
POPL’95 November 14, 1994 10:55 Page 1

A Language with Distributed Scope

Luca Cardelli

Digital Equipment Corporation, Systems Research Center

130 Lytton Ave, Palo Alto, CA 94301, USA

luca@src.dec.com

Abstract

Obliq is a lexically-scoped, untyped, interpreted lan-

guage that supports distributed object-oriented computa-

tion. Obliq objects have state and are local to a site. Obliq

computations can roam over the network, while main-

taining network connections. Distributed lexical scoping

is the key mechanism for managing distributed computa-

tions.

1. Introduction

A simple guiding principle separates Obliq from other

distributed procedural languages: adherence to lexical

scoping in a distributed context. This principle has a

number of interesting consequences: it supports a natural

and consistent semantics of distributed computation, and

enables elegant techniques for distributed programming.

In lexically scoped languages, the binding location of

every identifier is determined by simple analysis of the

program text surrounding the identifier. Therefore, one

can be sure of the meaning of program identifiers, and

can much more easily reason about the behavior of pro-

grams. In a distributed language like Obliq, lexical scop-

ing assumes a further role. It ensures that computations

have a precise meaning even when they migrate over the

network: a meaning that is determined by the binding lo-

cation and network site of identifiers, and not by execu-

tion sites.

Network-wide scoping becomes an issue in the pres-

ence of higher-order distributed computation, for exam-

ple when a site acting as a compute server accepts proce-

dures for execution. The question here is: what happens

to the free identifiers of network-transmitted procedures?

Obliq takes the view that such identifiers are bound to

their original locations, as prescribed by lexical scoping,

even when these locations belong to different network

sites.

In the rest of this introduction we review the main no-

tions. In section 2 we describe Obliq’s object model and

distributed semantics. In section 3 we present a collection

of distributed programming techniques, enabled by

Obliq’s unique features. The most illuminating example is

the compute server, in section 3.1; the most intriguing one

is object migration, in section 3.5. The syntax is summa-

rized in the appendix.

1.1 Language Overview

The principal way of structuring distributed computa-

tions in Obliq is through the notion of objects. Network

services normally accept a variety of messages; it is then

natural to see each service as a network object (or, more

neutrally, as a network interface). Obliq supports objects

in this spirit, relying for its implementation on Modula-

3’s network objects [7].

The Obliq object primitives are designed to be simple

and powerful, with a coherent relationship between their

local and distributed semantics. Obliq objects are collec-

tions of named fields, with four basic operations: selec-

tion/invocation, updating/overriding, cloning, and

aliasing. There are no class hierarchies, nor complex

method-lookup strategies. Every object is potentially and

transparently a network object. An object may become ac-

cessible over the network either by the mediation of a

name server, or simply by being used as the argument or

result of a remote method.

In any framework where objects are distributed across

sites, it is critical to decide what to do about mobility of

state. To avoid problems with state duplication, objects in

Obliq are local to a site and are never automatically

moved over the network. In contrast, network references to

objects can be transmitted from site to site without restric-

tions. Atomic object migration can be coded from our

primitives, specifically from cloning and aliasing.

© 1995 ACM, Proc. POPL’95

Page 2 POPL’95 November 14, 1994 10:55

In addition to the distribution of data, the distribution

of computations must also be designed carefully. It is

clearly desirable to be able to transmit computing agents

for remote execution. However, one should not be satis-

fied with transmitting just the program text of such

agents. Program text cannot carry with it live connections

to its originating site, nor to any data or service at any

other site. Hence the process of transmitting program text

over the network implies a complete network disconnect

from the current distributed computation. In addition,

unpredictable dynamic scoping results from transmitting

and then running program text containing free identifiers.

Obliq computations, in the form of procedures or

methods, can be freely transmitted over the network. Ac-

tual computations (closures, not source text) are transmit-

ted; lexically scoped free identifiers retain their bindings

to the originating sites. Through these free identifiers,

migrating computations can maintain connections to ob-

jects and locations residing at various sites. Disconnected

agents can be represented as procedures with no free

identifiers; they do not rely on prolonged network con-

nectivity.

In order to concentrate on distributed computation is-

sues and to reduce complexity, Obliq is designed as an

untyped language (lacking static typing). This decision

leads to simpler and smaller language processors that can

be easily embedded in applications. Moreover, untyped

programs are somewhat easier to distribute, avoiding

problems of compatibility of types at multiple sites.

The Obliq run-time, however, is strongly typed: erro-

neous computations produce clean errors that are cor-

rectly propagated across sites. The run-time data space is

heterogeneous, meaning that there are different kinds of

run-time values and no provisions to discriminate be-

tween them; heterogeneity discourages writing programs

that would be difficult to typecheck in typed languages.

Because of heterogeneity and lexical scoping, Obliq is

in principle suitable for static typing. More importantly,

Obliq is compatible with the disciplined approach to pro-

gramming that is inspired by statically typed languages.

1.2 Distributed Semantics

The Obliq distributed semantics is based on the no-

tions of sites, locations, values, and threads.

Sites (that is, address spaces) contain locations, and lo-

cations contain values. Each location belongs to a unique

site. Sites are not explicit in the syntax but are implicit in

the creation of locations: when a location is created dur-

ing a computation, it is allocated at the current site.

Threads are virtual sequential instruction processors.

Multiple threads may be executed concurrently, both at

the same site or at different sites. A given thread may

stop executing at a site, and continue executing at another

site. That is, threads may jump from site to site while re-

taining their conceptual identity.

In the Obliq syntax, constant identifiers denote values,

while variable identifiers denote locations. A location con-

taining a value may be updated by assignment to the

variable denoting the location.

Obliq values include basic values (such as strings and

integers), objects, arrays, and closures (the results of evalu-

ating methods and procedures).

A value may contain embedded locations. An array value

has embedded locations for its elements, which can be

updated. An object value has embedded locations for its

fields, which can be updated. A closure value may have

embedded locations because of free variables in its pro-

gram text that refer to locations in the surrounding lexical

scope.

