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Abstract
We introduce simple object calculi that support method override and object subsumption. We give an

untyped calculus, typing rules, and equational rules. We illustrate the expressiveness of our calculi and the
pitfalls that we avoid.

1.  Introduction
Typed λ-calculi have provided a rich foundation for procedural languages, but attempts to use

these calculi to model object-oriented languages have not been completely successful. We aim to
study the intrinsic properties of objects by developing object calculi that are as simple and fruitful
as λ-calculi. Instead of struggling with complex encodings of objects as λ-terms, we take objects as
primitive and concentrate on the rules that they should obey.

We investigate calculi that support method override in presence of object subsumption.
Subsumption is the ability to emulate an object by means of another object that has more refined
methods. Override is the operation that modifies the behavior of an object, or class, by replacing
one of its methods; the other methods are inherited.

All common object-oriented languages allow some combination of subsumption and override,
and most handle it correctly. However, type correctness is often achieved via rather subtle
conditions. We hope to illuminate the origin of some of these conditions, and illustrate the pitfalls
that they avoid. At the semantic and type-theoretic level, where one aims for generality, the
combination of subsumption and override has proven hard to model; see section 5 for a discussion
of previous work. We provide simple calculi that support those features.

We begin this paper with a challenge: finding an adequate type system for an untyped object
calculus. We think the challenge is interesting because, first of all, the calculus is patently object-
oriented: it has built-in objects, methods with self, and the characteristic semantics of method
invocation and override. Second, the calculus is very simple, with just four syntactic forms, and
even without functions. Finally, the calculus is expressive: it can encode the untyped λ-calculus,
and can express object-flavored examples in a direct way. After describing the untyped calculus,
we define first-order type systems and equational theories.

1.1  Primitive Semantics of Objects

We start by investigating the operational semantics of an untyped object-oriented calculus,
while keeping in mind some future typing requirements. Our goal in this section is to define a
direct semantics of objects, considering them as primitive.

We consider a kernel calculus including object formation, method invocation, and method
override. A method is a function having a special parameter, often called self, that denotes the
same object the method belongs to. A field is a degenerate method that does not make use of its
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self parameter; we talk about field selection and field update. We use the terms selection and
invocation and the terms update and override somewhat interchangeably. Note that it is sometimes
desirable to override a field with a proper method, transparently converting passive data into active
computation.

To avoid premature commitments, we avoid any explicit encoding of objects in terms of λ-ab-
straction and application. We describe method invocation directly by substitution. We believe that
the semantics of objects given below is natural and suggestive of common implementation
techniques.

Primitive semantics

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

  o is an object with method names li and methods ς(xi)bi

  o.lj ïññ bj{xj←o}     (jÏ1..n) selection / invocation

  o.ljfiüς(y)b ïññ [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}]   (jÏ1..n) update / override

Notation We use indexed notation of the form Φi iÏ1..n to denote sequences Φ1,...,Φn . The
symbol “ïññ” means “rewrites to”; we use it informally for now. We write b{x} to
highlight that x may occur free in b. The substitution of a term c for the free occurrences
of x in b is written b{x←c}, or b{c} where x is clear from context. We use “@” for “equal
by definition”, “7” for “syntactically identical”, and “=” for “provably equal” when
applied to two terms.

An object is a collection of components li=ai, for distinct labels li and associated methods ai;
the order of these components does not matter. The object containing a given method is called the
method’s host object. The letter ς (sigma) is used as a binder for the self parameter of a method;
ς(x)b is a method with self parameter x, to be bound to the host object, and body b.

A method invocation is written o.lj, where lj is a label of o. It reduces to the result of the
substitution of the host object for the self parameter in the body of the method named lj.

A method override is written o.ljfiüς(y)b. The intent is to replace the method named lj of o with
ς(y)b; this is a single operation that involves a construction binding y in b. A method override
reduces to a copy of the host object where the overridden method has been replaced by the
overriding one. The semantics of override is functional; an override on an object produces a
modified copy of the object. In order to make the formal treatment easier we avoid investigating an
imperative operational semantics. However, the type theory we develop later is sound even for an
imperative interpretation of field update and method override [4].

Self-substitution is at the core of the primitive semantics. Because of this, it is easy to define
non-terminating computations without explicit use of recursion. More interestingly, it is possible
for a method to return or modify self.

let   o @ [l = ς(x)x.l] then o.l  ïññ  x.l{x←o}  7  o.l  ïññ ...

let   o’ @ [l = ς(x)x] then o’.l  ïññ  x{x←o’}  7  o’

let   o” @ [l = ς(y) (y.lfiüς(x)x)] then o”.l  ïññ  (o”.lfiüς(x)x)  ïññ  o’

We place particular emphasis on the ability to modify self, as illustrated by this last example.
In object-oriented languages, it is very common for a method to modify components of self,
although these components are normally value fields and not other methods. Generalizing, we
allow methods to override other methods of self, or even themselves. This feature does not
significantly complicate the problems that we address. Method override is exploited in rather
interesting examples that seem difficult to emulate in other calculi.

We should stress that our choice of primitives is not without alternatives.
For example, we could have tried to provide operations to add and remove methods, from

which override could be defined [11]. However, we feel that override is an important operation that
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it is characterized by peculiar typing rules; we prefer to study it directly and not to explain it away
at an early stage.

Similarly, the choice of objects with a fixed number of components, instead of extensible ones
[1, 15, 16, 21], is a conscious one. Without ruling out future work on extensible objects, we feel
that fixed-size objects are easier to handle, particularly in the later stages of our type-theoretical
development.

Finally, we do not provide an operation to extract a method from an object as a function. As
we shall see, such an operation is incompatible with object subsumption in typed calculi. Methods
are inseparable from objects and cannot be recovered as functions; this consideration inspired the
use of a specialized ς-notation instead of the familiar λ-notation for parameters.

1.2  Derived Semantics

An inspection of the primitive semantics reveals close similarities between objects and records
of functions. It is natural then to try to define objects in terms of records and functions. The correct
definition is, however, not evident; we describe a few options.

All implementations of standard (single-dispatch) object-oriented languages are based on self-
application so we examine this option first. In the self-application semantics [14], methods are
functions, objects are records, object selection is record selection plus self-application, and update
is simply update. Records themselves can be encoded as functions over a domain of labels. We
write Üli=ai i Ï1..ná for the record with labels li and fields ai; we write r†lj for record selection
(extracting the lj component of r), and r†lj:=b for functional update (producing a copy of r with the
lj component replaced by b).

Self-application semantics

For o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o   @ Üli=λ(xi)bi iÏ1..ná

o.lj @ o†lj(o) =   bj{xj←o} (jÏ1..n)

o.ljfiüς(y)b @ o†lj:=λ(y)b =   [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}] (jÏ1..n)

The simple equalities shown above, based on the standard β-reduction of λ-terms, reveal that
the self-application semantics matches the primitive semantics. Hence, untyped objects can be
faithfully interpreted using λ-abstraction, application, and record constructions. Records can be
further reduced to pure λ-terms. If we are concerned only with untyped object calculi, little else
needs to be said.

Unfortunately, the match between primitive and self-application semantics does not directly
extend to typed calculi. By interpreting ς-binders directly as λ-binders, the self-application
semantics causes the type of each method to be contravariant in the host object type. The
contravariance then blocks expected subtyping relations. For example, the object type Point with
x,y integer fields is interpreted as the recursive record type Point = Üx,y: Point→Intá, where we
write Üli:Bi iÏ1..ná for the type of records with labels li and types Bi (iÏ1..n). But the type Point =
Üx,y: Point→Intá does not include as a subtype ColorPoint = Üx,y: ColorPoint→Int, c:
ColorPoint→Colorá, which is the interpretation of the type of points with color.

In view of these difficulties with typing, alternative encodings of objects have been
investigated. One immediate idea is to try to “hide” the self parameters so that their types do not
appear in contravariant position. This can be achieved by the use of recursive definitions, binding
all the self parameters recursively to the object itself [9]. Note that ς is not interpreted as λ in this
semantics:
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Recursive-record semantics

For o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o   @ µ(x)Üli=bi{xi←x} iÏ1..ná =   Üli=bi{xi←o} iÏ1..ná

o.lj @ o†lj   =   bj{xj←o} (jÏ1..n)

Here, the semantics of method invocation matches the primitive semantics. Moreover, the ex-
pected subtyping relations are validated, because the troublesome contravariant parameters are
“hidden”. If we require only an object calculus without override, then recursive-record semantics
will do. Unfortunately, override does not work as expected in this semantics; the most plausible
definition appears to be the following:

o.ljfiüς(y)b @   µ(x) o†lj:=(λ(y)b)(x) (jÏ1..n)

= Ülj=b{y←(o.ljfiüς(y)b)},  li=bi{xi←o} iÏ(1..n)-{j}á

? µ(x)Ülj=b{y←x}, lj=bj{xj←x} iÏ(1..n)-{j}á

The result of overriding a method is no longer in the form of an object: record update fails to
update “inside the µ” so that all the other methods can become aware of the update. Given the
above semantics we have, for example:

o   @   [l1=ς(x)3, l2=ς(x)x.l1]

p   @   o.l1fiüς(x)5

with primitive semantics p.l1 = 5 p.l2 = 5

with recursive-record semantics p.l1 = 5 p.l2 = 3

Therefore, the recursive-record semantics is not adequate. We can argue that the fixpoint
operator has been used too soon, and that override has no chance of working once recursion is
frozen. In contrast, recursion in the self-application semantics is open-ended: self-application
occurs only at method invocation time, not at object-construction time.

As an attempt to salvage the recursive-record semantics, and its nice typing properties, we can
try to delay the application of the µ in that semantics with a λ. Objects are then “record generators”
that can be converted to recursive records, when needed, by applying a fixpoint operator (í). In
this way, we obtain the generator semantics of objects [12]:

Generator semantics

For o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o   @ λ(x)Üli=bi{xi←x} iÏ1..ná

o.lj @ í(o)†lj   = bj{xj←í(o)} ? bj{xj←o}

(jÏ1..n)

o.ljfiüς(y)b @ λ(x) o†lj:=(λ(y)b)(x) = [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}]

(jÏ1..n)

This semantics works for update, but does not match the primitive semantics for method
invocation. Put in the best light, it distinguishes between records and record generators, to the
effect that method execution can be performed only after the application of í, and method override
only before. For example, after a method invocation returning self, it is no longer possible to
perform an update. As a special case, an object cannot update itself through its own methods. Since
self-update on fields is a common and important operation, one has to introduce a distinction
between field update and method update in order to allow at least the former.

