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Authors' AbstractThere are situations in programmingwhere some dynamic typing is needed, evenin the presence of advanced static type systems. We investigate the interplayof dynamic types with other advanced type constructions, discussing their inte-gration into languages with explicit polymorphism (in the style of system F ),implicit polymorphism (in the style of ML), abstract data types, and subtyping.
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1 IntroductionDynamic types are sometimes used to palliate de�ciencies in languages withstatic type systems. They can be used instead of polymorphic types, for ex-ample, to build heterogeneous lists; they are also exploited to simulate object-oriented techniques safely in languages that lack them, as when emulatingmeth-ods with procedures. But dynamic types are of independent value, even whenpolymorphic types and objects are available. They provide a solution to akind of computational incompleteness inherent to statically-typed languages,o�ering, for example, storage of persistent data, inter-process communication,type-dependent functions such as print, and the eval function.Hence, there are situations in programming where one would like to usedynamic types even in the presence of advanced static type systems. In thispaper we investigate the integration of dynamic types into languages with ex-plicit polymorphism (in the style of system F [10]), implicit polymorphism (inthe style of ML [16]), abstract data types, and subtyping. Our study extendsearlier work [1], but keeps the same general approach and the same basic lan-guage constructs: dynamic, for tagging a value with its type, and typecase, forcomparing a type tag with a pattern and branching according to whether theymatch.The interaction of polymorphism and dynamic types gives rise to problemsin binding type variables. We �nd that these problems can be more clearlyaddressed in languages with explicit polymorphism. Even then, we encountersome perplexing di�culties (as indicated in [1]). In particular, there is no uniqueway to match the type tag of a dynamic value with a typecase pattern. Oursolution consists in constraining the syntax of typecase patterns, thus providingstatic guarantees of unique solutions. The examples we have examined so farsuggest that our restriction is not an impediment in practice.Drawing from the experience with explicit polymorphism, we consider lan-guages with implicit polymorphism in the ML style. The same ideas can beused, with some interesting twists. In particular, we are led to introduce tuplevariables, which stand for tuples of type variables.The treatment of abstract data types does not present any new typing ormatching di�culties. Instead, it raises an interesting question: whether the typetag of a dynamically typed value should be matched abstractly or concretely(that is, using knowledge of the value's actual run-time type). We explore theconsequences of both choices.Subtyping is exploited in combination with dynamic types in languages withrestricted typecase patterns, such as Simula-67 [3] and Modula-3 [8]. There, atag matches a pattern if it is a subtype of the pattern. This sort of matching doesnot work out well with more general typecase patterns. We �nd it preferable tomatch type tags against patterns exactly, and then perform explicitly prescribedsubtype tests.In addition to [1], several recent studies consider languages with dynamic1



types [12, 14, 21]. The work most relevant to ours is that of Leroy and Mauny,who de�ne and investigate two extensions of ML with dynamic types. Wecompare their designs to ours in section 4.Section 2 is a brief review of dynamic typing in simply typed languages, basedon [1]. Section 3 considers the addition of dynamic typing to a language withexplicit polymorphism [10]. Section 4 then deals with a language with implicitpolymorphism. Sections 5 and 6 discuss abstract data types and subtyping,respectively. We conclude in section 7.2 ReviewThe integration of static and dynamic typing is fairly straightforward for mono-morphic languages. The simplest approach introduces a new base type Dynamicalong with a dynamic expression for constructing values of type Dynamic (infor-mally called \dynamics") and a typecase expression for inspecting them. Thetypechecking rules for these expressions are:� ` a 2 T� ` dynamic(a:T ) 2 Dynamic (Dyn-I)� ` d 2 Dynamic �; x:P ` b 2 T � ` c 2 T� ` typecase d of (x:P ) b else c 2 T (Dyn-E)The phrases (x:P ) and else are branch guards; P is a pattern|here, just amonomorphic type; b and c are branch bodies. For notational simplicity, we haveconsidered only typecase expressions with exactly one guarded branch and anelse clause; a typecase involving several patterns can be seen as syntacticsugar for several nested instances of the single-pattern typecase.In the most direct implementation, the semantics of a dynamic is a pairconsisting of a value and its type. The semantics of typecase d of (x:A) belse e is then: break d into a value c and a type C, and if C matches A thenbind x to c and execute b, otherwise execute e. In the simplest version of thissemantics, C matches A if they are identical; in languages with subtyping, it iscommon to allow C to be a subtype of A instead.Constructs analogous to dynamic and typecase have appeared in a numberof languages, including Simula-67 [3], CLU [15], Cedar/Mesa [13], Amber [4],Modula-2+ [20], Oberon [23], and Modula-3 [8]. These constructs have sur-prising expressive power; for example, �xpoint operators can already be de�nedat every type in a simply typed lambda-calculus extended with Dynamic [1].Important applications of dynamics include persistence and inter-address-spacecommunication. For example, the following primitives might provide input andoutput of a dynamic value from and to a stream:extern 2 Writer�Dynamic!Unitintern 2 Reader!Dynamic 2