Values may be transmitted over the network. A value

containing no embedded locations is copied on transmis-

sion. A value containing embedded locations is copied up

to the point where those locations appear; local references

to locations are replaced by network references. Because

of transmission, a value may thus contain network refer-

ences to locations at different sites. This semantics of

value transmission has particular implications for closure

values.

In general terms, a closure is a pair consisting of a

piece of source text and a pointer to an evaluation stack.

Transmission of a closure, in this view, implies transmis-

sion of an entire evaluation stack. Obliq, however, im-

plements each closure as a pair of a source text and a

table of values for free identifiers; this technique is well-

known and applicable to lexically-scoped higher-order

languages. In our context, this implementation of closures

has the effect of reducing network traffic by transmitting

only the values from the evaluation stack that are needed

by the closure. A closure that has been transmitted may

thus contain program text that, when executed, accesses

remote locations (via its table of free identifiers) over the

network.

Every Obliq object consists of a collection of locations

spanning a single site; hence the object itself is bound to a

unique site, and does not move1. This immobility of ob-

jects is not a strong limitation, because objects can be

cloned to different sites, and because procedures can be

transmitted that allocate objects at different sites. Hence, a

collection of interacting objects can be dynamically allo-

cated throughout the network. If migration is necessary,

cloning can be used to provide the needed state duplica-

tion, and aliasing can be used to redirect operations to the

clones.

We have stressed so far how Obliq computations can

evolve into webs of network references. However, this is

not necessarily the case. For example, a procedure with

1 In the implementation, network references are generated to ob-
jects and arrays, not to each of their embedded locations. However,
it is consistent and significantly simpler to carry out our discus-
sions in terms of network references to locations.

POPL’95 November 14, 1994 10:55 Page 3

no free identifiers forms a completely self-contained

computing agent. The execution of such an agent may be

carried out autonomously by a remote compute server;

the agent may dynamically reconnect to the originating

site to report results. Intermediate situations are also

possible, as with semi-autonomous agents that maintain

low-traffic tethers to their originating site for status

queries.

1.3 Discussion

The distributed semantics of Obliq is defined so that

data and computations are network-transparent: their

meaning does not depend on allocation sites or execution

sites (of course, computations may receive different ar-

guments at different sites). At the same time, Obliq pro-

grams are network-aware: distribution is achieved by

explicit acts that give full control on communication pat-

terns. Central to network transparency is the notion of

distributed lexical scoping.

The combination of lexical scoping with strong run-

time typing and interpreted execution can provide net-

work security guarantees. Consider the situation of a

server executing incoming foreign agents. Because of lexi-

cal scoping, these agents have access only to the data and

resources that they can reference via free identifiers or

that they explicitly receive in the form of procedure pa-

rameters. Hence, foreign agents cannot access data or re-

sources at the server site that are not explicitly given to

them. As a concrete example, operations on files in Obliq

require file system handles that are provided only as

global lexically-bound identifiers at each site. A foreign

agent can use the file system handle of its originating site,

simply by referring to it as a free identifier. But the file

system handle at the server site is outside its lexical

scope, and hence unobtainable except with the coopera-

tion of the server. Degrees of file protection can be repre-

sented by file system handles with special access rights.

In summary, distributed lexical scoping makes it easy

to spread computations over multiple network sites, since

computations are likely to behave correctly even when

they are carried out at the wrong place (by some mea-

sure). This flexibility in distribution can, however, result

in undesirable network traffic. Obliq relieves some of the

burden of distributing data and computations, but care

and planning are still required to achieve satisfactory dis-

tributed performance.

2. Objects

Obliq is an object-oriented language based on objects,

rather than classes. An object is a self-contained exemplar

of behavior that can be either constructed directly or

cloned from other objects. The Obliq language is therefore

prototype-based [10], but is not delegation-based [22]. Obliq

belongs to a category of prototype-based languages that

we may call embedding-based. This name indicates that all

the methods of an object, as well as its value fields, are

embedded in the object itself (at least in principle) rather

than being located in other objects or classes2 [31]. In

spirit, this model is close to Borning’s original prototype-

based proposal [10], and to recent languages that are not

delegation-based [9, 30].

The embedding-based model is straightforward, and is

well suited to network applications because of the self-

contained nature of the objects. The delegation-based

model, in contrast, maximizes sharing across objects; this

is not always desirable in a distributed context. For ex-

ample, when an Obliq object is cloned over the network it

carries with it its embedded methods, thus it can work lo-

cally and autonomously when it reaches its destination.

In a delegation-based model it would be more difficult to

obtain the complete relocation of an object and its meth-

ods. Typically, this would require the coordinated migra-

tion of the object’s parents [33], and would affect other ob-

jects that share the same parents.

2.1 Fields

An Obliq object is a collection of fields containing

methods, aliases, or other values. A field containing a

method is called a method field. A field containing an alias

is called an alias field. A field containing any other value,

including a procedure value, is called a (proper) value field.

Each field is identified by a field name. Syntactically, an

object with n fields has the form:

{ x1 => a1, ... ,xn => an }

where n≥0, and xi are distinct field names. The terms ai

are siblings of each other, and the object is their host object.

A value field is, for example:

x => 3

A method field has the form:

x => meth(y,y1, ... ,ym) b end

The first parameter, y, denotes self: the method’s host ob-

ject. The other parameters, for m≥0, are supplied during

method invocation. The body of the method is b, which

computes the result of an invocation of x.

Methods and procedures are supported as distinct

concepts. Procedures start with the keyword proc in-

stead of meth and have otherwise the same syntax. The

main differences between the two are as follows. Methods

can be manipulated as values but can be activated only

when contained in objects, since self needs to be bound to

the host object. In contrast, procedures can be activated

by normal procedure call. Further, a procedure can be in-

2 The terms concatenation-based and copy-based have also been
used.

Page 4 POPL’95 November 14, 1994 10:55

serted in a value field and later recovered, while any at-

tempt to extract a method results in its activation.