Split-self semantics is a combination of all of the above techniques. It separates the fields from
the proper methods of an object. Collectively, the fields represent the state of the object. The
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methods take the state as a parameter (as in the self-application semantics), and are bound to each
other by recursion (as in the recursive-record semantics). Proper method override is not permitted.
Objects and object generators are distinguished (as in the generator semantics); here we describe
only the object part.

Split-self semantics

For o 7 [li=ς(x)bi iÏ1..n, lj=ς(x)bj jÏn+1..p] (li,lj distinct; the bi are fields, that is, do not use x)

o   @ Üs=Üli=bi iÏ1..ná, m=µ(xm)Üli=λ(xs)bj’ iÏ1..náá (for appropriate

bj’)

o.li @ o†s†li   = bi (iÏ1..n)

o.lj @ o†m†lj(o†s)   = bj’{xs←o†s, xm←o†m}

(jÏn+1..p)

o.li:=b @ Üs=(o†s†li:=b), m=o†má (iÏ1..n)

The separation of state from methods causes self to split into two parts. Each method body bj

must be transformed into an appropriate new body bj’, as follows: for state extraction through self,
x.li becomes xs.li; for method invocation through self, x.lj becomes xm.lj; for other uses of self, x
must be repackaged into Üs=xs, m=xmá. These transformations are hard to perform mechanically, in
general, but Hofmann and Pierce have studied type-driven techniques [13]. If these transformations
are performed correctly, split-self semantics implements the primitive semantics, except for
method override.

One advantage of this rather complex encoding is that it corresponds well to the behavior of
class-based languages. Moreover, it can be extended to a typed encoding [19]. Finally, split-self
semantics becomes considerably simpler with imperative update, since the splitting and
repackaging of self is no longer necessary.

In summary, it seems hard to find simple, general, and correct encodings by syntactic means.
Semantically, however, we can resort to the richer vocabulary of type constructions available in
models. Specifically, the denotational semantics we give in [2] is a self-application semantics
where, for example, we interpret the type Point as the union of all the solutions to the equations of
the form X = Üx,y:X→Int, ... á, including for example X = Üx,y:X→Intá and X = Üx,y:X→Int,
c:X→Colorá. With this definition, ColorPoint is forced to be a subtype of Point. The denotational
semantics provides a justification for our type theories and our equational theories, and in part
guided us in their choice.

In the core of this paper we take objects as a primitive notion, and we give them direct typing
rules and equational theories. No further attempt is made to encode typed objects as typed λ-terms.
However, we still strive to find the simplest object calculus from which more complex object
calculi may be syntactically derived.

1.3  Paper Outline

In section 2 we study the untyped calculus sketched in section 1.1. We discover that we are
able to encode the λ-calculus in it. We show three interesting untyped examples. In section 3 we
study first-order systems. In section 4 we introduce subsumption, in the form of object subtyping.
Using recursion we provide typings for the untyped examples. We conclude by noting that
recursively defined object types do not allow some desirable subsumptions, and we outline some
solutions. The appendix lists the typing and equational rules.
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2.  Untyped Calculi
In this section we investigate untyped object calculi. We assume the primitive semantics as the

intended semantics of objects, and formalize it. We also show how to express functions and
fixpoint operators in terms of objects. Finally, we discuss some untyped examples.

2.1  The Untyped ς-calculus

The following formal syntax describes a pure object calculus without functions. In later
sections, this calculus is the basis for our typed calculi.

Syntax of the ς-calculus

a,b ::=    terms

x    variable

[li=ς(xi)bi iÏ1..n] (li distinct)    object

a.l    field selection / method invocation

a.lfiüς(x)b    field update / method override

Here, an object [li=ς(xi)bi iÏ1..n] has method names li and methods ς(xi)bi. In a method ς(x)b, x is the
self variable and b is the body.

Notation
¢¢¢¢        o.lj:=b  stands  for o.ljfiüς(y)b,  for an unused y. We call o.lj:=b an update

operation.

¢¢¢¢        [..., l=b, ...] stands for  [..., l=ς(y)b, ...],  for an unused y. We call l=b a field.

¢¢¢¢        We identify ς(x)b with ς(y)(b{x←y}), for any y not occurring free in b.

To complete the formal syntax of the ς-calculus we give the definitions of free variables (FV)
and substitution (b{x←a}) for ς-terms.

Object scoping and substitution

FV(ς(y)b) @   FV(b)-{y}

FV(x) @   {x}

FV([li=ς(xi)bi iÏ1..n]) @   êiÏ1..n FV(ς(xi)bi)

FV(o.l) @   FV(o)

FV(o.lfiüς(y)b) @   FV(o) ∪  FV(ς(y)b)

(ς(y)b){x←a} @   ς(y’)(b{y←y’}{x←a}) for y’ Ì FV(ς(y)b)∪ FV(a)∪ {x}

x{x←a} @   a

y{x←a} @   y for y = x

[li=ς(xi)bi iÏ1..n]{x←a} @   [li=(ς(xi)bi){x←a} iÏ1..n]

(o.l){x←a} @   (o{x←a}).l

(o.lfiüς(y)b){x←a} @   (o{x←a}).lfiü((ς(y)b){x←a})

In Definition 2.1-1, below, we capture the primitive semantics of objects. This definition sets
out three reduction relations: top-level one-step reduction (îıñ), one-step reduction (ïñ), and general
many-step reduction (ïññ). As is customary, we do not make error conditions explicit. We simply
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assume that objects and methods are used consistently, and that otherwise computations stop
without producing a result (so, for example, [].l does not rewrite to anything).

Definition 2.1-1 (Reduction relations)
(1) We write aîıñb if for some o7[li=ς(xi)bi iÏ1..n] and jÏ1..n, either:

a7o.lj  and  b7bj{x←o}, or
a7o.ljfiüς(x)c  and  b7[lj=ς(x)c, li=ς(xi)bi iÏ1..n-{j}].

(2) We write a îïñ b if a7C[a’], b7C[b’], and a’îıñb’, where C is any context.
(3) We write ïññ for the reflexive and transitive closure of îïñ.

M

We can derive an untyped equational theory from the untyped reduction rules. The equality
relation is the reflexive, transitive, and symmetric closure of îïñ. It is formalized by a set of rules:

Equational theory

(Eq Symm) (Eq Trans)

∫ b ↔ a ∫ a ↔ b      ∫ b ↔ c
—––— ———————

∫ a ↔ b ∫ a ↔ c

(Eq x) (Eq Object)

∫ bi ↔ bi’  ÓiÏ1..n (li distinct)
——— —————————————

∫ x ↔ x ∫ [li=ς(xi)bi iÏ1..n]  ↔  [li=ς(xi)bi’ iÏ1..n]

(Eq Select) (Eq Override)

∫ a ↔ a’ ∫ a ↔ a’      ∫ b ↔ b’
——–—— ————–—————

∫ a.l  ↔  a’.l ∫ a.lfiüς(x)b  ↔  a’.lfiüς(x)b’

(Eval Select)        (where  a7[li=ς(xi)bi iÏ1..n])

jÏ1..n
——–————

∫ a.lj  ↔  bj{xj←a}

(Eval Override)        (where  a7[li=ς(xi)bi iÏ1..n])

jÏ1..n
———————————————

∫ a.ljfiüς(x)b  ↔  [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)-{j}]

A Church-Rosser theorem connects equality (↔) with reduction (îïññ):

Theorem 2.1-1 (Church-Rosser)
The relation îïññ is Church-Rosser, and if  ∫ a ↔  b then there exists c such that a îïññ c and
b îïññ c.

M

The proof of this result follows the method of Tait and Martin-Löf [7]. The sequence of definitions
and lemmas is standard.

Finally, we define a deterministic reduction system for the closed terms of the ς-calculus. Our
intent is to describe an evaluation strategy of the sort commonly used in programming languages.
A characteristic of such evaluation strategies is that they do not work under binders. In our setting,
this means that when given an object [li=ς(xi)bi iÏ1..n] we defer simplifying the body bi until li is
invoked.

 The purpose of the reduction system is to reduce every expression to a result. A result is itself
an expression, not subject to further reduction. For the pure ς-calculus, we define a result to be a
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term of the form [li=ς(xi)bi iÏ1..n]. (If we had constants such as natural numbers we would naturally
include them among the results.)

We are interested in an evaluation strategy that does not operate under ς-binders, analogous to
the weak reduction strategy of the λ -calculus. In the λ-calculus, weak reduction proceeds by
reducing the function part of an application until it becomes an abstraction; then the argument is
substituted into the abstraction either without evaluation, for call-by-name, or after evaluation, for
call-by-value. The distinction between call-by-name and call-by-value is not so crisp for our object
calculus.

This weak reduction relation is denoted Òñ. It is axiomatized with three rules.

(Red Object)  (where v 7 [li=ς(xi)bi iÏ1..n])

—–——

∫ v Òñ v

(Red Select)  (where v’ 7 [li=ς(xi)bi iÏ1..n])

∫ a Òñ v’      ∫ bj{xj←v’} Òñ v      jÏ1..n
——————————————

∫ a.lj Òñ v

(Red Override)

∫ a Òñ [li=ς(xi)bi iÏ1..n]      j Ï 1..n
———————————————

∫ a.lj fiü ς(x)b Òñ [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)-{j}]

If ∫ a Òñ v, then v is a result. We observe that the reduction system is deterministic, so if ∫ a Òñ v
and ∫ a Òñ v’ then v 7 v’. We say that a reduces to v, or that v is the result of a.

The first rule says that results are not reduced further. The second rule says that in order to
evaluate an expression a.lj, we should first calculate the result of a, check whether it is in the form
[li=ς(xi)bi iÏ1..n] with j Ï 1..n, and then evaluate bj{xj←[li=ς(xi)bi iÏ1..n]}. The third rule says that in
order to evaluate an expression a.lj fiü ς(x)b, we should first calculate the result of a, check whether
it is in the form [li=ς(xi)bi iÏ1..n] with j Ï 1..n, and return [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)-{j}]. (Note that we
do not compute inside b or inside the bi.)

The next proposition says that Òñ is sound with respect to îïññ:

Proposition 2.1-1 (Soundness of weak reduction)
If ∫ a Òñ v then a îïññ v, and hence ∫ a ↔ v.