Moreover, dynamics can be used to give a type for an eval primitive [11, 18]:eval 2 Exp!DynamicWe obtain a much more expressive system by allowing typecase guardsto contain pattern variables. For example, the following function takes twodynamics and attempts to apply the contents of the �rst (after checking that itis of functional type) to the contents of the second:dynApply =�(df:Dynamic) �(da:Dynamic)typecase df offU,Vg (f:U!V)typecase da offg (a:U)dynamic(f(a):V)else ...else ...Here U and V are pattern variables introduced by the �rst guard. In this example,if the arguments are:df = dynamic((�(x:Int)x+2):Int!Int)da = dynamic(5:Int)then the typecase guards match as follows:Tag: Int!IntPattern: U!VResult: fU = Int; V = IntgTag: IntPattern: IntResult: fgand the result of dynApply is dynamic(7 : Int).A similar example is the dynamic-composition function, which accepts twodynamics as arguments and attempts to construct a dynamic containing theirfunctional composition:dynCompose =�(df:Dynamic) �(dg:Dynamic)typecase df offU,Vg (f:U!V)typecase dg offWg (g:W!U)dynamic(f � g:W!V)else ...else ... 3



3 Explicit PolymorphismThis formulation of dynamic types may be carried over almost unchanged tolanguages based on explicit polymorphism [10, 19]. For example, the followingfunction checks that its argument df contains a polymorphic function f takinglists to lists. It then creates a new polymorphic function that accepts a typeand a list x of values of that type, instantiates f appropriately, and applies f tothe reverse of x:�(df:Dynamic)typecase df offg (f:8(Z) List(Z)!List(Z))�(Y) �(x:List(Y)) f[Y](reverse[Y](x))else �(Y) �(x:List(Y)) xHere List and reverse have the obvious meanings; they are not primitives ofthe language treated below, but can be encoded. The type abstraction operatoris written �. Type application is written with square brackets. The types ofpolymorphic functions begin with 8. For example, 8(X)X!X is the type of thepolymorphic identity function, �(X) �(x : X) x.3.1 Higher-order pattern variablesFirst-order pattern variables, by themselves, do not appear to give us su�cientexpressive power in matching against polymorphic types. For example, we mightlike to generalize the dynamic-application example from section 2 so that it canaccept a polymorphic function and instantiate it appropriately before applyingit: dynApply2try =�(df:Dynamic) �(da:Dynamic)typecase df offg (f:8(Z): : :!: : :)typecase da offWg (a:W)dynamic(f[W](a): ...)else ...else dynApply(df)(da)But there is no single expression we can �ll in for the domain of f that willmake dynApply2try apply to bothdf = dynamic (�(Z) �(x:Z�Z) <snd(x),fst(x)>: ...)da = dynamic(<3,4>: ...)and 4



df = dynamic((�(Z) �(x:Z!Z) x): ...)da = dynamic((�(x:Int) x): ...)In the former case, the expected type for f is 8(X)(X�X)!(X�X); in the lattercase, it is 8(X)(X!X)!(X!X). These two types are incompatible.Thus we are led to introducing higher-order pattern variables. A higher-order pattern variable ranges over pattern contexts|patterns abstracted withrespect to some collection of type variables. With higher-order pattern variables,we can express polymorphic dynamic application:dynApply2 =�(df:Dynamic) �(da:Dynamic)typecase df offF,Gg (f:8(Z)F(Z)!G(Z))typecase da offWg (a:F(W))dynamic(f[W](a):G(W))else ...else dynApply(df)(da)For example, ifdf = dynamic(id:8(X)X!X)da = dynamic(3:Int)then the typecase expressions match as follows:Tag: 8(X)X!XPattern: 8(Z)F(Z)!G(Z)Result: fF = �(X) X; G = �(X) XgTag: IntPattern: F(W) (which reduces to W)Result: fW = Intgand the result of the applicationdynApply2(df)(da)is dynamic(id[Int](3) : Int)Following standard notational conventions, we write �(X)X for the identity func-tion on types, reserving lowercase letters for expressions at the level of termsand � for term-level abstractions. 5



