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Abstract

Recent years have seen the development of several foundational models for statically typed
object�oriented programming� But despite their intuitive similarity� di�erences in the technical
machinery used to formulate the various proposals have made them di�cult to compare�

Using the typed lambda�calculus F�
��

as a common basis� we now o�er a detailed comparison
of four models� �	
 a recursive�record encoding similar to the ones used by Cardelli �Car���
Reddy �Red��� KR��� Cook �Coo��� CHC���� and others� ��
 Hofmann� Pierce� and Turner�s
existential encoding �PT�� HP���� ��
 Bruce�s model based on existential and recursive types
�Bru��� and �
 Abadi� Cardelli� and Viswanathan�s type�theoretic encoding �ACV��� of a
calculus of primitive objects�

� Introduction

Over the last half decade� several authors have proposed foundational models for statically typed
object�oriented programming� Although their motivating intuitions and technical machinery are all
strongly related to typed lambda�calculi with subtyping �Car��� CW��� CG	
�� stylistic di�erences
have made rigorous comparisons dicult� For example� some models are presented as translations
from high�level object syntax into the syntax of a typed lambda�calculus� others map high�level
syntax directly into a denotational model� still others focus on the object syntax as a primitive
calculus in its own right�
In this paper we compare four of these models� The �rst of these� based on recursively�de�ned

records� was introduced by Cardelli �Car��� and studied in many variations by Kamin and Reddy
�Red��� KR	��� Cook and Palsberg �CP�	�� and Mitchell �Mit	��� In its untyped form� this model
was used rather e�ectively for the denotational semantics of untyped object�oriented languages�
In its typed form� it was used to encode individual object�oriented examples� but had diculties
with uniform interpretations of typed object�oriented languages� The most successful e�ort in this
direction was carried out by Cook et al� �CHC	�� CCH��	b��
In �		�� Pierce and Turner �PT	�� introduced an encoding that relied only on a type system

with existential types� but no recursive types� This led Hofmann and Pierce �HP	�� to the �rst
uniform� type�driven interpretation of objects in a functional calculus�
At the same conference in �		�� Bruce presented a paper �Bru	�� on the semantics of a functional

object�oriented language� This semantics was originally presented as a direct mapping into a
denotational model of F���� but has recently been reformulated as an object encoding that depends
on both existential and recursive types�

�To appear in Information and Computation� This is a revised and expanded version of a paper originally presented
at TACS ���� Sendai� Japan�

�






Meanwhile� frustrated by the diculties of encoding objects in lambda calculi� Abadi and
Cardelli introduced a calculus of primitive objects �AC	��� Later� however� Abadi� Cardelli� and
Viswanathan �ACV	�� discovered a faithful encoding of that object calculus in terms of bounded
existentials and recursive types� �The encoding is simpli�ed in this paper to facilitate comparisons
with the other encodings� in particular� method update is only considered in Section ��	��
In this paper we examine these object encodings and compare their strengths and weaknesses�

Points of comparison include the expressiveness of the object�oriented constructs that can be en�
coded� the simplicity of the encoding� the uniformity of the encoding �e�g�� independence of the
encoding from the types of the objects and methods�� and the power and proof�theoretic tractability
of the underlying type theory used by the encoding�
We concentrate� throughout� on the lambda�calculus expressions that form the targets of the four

encodings� eliding the associated �primitively object�oriented� source languages and the encoding
functions mapping these into the lambda�calculus� �There are interesting comparisons to be made
at this level too� but they are complicated by many inessential syntactic and stylistic di�erences
between source languages�� Thus� the phrase �object encodings� in the title of the paper can be
read as �object�oriented programming styles in typed lambda�calculus��
We also stop short of considering classes and subclassing mechanisms� These are of course

supported�in interestingly di�erent ways�by all four encodings� but a detailed comparison falls
outside the scope of this study�
Chapter �� of �AC	�� describes and compares several object encodings with respect to the

object�oriented constructions that they can express and the properties that they enjoy� A main
di�erence of approach in this paper is in the use of type operators to represent di�erent encodings
more uniformly� A paper by Fisher and Mitchell �FM	�� �see also �FM	��� gives a general tutorial
on type systems for object�oriented languages� It describes the origins and evolution of the recursive
and existential encodings� and compares them with an axiomatic presentation of objects�

� Technical Preliminaries

The �ambient type theory� in which our four encodings are expressed is the omega�order poly�
morphic lambda�calculus with subtyping� System F��� �Car	�� CL	�� PT	�� HP	�� PS	�� Com	���
extended with existential types �MP���� recursively de�ned types �AC	��� recursive functions� and
records� In the interest of brevity� we assume that readers have some prior familiarity with F����
with recursive types� and with the use of existential types for information hiding �a la Mitchell and
Plotkin� �Prior familiarity with some of the encodings we discuss will also be helpful� but is not
required�� In this section� we sketch the syntax of the language and brie�y discuss a few technical
points of particular relevance to what follows�
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The sets of kinds� types� and terms are given by the following grammar�

K ��� Type kind of types
j K��K kind of type operators

T ��� X type variable
j Fun�X�K�T type operator
j T T application of a type operator
j Top�K� maximal type of kind K
j T��T function type
j All�X�T universally quanti�ed type
j All�X��T�T bounded universal type
j Some�X�T existentially quanti�ed type
j Some�X��T�T bounded existential type
j Rec�X�T recursive type
j �l�T			l�T
 record type

e ��� x variable
j fun�x�T�e abstraction
j e e application
j fun�X��T�e type abstraction
j e T type application
j pack �X�e as T existential package construction
j open e as �X�x in e existential package use
j �l�e			l�e
 record construction
j e	l �eld selection
j let x�e in e local de�nition
j letrec x�y�T��T � e in e recursive local de�nition