M

This proposition can be checked with a trivial induction on the structure of the proof that ∫ a Òñ v.
Further, we would like Òñ to be complete with respect to îïññ, in the following sense:

Conjecture  2.1-1 (Completeness of weak reduction)
Let a be a closed term and v be a result. If a îïññ v then there exists v’ such that ∫ a Òñ v’.

M

We do not attempt to prove this conjecture here. Standard methods developed for the λ-calculus
should be applicable, however.

The rules immediately suggest an algorithm for reduction. The algorithm takes a term and, if it
converges, produces a result or the token wrong, which represents a dynamic type error. We write
Outcome(c) for the outcome of running the algorithm on input c, assuming the algorithm
terminates. The algorithm can be defined as follows:

Outcome([li=ς(xi)bi iÏ1..n]) @

[li=ς(xi)bi iÏ1..n]
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Outcome(a.lj) @

let o = Outcome(a)

in if o is of the form [li=ς(xi)bi iÏ1..n] with j Ï 1..n

then Outcome(bj{xj←o})

else wrong

Outcome(a.lj fiü ς(x)b) @

let o = Outcome(a)

in if o is of the form [li=ς(xi)bi iÏ1..n] with j Ï 1..n

then [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)-{j}]

else wrong

Clearly, ∫ c Òñ v if and only if Outcome(c) = v and v is not wrong.
In section 3.2.2 and 4.1.2, we consider Òñ again and study its properties related to typing.

2.2  Functions as Objects

It would be possible to add ordinary λ-terms to our object calculus. However, having two
similar variables binders (λ and ς) in a small calculus seems excessive. We could replace ς with λ,
identifying methods with functions. We feel, instead, that the ς-binders have a special status. First,
as we have seen, they can be given a simple and direct rewrite semantics, instead of an indirect
semantics involving both λ-abstraction and application. Second, ς-binders by themselves have a
surprising expressive power; we show below that they can be as expressive as the λ-binders.

We define a translation ä ã from λ-terms to pure objects:

Translation of the untyped λ-calculus

äxã @ x

äb(a)ã  @  äbã ¢ äaã where  p ¢ q @ (p.arg := q).val

äλ(x)b{x}ã  @

[arg = ς(x) x.arg,

 val = ς(x) äb{x}ã{x←x.arg}]

The idea here is that an application äb(a)ã first stores the argument äaã into a known place (the
field arg, whose initial value is unimportant) inside of äbã, and then invokes a method of äbã that
can access the argument through self. For example:

ä(λ (x)x)(y)ã  7  ([arg = ς(x) x.arg,  val = ς(x) x.arg].arg:=y).val    =    y

Note that the translation maps nested λ’s to nested ς’s: although every method has a single self
parameter, we can emulate functions with multiple parameters.

Renaming (α -conversion) of λ -bound variables is valid under the translation (up to α-
conversion) because of the renaming properties of ς-binders. We can verify that β-conversion is
valid under the translation as well:

let o 7 [arg = äaã, val = ς(x) äb{x}ã{x←x.arg}]

ä(λ (x)b{x})(a)ã

7    ([arg = ς(x) x.arg,  val = ς(x) äb{x}ã{x←x.arg}].arg:=äaã).val

=    o.val    =    (äb{x}ã{x←x.arg}){x←o}    =    äb{x}ã{x←o.arg}

=    äb{x}ã{x←äaã}    =    äb{a}ã
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However, η-conversion is not valid under the translation, since not every object has the form [arg =
..., val = ...].

This translation can be extended to provide a natural interpretation of λ-terms with default
parameters and with call-by-keyword. We write λ(x=c)b{x} for a function with a single parameter
x with default c. We write f(a) for a normal application of f to a, and f() for an application of f to its
default. For example, (λ(x=c)x)() = c and (λ(x=c)x)(a) = a. The interpretation of λ-terms with a
single default parameter is:

äλ(x=c)b{x}ã  @  [arg = äcã, val = ς(x) äb{x}ã{x←x.arg}]

äb(a)ã  @  äbã ¢ äaã

äb()ã  @  äbã.val

We write λ(xi=ci
 iÏ1..n)b for a function with multiple parameters xi with defaults ci. The application

f(yi=ai
 iÏ1..m) can provide fewer parameters than f expects, and in any order. The association of the

provided actuals to the formals is made by the names xi, with the defaults being used for the
missing actuals. The interpretation of λ-terms with call-by-keyword and default parameters is:

äλ(xi=ci
 iÏ1..n)b{xi

 iÏ1..n}ã  @       xi≠val, zÌFV(b)

[xi = äciã iÏ1..n, val = ς(z) äb{xi
 iÏ1..n}ã{xi←z.xi

 iÏ1..n}]

äb(yi=ai
 iÏ1..m)ã  @  (äbã.yi:=äaiã iÏ1..m).val yi≠val

2.3  Fixpoints

As a consequence of the translation of λ-terms into pure objects, we obtain object-oriented
versions of all the encodings that are possible within the λ-calculus. None of these encodings seem,
however, particularly inspiring; more direct object-oriented encodings can usually be found. Such
is the case, for example, for fixpoint operators. The encoding given below is much simpler than
others that can be obtained by translation of λ-terms:

A fixpoint operator

fix @
[arg = ς(x) x.arg,

 val = ς(x) ((x.arg).arg := x.val).val]

We can verify the fixpoint property as follows, recalling that p¢q 7 (p.arg:=q).val is the encoding
of function application:

fixf @ fix.arg := f    =    [arg = f,  val = ς(x) ((x.arg).arg := x.val).val]

fix¢f 7 fixf.val   =   ((fixf.arg).arg := fixf.val).val

= (f.arg := fix¢f).val   7   f¢(fix¢f)

In particular, if we add a constant fix to the λ-calculus, and set äfixã @ fix, then äfix(f)ã = äf(fix(f))ã.
Furthermore, we can provide a translation for µ(x)b{x} that is more compact than its natural

definition as äfix(λ(x)b{x})ã:

äµ(x)b{x}ã @
[rec = ς(x) äb{x}ã{x←x.rec}].rec

with the unfolding property:
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 äµ(x)b{x}ã

7 [rec = ς(x) äb{x}ã{x←x.rec}].rec

= äb{x}ã{x←x.rec}{x←[rec = ς(x) äb{x}ã{x←x.rec}]}

7 äb{x}ã{x←[rec = ς(x) äb{x}ã{x←x.rec}].rec}

7 äb{x}ã{x←äµ(x)b{x}ã}

7 äb{µ(x)b{x}}ã.

The recursion operators described above use only object primitives. With λ-abstraction and
application, we can write the fixpoint operator of Mitchell et al. [16]:

fix’ @ λ(f) [rec = ς(s) f(s.rec)].rec

whose translation is similar, but not identical, to our fix:

äfix’ã 7 [arg = ς(x)x.arg,  val = ς(x) [rec = ς(s) ((x.arg).arg:=s.rec).val].rec ]

2.4  Examples

The general problem we are confronting is to find useful type systems for the untyped ς-
calculus. We now examine examples that can be easily written in the untyped ς-calculus, but pose
interesting typing difficulties. Our examples involve updating self, so neither the recursive-record
semantics nor the generator semantics would be adequate. One of the examples is based on
overriding a proper method, so the split-self semantics does not apply. The typing requirements
range from very basic ones, like typing a calculator object, to very sophisticated ones, like typing
an object-oriented version of the numerals inspired by Scott numerals [20].

In these examples we freely use numeric constants, and we use λ-terms since we have seen
that they can be encoded.

2.4.1  Backup Methods

We now give a simple example that illustrates two techniques: storing self and using two
different versions of self at once. We define an object that is able to keep backup copies of itself,
for example as an auditing trail. This object has a backup method, and a retrieve method that
returns the last backup:

Objects with backup

o  @ [retrieve = ς(s1) s1 ,

 backup =  ς(s2) s2.retrieve fiü ς(s1) s2 ,

 (additional fields and methods) ]

The initial retrieve method is set to return the initial object. Whenever the backup method is
invoked, it stores a copy of self into retrieve. Note that backup stores the self s2 that is current at
backup-invocation time, not the self s1 that will be current at retrieve-invocation time. For
example:

o’ @ o.backup   =   [retrieve = ς(s1) o, ...]

Later, possibly after modifying the additional fields and methods, we can extract the object that
was most recently backed up. The retrieve method returns the self that was current at the last
invocation of backup, as desired.

o’.retrieve  =  o
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We can cascade invocations of the retrieve method to recover older and older backups, eventually
converging to the initial object.

2.4.2  Object-Oriented Natural Numbers

The technique of storing self, illustrated in the previous example, comes up in another
interesting situation. We would like to define the object-oriented natural numbers, that is, objects
that respond to the methods iszero (test for zero), pred (predecessor), and succ (successor), and
behave like the natural numbers.

We need to define only the numeral zero, since its succ method will generate all the other
numerals. Obviously, the numeral zero should answer true to the iszero question, and zero to the
pred question.

The succ method is not so easy to manufacture. When succ is invoked on zero, it should
modify zero so that it becomes one. That is, succ should modify self so that it answers false to the
iszero question, and zero to the pred question. Moreover, succ should be such that when invoked
again on numeral one, it produces an appropriate numeral two, etc. Hence, for any numeral, succ
should update iszero to answer false, and should update pred to return the self that is current when
succ is invoked.

zero @

[iszero = true,

 pred = ς(x) x

 succ = ς(x) (x.iszero := false).pred := x ]

Here the body of succ consists of two cascaded updates to self. We can verify, with a few tests, that
the operational semantics of natural numbers is well represented.

Instead of defining numbers with iszero, pred, and succ, we can define numbers with only two
methods: succ and case. This gives a simpler, although more opaque, encoding of the natural
numbers that does not depend on booleans:

Object-oriented numerals

zero @

[case = λ(z) λ(s) z,

 succ = ς(x) x.case := λ(z) λ(s) s(x) ]

The case method is in fact a field containing a function of two arguments. For a numeral n, the first
argument is returned if n is zero, otherwise the second argument is applied to the predecessor of n;
that is, n.case(a)(f) equals a if n is zero, and equals f(x) if n is nonzero and x is its predecessor. The
predecessor of n is obtained by the now familiar technique of capturing a previous self. We can
compute:

one     @     zero.succ =     [case = λ(z) λ(s) s(zero),  succ = (unchanged)]

two     @     one.succ =     [case = λ(z) λ(s) s(one),  succ = (unchanged)]

Moreover, we can recover the iszero and pred methods as functions:

iszero @ λ(n) n.case(true)(λ(p)false)

pred @ λ(n) n.case(zero)(λ(p)p)

In this example, as in the one in the previous section, current self and future self can be
statically nested and handled at once. Because of this, it is critical that self be a named parameter.
Providing a single keyword “self” in the scope of a method, as done in many object-oriented
languages, would not be sufficient.
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2.4.3  A Calculator

Our third example is that of a calculator object. We exploit the ability to override methods to
record the pending arithmetic operation. When an operation add or sub is entered, the equals
method is overridden with code for addition or subtraction. The first two components (arg, acc) are
needed for the internal operation of the calculator, while the other four (enter, add, sub, equals)
provide the user interface. A reset operation could be added to clear the state and restore the initial
equals method.