It is now easy to deal with the two inputs given above. Ifdf = dynamic (�(Z) �(x:Z�Z) <snd(x),fst(x)>:8(X)(X�X)!(X�X)))da = dynamic(<3,4>:Int�Int)then the match is:Tag: 8(X)(X�X)!(X�X)Pattern: 8(Z)F(Z)!G(Z)Result: fF = �(X) X�X; G = �(X) X�XgTag: IntPattern: F(W) (which reduces to W�W)Result: fW = Int�IntgIf df = dynamic((�(Z) �(x:Z!Z) x): 8(X)(X!X)!(X!X))da = dynamic((�(x:Int) x): Int!Int)then the match is:Tag: 8(X)(X!X)!(X!X)Pattern: 8(Z)F(Z)!G(Z)Result: fF = �(X) X!X; G = �(X) X!XgTag: IntPattern: F(W) (which reduces to W!W)Result: fW = Int!Intg3.2 SyntaxWe now present dynamic types in the context of a second-order polymorphic�-calculus, system F . The syntax of F with type Dynamic (including somethird-order constructs used in patterns) is given in Figure 1. In examples wealso use base types, cartesian products, and lists in types and patterns, but weomit these in the formal treatment.We regard as identical any pair of formulas that di�er only in the namesof bound variables. For brevity, we sometimes omit kinding declarations andempty pattern-variable bindings. Also, it is technically convenient to write thepattern variables bound by a typecase expression as a syntactic part of thepattern, rather than putting them in front of the guard as we have done inthe examples. Thus, typecase e1 of fVg(x:T)e2 else e3 should be readformally as typecase e1 of (x:fV:TypegT)e2 else e3.6



K ::= Type the kind of typesT ::= Z type variablesj F �rst-order pattern variablej T!T function typesj 8(Z : K) T quanti�ed typesj F (Tn) (n > 0) application of a type operatorj Dynamic the dynamic typeJ ::= K kind of simple pattern typesj Kn!K (n > 0) functional kindsP ::= fF1 : J1; : : : ; Fn : JngT patternsa ::= x variablesj �(x : T ) a abstractionj a(a) applicationj �(Z : K) a type abstractionj a[T ] type applicationj dynamic(a : T ) taggingj typecase a of (x : P ) a else a tag matchingFigure 1: Syntax for system F with Dynamic3.3 Tag closureOne critical design decision for a programming language with type Dynamicis the question of whether type tags must be closed (except for occurrencesof pattern variables), or whether they may mention universally bound typevariables from the surrounding context.In the simplest scenario, dynamic(a:A) is legal only when A is a closed type.(The type A may be polymorphic, of course, so long as all the type variables itmentions are also bound within A; for example, 8(Z) Z is a legal tag.) Similarly,we would require that the guard in a typecase expression be a closed type.If the closure restriction is not instituted, then types must actually be passedas arguments to polymorphic functions at run time, so that code can be compiledfor expressions like:�(X) �(x:X) dynamic(<x,x>:X�X)where the type X � X must be generated at run time. For languages wheretype information is not retained at run time, such as ML, the closure restriction7