As usual� we regard terms and types as identical if they di�er only in names of bound variables�
We assume standard de�nitions of reduction and conversion� writing m��n to indicate that m and
n are convertible� Although we shall perform conversion steps in whatever order is convenient for
the sake of examples� we could just as well impose a call�by�name reduction strategy� �Most of the
examples would diverge under a call�by�value strategy� This can be repaired� at the cost of some
extra lambda�abstractions and applications to delay evaluation at appropriate points��
We are informal about kinding throughout the paper� In particular� we omit kind declarations

on type abstractions� writing Fun�X�T instead of Fun�X�K�T�
In the de�nitions of the encodings� we use pairs in addition to records� these can� of course� be

encoded straightforwardly� We write �m�n� for the pair of m and n and use the selectors fst and
snd to destruct pairs� S�T is the type of pairs of S and T�
Our formulation of existential types is standard� following �for example� Mitchell and Plotkin�s�

If S is a type expression� then any element v with type of the form S�U�X can be �packed� into
an element �pack �U�v as Some�X�S� of type Some�X�S�
The expression �open o as �X�x in b� unpacks the existential value o� yielding bindings

for the type variable X and the term variable x� whose scope is the expression b� X represents
the hidden� abstracted type� while x represents the term before it was packed� In particular� the
expression �open o as �X�x in b� where o is �pack �U�v as Some�X�S� will result in X being
bound to the type expression U and x to the expression v� In order to preserve type�safety� one may



�

only apply operations to x that do not depend on knowing the actual hidden type bound to X�
The rules for introduction and elimination of existentials are the usual ones� Informally�

T��Some�X�S � v � �X �� U�S

�pack �U�v as T� � T
�T�Pack�

� o � Some�X�S x � S � b � B X �� FV�B�

�open o as �X�x in b� � B
�T�Unpack�

Note the important side condition on the rule T�Unpack of existentials� If this side condition were
dropped� then the hidden state type X could �escape its scope�� resulting in a nonsensical term�
In examples� we use the informal pattern�matching notation

open o as �X��s�m� in b

to abbreviate

open o as �X�x in let s�fst�x� in let m�snd�x� in b�

For example the following de�nes a simple abstraction containing a value of type X and a
function mapping type X to integers�

abstr
def

� pack ��x�String
�

� �x��source�
�

fun�s��x�String
� length�s	x��

as Some�X� X � �X �� Int�

� Some�X� X � �X �� Int�

We can use abstr by �opening� it and applying the second component to the �rst component�

open abstr as �X��x�f� in f�x�

Because the type of f�x� does not involve X� this is legal according to T�Unpack� However� replacing
f�x� by x or f�concat�x� �more��� is illegal according to T�Unpack as these changes would break
the abstraction�
We can extend the subtyping relation to type functions �functions from types to types� by

de�ning subtyping pointwise� Thus if F and G are type functions then F �� G i� for all types X�
F�X� �� G�X��

I�X���J�X�

Fun�X� I�X���Fun�X� J�X�
�S�Abs�

Thus if G�X� � fbump�X� eq�X��Boolg and G�X� � fbump�X� eq�X��Bool� set�Int��Xg then F

�� G�
The following folding and unfolding rules allow us to make use of recursive types�

Rec�X� I�X���I�Rec�X� I�X�� �S�Unfold�

I�Rec�X� I�X����Rec�X� I�X� �S�Fold�
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We will use these rules implicitly as needed rather than clutter the presentation�
The �Amber rule� is used to determine when recursively�de�ned types are subtypes�

X��Y � I�X���J�Y�

Rec�X� I�X���Rec�Y� J�Y�
�S�Rec�

Note that this rule has a stronger premise than the pointwise subtyping rule for type operators
above �S�Abs�� Adopting a pointwise rule for recursive types �i�e�� making Rec�X� I�X� a subtype
of Rec�X� J�X� whenever I�X���J�X�� would render the type system unsound �AC	���
The letrec construct allows us to de�ne terms using auxiliary functions �which may be de�ned

recursively��

f�S��T� x � S � e � T f�S��T � b � B

�letrec f�x�S��T � e in b� � B
�T�LetRec�

For subtyping quanti�ers� we have a choice of rules� Some of our encodings will work �ne with
the kernel F�� variant of the system� one needs the full F�� rule� The following is the kernel rule
for bounded polymorphic functions�

X��A � D��B

All�X��A�D��All�X��A�B
�S�All�KFun�

Notice that the bounds on the parameters are identical for kernel F��� In the full F�� system they
are allowed to vary�

� A��C X��A � D��B

All�X��C�D��All�X��A�B
�S�All�Full�FSub�

The disadvantage of the full F�� rule is that it makes the subtyping relation undecidable �Pie	��
�as well as losing some other important properties� such as the existence of meets and joins��

� The Encodings

Our running example throughout the paper will be �purely functional� integer reference cell ob�
jects�� The interface of cell objects is represented by the following type operator�

CellI�X�
def

� �get�Int� set�Int��X� bump�X


Operationally� a cell object has three methods� get� which returns its current contents� set� which
returns a new cell object �we intend that the contents of the resulting object should be set to the
integer provided as a parameter� although of course the interface type doesn�t guarantee this�� and
bump� which returns a new cell �whose contents should be one greater than the current contents��
The role of the parameter X varies between the encodings we consider� but it may be thought of
intuitively as a placeholder for the �type of self�� Given an interface I� we write O�I� for the type
of �objects with interface I��
We are interested in the properties of O�I� for di�erent values of O�i�e� for di�erent ways of

encoding objects with interface I� The four O�s that we consider in detail are�

�We concentrate here on the purely functional versions of each of the encodings� This choice aids both in for�
mulating each of the systems �for example� it allows us to assume a call�by�name reduction strategy� avoiding some
extra thunking for the corresponding call�by�value variants	 and in later comparisons between systems�
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OR�I�
def

� Rec�X� I�X�

OE�I�
def

� Some�Y� Y � �Y��I�Y��

ORE�I�
def

� Rec�X� Some�Y� Y � �Y��I�X��

ORBE�I�
def

� Rec�X� Some�Y��X� Y � �Y��I�Y��

OR is a �classical� recursive�record encoding� OE is the �existential encoding� of Hofmann� Pierce�
and Turner �PT	�� HP	��� ORE is a type�theoretic analog of Bruce�s denotational semantics for
objects �Bru	��� ORBE is a variant of Abadi� Cardelli� and Viswanathan�s type�theoretic encoding
�ACV	��� The names are designed to remind the reader of the main features of the encodings� R
stands for recursive types� E for existential types� and BE for bounded existentials�
The use of type operators �rather than just types� to represent object interfaces is a way of

capturing� uniformly� two di�erent points of view about the types of the object�s methods� the
�external view� of the object� in which the methods are abstract services that can only be invoked
by an operation of �message sending�� and the �internal view� of the object when it is being
created� in which the methods are concrete values� The internal view of the methods� types varies
from encoding to encoding �in two encodings I is applied to the recursively bound type variable X�
while in the other two it is applied to the existentially bound variable Y�� On the other hand� the
external view will always be the same�

CellMessages
def

� O�CellI� �� CellI�O�CellI��

� O�CellI� �� �get�Int� set�Int��O�CellI��

bump�O�CellI�


That is� the messages supported by cell objects can be viewed as a collection of functions whose �rst
parameter �the �self parameter�� is a cell object and whose results are described by CellI�O�CellI���
Of course� message sends will have to be interpreted di�erently in each of the object encodings in
order to obtain this form�
It is technically convenient to write a single self parameter at the front of the whole collection of

messages instead of abstracting each message individually on its self parameter� For example� for
most of the paper we will assume that object interfaces are represented by covariant type operators�
in which the bound variable appears only in positive positions� That is� each method of an object
implicitly takes a single self parameter and can then return results of the self parameter type
but not take any more arguments of this type� Section ��� discusses the implications of relaxing
this restriction to allow �binary� methods with parameters of the same type as the receiver� See
�BCC�	�� for a more extended discussion�
Note that all of these encodings need to be combined with some kind of higher�order bounded

quanti�cation to provide satisfactory typings for functions manipulating objects� For example� a
function that accepts a cell object and sends it the bump message twice is given the type

bumpTwice � All�I��CellI� O�I� �� O�I�

capturing the fact that� if it is applied to a colored cell object� the result will also be colored�
We now develop each of the encodings in detail� using the example of cells to illustrate each

one�

��� OR� Recursive records

The encoding of recursive records is fairly straightforward�

OR�I�
def

� Rec�X� I�X�
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In this case an object is simply a recursive record in which each occurrence of X stands for the type
of the entire record� Thus if T � OR�I� then T � I�T��
We can encode a cell object as follows�

mycell � letrec mkobj�s��x�Int
� � OR�CellI� �

� get � s	x�

set � fun�n�Int� mkobj��x�n
��

bump � mkobj��x�s	x��
� 


in

mkobj��x��
�

� OR�CellI�

The recursive function mkobj creates a new object of type OR�CellI�� given a value for the internal
state��

Let us introduce the informal syntax o��l for sending a message l to an object o� Because
objects in this encoding are simply recursively de�ned records� message sending is represented by
�eld selection �after unfolding the recursive type��

o��l
def

� o	l

It is easy to see that �mycell��bump���get reduces to � as follows�

�mycell��bump���get

�� �mkobj��x��
���bump���get

�� �� get � �x��
	x�

set � fun�n�Int� mkobj��x�n
��

bump � mkobj��x��x��
	x��
� 
	bump���get

�� mkobj��x���x��
	x���
���get

�� mkobj��x��
���get

�� �x��
	x

�� �

Instead of implementing bump by manipulating the state directly� suppose we want to implement
it in terms of the other methods� We can write�

mycell
def

� letrec mkobj�s��x�Int
� � OR�CellI� �

let self � mkobj s in

� get � s	x�

set � fun�n�Int� mkobj��x�n
��

bump � self��set�self��get � �� 


in

mkobj��x��
�

� OR�CellI�

It is easy to see by reducing the messages sent to self that this is equivalent to the original
de�nition� above�

�Note that� if we wanted to enforce a call�by�value reduction scheme� it would be necessary to change the encoding
of the bump 
eld� as otherwise a call to mkobj would always diverge� One solution would be to convert the bump 
eld
to a function of no arguments returning an object�
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��� OE� Existentials

In the next encoding� we treat objects as pairs of state �with type Y� and methods �with type
Y��I�Y��� in which the state component is hidden from the outside and methods are functions that
depend on the state� Thus

