
Types for the Scott numerals

Mart��n Abadi Luca Cardelli Gordon Plotkin

February 18, 1993

In the untyped lambda calculus, the Scott numerals are de�ned by:

0 = �x�y: x

succ = �n�x�y: yn

case = �n�a�f: naf

where case(n)(a)(f) returns a if n is 0 and f(x) if n is the successor of x (see,

e.g., [2]). The Scott numerals are distinguished from the Church numerals by

their \linearity": the bound variables of 0, succ, and case occur at most once

in the bodies of these functions, and the predecessor function �n:n(0)(�x:x)

can be computed trivially.

The Scott numerals can be typed in an extension of System F with

covariant recursive types. We can take the type of the Scott numerals to be

the solution to the equation S = 8R: (R! (S ! R)! R):

0 = �R�x : R�y : (S ! R): x

: S

succ = �n : S�R�x : R�y : (S ! R): yn

: S ! S

case = �n : S�R�a : R�f : (S ! R): nRaf

: S ! 8R:(R! (S ! R)! R)

Since S is a covariant recursive type, it can be represented by the System

F type M = �X: G[X ] where G[X ] = 8R: (R ! (X ! R) ! R) and

�X: G[X ] = 8X: ((G[X ]! X)! X). Let N = G[M ], and let in : N ! M

and out :M ! N be the two halves of the isomorphism between M and N .

Using in and out , we can give new System F versions of 0, succ, and case.

1



For this, it turns out to be easiest to use N rather than M as the type of

numbers. We set:

0 = �R�x : R�y : (M ! R): x

: N

succ = �n : N�R�x : R�y : (M ! R): y(in(n))

: N ! N

case = �n : N�R�a : R�f : (N ! R): nRa(f � out)

: N ! 8R:(R! (N ! R)! R)

A numeral system based on M can be obtained by working through the

isomorphism, or can be derived from scratch. These two approaches yield

somewhat di�erent results. An abundance of super�cially di�erent numeral

systems can be obtained, in part because neither in � out nor out � in is

��-equivalent to the identity. Note that these numeral systems are not as

e�cient as the original one, or as the one based on the recursive type S: the

two halves of the isomorphism in and out are not linear.

After considering these typed version of the Scott numerals, we may wish

to check that they are in fact isomorphic to the standard natural numbers.

A direct argument uses many of the datatype constructions studied in [1]:

M � N by unfolding

� �X8R: ((1! R)! (X ! R)! R) since R � (1! R)

� �X8R: (((1! R)� (X ! R))! R) by uncurrying

� �X8R: (((1 +X)! R)! R) turning a � into a +

� �X: (1 +X) as 1 +X � �R: (1 +X)

Similarly, we can give Scott versions for other familiar datatypes using

covariant recursive types. This works out particularly well when recursive

types can be de�ned up to equality rather than just up to isomorphism.

References

[1] Gordon Plotkin and Mart��n Abadi. A logic for parametric polymor-

phism. To appear in Proceedings of the International Conference on

Typed Lambda Calculi and Applications, March 1993.

[2] Christopher Wadsworth. Some unusual �-calculus numeral systems. In

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism, J.P. Seldin and J. R. Hindley, eds., Academic Press, 1980.

2