becomes essential (see section 4). For now, we consider the unrestricted case,where tags may contain free type variables.3.4 De�niteness and matchingWhen pattern variables may range over functions on types, there is in generalno guarantee of unique matches of patterns against tags. For example, whenthe pattern F(Int) is matched against the tag Bool, the pattern variable F isforced to be �(X)Bool. But when the same pattern is matched against the tagInt, we �nd that F can be either �(X)X or �(X)Int. There is no reasonableway to choose. Worse yet, consider F(W) or F(W!Int) for a pattern variable W.Two sorts of solutions come to mind:� At run time, we may look for matches and fail if none or more than oneexist. Unfortunately, failures could be somewhat unpredictable.� At compile time, we may allow only patterns that match each tag inat most one way. This condition on patterns is called de�niteness in apreliminary version of this work [2]. As de�niteness seems hard to decideat compile time, an approximation to de�niteness may be used instead.As in [2], we choose a compile-time solution. We propose a condition on patternssu�cient to guarantee de�niteness ((1) and (2), below), in combination withan appropriate de�nition of matching ((3), below). This condition is morerestrictive than that of [2], and in some cases it may entail some code duplication.On the other hand, it is easier to describe, it su�ces for our examples, and ingeneral it does not seem to a�ect expressiveness.Our condition on patterns is:1. each pattern variable introduced in a pattern is used in the same pattern;2. in each of these uses, the arguments of the pattern variable are distincttype variables bound in the same pattern (not pattern variables).Note that as far as inner typecase expressions are concerned, pattern variablesof outer typecase expressions are just constants, and they may appear in anypositions where constants may appear.For example, we allow:fF : Type!Typeg8(Z) F(Z)fF : Type!Typeg8(Z) H(F(Z))fG : Type� Type!Typeg8(Z) 8(W) G(W; Z)(where H is a pattern variable of arity 1 introduced by an enclosing typecase).But we do not allow:fF : Type!TypegF(Int)fF : Type!Type; H : Type!Typeg8(Z) F(H(Z))fG : Type� Type!Typeg8(Z) G(Z; Z)8



because, according to requirement (2), F must be applied to a type variablerather than to Int or to H(Z), and G must be applied to two distinct typevariables rather than to Z twice.At run time, we must solve the problem of matching a tag against a pattern.The cases where the pattern's outermost construct is a type variable,!, or 8 areall evident. Hence, the problem of matching a tag against a pattern is reducedto matching subproblems of the form F(X1; : : : ; Xk) = A, where F is a patternvariable introduced in the pattern, X1; : : : ; Xk are distinct type variables, and Ais a subexpression of the tag. We require:3. the free type variables of a tag subexpression matching a pattern variableare exactly the arguments to the pattern variableor, in this instance, X1; : : : ; Xk are the free type variables of A. If this holds, wetake F = �(X1) : : :�(Xk) A as the solution for the subproblem. This solution isevidently unique, and thus de�niteness is guaranteed. Moreover, requirement (3)implies that the function �(X1) : : :�(Xk) A has the desirable properties of beingclosed and of using all of its arguments.For example, we obtain a success withTag: 8(Z) 8(W) Z!(Z!Z)Pattern: fF : Type!Typeg8(Z) 8(W) F(Z)Result: fF = �(X) X!(X!X)gbut failures withTag: 8(Z) 8(W) Z!(W!W)Pattern: fF : Type!Typeg8(Z) 8(W) F(Z)Result: failureand Tag: 8(Z) 8(W) Int!(Int!Int)Pattern: fF : Type!Typeg8(Z) 8(W) F(Z)Result: failureIn the second example, W is a free variable of the tag subexpression Z!(W!W)but not an argument in F(Z). Requirement (3) prevents the escape of W from thescope of its binder. In the third example, Z is an argument in F(Z) but does notoccur in the tag subexpression Int!(Int!Int). Requirement (3) guaranteesthat later, successful matches instantiate all new pattern variables: if F wereallowed not to use its argument Z, a later patternfV : TypegF(V)might succeed with V undetermined.The cost of our requirements may be some inconvenience. We adopt themfor the sake of soundness and simplicity.9