Calculator

calculator @

[arg = 0.0,

 acc = 0.0,

 enter = ς(s) λ(n) s.arg := n,

 add = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc+s’.arg,

 sub = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc-s’.arg,

 equals = ς(s) s.arg]

This definition is slightly subtle; it is meant to provide the following behavior:

calculator .enter(5.0) .equals = 5.0

calculator .enter(5.0) .sub .enter(3.5) .equals = 1.5

calculator .enter(5.0) .add .add .equals = 15.0

3.  First-Order Calculi
We now begin to investigate the type theory of the ς-calculus. We start with a simple first-

order type system with object types.
We compose our typed systems from formal system fragments (collected in the appendix).

Each fragment is named ∆s  for an appropriate subscript s. These fragments can be reassembled to
form standard typed calculi. Each fragment consists of a set of related rules. Each rule has a
number of antecedent judgments above a horizontal line and a single conclusion judgment below
the line. Each judgment has the form E ∫ ℑ , for a typing environment E and an assertion ℑ
depending on the judgment. An antecedent of the form “E,Ei ∫  ℑ i  Ó iÏ1..n” is intended as an
abbreviation for n antecedents “E,E1 ∫  ℑ 1 ... E,En ∫  ℑ n” if n>0, and if n=0 for “E ∫ Q”, which
means that E is well-formed. Instead, a rule containing “jÏ1..n” indicates that there are n separate
rules, one for each j. Each rule has a name whose first word is determined by the kind of judgment
in its conclusion; for example names of the form “(Type ... )” are for rules whose conclusion is a
type judgment.

3.1  The Object Fragment

We start with the formal system fragment corresponding to object types. An object of type
[li:Bi iÏ1..n] can be formed from a collection of n methods whose self parameters have type [li:Bi
iÏ1..n] and whose bodies have types B1 ... Bn. We always assume, when writing [li:Bi iÏ1..n], that the li

are distinct and that permutations do not matter. When a method li is invoked, it produces a result
having the corresponding type Bi. A method can be overridden while preserving the type of its host
object.

Two judgments are used below: type judgments E ∫ B (meaning that B is a well-formed type
in the environment E) and value judgments E ∫  b : B (meaning that b has type B in E).
Environments contain typing assumptions for variables.
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∆Ob

(Type Object)

E ∫ Bi      ÓiÏ1..n (li distinct)
——————

E ∫ [li:Bi iÏ1..n]

(Val Object) (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi      ÓiÏ1..n
—————————

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Override) (where  A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n]      jÏ1..n E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

Notation
¢¢¢¢        o.lj:=b stands for o.ljfiüς(y:A)b, for an appropriate A and yÌFV(b).

¢¢¢¢        [..., l=b, ...] stands for [..., l=ς(y:A)b, ...], for an appropriate A and yÌFV(b).

¢¢¢¢        [..., l,m:B, ...] stands for [..., l:B, m:B ...], in examples.

¢¢¢¢        We identify ς(x:A)b with ς(y:A)(b{x←y}), for any yÌFV(b).

The ς-bound variables have type annotations equal to the type of their host object. An object
type [li:Bi iÏ1..n] exhibits only the result types Bi of its methods: it does not explicitly list the types
of the ς-bound variables. The types of all these variables are equal to the object type itself, so no
information is missing. The definitions of free variables and substitution are similar to the ones in
section 2.1.

3.2  A Complete Calculus

We can obtain a well-rounded typed version of the ς-calculus by adding to ∆Ob two standard
fragments for variables and for a constant type. Furthermore, we can include a fragment for typed
λ-terms. In section 4.6 we deal with recursion.

The environment judgment E ∫ Q is used to construct well-formed environments for variables:

∆x

(Env ) (Env x) (Val x)

E ∫ A      xÌdom(E) E’,x:A,E” ∫ Q
—— ——————— ———–——

 ∫ Q E,x:A ∫ Q E’,x:A,E” ∫ x:A

The fragment ∆K introduces a ground type K.

∆K

(Type Const)

E ∫ Q
——

E ∫ K

Function types are described in the following fragment:



June 5, 1995   11:11 AM Page 15

∆→

(Type Arrow) (Val Fun) (Val Appl)

E ∫ A      E ∫ B E,x:A ∫ b : B E ∫ b : A→B      E ∫ a : A
————— ——————— —————————

E ∫ A→B E ∫ λ(x:A)b : A→B E ∫ b(a) : B

We now define the calculi:

Ob1 @@@@ ∆K ∪  ∆x ∪  ∆Ob the first-order typed ς-calculus

F1 @@@@ ∆K ∪  ∆x ∪  ∆→ the first-order typed λ-calculus

FOb1 @@@@ ∆K ∪  ∆x ∪  ∆→ ∪  ∆Ob the first-order typed λς-calculus

It may seem puzzling that no elements are given for the ground type K. The standard use for K
is as a starting point for building function types, such as a type of Church numerals
(K→K)→(K→K) [7]. A ground type is not strictly necessary as a starting point for building object
types, because the type [] is available. However, we include ∆K in Ob1 to simplify comparisons
with F1.

For the rest of section 3.2, we concentrate on Ob1, studying its basic properties.

3.2.1  Unique Types

The Ob1 calculus enjoys an important property: every term has a unique type.

Proposition 3.2.1-1 (Ob1 has unique types)
If E ∫ a : A and E ∫ a : A’ are derivable in Ob1, then A7A’.

M

The proof is a trivial induction on the derivation of E ∫ a : A, and extends to FOb1.
Unique typing is an obvious property for Ob1, but small perturbations of the rules do not

always preserve it. The property remains true if we omit the type annotation for override, by
adopting the rule:

(Val Override’) (where  A7[li:Bi iÏ1..n])

E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
————————————

E ∫ a.ljfiüς(x)b : A

However, it fails if we omit type annotations for object construction, by adopting the rule:

(Val Object’) (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi      ÓiÏ1..n
—————————

E ∫ [li=ς(xi)bi iÏ1..n] : A

For example, in the modified system, [l=ς(x)x.l] has type [l:A] for any A. Still, the convention of
omitting ς-binders entirely for methods that do not depend on self is innocuous. For example, [l=3]
has unique type [l:Int] if Int is the type of 3.

3.2.2  Subject Reduction

The weak reduction relation Òñ of section 2.1 can be extended to Ob1 terms. For this purpose,
we simply ignore and carry along any type information:

(Red Object)  (where v 7 [li=ς(xi:Ai)bi iÏ1..n])

—–——

∫ v Òñ v
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(Red Select)  (where v’ 7 [li=ς(xi:Ai)bi iÏ1..n])

∫ a Òñ v’      ∫ bj{xj←v’} Òñ v      jÏ1..n
——————————————

∫ a.lj Òñ v

(Red Override)

∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n]      j Ï 1..n
——————————————————

∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)-{j}]

In Ob1, reduction preserves types. Technically, we have the following subject reduction result.

Theorem 3.2.2-1 (Subject reduction for Ob1)

Let c be a closed term and v be a result, and assume ∫ c Òñ v. If  ∫ c : C then  ∫ v : C.

Proof
The proof is by induction on the derivation of ∫ c Òñ v.
(Red Object) This case is trivial, since c = v.
(Red Select) Suppose ∫ a.lj Òñ v because ∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] and ∫ bj{xj←[li=ς(xi:Ai)bi

iÏ1..n]} Òñ v. Assume that  ∫ a.lj : C. Then  ∫ a : A for some A of the form [lj:C, ...]. By
induction hypothesis, we have  ∫ [li=ς(xi:Ai)bi iÏ1..n] : A. This implies that all Ai equal A
and that , xj : A ∫  bj : C. By a standard substitution lemma, it follows that  ∫
bj{xj←[li=ς(xi:A)bi iÏ1..n]} : C. By induction hypothesis, we obtain  ∫ v : C.

(Red Override) Suppose ∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)-{j}] because ∫ a Òñ
[li=ς(xi:Ai)bi iÏ1..n]. Assume that  ∫ a.lj fiü ς(x:A)b : C. Then C equals A and  ∫ a : A. In
addition, since  ∫ a.lj fiü ς(x:A)b : A, we obtain also , x:A ∫ b : B, with A of the form
[lj:B,...]. By induction hypothesis, we have  ∫ [li=ς(xi:Ai)bi iÏ1..n] : A. This implies that A
must have the form [lj:B, li:Bi iÏ(1..n)-{j}]. It follows that Ai equals A and , xi:A ∫ bi:Bi for
all i. Thus,  ∫ [lj=ς(x:A)b, li=ς(xi:A)bi iÏ(1..n)-{j}] : A, that is,  ∫ [lj=ς(x:A)b, li=ς(xi:A)bi
iÏ(1..n)-{j}] : C.

M

The algorithm for reduction of section 2.1 is extended for type annotations:

Outcome([li=ς(xi:Ai)bi iÏ1..n]) @

[li=ς(xi:Ai)bi iÏ1..n]

Outcome(a.lj) @

let o = Outcome(a)

in if o is of the form [li=ς(xi:Ai)bi iÏ1..n] with j Ï 1..n

then Outcome(bj{xj←o})

else wrong

Outcome(a.lj fiü ς(x:A)b) @

let o = Outcome(a)

in if o is of the form [li=ς(xi:Ai)bi iÏ1..n] with j Ï 1..n

then [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)-{j}]

else wrong

We obtain:

Theorem 3.2.2-2 (Ob1 reductions cannot go wrong)
If  ∫ c : C and Outcome(c) is defined, then Outcome(c) ≠ wrong.

M
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The proof is by induction on the execution of Outcome(c), and is very similar to the proof of
Theorem 3.2.2-1.