OE�I�
def

� Some�Y� Y � �Y��I�Y��

where the bound type variable Y represents the hidden state� We can de�ne a cell object as follows�

mycell
def

� pack ��x�Int
�

� �x��
�

fun�s��x�Int
�

�get � s	x�

set � fun�n�Int� �x�n
�

bump � �x�s	x��
 
�

as OE�CellI�

� OE�CellI�

It is now slightly more complex to send messages as we must �unpack� elements of existential type
before we can access their components� Simple message sends like get are encoded as�

o��get
def

� open o as �X��s�m� in m�s�	get

That is� we open the existential� apply the method suite to the state� and then extract the appro�
priate method�
However� messages like bump that return new objects with updated internal state require a bit

more� since the resulting object must be re�packed�

o��bump
def

� open o as �X��s�m� in

pack �X��m�s�	bump�m�

as OE�CellI�

The extra pack in the translation follows from the fact that the return type of the method has
type Y� rather than the object type� In order to yield a fresh object as result� the state returned
by the method must be re�packaged �with the original methods and state type� as an existential
value� With this abbreviation it is easy to see that �mycell��bump���get evaluates to ��

�mycell��bump���get

� �open mycell as �X��s�m� in pack �X��m�s�	bump�m�

as OE�CellI����get

�� �pack ��x�Int
�

��methfun �x��
�	bump�

methfun�

as OE�CellI��

��get

�� �pack ��x�Int
�

��get��x��
	x� set�fun�n�Int��x�n
�

bump��x��x��
	x��

	bump�

methfun�



	

as OE�CellI��

��get

�� �pack ��x�Int
�

��x��x��
	x��
�

methfun�

as OE�CellI��

��get

�� �pack ��x�Int
�

��x��
�

methfun�

as OE�CellI��

��get

�� open

�pack ��x�Int
�

��x��
�

methfun�

as OE�CellI��

as �X��s�m� in m�s�	get

�� �methfun��x��
��	get

�� �get��x��
	x� set�fun�n�Int��x�n
�

bump��x��x��
	x��

	get

�� �x��
	x

�� �

where

methfun
def

� fun�s��x�Int
� �get�s	x� set�fun�n�Int��x�n
�

bump��x�s	x��



Because the message�sending code has to repack the object after the send in the case of bump�
but not in the case of get� message�sending boilerplate must be generated from types� rather than
being de�ned independently of types �as in the other encodings�� On the other hand� the call
to mkobj in the set method of the OR encoding of cells�which performs essentially the same
�repackaging��is omitted in the OE encoding� so the method bodies themselves are more uniform
than in OR �and the other two encodings to follow��
This encoding technique is closely related to semantic models of Abstract Data Types� See

�MP��� for details� This encoding has also been adopted in �MMH	�� in order to represent closures
as objects in compilers�
In the simple encoding� the �bump� method has no access to the �set� and �get� methods�it�s

only passed the state as a parameter� But� as for OR� we can also build mycell in such a way that
bump is de�ned in terms of get and set� This time� though� we have to do it a little di�erently�
It doesn�t help to send get and set to the whole object� since the result of set is then a whole
object� while the bump method is supposed to return just an element of the state type� Instead� we
build just the set of methods recursively�

mycell
def

� letrec m �s��x�Int
� � CellI��x�Int
� �

let selfmeth � m s in

�get � s	x�

set � fun�n�Int� �x�n
�



��

bump � selfmeth	set �selfmeth	get���


in

pack ��x�Int
� ��x��
�m�

as OE�CellI�

� OE�CellI�

Note that this encoding can be re�ned by using a bounded existential to expose some of the
instance variables� �This idea will come back later��

OBE�X�R�
def

� Some�Y��R� Y � Y��I�Y�

In this encoding we are revealing that the state is a subtype of some �public instance variables
interface� R� but are not specifying exactly what the type of the state is�

��� ORE� Recursion and Existentials

The intuition behind the ORE encoding is similar to OE except that any methods that return new
objects do the repacking of internal state themselves� rather than requiring that the sender do it�
This eliminates the need for di�erent encodings of o��m depending on the type of m�

ORE�I�
def

� Rec�X� Some�Y� Y � �Y��I�X��

As with OE� Y represents the state of the object� while the methods are functions that depend on
the current state� Notice that the types of methods now are expressed in terms of X� the type of
the entire object� rather than just the type of the Y component� This will make it easier for us
to encode message sends in a more uniform way� Thus a method returning a value of type X is
returning an object� not just its state component� As we shall see in Section ���� this also provides
support for �binary methods��
For convenience� de�ne�

close
def

� fun�internalObj�

�x�Int
 � ��x�Int
��CellI�ORE�CellI����

pack ��x�Int
� internalObj

as ORE�CellI�

The function close takes a pair representing the state and method de�nitions �in general� of type
Y � �Y��I�X�� and creates an object of type ORE�I� by hiding the type of the state�
Now de�ne mycell as�

mycell
def

� letrec methfun�s��x�Int
� � CellI�ORE�CellI�� �

�get � s	x�

set � fun�n�Int� close ��x�n
�methfun��

bump � close ��x�s	x��
�methfun�


in

close ��x��
�methfun�

� ORE�CellI�

The function methfun takes a value s representing the state of an object and creates a record of
methods in which each method uses s as the current state� The close function packages up a new
state with the method de�nitions given by methfun� producing a new object of type ORE�CellI��
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The fact that the methods set and bump use close to return objects of type ORE�CellI� is a key
di�erence from the existential encoding� where these methods simply returned the updated state�
As in OR� message sending is interpreted uniformly�

o��l
def

� open o as �X��s�m� in �m�s��	l

but each method that returns an object must explicitly call close to repackage the internal state
before it returns� �The call to close here corresponds to the call to mkobj in the OR encoding��
The expression �mycell��bump���get evaluates to � as before�

�mycell��bump���get

� ��close ��x��
�methfun����bump���get

�� ��pack ��x�Int
� ��x��
�methfun�

as ORE�CellI����bump���get

�� ��methfun �x��
�	bump���get

�� �close ��x��x��
	x��
�methfun����get

�� �close ��x��
�methfun����get

�� �pack ��x�Int
� ��x��
�methfun�

as ORE�CellI����get

�� �methfun �x��
�	get

�� �x��
	x

�� �

We can implement bump in terms of set as follows�

mycell
def

� letrec methfun�s��x�Int
� � CellI�ORE�CellI�� �

let self � close �s�methfun� in

�get � s	x�

set � fun�n�Int� close ��x�n
�methfun��

bump � self��set �self��get � ��


in

close ��x��
�methfun�

� ORE�CellI�

In this de�nition� s� with type �x�Int
� represents the state while self� with type ORE�CellI��
represents an object with that state� As before� the methods set and bump both return values of
type ORE�CellI��
It is useful to compare this de�nition with the corresponding one for OR� The main di�erence is

the splitting of the function mkobj of the earlier de�nition into two separate functions methfun and
close� In essence� close allows the creation of new objects by simply packing a new state with an
existing method suite rather than requiring the creation of a new recursively�de�ned record� Thus
ORE makes an explicit distinction between the state component of the object�the part that changes
in response to message�sends�and the methods themselves� which are constant� �Of course� OE
makes the same distinction� In ORBE� on the other hand� it becomes somewhat blurred� especially
in the variant with method update discussed in Section ��	��

��� ORBE� Recursion and Bounded Existentials

We can understand the ORBE encoding by starting with the OE encoding and working our way up
to the more complex one�
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The OE encoding makes no public commitment about the type of the state� we can choose the
state to be a record of instance variables� as we have done so far� or an element of any other type�
so long as we can write methods that operate on this state in the appropriate way� In particular�
we can choose the state type to be the type of the object itself� This may seem a slightly strange
thing to do� but note that it allows us to use the o��l syntax in the de�nition of bump�

mycell
def

� letrec mkobj�s��x�Int
� � OE�CellI� �

let self � mkobj s in

pack �OE�CellI��

�self�

fun�self��OE�CellI��

�get � s	x�

set � fun�n�Int� mkobj �x�n
�

bump � self���set �self���get � ��




�

as OE�CellI�

in mkobj �x��


It would be nice if we could use the more uniform encoding of message sending in OR and ORE� We
can do this if we add a recursive de�nition of X while revealing only some of the information about
the actual type of the object� De�ne�

ORBE�I�
def

� Rec�X� Some�Y��X� Y � �Y��I�Y��

In the implementation of mycell� Y will be the actual type ORBE�I� of the entire object� but we do
not reveal this publicly� �I�e�� we leave open the possibility that Y has some extra �elds�� We can
now de�ne an object as follows�

mycell
def

� letrec mkobj�s��x�Int
� � ORBE�CellI� �

let self � mkobj s in

pack �ORBE�CellI��

�self�

fun�self��ORBE�CellI��

�get � s	x�

set � fun�n�Int� mkobj �x�n
�

bump � self���set �self���get � ��




�

as ORBE�CellI�

in

mkobj��x��
�

� ORBE�CellI�

With this more re�ned encoding we can now de�ne message sends uniformly �with the same
de�nition as in the ORE encoding��

o��l
def

� open o as �X��s�m� in �m�s��	l

As in ORE and OR� this external uniformity comes at the price of having to call mkobj at the end of
each method that returns an updated object�
For example�



��

mycell��set

� open mycell as �X��s�m� in �m�s��	set

�� fun�n�Int� mkobj �x�n


Note that the assumption Y��X is critically used in the typing of o��bump� the body �m�s��	bump
has minimal type Y� but in order to satisfy the side condition on the open rule for existential types�
this has to be promoted to a Y�free supertype�i�e� ORBE�CellI�� This subsumption works as long
as Y appears in only positive positions�

� Comparisons

Having presented these four models as encodings in a common notational framework� we are now
in a position to begin comparing them along a number of dimensions�

��� Treatment of the self parameter

The four encodings represent four strategies for encoding objects� In OR� methods do not take an
explicit self argument on invocation� Instead� self is implicitly bound by a recursive declaration
when the object is constructed� In the other three encodings� an argument representing self is
explicitly passed to the methods� In OE and ORE� the argument is just the �internal state� of the
object� while in ORBE the argument is the whole object� In OE� methods that return a modi�ed
version of self �such as bump�� return just the state part� while in ORE and ORBE� such methods
return a whole object� Summarizing� we can say that� viewed from outside� self�returning methods
in OR map unit to whole objects� in OE they map states to states� in ORE they map states to whole
objects� and in ORBE they map whole objects to whole objects�

��� Protection of instance variables

A related point concerns the treatment of instance variables� In mainstream object�oriented lan�
guage designs� there have been two quite distinct points of view about instance variables�

�� Instance variables are hidden internal state of the object� not available to outside meddling
unless the object explicitly provides access�update functions to do so�


� Instance variables are members of an object just like its methods� therefore accessible exter�
nally unless explicitly protected �via subsumption� etc���

The �rst view is exempli�ed by Smalltalk �GR���� by the �objects as closures� line of object�
oriented Scheme extensions �AR��� etc��� and by the �objects as greatest �xed points� school of
speci�cation and veri�cation �Rei	�� Jac	�� etc��� The second is characteristic of Simula �BDMN�	��
Beta �KMMPN���� C  �Str���� and Java �AG	���
This dichotomy in the design space us another dimension for comparison between the four

encodings�
In all four cases� one can choose the convention that the encoding from a high�level language

should generate access�update functions for all the instance variables of an object� and then use
subsumption to hide these as appropriate� In other words� all four representations of objects can
support !
�
As for !�� the OE and ORE encodings include an explicit account of hidden instance variables�

while OR and ORBE do not�OR makes no mention of anything hidden at all� while ORBE makes
explicit the fact that what�s hidden is the whole object� not just instance variables�
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So� even though all the encodings can support !
� only two of them �OR and ORBE� are intended
to support !
� while OE and ORE were designed with !� in mind�

��� Same information� di�erent packaging

The four encodings �represent the same kind of objects�� in the sense that an object in one of
the encodings can be wrapped up into an object in any other encoding that reacts to messages in
exactly the same way as the original� In two cases� the �wrapping procedure� is actually trivial�

ORBE�I� �� OE�I�

ORBE�I� �� ORE�I�

This shows that ORBE is the most revealing of the three encodings involving existential types� in
the sense that OE and ORE can be viewed as variants of ORBE that make fewer public commitments
about their implementation�

��� Full abstraction

A more subtle�and arguably less important�di�erence between the OR encoding and the encodings
based on existentials is that� in the latter three� an �observing context� can perform operations on
an object that do not correspond to sending messages and� in some cases� obtain some information
about the internal implementation of the methods� With the OR encoding� the only test that an
observing context can make of an object is to look at the results that are returned by its methods�
In the existential encodings� the observer can also apply the methods to a divergent argument�
giving it the power to discriminate between objects that cannot be told apart just by sending
messages in the ordinary way� This represents a kind of failure of full abstraction for the existential
encodings�
To see this� consider two very simple OE�objects

a
def

� pack �Int� ��� fl�fun�s�Int��g� as OE�J�

b
def

� pack �Int� ��� fl�fun�s�Int�sg� as OE�J�

where

J�X�
def

� �l�Int
	

The l messages of both objects yield the result �� But internally� the code for l in a is a constant
function� while the code for l in b is an identity function� This fact can be detected by the observer

obs
def

� fun�o�OE�J��

unpack o as �X��s�m� in

m	l�bottom�X��

where bottom�X� is a divergent computation of type X� such as�

bottom�X�
def

� letrec f�n�Int� � X � f�n�

in f���

Then the test obs�a� yields � �assuming a call�by�name reduction strategy�� whereas obs�b� di�
verges� On the other hand� if we construct OR�objects analogous to a and b� this di�erence disap�
pears� since the observer can only see the result of the l method� it cannot test it by applying its
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internal implementation to divergent arguments� Similar examples can be constructed for ORE and
ORBE�
Thus� OR has a claim to being the tightest encoding of the four� in the sense that the type OR�I�

does not allow an observer to test the behavior of an object�s methods directly by applying them
to arguments other than the intended self parameter�
Note that the failure of full abstraction described here applies only in the case of a call�by�name

evaluation strategy� since� with call�by�value� applying the methods to bottom always diverges�
Since all common object�oriented languages use call�by�value� the di�erence is probably not sig�
ni�cant in practice� Indeed� we conjecture that all four encodings would be fully abstract in a
call�by�value setting�

��	 Uniform methods vs� uniform message sending

Another di�erence between the encodings is whether they choose to impose the burden of repack�
aging states into whole objects on the code that sends messages to objects �OE� or on the bodies of
methods inside objects �OR� ORE� and ORBE��
In ORE and ORBE� every message is sent by opening the packed object� applying the second

�method� component to the �rst �state� component� and then extracting the appropriate �eld of
the result� It is even easier in OR� since no existential unpacking is needed�
In OE� the encoding of message sending depends on the type of the method� If there is no

occurrence of the �self type variable� �the bound variable of the type operator representing the
interface signature� in the result type� then message sends are encoded as for ORE and ORBE� However
if the return type is the self type variable� then the result of the method must be repackaged as a
new existential value �of type OE�I���
However� in OR� ORE� and ORBE� methods that yield updated objects must repackage the objects

before returning� while methods returning other values such as numbers do not package their results�
In either case� this repackaging introduces some non�uniformity in the encoding� since methods

that return objects must be treated di�erently from those that do not� For all of the encodings� it
appears that the required packaging code can be generated automatically� based on the type of the
method �HP	�� Bru	��� For the extension of the ORBE encoding discussed in Section ��	� a more
uniform treatment is possible� in which the repackaging code is identical in all methods �ACV	���

��
 Strength of underlying type theory

OE works in the �most elementary� type theory�F��� with the kernel F�� subtyping rule� If classes
and inheritance are omitted� the underlying calculus is even strongly normalizing�
All the other models require recursive types� which entail recursion and loss of strong normaliza�

tion� All the models �including OE� use recursive values when adapted to allow method invocation
through self�or� more generally� when extended with classes� In the presence of recursive values�
the semantics of the type system becomes more challenging� recursive types also complicate the
metatheory�

OR� OE� and ORE work �ne with the kernel F�� subtyping rule for quanti�ers� ORBE requires
the full F�� rule� leading to a substantial increase in the theoretical complexity of the calculus
�Ghe	�� Ghe	�� and the loss of some pragmatically desirable properties such as decidability �Pie	���
See �PS	�� for more discussion of variants of this rule�
The stronger rule is needed in ORBE to validate the usual subtyping rule for object types� Recall

that� in F���� bounded existential are encoded in terms of bounded universals� When comparing
two ORBE object types� the Amber rule must be used �rst on the recursive types� followed by a
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comparison of existential types where the existential bounds are di�erent type variables� Therefore�
a general rule for subtyping existential types with di�erent bounds is needed� This rule is derivable
from the full F��� rule for universals� but not from weaker rules�
Even if existentials are taken as primitive� with a strong subtyping rule� the resulting system has

undecidable typing� Karl Crary has observed �personal communication� that it may be possible to
ameliorate this de�ciency in ORBE by introducing a single type constructor combining the behaviors
of Rec and Some�

��� Binary Methods and Subtyping of Object Types

Another di�erence between the encodings concerns the treatment of binary methods�methods
taking an argument of the same type as the receiver object�and the related issue of subtyping
between non�covariant object types and interfaces� All four encodings have trouble in this area�
which is preferable depends on what shortcomings one prefers to live with�
Consider the following object interfaces�

CellI�X�
def

� fget�Int� set�Int��X� bump�Xg

EqCellI�X�
def

� fget�Int� set�Int��X� bump�X� eq�X��Boolg

EqClrCellI�X�
def

� fget�Int� set�Int��X� bump�X� eq�X��Bool� color�Colorg

CellI is our running example of cells� EqCellI adds a method eq that takes a cell and compares
its contents with the contents of the cell to which the eq message is sent� EqClrCell adds one
more method �whose behavior is unimportant�� The crucial di�erence between CellI and the
other two operators is that CellI is covariant�that is� S��T implies CellI�S���CellI�T��which
is not the case for EqCellI or EqClrCellI� which both contain occurrences of the bound variable
X in contravariant positions� This section and the next explore the consequences of non�covariant
operators as object signatures�
Unfortunately� neither the OE nor the ORBE encoding handles non�covariant interfaces satisfac�

torily� For example� consider the object type OE�EqCellI��simple existential cell objects with
equality methods�

EqCell
def

� OE�EqCellI�

� Some�Y� Y � �Y �� �get�Int� set�Int��Y� bump�Y�

eq�Y��Bool
�

We can create objects with this type exactly as we did in Section ��
�

myeqcell
def

� pack ��x�Int
�

� �x��
�

fun�s��x�Int
�

�get � s	x�

set � fun�n�Int� �x�n
�

bump � �x�s	x��
�

eq � fun�s���x�Int
� s	x � s�	x 
�

as OE�CellI�

� OE�CellI�

However� it is not possible to send eq messages to such objects in a way we would expect� Having
unpacked the existential� applied the methods to the state� and projected out the eq �eld of the
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resulting record� we are left with a function that expects a parameter of the same state type� But
the second cell object that we want to pass as argument has its own�possibly di�erent�internal
state type� so its internal state is not an appropriate argument� The same observation applies to
ORBE�EqCellI� �even though the state type is partially known��
With OR and ORE� on the other hand� we can create objects with interfaces like EqCellI and

EqClrCellI and send them messages exactly as before� support for binary methods is �built in��
We illustrate with the ORE encoding�

myeqcell
def

� letrec methfun�s��x�Int
�� CellI�ORE�EqCellI�� �

�get � s	x�

set � fun�n�Int� close ��x�n
�methfun��

bump � close ��x�s	x��
�methfun��

eq � fun�other�ORE�EqCellI��

s	x � other �� get


in

close ��x��
�methfun�

� ORE�EqCellI�

The type of myeqcell is

EqCell
def

� ORE�EqCellI�

� Rec�X� Some�Y� Y � �Y �� �get�Int� set�Int��X�

bump�X� eq�X��Bool
�

� Some�Y� Y � �Y �� �get�Int� set�Int��EqCell�

bump�EqCell� eq�EqCell��Bool
�

Thus the message send myeqcell �� eq�othereqcell� will be well typed as long as othereqcell
has type EqCell� No changes are required to the de�nition of message sending in either OR or ORE
in order to support these binary methods�
Thus the recursively�bound type variable in ORE �and OR� enables the de�nition and use of

messages whose types involve both covariant and contravariant occurrences of the object type
being de�ned� Because the ORBE encoding does not use the recursively�bound type variable in
method types� it has the same diculties as OE with binary methods�
Furthermore� in OR and ORE� since EqClrCellI is �pointwise� a subtype of EqCellI� we can write

functions that manipulate both cells and colored cells with equality� by abstracting over subtypes
of EqCellI�

test�
def

� fun�I��EqCellI�

fun�o�ORE�I��

if o��eq �o��set���� then �o contains ��

else �doesn�t�

Unfortunately� the previous example would not work if we simply wrote

test��
def

� fun�C��OR�EqCellI��

fun�o�C�

if o��eq �o��set���� then �o contains ��

else �doesn�t�
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using an abstraction over types bounded by the object type OR�EqCellI� instead of the abstraction
over type operators I bounded by EqCellI� While this simpler version is well typed as it stands� it
is not very useful because OR�EqCellI� does not have any nontrivial subtypes�
In general� the pointwise subtyping relation I��J between object interfaces does not imply that