An alias field has the form:

x => alias y of b end

Operations on the x field of this object are redirected to

the y field of the object b. If that field is another alias, the

redirection continues recursively. (However, aliasing op-

erations are not themselves redirected; see section 2.3.)

As we said, Obliq fields (including methods) are

stored directly in objects, not indirectly in classes or

shared prototypes. Therefore, field lookup is a one-step

process that searches a field by name within a single ob-

ject: there is no class or delegation hierarchy to be

searched iteratively. Field lookup is based on a nearly

constant-time caching technique that does not penalize

large objects. A separate cache is used for each operation

instance; the cache records the position where a field was

last found in an object [15].

2.2 Simple Examples

Let us examine some simple examples, just to became

familiar with the Obliq syntax and semantics. A full ex-

planation of object operations is given in the next section.

The following object has a single method that invokes

itself through self (the s parameter). A let definition

binds the object to the identifier o:

let o = { x => meth(s) s.x() end };

An invocation of o.x() results in a divergent computa-

tion. Divergence is obtained here without any explicit use

of recursion: the self-application implicit in method invo-

cation is sufficient.

The object below has three components: a value field

x, a method inc that increments x through self and re-

turns self, and a method next that invokes inc through

self and returns the x component of the result.

let o =

 { x => 3,

 inc => meth(s,y) s.x := s.x+y; s end,

 next => meth(s) s.inc(1).x end };

Here are some operations that can be performed on o:

o.x Selecting the x component.

o.x := 0 Setting the x component to zero.

o.inc(1) Invoking a method, with parameters.

o.next() Invoking a method with no parameters.

o.next := meth(s) clone(s).inc(1).x end

 Overriding the next method so that it

 no longer modifies its host object.

2.3 Operations

We now examine the object operations in some detail.

Apart from object creation, there are four basic operations

on objects.

Selection (and Invocation)

This operation has two variants for value selection and

method invocation:

a.x

a.x(b1, ... ,bn)

The first form selects a value from a value field x of a and

returns it. The second form invokes a method from a

method field x of a, supplies n≥0 parameters, and returns

the result produced by the method; the object a is bound

to the self parameter of the method. For convenience, the

first form can be used for invocation of methods with

zero parameters.

When a value field of a remote object is selected, its

value is transmitted over the network to the site of the

selection (see the transmission semantics in section 1.2).

When a method of a remote object is invoked, the argu-

ments are transmitted over the network to the remote

site, the result is computed remotely, and the final value

(or error, or exception) is returned to the site of the invo-

cation.

Updating (and Overriding)

This operation deals with both value field update and

method field override:

a.x := b

Here the field x of a is updated with a new value b. If x

contains a method and b is a method, we have method

override. If x and b denote ordinary values, we have

value update. The other two possibilities are also al-

lowed: a value field can be turned into a method field,

and vice versa.

When a field of a remote object is updated, a value is

transmitted over the network and installed into the re-

mote object. Remote method override involves the trans-

mission of a method closure.

Cloning

Our third operation is object cloning, generalized to

multiple objects:

clone(a1, ... ,an)

In the case of a single argument, a new object is cre-

ated with the same field names as the argument object; its

fields are initialized to the similarly named values, meth-

ods, and aliases of the argument object.

In the case of n≥2 arguments, a single object is pro-

duced that contains the values, methods, and aliases of all

the argument objects (an error is given in case of field

POPL’95 November 14, 1994 10:55 Page 5

name conflicts). Useful idioms are clone(a, {...}), to

inherit the fields of a and add new fields, and clone(a1,

a2), to multiply inherit from a1 and a2.

When a collection of remote or local objects is cloned,

the clone is created at the local site. Its contents (including

method closures) may have to be fetched over the net-

work.

Aliasing

Our final operation is aliasing, which is the replace-

ment of field contents with aliases (section 2.1). The syn-

tax is similar to updating, but this is really a separate op-

eration:

a.x := alias y of b end

Further operations on x of a are redirected to y of b; ei-

ther object may be local or remote. An aliasing operation

replaces field contents with aliases regardless of whether

those fields are already aliased.

For a method invocation a.x(c), the field x => alias

y of b end behaves just like the field x => meth(s,z)

b.y(z) end; that is, an aliased invocation behaves like

an indirect method invocation. However, aliasing redi-

rects also method override, as well as value selection and

value update.3

A special construct can be used to alias all the compo-

nents of an object at once:

redirect a1 to a2 end

The effect is to replace every field xi of a1 (including alias

fields) with alias xi of a2 end; this is particularly use-

ful for network redirection.

Aliasing is implicit in the distributed-systems notion of

local surrogate of a remote object: we have simply lifted

this mechanism to the language level. By doing this, we

are able to put network redirection under flexible pro-

gram control, as shown later in the case of object migra-

tion.

For method invocation, aliasing redirections behave

differently from the redirections typical of delegation-

based languages [22]: in aliasing, self is bound to the redi-

rection target; in delegation, self is bound to the redirec-

tion source. Aliasing is more satisfactory than delegation

when the redirection target is a remote object: after an

initial aliasing redirection over the network, further ac-

cesses to self are local.

2.4 Self-inflicted Operations

Our four basic object operations can be performed ei-

ther as external operations on an object, or as internal op-

erations through self. This distinction is useful in the

contexts of object protection and serialization, discussed

in the next two sections, which are essential features of

3 Note that, for simplicity, we delayed the discussion of redirection
in our previous explanation of selection and update.

distributed objects. In preparation, we discuss the general

notion of self-inflicted operations.

When a method operates on an object other than the

method’s host object, we say that the operation is external

to the object. By contrast, when a method operates di-

rectly on its own self, we say that the operation is self-in-

flicted:

¢ If op(o) has the form o.x, o.x:=b, clone(...,o,...),

or o.x:=alias...end, then op(o) is self-inflicted (on o)

iff o is the same object as the self of the current method.