4 Implicit PolymorphismIn this section we investigate dynamics in an implicitly typed language, the corelanguage of ML.The general treatment of dynamics for explicitly typed languages can beapplied directly to ML, thus providing the language with explicitly tagged dy-namics. In this extension of ML, types can still be inferred for all constructsexcept dynamics; the user needs to provide type information only when creatingor inspecting dynamics. For instance, consider the following program:twice = dynamic(�(f) �(x) f(f x):8(Z)(Z!Z)!(Z!Z))To verify its correctness, we �rst infer the type scheme 8(Z)(Z!Z)!(Z!Z)for �(f) �(x) f(f x) as if it were to be let-bound. Then we check that thistype scheme has no free variables and that it is more general than the requiredtag 8(Z)(Z!Z)!(Z!Z). Similarly, when a typecase succeeds, the extractedvalue is given the type scheme of its tag as if it had been let-bound. That is,an instance of the value can be used with di�erent instances of the tag as in:foo = �(df)typecase df of(f:8(Z)(Z!Z)!(Z!Z)) <f succ, f not>else ...where succ is the successor function on integers, and not is the negation functionon booleans.This solution is adequate. However, it seems to go against the spirit of MLin several respects, as we discuss next.4.1 Implicit taggingThe solution just sketched requires explicit tags in dynamic expressions. Sincethe ML typechecker can infer most general types for expressions, one wouldexpect it to tag dynamics with their principal types. For instance, the usershould be able to write:twice = dynamic(�(f) �(x) f(f x))and expect that the dynamic will be tagged with 8(Z)(Z!Z)!(Z!Z).If types are not to be passed as arguments to polymorphic functions at runtime, the tags of dynamics must be closed (see section 3.3). This restrictioncreates di�culties for the implicit-tagging approach: a program like�(x) dynamic(x)will fail to have a principal type. It will therefore simplify matters to assumethat explicit tags are given in dynamic expressions. An alternative is discussedin [2]. 10



4.2 Tag instantiation and tuple variablesThe tag of apply:apply = dynamic(�(f) �(x) f x:8(X,Y)(X!Y)!(X!Y))is equivalent to 8(Y,X)(X!Y)!(X!Y), and an ML programmer would proba-bly view the order of quanti�ers as unimportant. In addition, the tag is moregeneral than the pattern in the function foo; hence an ML programmer wouldprobably expect the tag and the pattern to match when apply is passed to foo.In general, it seems reasonable to ignore the order of quanti�ers in a tag, andto let a tag match a pattern if any instance of the tag does. This principle iscalled tag instantiation.Tag instantiation and second-order pattern variables do not �t smoothlytogether. The di�culty comes from the combination of two features:� Second-order pattern variables may depend on universal variables, as inthe pattern fFg (f:8(Z)F(Z)!Z).� Tag instantiation requires that if a typecase succeeds, then it also suc-ceeds for a dynamic with an argument that has a more general tag.The tag 8(Z)(Z�Z)!Z matches the previous pattern; so should the tag8(X,Y)(X�Y)!X. But F is not supposed to depend on two variables.Because of tag instantiation, polymorphic pattern variables may always dependon more variables than the ones explicitly mentioned. We deal with this possi-bility by introducing tuple variables, which stand for tuples of variables. Thetuple variable in a pattern will be dynamically instantiated to the tuple of allvariables of the tag not matched by other variables of the pattern. For example,using a tuple variable U, the pattern fFg (f : 8(Z) F(Z)!Z) should be writtenfFg (f : 8(U; Z) F(U; Z)!Z).Tuple variables bound in di�erent patterns may be instantiated to tupleswith di�erent numbers of variables. Because of such size considerations, it isnot always possible to use a tuple variable as argument to an operator, sincethis operator may expect an argument of di�erent size. We introduce a simplesystem of arities in order to guarantee that type expressions are well formed.Formally, our example pattern should now be written:f� : Tuple; F : �! Type! Typeg (f : 8(U : �; Z : Type) F(U; Z)!Z)The arity variable � is to be bound at run time to the size of the tuple assignedto the tuple variable U. However, it is not necessary to write all the arities inprograms since a typechecker can easily infer them.In the following examples, we write Ui for the i-th component of tuplevariable U.Tag: 8(Z) (Z�Z)!ZPattern: f�; Fg (f : 8(U : �; Z) F(U; Z)!Z)Result: f� = 0; F = �(U; Z) Z�Zg11