These results show the soundness of Ob1 typing with respect to reduction. Their proof is a
good sanity check, and an introduction to similar arguments for more complex calculi. Subject
reduction properties can probably be obtained for all our calculi, but we will consider them only
for pure object calculi.

3.3  Equational Theory of Ob1

We now investigate the equational theory of the ∆Ob fragment, which was implicitly assumed
in some of the previous discussion. The equational theories for the other fragments are standard.
For simplicity, when assembling a calculus we list only the typing fragments. The corresponding
equational fragments are assumed from context since, at least in this paper, they are uniquely
determined.

We use a new judgment E ∫ b ↔ c : A to assert that b and c are equivalent when considered as
elements of type A. The first two rules for this new judgment express symmetry and transitivity;
reflexivity will be obtained as a derived rule.

∆=

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A      E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

In examples we assume equational rules for constants, but we do not present these rules
formally. There is an obvious rule for variables: a limited form of reflexivity.

∆=x

(Eq x)

E’,x:A,E” ∫ Q
———————

E’,x:A,E” ∫ x↔x : A

The first three rules for objects are congruence rules, establishing that two expressions are
equal when all their corresponding subexpressions are equal. The next two rules are evaluation
rules for selection and override, corresponding to the operational semantics of the untyped calculus
of section 2.1.

∆=Ob

(Eq Object) (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi ↔ bi’ : Bi     ÓiÏ1..n
————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n]  ↔  [li=ς(xi:A)bi’ iÏ1..n] : A

(Eq Select)

E ∫ a ↔ a’ : [li:Bi iÏ1..n]      jÏ1..n
———————————

E ∫ a.lj  ↔  a’.lj : Bj

(Eq Override) (where  A7[li:Bi iÏ1..n])

E ∫ a ↔ a’ : A      E, x:A ∫ b ↔ b’ : Bj     jÏ1..n
————————————————

E ∫ a.ljfiüς(x:A)b  ↔  a’.ljfiüς(x:A)b’ :  A
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(Eval Select) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A)bi iÏ1..n])

E ∫ a : A      jÏ1..n
——————–——

E ∫ a.lj  ↔  bj{xj←a} : Bj

(Eval Override) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A)bi iÏ1..n])

E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
————————————————————

E ∫ a.ljfiüς(x:A)b  ↔  [lj=ς(x:A)b, li=ς(xi:A)bi iÏ(1..n)-{j}] :  A

This small equational theory is already quite interesting. In record calculi we can safely
assume that two records are equal if they have the same labels and if all their corresponding
components are equal. This property does not hold for objects: two objects may yield equal result
for all their methods, and still be distinguishable. Consider the following objects:

A @ [x:Nat, f:Nat]

a:A @ [x=1, f=ς(s:A)1]

b:A @ [x=1, f=ς(s:A)s.x]

We might think that a and b are equal at type A because  ∫ a.x↔b.x : Nat and  ∫ a.f↔b.f : Nat.
But to prove their equality, the (Eq Object) rule requires showing , s:A ∫ 1 ↔  s.x : Nat. This
cannot be obtained because we have no assumptions about the value of self, in particular that s.x is
currently 1. In fact, self may change and invalidate this assumption about its value. For example, it
is possible to distinguish a from b after updating them both with equal values:

a’:A @ a.x:=2

b’:A @ b.x:=2

Now we have  ∫ a’.f↔1 : Nat while  ∫ b’.f↔2 : Nat, so asserting  ∫ a↔b : A would lead to a
contradiction.

This example illustrates a fundamental difference between the equational theories of object
calculi and record calculi, as well as a fundamental difficulty in reasoning about objects. Still, we
would like to say more about object equivalence than ∆=Ob allows. For example, we may wish to
determine that a and b above are interchangeable in contexts that read or modify only their x
components; that is, in contexts where a and b are considered as having type [x:Nat]. This equation
involves an implicitly or explicit assumption that a longer object belongs to a shorter type. We
examine this idea in section 4.

3.4  Functions as Objects

The Ob1 calculus is sufficient to encode F1, along the lines sketched in section 2.2. Hence,
FOb1 has a built-in redundancy, although a very convenient one. The translation from F1 to Ob1 is
shown below. Strictly speaking, this translation is defined on type derivations, but for simplicity
we write it as a translation of type-annotated λ-terms.

Translation of the first-order λ-calculus

ρ Ï Var → Ob1-term

(x) @ x

(ρ{y←a})(x) @ if x=y then a else ρ(x)

äã @ 

äE,x:Aã @ äEã,x:äAã
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äKã @ K

äA→Bã @ [arg:äAã, val:äBã]

äxAãρ @ ρ(x)

äbA→B(aA)ãρ @ 

(äbãρ.arg fiü ς(x:äA→Bã) äaãρ).val

for  x Ì FV(äaãρ)

äλ(x:A)bBãρ @
[arg = ς(x:äA→Bã) x.arg,

 val = ς(x:äA→Bã) äbãρ{x←x.arg}]

It is not difficult to verify that the translation maps valid derivations in F1 to valid derivations in
Ob1. Typed β-reduction is satisfied by this encoding, but typed η-reduction is not.

In what follows, we describe several extensions of F1 and Ob1. Consider a pair of extensions,
F* and Ob*. We say that Ob* can encode F* when there exists a translation mapping derivations of
F* that do not use the first-order η rule into derivations of Ob*. In this sense, Ob1 can encode F1.

In addition, Ob1 can encode an extension of F1 with a fixpoint operator fixA:(A→A)→A for
each A, in such a way that äfixA(f)ã = äf(fixA(f))ã. All we need is the fixpoint operator of section
2.3, which is typable within Ob1.

äfixAãρ @
[arg = ς(x:ä(A→A)→Aã) x.arg,

 val = ς(x:ä(A→A)→Aã) ((x.arg).arg := x.val).val]

Both äfixAãρ and the ς-bound variables of this term have type

ä(A→A)→Aã = [arg: [arg: äAã, val: äAã], val: äAã].

Ob1, unlike F1, is not normalizing; this is obvious from the definability of fixpoint operators.
In fact, there exist simple divergent terms. For example [l=ς(x:[l:[]])x.l].l is typable as follows:

 ∫ Q by (Env )

 ∫ [] by (Type Object) with n=0

 ∫ [l:[]] by (Type Object) with n=1

, x:[l:[]] ∫ Q by (Env x)

, x:[l:[]] ∫ x : [l:[]] by (Val x)

, x:[l:[]] ∫ x.l : [] by (Val Select)

 ∫ [l=ς(x:[l:[]])x.l] : [l:[]] by (Val Object) with n=1

 ∫ [l=ς(x[l:[]])x.l].l : [] by (Val Select)

4.  First-Order Calculi with Subsumption
A characteristic of object-oriented languages is that an object can emulate another object that

has fewer methods, since the former supports the entire protocol of the latter. Conversely, a context
that expects an object with a given method protocol can be filled with an object that has a more
extended protocol. We call this notion subsumption: an object can subsume another object that has
a more limited protocol.

No object calculus can fully justify its existence without some notion of subsumption. This
criticism should first be directed to FOb1, studied in section 3. We should notice that, in
accordance with the self-application semantics, there is no difficulty in adding to FOb1 a new
operation that extracts a method from an object and returns it as a function with parameter self.
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Without a good reason for ruling out this extraction operation, an object calculus would be just an
oddly restricted record calculus. As it happens, the idea of extracting a method from an object is
uncharacteristic of object-oriented languages and, as we shall see shortly, this is precisely because
this operation is fundamentally incompatible with the typing of subsumption.

To address this inadequacy, in this section we define a particular form of subsumption that is
induced by a subtyping relation between object types. An object that belongs to a given object type
also belongs to any supertype of that type, and can subsume objects in the supertype.

4.1  A Calculus with Subtyping

We begin with the basic rules of subtyping: reflexivity, transitivity, and subsumption. It is also
convenient to add a type constant, Top, that is a supertype of every type. The judgment E ∫ A <: B
asserts that A is a subtype of B in environment E.

∆<:

(Sub Refl) (Sub Trans) (Val Subsumption)

E ∫ A E ∫ A <: B      E ∫ B <: C E ∫ a : A      E ∫ A <: B
———— ————————— ————————

E ∫ A <: A E ∫ A <: C E ∫ a : B

(Type Top) (Sub Top)

E ∫ Q E ∫ A
——— —————

E ∫ Top E ∫ A <: Top

After these general preliminaries, we write the subtyping rules for function and object types:

∆<:→

(Sub Arrow)

E ∫ A’ <: A      E ∫ B <: B’
—————————

E ∫ A→B <: A’→B’

∆<:Ob

(Sub Object)

E ∫ Bi      ÓiÏ1..n+m (li distinct)
——————————

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

The subtyping rule for function types is the standard one. A function type A→B is
contravariant in its domain, so A→B<:A’→B requires A’<:A, and is covariant in its codomain, so
A→B<:A→B’ requires B<:B’.

The subtyping rule for objects allows a longer object type [li:Bi iÏ1..n+m] to be a subtype of a
shorter object type [li:Bi iÏ1..n]. Moreover, an object type is invariant in its component types: [li:Bi
iÏ1..n+m]<:[li:Bi’ iÏ1..n] requires Bi7Bi’ for all iÏ1..n. That is, object types are neither covariant nor
contravariant; in particular, [l:A→B] is neither covariant in B nor contravariant in A; this is
necessary for soundness (see section 4.5.1).

We define the calculi:

Ob1<: @@@@ Ob1 ∪  ∆<: ∪  ∆<:Ob

F1<: @@@@ F1 ∪  ∆<: ∪  ∆<:→

FOb1<: @@@@ FOb1 ∪  ∆<: ∪  ∆<:Ob ∪  ∆<:→



June 5, 1995   11:11 AM Page 21

Note that the translation of F1 into Ob1 does not extend to a corresponding translation of
F1<: into Ob1<: , because äA→Bã = [arg:äAã, val:äBã] is invariant in äAã and äBã . Hence, Ob1<: is
essentially a restricted version of FOb1<: with invariant function types. We can recover the
covariant/contravariant subtyping properties of function types in a pure object calculus by an
encoding based on bounded universal and existential types [3].

4.1.1  Minimum Types

With the addition of subsumption we have obviously lost the unique-types property of Ob1

(see section 3.2.1). However, a weaker property holds: every term of Ob1<: has a minimum type.
This property also holds for F1<:, and we believe that it holds for FOb1<:.