¢ op(o) is external (on o) iff it is not self-inflicted.

Here, by the current method (if it exists) we mean the last

method that was invoked in the current thread of control

and that has not yet returned. Therefore, the notion of self

for self-inflicted operations is preserved through proce-

dure calls, but not through external method invocations

or thread creation.

Whether an operation is self-inflicted can be deter-

mined by a simple run-time test. Consider, for example

the object:

{ p => meth(s) s.q.x end, q => ... }

Here the operation s.q is self-inflicted, since s is self. But

the .x operation in s.q.x is self-inflicted depending on

whether s.q returns self; in general this can be deter-

mined only at run-time.

2.5 Protected Objects

It is useful to protect objects against certain external

operations, to safeguard their internal invariants. Protec-

tion is particularly important, for example, to prevent

clients from overriding methods of network services, or

from cloning servers. Even protected objects, though,

should be allowed to modify their own state and to clone

themselves.

A protected object is an object that rejects external up-

date, cloning, and aliasing operations, but that admits

such operations when they are self-inflicted. The syntax

is:

{ protected, x1 => a1, ... , xn => an }

Therefore, for example, methods of a protected object can

update sibling fields through self, but external operations

cannot modify such fields.

Note that a protection mechanism based on individual

fields would not address protection against cloning.

2.6 Serialized Objects

An Obliq server object can be accessed concurrently by

multiple remote client threads. Moreover, local concur-

rent threads may be created explicitly. To prevent race

conditions, it must be possible to serialize access to ob-

jects and their state.

Page 6 POPL’95 November 14, 1994 10:55

We say that an object is serialized when (1) at most one

thread at a time can operate on the object or run one of its

methods. Moreover, we want to ensure that (2) a method

can call a sibling through self without deadlock. Note that

requirement (2) does not contradict invariant (1).

The obvious approach to implementing serialized ob-

jects, adopted by many concurrent languages, is to asso-

ciate a mutex with each object (for example, see [3]). Such

mutexes are acquired when a method of an object is in-

voked, and released when the method returns, guarantee-

ing condition (1). This way, however, we have a deadlock

whenever a method calls a sibling, violating condition (2).

We find this behavior unacceptable because it causes in-

nocent programs to deadlock without good reason. In

particular, an object that works well sequentially may

suddenly deadlock when a mutex is added. Brewer and

Waldspurger [11] give an overview of previous solutions

to this serialization problem.

A way to satisfy conditions (1) and (2) together is to

use reentrant mutexes, that is, mutexes that do not dead-

lock when re-locked by the “same” thread (for example,

see [17]).

On the one hand, reentrant mutexes may be too liberal,

because they allow a method to call a method of a differ-

ent object, which then can call back a method of the pre-

sent object without deadlocking. This goes well beyond

our simple desire that a method should be able to call its

siblings; object invariants may be compromised, since

objects become vulnerable to unexpected activations of

their methods.

On the other hand, reentrant mutexes may be too re-

strictive, because the notion of “same” thread is normally

restricted to an address space. If we want to consider

control threads as extending across sites, then an imple-

mentation of reentrant mutexes might not behave appro-

priately.

We solve the serialization problem by adopting an in-

termediate locking strategy, which we call self serializa-

tion, based on the notion of self-inflicted operations de-

scribed in section 2.4.

Serialized objects have an implicit associated mutex,

called the object mutex. An object mutex serializes the ex-

ecution of selection, update, cloning, and aliasing opera-

tions on its host object, according to the following rules of

acquisition:

¢ External operations always acquire the mutex of an

object, and release it on completion.

¢ Self-inflicted operations never acquire the mutex of

their object.

Note that a self-inflicted operation can happen only after

the activation of an external operation on the object that is

executed by the same thread. The external operation has

therefore already acquired the mutex.

The serialization attribute of an object is specified as

follows:

{ serialized, x1 => a1, ... ,xn => an }

With self-serialization, a method can modify the state of

its host object and can invoke siblings without deadlock-

ing. A deadlock still occurs if, for example, a method in-

vokes a method of a different object that then attempts an

operation on the original serialized object. A deadlock oc-

curs also if a method forks an invocation of a sibling and

waits on the result.

In addition to mutual exclusion, Obliq provides condi-

tional synchronization over implicit object mutexes. Condi-

tional synchronization (where threads wait on a mutex

and a condition) allows multiple threads to be simultane-

ously present “inside” an object, although at most one

thread is active at any time. Producer-consumer behavior

can be handled this way [5].

A watch statement is provided to wait on a condition

in conjunction with the implicit mutex of an object. This

statement must be used inside a method of a serialized

object; hence, it is always evaluated with the object mutex

locked:

watch c until guard end

The watch statement evaluates c to a condition and, if

guard evaluates to true, terminates leaving the mutex

locked. If the guard is false, the object mutex is un-

locked (so that other methods of the object can execute)

and the thread waits for the condition to be signaled.

When the condition is signaled, the object mutex is locked

and the boolean guard is evaluated again, repeating the

process.

The interaction of conditional synchronization with

certain object operations requires some attention. Objects

with implicit mutexes can be cloned: a fresh implicit mu-

tex is created for the clone. Consider then the case of a

thread blocked on a condition within an object that is be-

ing cloned: the thread remains blocked within the origi-

nal object, not the clone. Consider now the case of a

thread blocked on a condition within a method that is

being overridden or aliased. When the thread resumes,

the blocked method runs to completion with a non-

trivially modified self. Object protection, when used in

conjunction with serialization, alleviates these worries

since it prevents external cloning and updates.