K ::= � arity variablesj Type sort of typesJ ::= Kj K � Typen!KT ::= Z type variablesj F �rst-order pattern variablesj Dynamicj T!Tj F (Tn) (n > 0) application of a pattern operatorS ::= 8(Z1 : K1; : : : ; Zn : Kn) T type schemesP ::= f�; F1 : J1; : : : ; Fn : Jng S patternsa ::= xj �(x) aj a aj let x = a in aj dynamic(a : S)j typecase a of (x : P ) a else aFigure 2: Syntax for ML with DynamicHere the tuple arity is zero, thus F does not depend on U.Tag: 8(X; Y) (X�Y)!XPattern: f�; Fg (f : 8(U : �; Z) F(U; Z)!Z)Result: f� = 1; F = �(U; Z) Z�U1gTag: 8(X; Y) (X�Y)!XPattern: f�; F; Gg (f : 8(U : �; Z) F(U)!G(U))Result: f� = 2; F = �(U) U1�U2; G = �(U) U1g4.3 A languageWe briey consider a language with explicit tagging of dynamics and with tuplevariables for tag instantiation. The syntax of the language is given in Figure 2.Typechecking for this language is similar to typechecking for ML with localtype declarations and type constraints. In addition to typechecking the core12



language, the well-formedness of type expressions and the correct scoping oftype symbols must also be checked.The matching algorithm is slightly complicated by tag instantiation and theuse of tuple variables. As in the explicit case, we stipulate that fresh patternvariables can be applied only to distinct universally quanti�ed variables. Wealso require that there be at most one universal tuple variable per pattern,and that its arity be given by the unique fresh arity variable introduced inthe pattern. With these restrictions, matching becomes a simple extension of�rst-order uni�cation with restricted type operators; we omit the details.4.4 Related workThe work on dynamic typing most closely related to ours is that of Leroy andMauny [14]. Their dynamics without pattern variables have been implementedin the CAML language [22]. Our work can be seen as an extension of theirsystem with \mixed quanti�cation."Rather than introduce a typecase statement, Leroy and Mauny merge dy-namic elimination with the usual case statement of ML. Ignoring this di�erence,their dynamic patterns have the form QZ where Z is a type and Q a list of ex-istentially or universally quanti�ed variables. For instance,8(X)9(F)8(Y)9(G) (v:T(X,F,Y,G))is a pattern of their system. The existentially quanti�ed variables play the roleof our pattern variables. The order of quanti�ers determines the dependenciesamong quanti�ed variables. Thus, the pattern above can be rephrased:9(F)9(G)8(X)8(Y) (v:T(X,F(X),Y,G(X,Y)))The equivalent pattern for us is:f�; F; Gg (v : 8(U : �; X; Y) T(X; F(U; X); Y; G(U;X; Y)))With the same approach, in fact, we can translate all their patterns. On theother hand, some of our patterns do not seem expressible in their language, forexample:f�; F; Gg (v : 8(U : �; X; Y) T(X; F(U; X); Y; G(U;Y)))because the quanti�ers in the pre�x of their patterns are in linear order, andcannot express the \parallel" dependencies of F on X and G on Y.Another source of di�erences is our use of tuple variables. These enable usto write examples like the applyTwice function:13



let applyTwice =�(df) �(dxy)typecase df off�,F,F'g (f:8(U:�)F(U)!F'(U))typecase dxy off�0,G,Hg (x,y:8(U':�0)F(G(U'))�(F(H(U'))))f x, f yelse ...else ...which applies its �rst argument to each of the two components of its secondargument and returns the pair of the results. Such examples cannot be expressedin systems with only type quanti�ers.5 Abstract Data TypesThe interaction between the use of Dynamic and abstract data types gives riseto a puzzling design issue: should the type tag of a dynamic containing anelement of an abstract type be matched abstractly or concretely? There aregood arguments for both choices:� Abstract matching protects the identity of \hidden" representation typesand prevents accidental matches in cases where several abstract typeshappen to have the same representation.� On the other hand, transparent matching allows a more permissive styleof programming, where a dynamically typed value of some abstract type isconsidered to be a value of a di�erent version of \the same" abstract type.This exibility is critical in many situations. For example, a program maycreate disk �les containing dynamic values, which should remain usableeven after the program is recompiled, or two programs on di�erent ma-chines may want to exchange abstract data in the form of dynamicallytyped values.By viewing abstract types formally as existential types [17], we can see ex-actly where the di�erence between these two solutions lies, and suggest a gener-alization of existential types that supports both. (Existential types can in turnbe coded using universal types; with this coding, our design for dynamic typesin the previous sections yields the second solution.)To add existential types to the variant of F de�ned in the previous section,we extend the syntax of types and terms as in Figure 3.14



