Drait

Methodsin Structures

Luca Carddlli

There is a dlight technical problem in adding methods to dependent structures. The “self”
parameter of a method in a binding needs to know the final signature, since the method may want to
refer to methods to its right through self. So the usual left-to-right checking of structures and signatures
does not quite work. | don’t think we want to make the entire binding recursive. So here is a left-to-
right solution that accounts for mutual method access through self.

A structure {B} contains a dependent binding B, and a signature {D} contains a dependent
declaration D. We keep track at all times of the final declaration, via the judgment ' - B : DD’
meaning that B has declaration D, but must still be “integrated” with D’. Eventually we prove ' - B :
Df() and we are done. B

See [Harper Lillibridge 1993] for the notation and the other necessary rules. Here D is the label-
stripping function, and & isavector of variables/labels, where each & isatype or term variable/label.

Bindings: B
Structures: { B}
Declarations: D

Signatures: { D}

rNFA:K type A has kind K

Nr-a:A term ahastype A

+~B: DD binding B has declaration D, pending D’

r={B} :{D} structure { B} has signature { D}

X+A method X has result type A (used in contexts and declarations)
(Empty binding)

rekb____

r=0:0/D

(Type binding)

FEB:Dfb>X:K, D' TI,DFA:ZK Xgdom(l,D)
B, b>X::K=A : D, b>X:K[D’

(Term binding) . .
=B: Dfb>x:A, D’ NDFaA x¢dom(l,D)
I+ B,b>x:A=a : D, b>x:AfD’

May 27,1994 314AM P@e 1

Drait

(Method binding) B _ whereS={D, b>x+A{ &}, D'}
r-B:Dfb>x+A, D' TI,Dy: Sta(A{y.£}) xy¢dom(l,D) Eedom(D)
[B, b>x+A{ £}=¢(y:Sa : D, b>x=A{ £}J D’

(Structure)
I +B:DJ()

I +{B}:{D}

(Method invocation)
IFa:{b>x+A}
Ml-ab:A

(Method override) _ whereS={D, b>x+A{ £}, D’}
Nr-a:S TI,DySra:A{y.E} ygdom(I',D) Eedom(D)
ab=¢(y:9a :S

The substitution A{ y.&} in the (Method binding) rule needs some explanations. At first | wrote:

(Method binding 0) whereS={D, b>x+A, D’}
r-B:Dfb>x+A, D’ TI,Dy:SFaA xy¢dom(l,D) y¢A
I+ B, b>x+A=¢(y:Sa : D, b>x+A[D’

Where the restriction y¢A is similar to the usual restriction for the dot notation in function result
types. But, according to (Method binding 0), the following does not typecheck (I am abbraviating &>¢&
as &):

{X:Type=Int, z=X =¢(y{X:Type, z=X})y.z} : {X:Type=Int, z+X}
However, we know that the current D in (Method binding 0) is a prefix of thefinal S, which isthe
type of y. Hence y.X is really the same as X in the current context., for any X declared in D. Thisis
what (Method binding) is saying, and the example above is then typeable.

By the way, for asimilar situation [Harper Lillibridge 1993] uses the following rules:

MxAFaA
FEAXA)a: NxA)A

FEa:NxAA TFaA x¢A
Ma): A’

| don’t quite understand why the side condition is placed on elimination, and not on introduction.
Without subsumption, if x occursin A’ then A(x:A)ais unusable, and we are only delaying the error
messages. Subsumption can eliminate occurrences of x in A’, but isthis really useful 2.

P@e 2 May 27,1994 314AM