In summary, mutual exclusion, amended for self-in-

flicted operations, handles common situations conve-

niently, for example for network servers maintaining

some internal state. In addition, conditional synchroniza-

tion can be used for standard concurrency-control prob-

lems. More complex situations may require sophisticated

uses of explicit mutexes; for this, Obliq supports the full

spectrum of Modula-3 thread primitives [5, 20]. Explicit

POPL’95 November 14, 1994 10:55 Page 7

mutexes, conditions, and threads cannot be transmitted,

since these values are strongly site-dependent.

There is no automatic serialization for variables or ar-

rays. If necessary, their access can be controlled through

serialized objects or explicit mutexes. Even for objects,

serialization is neither compulsory nor a default, since its

use is not always desirable. In some cases it may be suffi-

cient to serialize server objects (the concurrent entry

points to a site) and leave all other objects unserialized.

2.7 Name Servers and Execution Engines

Obliq values can flow freely from site to site along

communication channels. Such channels are initially es-

tablished by interaction with a name server. A name

server for Obliq programs is an external process uniquely

identified by an IP address; it simply maintains a table as-

sociating text strings with network references [8].

The connection protocol between two Obliq sites is as

follows. The first site registers a local, or remote, object

under a certain name with a known name server. The

second site asks the name server for (the network refer-

ence to) the object registered under that name. At this

point the second site acquires a direct network reference

to the object living in the first site. The name server is no

longer involved in any way, except that it still holds the

network reference. Obliq values and network references

can now flow along the direct connection between the

two sites, without having to be registered with a name

server. This protocol is coded as follows, using a built-in

net module:

Server Site:

net_export("obj", Namer, site1Obj);

Client Site:

let site1Obj =

 net_import("obj", Namer);

site1Obj.opA(args); (remote invocation)

site3Obj.opB(site1Obj); (re-export to a third site)

where "obj" is the registration name for the object,

site1Obj is the object, and Namer is a string containing

the IP address or name of the machine running the de-

sired name server. The object is now available through

the name server, as long as the site that exports it is alive.

Objects are garbage collected at a site when they are no

longer referenced, either locally or via the network [6].

We shall see soon that compute servers are definable

via simple network objects. However, compute servers

are so common and useful that we provide them as primi-

tives, calling them execution engines. An execution engine

accepts Obliq procedures (that is, procedure closures)

from the network and executes them at the engine site.

An engine can be exported from a site via the primitive:

Server Site:

net_exportEngine("Engine1@Site1", Namer,

 arg);

The arg parameter is supplied to all the client procedures

received by the engine. It may contain local data as well

as site-specific procedures (services [29]). Multiple engines

can be exported from the same site under different

names.

An engine, once imported, behaves like a procedure of

one argument. Implementing engines as remote proce-

dures, instead of as remote objects, allows self-inflicted

operations to extend across sites; this turns out to be im-

portant for object migration, as discussed in section 3.5.

A client may import an engine and then provide a pro-

cedure to be executed remotely.

Client Site:

let atSite1 =

 net_importEngine("Engine1@Site1", Namer);

atSite1(proc(arg) 3+2 end);

Communication failures produce exceptions that can

be trapped. These failures may mean that one of the ma-

chines involved has crashed, or that an Obliq address

space was terminated. There is no automatic recovery

from network failures.

3. Distributed Techniques

In this section we code some distributed programming

techniques in Obliq. Each example is typical of a separate

class of distributed programs, and illustrates the unique

features of Obliq. We omit standard examples dealing

with threads and mutexes, which are directly expressible.

3.1 Compute Servers

The compute server defined below receives a client

procedure p with zero arguments via the rexec method,

and executes the procedure at the server site. This partic-

ular server cheats on clients by storing the latest client

procedure into a global variable replay. Another field,

lexec, is defined similarly to rexec, but rexec is a

method field, while lexec is a value field containing a

procedure: the operational difference is discussed below.

Updatable variables are declared by var.

Server Site:

var replay = proc() end;

net_export("ComputeServer", Namer,

 { rexec => meth(s, p) replay:=p; p() end,

 lexec => proc(p) replay:=p; p() end });

A client may import the compute server and send it a

procedure to execute. The procedure may have free vari-

ables at the client site; in this example it increments a

global variable x:

Page 8 POPL’95 November 14, 1994 10:55

Client Site:

let computeServer =

 net_import("ComputeServer", Namer);

var x = 0;

computeServer.rexec(proc() x:=x+1 end);

(now x = 1)

When the server executes its rexec method, replay

is set to (a closure for) proc() x:=x+1 end at the server

site, and then x is set to 1 at the client site, since the free x

is lexically bound to the client site. Any variable called x

at the server site, if it exists, is a different variable and is

not affected. At the server site we may now invoke

replay(), setting x to 2 at the client site.

For contrast, consider the execution of the following

line at the client site:

Client Site:

(computeServer.lexec)(proc() x:=x+1 end);

This results in the server returning the procedure

proc(p) replay:=p; p() end to the client, by the se-

mantics of remote field selection, with replay bound at

the server site. Then the client procedure proc()

x:=x+1 end is given as an argument. Hence, this time,

the client procedure is executed at the client site. Still, the

execution at the client site causes the client procedure to

be transmitted to the server and bound to the replay

variable there. The final effect is the same.

3.2 Remote Agents

Execution engines (section 2.7) can be used as general

object servers; that is, as ways of allocating objects at re-

mote sites. These objects can then act as agents of the initi-

ating site, supporting multiple requests.

Suppose, for example, that we have an engine ex-

ported by a database server site. The engine provides the

database as an argument to client procedures:

DataBase Server Site:

net_exportEngine("DBServer", Namer,

 dataBase);

A database client could simply send over procedures per-

forming queries on the database (which, for complex

queries, would be more efficient than repeatedly query-

ing the server remotely [19, 29]). However, for added

flexibility, the client can instead create an object at the

server site that acts as its remote agent:

DataBase Client Site:

let atDBServer =

 net_importEngine("DBServer", Namer);

let searchAgent =

 atDBServer(

 proc(dataBase)

 { state => ...,

 start => meth ... end,

 report => meth ... end,

 stop => meth ... end }

 end);

The execution of the client procedure causes the alloca-

tion of an object at the server site with methods start,

report, and stop, and with a state field. The server

simply returns a network reference to this object, and is

no longer engaged. (Client resources at the server site are

released when the client garbage collects the search agent,

or when the client site dies [6].)