the corresponding object types OR�I� and OR�J� are in the subtype relation� �Nor� similarly� does
it follow that ORE�I���ORE�J��� On the other hand� it does always follow that OE�I���OE�J� and
ORBE�I���ORBE�J�� The built�in support for binary methods in OR and ORE comes at the price of
subtyping between object types in some cases� In particular� it will only be the case that I��J
implies OR�I���OR�J� and ORE�I���ORE�J� when J is covariant�
In particular� if both I and J are variables� then we will never have the inclusions OR�I���OR�J�

or ORE�I���ORE�J�� since there is no way in the ambient type theory we are using to specify that J
should range only over covariant operators� Extensions of F��� that do allow such constraints have
been proposed �Car	�� Ste	�� DC		�� but these systems become quite intricate� �It is not clear
whether the case of variable J is important in practice�it does not come up in any of the examples
we have considered here��
The failure of O�I���O�J� for non�covariant J may or may not be viewed as a serious problem�

since we can always write functions in the form of test� instead of test��� Indeed� variations
on this style of �polymorphic programming by bounded abstraction over interfaces� have been
proposed in several languages under the names matching� F�bounded quanti�cation� and where

clauses �BHJ���� CCH��	a� BSvG	�� AC	�� BFP	�� DGLM	���

��� Splitting Co and Contravariant Occurrences of �SelfType�

The defect in the OE �or ORBE� encoding observed at the beginning of the last section can be
repaired to some extent by manually introducing a recursion in the interface signatures� binding
the contravariant occurrences of the �self variable�� and adding explicit object constructors�

REqCellI
def

� Rec�J� Fun�X� �get�Int� set�Int��X� bump�X�

eq�OE�J���Bool


REqClrCellI
def

� Rec�J� Fun�X� �get�Int� set�Int��X� bump�X�

eq�OE�J���Bool� color�Color


This step allows binary messages to be sent to objects� but involves a nontrivial extension to the
ambient type theory� since it relies on a recursively de�ned type operator� Moreover� it destroys
the important property of pointwise subtyping between interfaces� REqClrCellI is not a subtype
of REqCellI �whereas EqClrCellI is a subtype of EqCellI��
Another partial solution is to change the OE encoding itself� adding a recursion at the front and

changing its argument I to be a two�argument rather than a one�argument type operator M�

OM�M�
def

� Rec�X� Some�Y� Y � �Y��M�X�Y��

The operators representing object interfaces are re�ned accordingly� splitting their argument into
two�one �Y� for covariant and one �X� for contravariant uses�

CellM�X�Y�
def

� fget�Int� set�Int��Y� bump�Yg

EqCellM�X�Y�
def

� fget�Int� set�Int��Y� bump�Y� eq�X��Boolg

EqClrCellM�X�Y�
def

� fget�Int� set�Int��Y� bump�Y� eq�X��Bool� color�Colorg

This approach does allow sending binary messages to objects �e�g�� the eq method of an object
of type OM�EqCellM� takes an argument of type OM�EqCellM��� Unfortunately� it loses a di�erent
important property� OM�EqClrCellM� is not a subtype of OM�EqCellM��
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OR OE ORE ORBE

responsibility for
repackaging results

method message
sender

method method

internal access to
�self methods�

built�in can be added built�in built�in

default protection of
instance variables

public private private public

�fully abstract� yes no no no
ambient type
theory

F�
��

� Rec pure F�
��

F�
��

� Rec F�
��

� Rec

quanti�er subtyping Kernel F�� Kernel F�� Kernel F�� full F��

binary methods lose subtyping can�t call lose subtyping can�t call
I��J �

O�I���O�J��
if J is covariant yes if J is covariant yes

support for non�
covariant interfaces

yes limited� using
extra Rec

yes limited� using
extra Rec

method update no no no in a variant

Table �� Summary of comparisons

��� Method Update

Method update can be added to encodings of the ORBE �avor� by extending the encoding with a
collection of method updaters� These updaters take a suciently polymorphic new method and
return an object with the new method in it �ACV	��� Forms of method update can be added also
to encodings of the OR �avor� See �AC	�� p� 
���� and �San	���
These techniques work for certain presentations of the encodings� but do not adapt trivially to

our presentation� However� there is hope of �nding a systematic treatment of method update for
all of our encodings� We leave this topic for further work�

� Conclusions

Table � summarizes the major points of comparison between the four encodings we have considered�
Interestingly� none of the columns completely dominates all of the others� However� we can make
some broad comparisons�
There are two basic encoding techniques and two hybrids� The principal advantage of the basic

techniques is straightforward intuition� OR represents the most naive view of objects as data values
that can be interrogated by named messages� OE gives a lower�level picture� showing explicitly that
objects consist of state and methods� with the state inaccessible except via the methods� The hybrid
encodings�both of which can be viewed as deriving from OE�are more powerful� each o�ering a
useful re�nement� ORE adds support for binary methods� while a variation of ORBE was the �rst to
support method update�
This paper is the beginning of a uniform treatment of most known encodings� but more work

needs to be done� In particular� we intend to extend this treatment to method update and classes�
It would also be useful to develop a simple object�oriented language supporting the constructs
treated here and present its translation using each of these encodings�
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