T ::= : : :j 9(Z : K) T existential typesa ::= : : :j pack a as T hiding T packing (existential introduction)j open a as [Z;x] in a unpacking (existential elimination)Figure 3: Extended syntax with existential typesThe typechecking rules for pack and open are:S = 9(Z : K) T � ` a 2 [R=Z]T� ` (pack a as S hiding R) 2 S (Pack)� ` a 2 9(Z : K) S Z 62 FV(T ) �;Z : K;x : S ` b 2 T� ` (open a as [Z;x] in b) 2 T (Open)A typical example where an element of an abstract type is packed into aDynamic is:let stackpack =packpush = �(s:IntList) �(i:Int) cons(i)(s),pop = �(s:IntList) cdr(s),top = �(s:IntList) car(s),new = nilas 9(X)push:X->Int->X,pop:X->X, top:X->Int, new:Xhiding IntListinopen stackpack as [Stack,stackops] inlet dstack =dynamic(stackops.push(stackops.new)(5):Stack)in typecase dstack of(s:Stack) stackops.top(s)else 0Note that this sort of example depends critically on the use of open typetags. As discussed in section 3.3, open tags must be implemented using run-time types. The evaluation of pack must construct a value that carries therepresentation type. 15



We have a choice in the evaluation rule for the open expression:� We can evaluate the expression open a as [Z; x] in b by replacing therepresentation type variable Z by the actual representation type obtainedby evaluating a.� Alternatively, we can replace Z by a fresh type constant.Without Dynamic, the di�erence between these rules cannot be detected. Butwith Dynamic we get di�erent behaviors. Since both behaviors are desirable, wemay choose to introduce an extended open form that provides separate namesfor the abstract version and for the transparent version of the representationtype:� ` a 2 9(Z : K) S Z 62 FV(T ) �; Z : K;x : S ` [Z=R]b 2 T� ` (open a as [R;Z; x] in b) 2 T (Open)In the body of b, we can build dynamic values with tags R or Z; a typecase onthe former could investigate the representation type, while a typecase on thelatter could not violate the type abstraction.Further experience would be useful for understanding the interaction ofDynamic and abstract types.6 SubtypingIn simple languages with subtyping (e.g., [4, 8]) it is natural to extend typecaseto perform a subtype test instead of an exact match. Consider for example theexpression:let dx = dynamic(3:Nat)intypecase dx of(x:Int) ...else ...The �rst typecase branch is taken: although the tag of dx, Nat, is di�erentfrom Int, we have Nat�Int.Unfortunately, this idea runs into di�culties when applied to more complexlanguages. In general, there does not exist a most general instantiation forpattern variables when a subtype match is performed. For example, consider thepattern V!V and the problem of subtype-matching (Int!Nat)�(V!V). BothInt!Int and Nat!Nat are instances of V!V and supertypes of Int!Nat, butthey are incomparable. Even when the pattern is covariant there may be nomost general match. Given a pattern V�V, there may be a type A�B such thatA and B have no least upper bound, and so there may be no best instantiation16



K ::= Type the kind of typesj Power(K)(T ) the kind of subtypes of TJ ::= Kj Kn!K (n > 0)j Power(Kn!K)(F )Figure 4: Extended syntax with subtypingfor V. This can happen, for example, in a system with bounded quanti�ers [7, 9],and in systems where the collection of base types does not form an upper semi-lattice. Linear patterns (where each pattern variable occurs at most once) avoidthese problems, but we �nd linearity too restrictive.Therefore, we take an approach di�erent from that found in simple languageswith subtyping. Our approach works in general and �ts well with the languagedescribed in section 3.2. We intend to extend system F with subtyping alongthe lines of [6]. In order to incorporate also the higher-order pattern variables,we resort to power-kinds [5].The kind structure of section 3.2 is extended in Figure 4, where it is assumedthat T : K and F : Kn!K. Informally, the kind Power(Type)(T ) is the collec-tion of all the subtypes of T , and similarly the kind Power(K1� : : :Kn!K)(F )is the collection of all the operators of kind K1 � : : :Kn!K that are pointwisein the subtype relation with F . Subtyping (�) is not a primitive notion in thesyntax, but it is de�ned by interpreting:T�T 0 : K as T : Power(K)(T 0); where T; T 0 : KF�G : (K1 � : : :�Kn!K) as F (Q1; : : : ; Qn)�G(Q1; : : : ; Qn) : K;for all Q1 : K1, : : : , Qn : Kn, where F;G : (K1 � : : :�Kn!K)The axiomatization of Power(K)(T ) [5] is designed to induce the expected sub-typing rules. For example, T : Power(T ) says that T�T .Because of power-kinds, we can now write patterns such as:typecase dx offV,W�(V�V)g (x:W�V) ...(that is: fV:Type, W:Power(Type)(V�V)g (x:W�V))else ...Each branch guard is used in typechecking the corresponding branch body.The shape of branch guards is fF1 : K1; : : : ; Fn : Kng(x : P ) where each Fimay occur in the Kj with j > i and in P . This shape �ts within the normalformat of typing environments, and hence it introduces no new di�culties forstatic typechecking. 17



