15000 20000 25000



Repressilator
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Same circuit, three different degradation models:
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Subtle.. at any point one gate is inhibited and the other two can fire constitutively. If one of them
fires first, nothing really changes, but if the other one fires first, then the cycle progresses.



Repressilator in SPiM

new ptn:<<>> (* Protein *)

new dk:0.001:<> (* Decay rate ¥*)

new neg:<<>,<>> (* Neg Gate *)

new tInh:0.001:<> (* Inhibition rate *)
new tCst:0.1:<> (* Constitutive rate ¥*)

(* Protein-Gene interactions ¥*)
new a:1.0:<> new b:1.0:<> new c:1.0:<>

C !'ptn(p); (p<>;ptn<p>+dk<>;())
| 1dk(Q)

| 'neg(a,b);
(aQ; (tInh(Q; neg<a,b>) +
tCst(); (ptn<b> | neg<a,b>))
| !'tCst<> | !tInh<>

(* The circuit *)
| neg<a,b> | neg<b,c> | neg<c,a>
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And-gate with
two positive inputs
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Binary Gates
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Here we could model collaborative binding by increasing the binding rate of
the second input. Moreover, the strength of the second binding could
differ depending on which input is bound first..

<= Wrong: we cannot ignore stochastic unbinding of inputs, otherwise
a spurious input would become a persistent state so that a second
spurious input at a much later time would trigger the gate. (In the
case of unary gates, we could factor unbinding into the binding time.)
Hence the solution above . But then notice that inputs can now really
get LOST, so we need to generate enough of them to keep things

going.

<= A revised unary gate, for consistency

a,(). (t,.pos[a,b] + (b<> | pos[a,b])) + with binary gates?
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Feed Forward Loop
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A pretty straightforward antimonotonic gate.

Signal Response of Low-Delay Gate
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Signal Response of High-Delay Gate
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Conclusions

I don't know how the parameters I have been using reflect reality. The
point was to show that there exists a reasonably stable (within 1 order of
magnitude) set of parameters that gives the “"expected” behavior, even
for a very simplified model. Therefore there is hope that further
refinements will work as well.

Biggest architectural surprise: designing the components so that arbitrary
feedback patterns are handled without deadlocks. This does not reflect
any common software concurrency paradigm. The closest analogy seems to
be with hardware [McAdams&Shapiro].

Biggest engineering surprise: the stabilizing and destabilizing effects of
degradation, and the cost of keeping it running on purpose.