Here is a brief discussion of what the client can now

do. The client can start a remote search via start from a

background thread, and periodically request a progress

report via report. If the search is successful within a

given time period, everything is fine. If the search takes

too long, the remote agent can be aborted via stop. If an

intermediate report proves promising, the client may de-

cide to wait for however long it takes for the agent to

complete, by joining the background thread.

This technique for remotely allocating objects can be

extended to multiple agents searching multiple databases

simultaneously, and to agents initiating their own sub-

agents.

3.3 Application Partitioning

The technique for remotely allocating objects described

in section 3.2 can be used for application partitioning. An

application can be organized as a collection of procedures

that return objects. When the application starts, it can

pick a site for each object and send the respective proce-

dure to a remote engine for that site. This way, the appli-

cation components can be (initially) distributed according

to dynamic criteria.

3.4 Agent Migration

In this example we consider the case of an untethered

agent that moves from site to site carrying along some

state [34]. We write the state as an object, and the agent as

a procedure parameterized on the state and on a site-

specific argument:

let state = { ... };

let agent = proc(state, arg) ... end;

To be completely self-contained, this agent should have

no free identifiers, and should use the state parameter for

all its long-term memory needs.

The agent can be sent to a new site as follows, assum-

ing atSite1 is an available remote engine:

atSite1(

 proc(arg) agent(copy(state),arg) end)

POPL’95 November 14, 1994 10:55 Page 9

The copy operation is explained below, but the intent

should be clear: the agent is executed at the new site, with

a local copy of the state it had at the previous site. The

agent’s state is then accessed locally at the new site. Im-

plicitly, we assume that the agent ceases any activity at

the old site. The agent can repeat this procedure to move

to yet another site.

The copy operation is a primitive that produces local

copies of (almost) arbitrary Obliq values, including values

that span several sites. Sharing and circularities are pre-

served, even those that span the network. Not all values

can be copied, however, because not all values can be

transmitted. Protected objects cause exceptions on copy-

ing, as do site-specific values such as threads.

This techniques allows autonomous agents to travel

between sites, perhaps eventually returning to their

original site with results. The original site may go off-line

without directly affecting the agent.

The main unpleasantness is that, because of copying,

the state consistency between the old site and the new site

must be preserved by programming convention (by not

using the old state). In the next section we see how to mi-

grate state consistently, for individual objects.

3.5 Object Migration

In this example we use a remote execution engine to

migrate an object between two sites. First we define a

procedure that, given an object, the name of an engine,

and a name server, migrates the object to the engine’s site.

Migration is achieved in two phases: (1) by causing the

engine to remotely clone the object, and (2) by aliasing the

original object to its remote clone (section 2.3).

let migrateProc =

 proc(obj, engineName)

 let engine =

 net_importEngine(engineName, Namer);

 let remoteObj =

 engine(proc(arg) clone(obj) end); (1)

 redirect obj to remoteObj end; (2)

 remoteObj;

 end;

After migration, operations on the original object are

redirected to the remote site, and executed there.

It is critical that the two phases of migration be exe-

cuted atomically, to preserve the integrity of the object

state. This can be achieved by serializing the migrating

object, and by invoking the migrateProc procedure

from a method of that object, where it is applied to self:

let obj1 =

 { serialized, protected,

 ... (other fields)

 migrate =>

 meth(self, engineName)

 migrateProc(self, engineName);

 end };

let remoteObj1 =

 obj1.migrate("Engine1@Site1")

Because of serialization, the object state cannot change

during a call to migrate. The call returns a network ref-

erence to the remote clone, which can be used in place of

obj1 (which, anyway, has been aliased to the clone).

We still need to explain how migration can work for

protected objects, since such objects are protected against

external cloning and aliasing. Note the migrateProc

(self, ...) call above, where self is bound to obj1.

It causes the execution of engine(proc(arg)

clone(obj1) end). Rather subtly, the cloning of obj1

here is self-inflicted (section 2.4), even though it happens

at a site different from the site of the object. According to

the general definition, clone(obj1) is self-inflicted be-

cause obj1 is the same as the self of the last active

method of the current thread, which is migrate (an en-

gine call behaves like a procedure call). The redirection

operation is similarly self-inflicted. Therefore, the pro-

tected status of obj1 does not inhibit self-initiated migra-

tion.

Migration permanently modifies the original object,

redirecting operations to the remote clone. In particular, if

obj1 is asked to migrate again, the remote clone will

properly migrate.

We can avoid chains of indirections if the migrating

object obj1 is publicly available through a name server.

The migrate method can then register the migrated ob-

ject with the name server under the old name:

let obj1 =

 net_export("obj1", Namer,

 { serialized, protected,

 ...

 migrate =>

 meth(self, engineName)

 net_export("obj1", Namer,

 migrateProc(self, engineName));

 end };

This way, old clients of obj1 go through aliasing indirec-

tions, but new clients acquiring obj1 from the name

server operate directly on the migrated object.

3.6 Application Servers

Visual Obliq [4] is an interactive distributed-applica-

tion and user-interface generator, based on Obliq. All dis-

tributed applications built in Visual Obliq follow the

same model, which we may call the application server

model. In this model, a centralized server supplies inter-

ested clients, dynamically, with both the client code (as a

Page 10 POPL’95 November 14, 1994 10:55

closure) and the client user interface of a distributed ap-

plication. The closure transmitted to each client retains

lexical bindings to the server site, allowing it to commu-

nicate with the server and with other clients. Each client

may have independent local state, and may present an

independent view of the application to the user. A typical

example is a distributed tic-tac-toe game.