In order to prove the minimum-types property for Ob1<:, we consider a system MinOb1<:

obtained from Ob1<: by removing (Val Subsumption), and by modifying the (Val Object) and (Val
Override) rules as follows:

(Val Min Object) (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi’      E ∫ B’i <: Bi      ÓiÏ1..n
———————————————

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Min Override) (where  A7[li:Bi iÏ1..n])

E ∫ a : A’      E ∫ A’ <: A      E, x:A ∫ b : Bj’      E ∫ Bj’ <: Bj     jÏ1..n
————————————————————————

E ∫ a.ljfiüς(x:A)b : A

Typing in MinOb1<: is unique, as we show below. We can easily extract from MinOb1<: a
typechecking algorithm that, given an environment E and a term a, computes a type A such that
E ∫ a : A if one exists.

The next three propositions are proved by easy inductions on the derivations of E ∫ a : A.

Proposition 4.1.1-1 (MinOb1<: typings are Ob1<: typings)
If E ∫ a : A is derivable in MinOb1<:, then it is also derivable in Ob1<:.

M

Proposition 4.1.1-2 (MinOb1<: has unique types)
If E ∫ a : A and E ∫ a : A’ are derivable in MinOb1<:, then A7A’.

M

Proposition 4.1.1-3 (MinOb1<: has smaller types than Ob1<:)
If E ∫ a : A is derivable in Ob1<: then E ∫ a : A’ is derivable in MinOb1<: for some A’ such
that E ∫ A’<:A is derivable (in either system).

M

Proposition 4.1.1-4 (Ob1<: has minimum types)
In Ob1<:, if E ∫ a : A then there exists B such that E ∫ a : B and, for any A’, if  E ∫ a : A’ then
E ∫ B<:A’.

Proof
Assume E ∫ a : A. By Proposition 4.1.1-3, E ∫ a : B is derivable in MinOb1<: for some B such
that E ∫ B<:A. By Proposition 4.1.1-1, E ∫ a : B is also derivable in Ob1<:. If E ∫ a : A’, then
E ∫ a : B’ is also derivable in MinOb1<: for some B’ such that E ∫ B’<:A’. By Proposition
4.1.1-2, B7B’, so E ∫ B<:A’.

M
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Just like lack of annotations for ς-binders destroys the unique-types property for Ob1, it
destroys the minimum-types property for Ob1<:. For example, let:

A = [l: []]

A’ = [l: A]

a = [l = ς(x)[l = ς(x)[]]]

then:

 ∫ a:A    and     ∫ a:A’

but A and A’ have no common subtype. This example also shows that minimum typing is lost for
objects with fields (where the ς-binders are omitted entirely), since a can be written as [l = [l = []]]
with our conventions.

The term a.l:=[] typechecks using a:A but not using a:A’. Naive type inference algorithms
might find the type A’ for a, and fail to find any type for a.l:=[]. Thus, the absence of minimum
typings poses practical problems for type inference. Palsberg has described an ingenious type
inference algorithm that surmounts these problems [18].

In contrast, in Ob1<: (with annotations), [l=ς(x:A)[l=ς(x:A)[]]] : A and [l=ς(x:A’)[l=ς(x:A)[]]]
: A’ are minimum typings.

4.1.2  Subject Reduction

As in Ob1 (see section 3.2.2), typing and reduction are consistent in Ob1<:. We have a subject
reduction theorem:

Theorem 4.1.2-1 (Subject reduction for Ob1<:)
Let c be a closed term and v be a result, and assume ∫ c Òñ v. If  ∫ c : C then  ∫ v : C.

Proof
The proof is by induction on the derivation of ∫ c Òñ v.
(Red Object) This case is trivial, since c = v.
(Red Select) Suppose ∫ a.lj Òñ v because ∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] and ∫ bj{xj←[li=ς(xi:Ai)bi

iÏ1..n]} Òñ v. Assume that  ∫ a.lj: C. Then  ∫ a : A for some A of the form [lj:Bj, ...] with
 ∫ Bj <: C. By induction hypothesis, we have  ∫ [li=ς(xi:Ai)bi iÏ1..n] : A. This implies that
there exists A’ such that  ∫ A’ <: A, that all Ai equal A’, that  ∫ [li=ς(xi:A’)bi iÏ1..n] : A’,
and that , xj : A’ ∫  bj : Bj. By a standard substitution lemma, it follows that  ∫
bj{xj←[li=ς(xi:A’)bi iÏ1..n]} : Bj. By induction hypothesis, we obtain  ∫  v : Bj and, by
subsumption,  ∫ v : C.

(Red Override) Suppose ∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)-{j}] because ∫ a Òñ
[li=ς(xi:Ai)bi iÏ1..n]. Assume that  ∫ a.lj fiü ς(x:A)b: C. Then  ∫ a.lj fiü ς(x:A)b: A and  ∫
A <: C. In addition, since  ∫ a.lj fiü ς(x:A)b : A, we obtain also , x : A ∫ b : B, with A of
the form [lj:B,...]. By induction hypothesis, we have  ∫  [li=ς(xi:Ai)bi iÏ1..n] : A. This
implies that Aj has the form [lj:B, li:Bi iÏ(1..n)-{j}], that  ∫ Aj <: A, that Ai equals Aj, and
that , xi: Aj ∫ bi : Bi for all i. By a standard bound weakening lemma, it follows that ,
x:Aj ∫  b : B. Therefore,  ∫  [lj=ς(x:Aj)b, li=ς(xi:Aj)bi i Ï(1..n)-{j}] : Aj. We obtain  ∫
[lj=ς(x:Aj)b, li=ς(xi:Aj)bi iÏ(1..n)-{j}] : C by subsumption.

M

As in Ob1, the proof of subject reduction is simply a sanity check. It remains an easy proof,
with just one subtle point: notice that the proof would have failed if we had defined (Red Override)
so that ∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:A)b, li=ς(xi:Ai)bi iÏ(1..n)-{j}] with an A instead of an Aj in the
bound for x.

For the reduction algorithm, we still obtain:
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Theorem 4.1.2-2 (Ob1<: reductions cannot go wrong)
If  ∫ c : C and Outcome(c) is defined, then Outcome(c) ≠ wrong.

M

4.2  Programming in Ob1<:

Both Ob1<: and FOb1<: are fairly useful object calculi with subsumption, although they are
limited by the absence of recursive type definitions. In this section we show a simple example of
their use.

We begin by defining typed versions of one-dimensional and two-dimensional points:

Px @ [x:Real] one-dimensional points on the x axis

Py @ [y:Real] one-dimensional points on the y axis

Pxy @ [x,y:Real] two-dimensional points

We obtain a multiple-subtyping situation: Pxy <: Px and Pxy <: Py.
We can enrich this example with proper methods, by extending two-dimensional points with

polar coordinates:

Pxyrt @ [x,y,r,t: Real] two-dimensional points with redundant coordinates

p @ [x=0, y=1, r=ς(s:Pxyrt)sqrt(s.x^2+s.y^2), t=ς(s:Pxyrt)atan2(s.y,s.x)]

to-polar @ λ(o:Pxyrt)[x=ς(s:Pxyrt)cos(s.t)*s.r, y=ς(s:Pxyrt)sin(s.t)*s.r, r=o.r, t=o.t]

to-cart @ λ(o:Pxyrt)[x=o.x, y=o.y, r=ς(s:Pxyrt)sqrt(s.x^2+s.y^2),

t=ς(s:Pxyrt)atan2(s.y,s.x)]

In p the cartesian coordinates are primitive, and the polar coordinates are computed by methods.
The function to-polar maps a point to itself, except that the polar coordinates become primitive and
the cartesian coordinates become derived; to-cart works in the opposite direction. Thus, to-polar
and to-cart convert passive data to active computation, and vice versa.

We may want to calculate to-polar(p) before performing computations on p that are more
efficient in polar representation. However, from the point of view of computing a correct result,
there is no harm in not knowing which representation is primitive for a point, as long as we
maintain the invariant that the cartesian and the polar coordinates represent the same point.

Since Pxyrt <: Pxy we can pass a Pxyrt element q to a client that operates only with the cartesian
coordinates. If we pass to-cart(q) instead of q, we can be certain that client updates to x and y will
not break the representation invariant.

4.3  Classes and Inheritance

The object-oriented notions of class and inheritance are not explicit in our calculi. Here, we
discuss how these notions can be represented. Our discussion is rather informal and relies on
common object-oriented jargon. To avoid ambiguity, we call pre-methods those functions that
become methods once embedded into objects.

We take the point of view that “inheritance” means pre-method reuse, and that “classes” are
collections of interdependent reusable pre-methods. As in Modula-3 [17], we make methods
reusable by writing them first as functions (that is, as pre-methods), and then by repeatedly
embedding these functions into objects.

The key idea is that if A7[li:Bi iÏ1..n] is an object type, then:

Class(A)   @   [new:A, li:A→Bi iÏ1..n]

classA    @   [new=ς(c:Class(A)) [li=ς(s:A)c.li(s) iÏ1..n],  li=λ(s:A)bi{s} iÏ1..n]
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can be seen as a class type and a class. A class is an object that groups pre-methods together with a
“new” operation that generates instances. The pre-methods in a class are fields that can be
extracted and reused to form other classes. A type [li:A→Bi iÏ1..k], for k<n, can be seen as an
abstract-class type. An element of such a type must be completed with new and the missing pre-
methods before it can be instantiated.

We would like to say that a class Class(A) with more pre-methods inherits (or may inherit)
from a class Class(A’) with fewer pre-methods, possibly reusing some pre-methods of Class(A’).
However, it can be seen easily that A<:A’ does not imply Class(A)<:Class(A’). Therefore, we
define an ad-hoc inheritance relation ≤ on class types that captures the intuition of method reuse.
We set:

Class(A) ≤ Class(A’)  iff   A <: A’ (≤ means “may inherit from”)

where we must have A7[li:Bi iÏ1..n+m] and A’7[li:Bi iÏ1..n]. If Class(A) ≤ Class(A’), then A’→Bi <:
A→Bi, because of the contravariance of function types. Hence, pre-methods of c’:Class(A’) may
be reused in assembling c:Class(A), by subsumption.

Whenever c is defined by reassembling, extending, and modifying c’, we may informally say
that c is a subclass of c’. The multiple subtyping property, which holds for object types, induces
multiple inheritance on class types: a class can reuse pre-methods from any of its superclasses.