Next we consider the dynamic semantics of typecase in the presence ofsubtyping. The idea is to preserve the previous notion that typecase performsexact type matches at run time. Subtyping is introduced as a sequence ofadditional constraints to be checked at run time only after matching. Theseconstraints are easily checked because, by the time they are evaluated, all thepattern variables have been fully instantiated. In the example above, supposethat the tag of dx is (Nat � Int) � Int; then we have the instantiations W =Nat�Int and V = Int. When the matching is completed, we successfully checkthat W�(V� V).Some examples should illustrate the additional exibility obtained with sub-typing. First we show how to emulate simple monomorphic languages withsubtyping but without pattern variables, where typecase performs a subtypetest. The �rst example of this section can be reformulated as:typecase dx offV�Intg (x:V) ...else ...In this example, the tag of dx can be any subtype of Int.The next example is similar to dynApply in section 2, but the type of theargument can be any subtype of the domain of the function:typecase df offV,Wg (f:V!W)typecase da offV'�Vg (a:V')dynamic(f(a):W)else ...else ...With polymorphic tag types, or with polymorphic pattern types with only�rst-order pattern variables, nothing new happens except that the matchingand subtype tests must be the adequate ones for polymorphism.The next degree of complexity is introduced by higher-order pattern vari-ables. Just as we had V0�V, a subtype constraint between two �rst-order pat-tern variables, we may have F�G:(K!K') for two higher-order pattern variablesF,G:(K!K'). As mentioned above, the inclusion is intended pointwise: F�G i�F(X)�G(X):K' under the assumption X:K.Another form of dynamic application provides an example of higher-ordermatches with subtyping:typecase df offF,G:Type!Type,Vg (f:8(Z�V)F(Z)!G(Z))typecase da offW�Vg (a:F(W)) dynamic(f[W](a):G(W))else ...else... 18



Finally, dynamic composition calls for a constraint of the form G0�G:typecase df offG,H:Type!Typeg (f:8(X)G(X)!H(X))typecase dg offF:Type!Type,G'�G:Type!Typeg(g:8(Y)F(Y)!G'(Y))dynamic((�(Z) f[Z] � g[Z]):8(Z)F(Z)!H(Z))else ...else ...This example generalizes to functions of bounded polymorphic types, such as8(X�A)G(X)!H(X).7 ConclusionThe extension of statically-typed languages with dynamic types is rather com-plicated. Perhaps we have been overly ambitious. We have tried to allow asmuch exibility as possible, at the cost of facing di�cult matching problems.And perhaps we have not been ambitious enough. In particular, we have notprovided mechanisms for dealing with multiple matches at run time, in ordernot to complicate the language designs or their implementations. We have alsoignored the possibility of adding dynamic types to F3, or to F! [10]. Only moreexperience will reveal the most useful variants of our approach.We have deliberately avoided semantic considerations in this paper. It seemsrelatively straightforward to provide precise operational semantics and thenprove subject-reduction theorems for our languages. These theorems wouldbe extensions of those established for monomorphic languages in [1], and wouldguarantee the soundness of evaluation for the languages. It is an entirely dif-ferent matter to de�ne denotational semantics. In particular, open tags clearlyallow the expression of a rich class of non-parametric functions (which manipu-late types at run time), and these do not exist in many of the usual models forpolymorphic languages.AcknowledgementsFran�cois Bourdoncle, Richard Connor, and an anonymous referee made manyuseful suggestions on the presentation of this paper. Cynthia Hibbard providededitorial help. 19
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