4. Conclusions

Obliq addresses a very dynamic form of distributed

programming, where objects can redirect their behavior

over the network, and where computations can roam be-

tween network sites. We feel that this kind of program-

ming is still in its infancy, and that not all the fundamen-

tal issues can yet be addressed at once. Where in doubt,

we have given precedence to flexible mechanism over ro-

bust methodology, hoping that methodology will develop

with experience. In this spirit, for example, Obliq could be

used to experiment in the design and implementation of

agent/place paradigms [34], using the basic techniques of

section 3.

Related Work

Obliq’s features and application domains overlap with

programming languages such as ML [24, 28], Modula-3

[26], and Self [33]; with scripting languages such as Sun-

dew [19], Tcl [27], AppleScript [2], VBA [12, 23], and Tele-

script [34]; and with distributed languages such as Emer-

ald [21], Orca [3], Forté [17], and Facile [32]. None of these

languages, however, has the same mix of features as

Obliq, particularly concerning the distribution aspects.

Stamos and Gifford [29] eloquently describe remote

execution as a generalization of remote procedure call,

and survey previous work on remote execution mecha-

nisms. Their proposal, though, restricts the transmission

of higher-order procedures and procedures with free

identifiers, inhibiting the techniques of section 3.

Our choice of features was largely determined by the

idea of a distributed lexically scoped language, by the de-

sire for a simple object model that would scale up to dis-

tributed computation, and by the availability of a sophis-

ticated network-objects implementation technology. The

Obliq object primitives were designed in parallel with

work on the semantics and type theory of objects [1]; dis-

tributed scoping and distributed semantics, however, are

not treated there.

Influence of Modula-3 Network Objects

The characteristics of Modula-3 Network Objects

(M3NOs) had a major influence on the Obliq language

design and implementation. Thanks to the low overhead

involved, all Obliq objects are M3NOs, so there is no arti-

ficial separation between local objects, and objects that

may be remotely accessed. Similarly, all Obliq program

variables (declared by var) are M3NOs: this is the basis

for distributed lexical scoping. Concerns about space

reclamation, especially for resources used by remote

agents, are relieved by distributed garbage collection of

M3NOs. Finally, the M3NOs stub generator handles au-

tomatically the transmission of all of Obliq’s run-time

structures.

Moral: a distributed language like Obliq is easy to im-

plement on top of a library like Modula-3 Network Ob-

jects. Conversely, a network object library should make it

easy to implement a language like Obliq, or is falling

short of some important goals.

Status

Obliq has been available at Digital SRC for about a

year and a half. In addition to incidental programming, it

has been used extensively as a scripting language for al-

gorithm animation [13] and 3D graphics [25], and as the

basis of the Visual Obliq distributed-application builder

[4]. The Obliq implementation provides access to many

popular Modula-3 libraries [20], and to an extensive user

interface toolkit [14] including digital video [18]. Obliq

can be used as a stand-alone interactive interpeter. It can

also be embedded as a library in Modula-3 applications,

allowing them to interact remotely through Obliq scripts

[16]. The implementation and documentation are avail-

able on the World Wide Web at

http: -//www.-research.-digital.-com/ -SRC/ -home.-html.

Future Work

Issues of authentication, security, authority delegation,

and accounting are being explored.

Acknowledgments

The Network Objects project at Digital SRC provided

the infrastructure without which Obliq would not have

been conceived. Alan Knaff implemented the metaparser

layer of the Obliq parser.

Appendix: Syntax Overview (See reference [16] for details.)

TOP-LEVEL PHRASES

 a; any term or definition ended by ;

DEFINITIONS (denoted by d; identifiers are denoted by x, terms are denoted by a)

 let x1=a1,...,xn=an definition of constant identifiers

POPL’95 November 14, 1994 10:55 Page 11

 let rec x1=a1,...,xn=an definition of recursive procedures

 var x1=a1,...,xn=an definition of updatable identifiers

SEQUENCES (denoted by s)

 a1;...;an executes each ai (term or defin.); yields an (or ok if n=0)

TERMS (denoted by a, b, c; identifiers are denoted by x, l; libraries are denoted by m)

 x | m_x identifiers

 x:=a assignment

 ok | true | false | 'a' | "abc" | 3 | 1.5 constants

 [a1,...,an] arrays

 a[b] | a[b]:=c array selection, array update

 a[b1 for b2] | a[b1 for b2]:=c subarray selection, subarray update

 option l => s end term s tagged by l

 proc(x1,...,xn) s end procedures

 a(b1,...,bn) procedure invocation

 m_x(a1,...,an) invocation of x from library m

 a b c infix (right-associative) version of b(a,c)

 meth(x,x1,...,xn) s end method with self x

 {l1=>a1,...,ln=>an} object with fields named l1...ln

 {protected, serialized, ...} protected and serialized object

 {l1=>alias l2 of a2 end,...} object with aliased fields

 a.l | a.l(a1, ..., an) field selection / method invocation

 a.l:=b field update / method override

 clone(a1,...,an) object cloning

 a1.l1:=alias l2 of a2 end field aliasing

 redirect a1 to a2 end object aliasing

 d definition

 if s1 then s2 elsif s3 then s4... else sn end conditional (elsif, else optional)

 a andif b | a orif b conditional conjunction/disjunction

 a is b | a isnot b identical/not identical predicates

 case s of case over the tag li of an option value

 l1(x1)=>s1,...,ln(xn)=>sn else s0 end binding xi in si (else optional)

 loop s end loop

 for i=a to b do s end iteration through successive integers

 foreach i in a do s end iteration through an array

 foreach i in a map s end yielding an array of the results

 exit exit the innermost loop, for, foreach

 exception("exc") new exception value named exc

 raise(a) raise an exception

 try s except a1=>s1,...,an=>sn else s0 end exception capture (else optional)

 try s1 finally s2 end finalization

 condition() | signal(a) | broadcast(a) creating and signaling a condition

 watch s1 until s2 end waiting for a signal and a boolean guard

 fork(a1,a2) | join(a) forking and joining a thread

 pause(a) pausing the current thread

 mutex() creating a mutex

 lock s1 do s2 end locking a mutex in a scope

 wait(a1,a2) waiting on a mutex for a condition

 (s) block structure / precedence group

Page 12 POPL’95 November 14, 1994 10:55

References

[1] Abadi, M. and L. Cardelli, A theory of primitive ob-
jects: untyped and first-order systems. Proc. Theoret-
ical Aspects of Computer Software. Springer-Verlag.
1994.