Some or all of the component of a class may be hidden by subsumption. The components that
are not hidden can be overridden; objects created from the resulting class will incorporate the
overridden methods.

4.4  Equational Theory of Ob1<:

We extend the equational theory of Ob1 to take subsumption into account. First, the following
equalities are associated with the ∆<: fragment:

∆=<:

(Eq Subsumption) (Eq Top)

E ∫ a ↔ a’ : A      E ∫ A <: B E ∫ a:A      E ∫ b:B
—————————— ———————

E ∫ a ↔ a’ : B E ∫ a ↔ b : Top

Still, this does not give us enough power to compare objects of different lengths (except as
members of Top). We remedy this by augmenting the ∆=Ob fragment from section 3.3 with the rule
(Eq Sub Object), which allows us to ignore methods that do not appear in the type of an object. At
the same time we generalize (Eval Select) and (Eval Override) to deal with objects and types of
different lengths:

∆=<:Ob

(Eq Sub Object) (where  A7[li:Bi iÏ1..n],  A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi   ÓiÏ1..n      E, xj:A’ ∫ bj : Bj   ÓjÏn+1..n+m
—————————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n]  ↔  [li=ς(xi:A’)bi iÏ1..n+m] : A

(Eval Select) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A      jÏ1..n
————————

E ∫ a.lj  ↔  bj{xj←a} : Bj
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(Eval Override) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
—————————————————————

E ∫ a.ljfiüς(x:A)b  ↔  [lj=ς(x:A’)b, li=ς(xi:A’)bi iÏ(1..n+m)-{j}] :  A

According to (Eq Sub Object) an object can be truncated to its externally visible collection of
methods, but only if those methods do not depend on the hidden ones.

In section 3.3 we saw that a and b below cannot be equal at type A:

A @ [x:Nat, f:Nat]

a:A @ [x=1, f=ς(s:A)1]

b:A @ [x=1, f=ς(s:A)s.x]

Using (Eq Sub Object) it is at least possible to show that a and b are equal at type [x:Nat], by
showing  ∫ a↔[x=1]:[x:Nat] and  ∫ b↔[x=1]:[x:Nat].

We can ask next whether a and b are equal at type [f:Nat]. This seems reasonable because the
only way to distinguish a and b is to update their x components, which are not exposed in [f:Nat].
However, we cannot apply (Eq Object) and (Eq Sub Object) because we would need to show ,
s:[f:Nat] ∫ 1 ↔ s.x : Nat. A stronger rule would be needed to show  ∫ a↔b:[f:Nat]; we leave this
for future work. We note for now that, unlike the rest of the equational theory, this new equation is
invalid in an imperative language, where somebody might hold a pointer to the whole object b and
modify x.

4.5  Objects Versus Records

We consider two natural but incorrect extensions of Ob1<:: covariant object types and method
extraction. Taken together, these two failed extensions show that, in a calculus with subsumption,
object typing is fundamentally different from record typing since both extensions are sound for
records. A third extension, elder, allows us to define a new version of a method in terms of the
previous one.

4.5.1  Covariant Object Types

The subtyping rule for object types should be compared with the analogous rule for cartesian
products. Object types are invariant in their components, while cartesian products are covariant in
both of their components. Similarly, record types Üli:Ai iÏ1..ná, which generalize cartesian products,
are covariant in all of their components.

It is natural to ask what happens if we allow object types to be covariant in their components.
Suppose we adopt the following more liberal subtyping rule for objects:

(Sub Object/covariant)

E ∫ Bi <: Bi’      E ∫ Bj      ÓiÏ1..n, jÏn+1..m (li distinct)
———————————————

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi’ iÏ1..n]

Then we can derive a contradiction. Assume PosReal<:Real and ln:PosReal→Real (the natural
logarithm). Define:

P @ [x:Real, f:Real] note that [x=1.0, f=ς(s:P)ln(s.x)] : P
is not derivable

Q @ [x:PosReal, f:Real] with Q <: P by (Sub Object/covariant)

a @ [x=1.0, f=ς(s:Q)ln(s.x)] we have a:Q (Val Object),
hence a:P (Val Subsumption)

b @ a.x:= -1.0 from a:P we have b:P (Val Override),
therefore b.f:Real
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Now we have   ∫  b.f ↔ ln(-1.0) : Real; we can derive a typing for a program that applies a
function to an argument outside its domain. Hence, the type system is unsound, as a direct
consequence of adding (Sub Object/covariant). The above example can be recast with other
nontrivial subtypings in place of PosReal<:Real, such as a subtyping between object types. Note
that the example involves simple field update, and does not require proper method override.

The basic reason for this problem is that each method relies on the types of the other methods,
through the type of self. This dependence is essentially contravariant, and hence is incompatible
with covariance.

4.5.2  Method Extraction

Let us now assume we have an operation for extracting a method from an object, as discussed
at the beginning of section 4:

(Val Extract) (where  A7[li:Bi iÏ1..n])

E ∫ a : A      jÏ1..n
——————

E ∫ a†lj : A→Bj

(Eval Extract) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A     jÏ1..n
——————————

E ∫ a†lj ↔ λ(xj:A)bj : A→Bj

Then we define:

P @ [x:Int, f:Int]

p @ [x=1, f=1] we have p:P (Val Object)

Q @ [x,y:Int, f:Int] we have Q <: P (Sub Object)

a @ [x=1, y=1, f=ς(s:Q)s.x+s.y] we have a:Q (Val Object),
hence also a:P (Val Subsumption)

b @ a†f we have b:P→Int (Val Extract),
with  ∫ b ↔ λ(s:P)s.x+s.y : P→Int
(Eval Extract)

Now we have  ∫ b(p) ↔ (λ(s:P)s.x+s.y)(p) ↔ p.x+p.y : Int, via (Eval Beta), but p does not have a
y component. If we change an A to A’ in the conclusion of (Eval Extract), which becomes E ∫ a†lj

↔ λ(xj:A’)bj : A→Bj, then the (Eval Beta) step is not even possible.
Hence, it is unsound to add the method extraction operation to FOb1<: (or to Ob1<: , with

encoded function types), although it is sound to add it to FOb1 (or to Ob1).

4.5.3  Elder

Although in general it is unsound to extract a method, it is sound to refer to the previous value
of a method in the course of an override. Just like the new value of a record field can be defined
from its old value, the new code for a method can reuse the overridden code. We write
a.ljfiüς(x:A,y:Bj)b for the result of overriding the lj method of a with ς(x:A,y:Bj)b; when lj is
invoked, x is self and y is the body of the old method. We call y elder.

We give only the type and evaluation rules for override with elder:

(Val Override with elder) (where  A7[li:Bi iÏ1..n])

E ∫ a : A      E, x:A, y:Bj ∫ b : Bj     jÏ1..n
——————————————

E ∫ a.ljfiüς(x:A,y:Bj)b : A
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(Eval Override with elder) (where  A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m], xjÌdom(E))

E ∫ a : A      E, x:A, y:Bj ∫ b : Bj     jÏ1..n
———————————————————————

E ∫ a.ljfiüς(x:A,y:Bj)b{x,y}  ↔  [lj=ς(xj:A’)b{xj,bj}, li=ς(xi:A’)bi iÏ(1..n+m)-{j}] : A

Override with elder could easily be implemented from method extraction. But, unlike method
extraction, override with elder is sound because we never apply the old method to an arbitrary
element of type A. The old method’s self remains bound to the object’s self, of type A’.

In a calculus like ours, with primitive objects but without primitive classes, this mechanism
provides a form of inheritance by reusing methods of existing objects in new objects. Consider, for
example, a two-dimensional point p with a draw method that produces a picture with the point in it.
This point would have the type Pxyd @ [x,y:Real, draw:Bitmap]. We may change the draw method
in order to invert the color of the picture, reusing the existing drawing code:
p.drawfiüς(s:Pxyd,e:Bitmap)invert(e).

For the sake of simplicity, we do not add elder to our core calculus. However, we think this
should be a useful construct in practice.

4.6  Recursion

In Ob1 and Ob1<: we can find typings for objects that use self, such as [l = ς(x:[l:[]]) x.l] of
type [l:[]]. However, we cannot find informative typings for objects whose methods return either
self or an updated self: this feature calls for the use of recursion. Therefore, we complete our first-
order system by adding rules for recursive types µ(X)A with explicit fold/unfold maps. To add
recursive types to a calculus with subtyping we need to introduce type variables with subtype
bounds in the environments. These bounded variables are needed in the rule for subtyping
recursive types [6]. We write E,X,E’ as an abbreviation for the environment E,X<:Top,E’.

∆<:X

(Env X<:) (Type X<:) (Sub X)

E ∫ A      XÌdom(E) E’,X<:A,E” ∫ Q E’,X<:A,E” ∫ Q
——————— —————— ———————

E,X<:A ∫ Q E’,X<:A,E” ∫ X E’,X<:A,E” ∫ X<:A

∆<:µ

(Type Rec<:) (Sub Rec)

E,X ∫ A E ∫ µ(X)A      E ∫ µ(Y)B      E,Y,X<:Y ∫ A<:B
———— ————————————————

E ∫ µ(X)A E ∫ µ(X)A <: µ(Y)B

(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
————————— ——————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}

∆=<:µ

(Eq Fold)

 E ∫ a ↔ a’ : A{X←µ(X)A}
——–—————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(X)A, a’) : µ(X)A
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(Eq Unfold)

E ∫ a ↔ a’ : µ(X)A
———————————————

E ∫ unfold(a) ↔ unfold(a’): A{X←µ(X)A}

(Eval Fold) (Eval Unfold)

E ∫ a : µ(X)A E ∫ a : A{X←µ(X)A}
————————————— ————————————————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}

The (Sub Rec) rule determines the variance behavior of recursive types. If A{X,Y} is
covariant in X, then the variance of Y in µ(X)A{X,Y} is the same as the variance of Y if A{X,Y}.
But if A{X,Y} is contravariant in X, then µ(X)A{X,Y} is always invariant in Y (because after
unfolding we obtain A{µ(X)A{X,Y},Y} with Y in positions of opposite variance). Similarly, if
A{X,Y} is invariant in X then µ(X)A{X,Y} is always invariant in Y.