[2] Apple, AppleScript Language Guide. Addison Wes-
ley. 1993.

[3] Bal, H.E., M.F. Kaashoek, and A.S. Tanenbaum,
Orca: a language for parallel programming of dis-
tributed systems. IEEE Transactions on Software En-
gineering 18(3), 190-205. 1992.

[4] Bharat, K. and M.H. Brown, Building distributed
applications by direct manipulation. Proc. UIST’94.
1994.

[5] Birrell, A.D., An introduction to programming with
threads. In Systems Programming with Modula-3,
Chapter 4, G. Nelson, ed. Prentice Hall. 1991.

[6] Birrell, A.D., D. Evers, G. Nelson, S. Owicki, and E.
Wobber, Distributed garbage collection for net-
work objects. Report 116. Digital Equipment Corpo-
ration, Systems Research Center. 1993.

[7] Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber,
Network objects. Proc. 14th Symposium on Operating
Systems Principles. 1993.

[8] Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber,
Network objects. Report 115. Digital Equipment
Corporation, Systems Research Center. 1994.

[9] Blaschek, G., Type-safe OOP with prototypes: the
concepts of Omega. Structured Programming 12(12),
1-9. 1991.

[10] Borning, A.H., Classes versus prototypes in object-
oriented languages. Proc. ACM/IEEE Fall Joint Com-
puter Conference. 1986.

[11] Brewer, E.A. and C.A. Waldspurger, Preventing re-
cursion deadlock in concurrent object-oriented
systems. Proc. 1992 International Parallel Processing
Symposium, Beverly Hills, California. (Also, Report
MIT/LCS/TR-526.). 1992.

[12] Brockschmidt, K., Inside OLE2. Microsoft Press.
1994.

[13] Brown, M.H., Report on the 1993 SRC algorithm
animation festival. Report n.126. Digital Equipment
Corporation, Systems Research Center. To appear.
1994.

[14] Brown, M.H. and J.R. Meehan, The FormsVBT Ref-
erence Manual. Unpublished. Digital Equipment
Corporation, Systems Research Center. 1994.

[15] Cardelli, L., The Amber machine. Proc. Combinators
and Functional Programming Languages. Lecture Notes
in Computer Science 242. Springer-Verlag. 1986.

[16] Cardelli, L., Obliq: A language with distributed
scope. Report n.122. Digital Equipment Corporation,
Systems Research Center. 1994.

[17] Forté, TOOL reference manual. Forté, Inc. 1994.

[18] Freeman, S.M.G. and M.S. Manasse, Adding digital
video to an object-oriented user interface toolkit.
Proc. ECOOP’94. Springer-Verlag. 1994.

[19] Gosling, J., Sundew: a distributed and extensible
window system. Proc. Winter Usenix Technical Con-
ference. Usenix Association. 1986.

[20] Horning, J., B. Kalsow, P. McJones, and G. Nelson,
Some useful Modula-3 interfaces. Report 113. Digi-
tal Equipment Corporation, Systems Research Cen-
ter. 1993.

[21] Jul, E., H. Levy, N. Hutchinson, and A. Black, Fine-
grained mobility in the Emerald system. ACM
Transactions on Computer Systems 6(1), 109-133. 1988.

[22] Lieberman, H., Using prototypical objects to im-
plement shared behavior in object oriented sys-
tems. Proc. OOPSLA’86. ACM Press. 1986.

[23] Mansfield, R., Visual Basic for Applications. Ven-
tana Press. 1994.

[24] Milner, R., M. Tofte, and R. Harper, The definition
of Standard ML. MIT Press. 1989.

[25] Najork, M. and M.H. Brown, A library for visualiz-
ing combinatorial structures. Proc. IEEE Visualiza-
tion’94. 1994.

[26] Nelson, G., ed. Systems programming with Mod-
ula-3. Prentice Hall. 1991.

[27] Ousterhout, J.K., Tcl and the Tk toolkit. Addison-
Wesley. 1994.

[28] Reppy, A higher-order concurrent language. Proc.
SIGPLAN’91 Conference on Programming Language
Design and Implementation. ACM Press. 1991.

[29] Stamos, J.W. and D.K. Gifford, Remote Evaluation.
ACM Transactions on Programming Languages and Sys-
tems 12(4), 537-565. 1990.

[30] Taivalsaari, A., Kevo, a prototype-based object-ori-
ented language based on concatenation and mod-
ule operations. Report LACIR 92-02. University of
Victoria. 1992.

[31] Taivalsaari, A., A critical view of inheritance and
reusability in object-oriented programming.
Jyväskylä Studies in computer science, economics
and statistics No.23, A. Salminen ed. University of
Jyväskylä. 1993.

[32] Thomsen, B., L. Leth, S. Prasad, T.-M. Kuo, A.
Kramer, F. Knabe, and A. Giacalone, Facile Antigua
Release Programming Guide. ECRC-93-20. Euro-
pean Computer-Industry Research Centre. 1993.

[33] Ungar, D. and R.B. Smith, Self: the power of sim-
plicity. Lisp and Symbolic Computation 4(3). 1991.

[34] White, J.E., Telescript technology: the foundation
for the electronic marketplace. White Paper. Gen-
eral Magic, Inc. 1994.