We obtain the calculi:

Ob1<:µ @@@@ Ob1<: ∪  ∆<:X ∪  ∆<:µ

F1<:µ @@@@ F1<: ∪  ∆<:X ∪  ∆<:µ

FOb1<:µ @@@@ FOb1<: ∪  ∆<:X ∪  ∆<:µ

FOb1<:µ is the strongest system we consider in this paper, and Ob1<:µ is a rather mild restriction of
FOb1<:µ where only invariant function types can be encoded. FOb1<:µ can be shown sound by
denotational methods, as discussed in the introduction. We complete the paper by providing Ob1<:µ
typings for the untyped examples of section 2.4, and then by discussing the limitations of Ob1<:µ
(and FOb1<:µ).

4.7  Typing the Examples

We start with the typed version of the example from section 2.4.1. The type in question is:

Bk @ µ(X)[retrieve:X, backup:X, ...]

We obtain the following typed version of the code, where UBk @ [retrieve:Bk, backup:Bk, ...] is
the unfolding of Bk:

fold(Bk,

[ retrieve = ς(s1:UBk) fold(Bk, s1),

  backup = ς(s2:UBk) fold(Bk, s2.retrievefiüς(s1:UBk) fold(Bk, s2)),

  ...
])   :   Bk

If we now consider the types Point=[x,y:Int] and PointBk=µ(X)[retrieve:X, backup:X, x,y:Int], we
obtain PointBk <: Point modulo an unfolding. Thus, points with backup can subsume points.

Similar techniques can be used to type the calculator example from section 2.4.3:

Calc   =   µ(X)[arg,acc:Real, enter:Real→X, add,sub:X, equals:Real]

Furthermore, we would like to obtain inclusions such as Calc <: µ(X)[enter:Real→X, add,sub:X,
equals:Real], which would allow us to hide the implementation details of a calculator. Such
inclusions are the subject of the next section.

The example of the numerals of section 2.4.2 requires some additions to our first-order type
system. One possibility is second-order types [3]. A simpler, first-order alternative is sum types, if
we are prepared to rephrase the example. We add a type construction A+B, with operations
inlAB:A→(A+B), inrAB:B→(A+B), and ifABC: (A+B)→(A→C)→(B→C)→C). Informally, A+B is
the disjoint union of A and B, inlAB and inrAB are the obvious injections, and ifABC is used to
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examine elements of A+B returning elements of C. (From now on we omit the subscripts.) For
convenience, we also add a type Unit with a constant unit:Unit. The numerals can be expressed
using sums as follows:

Nat @ µ(X) [case: Unit+X, succ: X]

zero @

fold(Nat,

  [case = inl(unit),

   succ = ς(x:[case:Unit+Nat, succ:Nat]) fold(Nat, x.case := inr(fold(Nat, x)))]

iszero @ λ(n:Nat) if(unfold(n).case)(λ(u:Unit) true)(λ(p:Nat) false)

pred @ λ(n:Nat) if(unfold(n).case)(λ(u:Unit) zero)(λ (p:Nat) p)

Although this code looks quite different from that of section 2.4.2, the two versions are related by a
type isomorphism.

4.8  The Shortcomings of Ob1<:µ

The Ob1<:µ calculus looks very promising because it adds subtyping to a rich first-order
theory. In addition to the examples in the previous section, we can use Ob1<:µ to write types of
movable points:

P1 @ µ(X)[x:Int, mv_x:Int→X] movable one-dimensional points

P2 @ µ(X)[x,y:Int, mv_x,mv_y:Int→X] movable two-dimensional  points

We would expect to obtain P2 <: P1. However, this is not provable, because the invariance of
object types blocks the application of (Sub Rec) to the result type of mv_x.

Moreover, if we somehow allow P2<:P1, we obtain an inconsistency. Briefly, suppose we use
subsumption from p:P2 to p:P1, and then override the mv_x method of p with one that returns a
proper element of P1. Then, some other method of p may go wrong because it assumes that mv_x
produces an element of P2. More precisely, let us define:

UP1 @ [x:Int, mv_x:Int→P1] (the unfolding of P1)

UP2 @ [x,y:Int, mv_x,mv_y:Int→P2] (the unfolding of P2)

p2 : P2 @

fold(P2,

[x=ς(s2:UP2)unfold(s2.mv_x(1)).y, 

 y=0,

 mv_x=ς(s2:UP2)λ(dx:Int)fold(P2,s2), 

 mv_y=ς(s2:UP2)λ(dy:Int)fold(P2,s2)])

p1 : P1 @ fold(P1, [x=0,  mv_x=ς(s1:UP1)λ(dx:Int)fold(P1,s1)])

p : P1 @ p2 (retyping p2 using the assumption

P2<:P1)

q : P1 @ fold(P1, unfold(p).mv_x := λ(dx:Int)p1)

We have:
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unfold(q).x

    ↔    (unfold(p2).mv_x := λ(dx:Int)p1).x

    ↔    [x=ς(s2:UP2)unfold(s2.mv_x(1)).y, y=..., mv_x=λ(dx:Int)p1, mv_y=...].x

    ↔    unfold(p1).y

But unfold(p1) does not have a y component.
As we have just seen, the failure of P2<:P1 is necessary. At the same time, it is unacceptable:

in the common situation where a method returns an updated self, we lose all useful subsumption
relations. The situation is less severe in imperative languages, where the mv_x method could be
redefined to side-effect the host point and return nothing. Then, the type of the modified method
would not depend on the type of self, and P1 and P2 would not be recursive. Even in imperative
languages, though, we often find methods that, like mv_x, allocate new objects of the type of self
and return them.

In many programming languages, such as Simula-67 and Modula-3, the failure of P2<:P1 is
avoided by not allowing a subclass to change the type of a method of a superclass. For example, in
our calculus, we could define mv_x to return P1 even when embedded in P2:

P1 @ µ(X)[x:Int, mv_x:Int→X]

P2’ @ µ(X)[x,y:Int, mv_x:Int→P1, mv_y:Int→X]

UP1 @ [x:Int, mv_x:Int→P1] (the unfolding of P1)

UP2’ @ [x,y:Int, mv_x:Int→P1, mv_y:Int→P2’] (the unfolding of P2’)

Then we have UP2’ <: UP1, so we can at least convert every point p:P2’ to a point fold(P1, -
unfold(p)) of type P1. It is possible to strengthen the type theory to identify recursive types up to
isomorphism, as in [6]; then we can obtain directly P2’<:P1. Whenever we invoke mv_x on an
element of P2’, though, we “forget” its second dimension. For this kind of solution to be useful,
Simula-67 and Modula-3, among other languages, provide dynamic testing of membership in a
subtype of a given type, so that the forgotten information can be recovered. In our example, we
would test for membership in the subtype P2’ of P1.

Hence, following the approach of common object-oriented languages, we could reasonably
add dynamic types [5] to Ob1<:µ, and abandon the notion of truly static typing of subsumption. In
[3] and [4] we describe alternative solutions that preserve static typing; these involve second-order
constructs.

5.  Related Work
We briefly review the most closely related work. There are other studies of objects that we do

not discuss; in particular, several based on more or less satisfactory encodings, e.g., [10, 19].
Some ideas in our treatment of objects originated in the study of Baby Modula-3. That

language resembles FOb1<:µ in power, although the syntactic details of the two languages are
incomparable. For example, Baby Modula-3 includes a limited form of object extension, and its
operational semantics has a rather strict evaluation strategy.

Bruce’s TOOPL language [8] has built-in objects, and supports a form of subsumption that is
obtained via two distinct subtype relations. The TOOPL semantics is based on generators, and
hence distinguishes between objects and object generators (classes).

Our paper is also closely related in spirit, if not in detail, to that of Mitchell et al. [15, 16]. We
take the same approach of defining an untyped calculus with override, based on self-application
semantics, and then looking for relevant type systems. The most significant difference in outcome
is that we are able to support subtyping and subsumption, along with override. In this, we have
been helped by basing our calculus on fixed-size objects. On the other hand, open-ended extensible
objects [11, 15] provide a more direct modeling of method inheritance.
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6.  Conclusions
Instead of reducing objects to more primitive concepts, we tried to capture the expected

properties of objects, studying typing rules and equational theories. We developed an expressive
object notation, sufficient to encode λ-calculi and to write interesting examples. We obtained an
integration of subsumption and method override that has eluded formalization attempts based on
encodings.

Our equational theory of objects accounts for subsumption and method override. Although the
equational theory is simple and possibly incomplete, no similar theory seems to exist in the
literature.

Second-order theories can be defined by extending our first-order theories with standard
second-order constructs. Further work describes the second-order theories, where some
deficiencies of first-order systems are remedied with an account of “Self types”, and shows their
soundness using a denotational semantics [2, 3].
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Appendix A:  Objects Fragments
These are the typing and equality rules for first-order objects.

∆Ob

(Type Object)   (li distinct)

E ∫ Bi      ÓiÏ1..n
——————

E ∫ [li:Bi iÏ1..n]

(Val Object)   (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi      ÓiÏ1..n
—————————

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Override)   (where  A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n]      jÏ1..n E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

∆<:Ob

(Sub Object)   (li distinct)

E ∫ Bi      ÓiÏ1..n+m
——————————

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

∆=Ob

(Eq Object)   (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi ↔ bi’ : Bi   ÓiÏ1..n
—————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n]  ↔  [li=ς(xi:A)bi’ iÏ1..n] : A

(Eq Select) (Eq Override)   (where  A7[li:Bi iÏ1..n])

E ∫ a ↔ a’ : [li:Bi iÏ1..n]      jÏ1..n E ∫ a ↔ a’ : A      E, x:A ∫ b ↔ b’ : Bj     jÏ1..n
——————————— ————————————————

E ∫ a.lj  ↔  a’.lj : Bj E ∫ a.ljfiüς(x:A)b  ↔  a’.ljfiüς(x:A)b’ :  A

(Eval Select) (Eval Override)   (in both:  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A)bi

iÏ1..n+m])

E ∫ a : A      jÏ1..n E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
—————————————————————————————
—

E ∫ a.lj  ↔  bj{xj←a} : Bj E ∫ a.ljfiüς(x:A)b  ↔  [li=ς(xi:A)bi iÏ(1..n+m)-{j}, lj=ς(x:A)b] :  A

∆=<:Ob

(Eq Sub Object)   (where  A7[li:Bi iÏ1..n],  A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi   ÓiÏ1..n      E, xj:A’ ∫ bj : Bj   ÓjÏn+1..n+m
——————————–——————————

E ∫ [li=ς(xi:A)bi iÏ1..n]  ↔  [li=ς(xi:A’)bi iÏ1..n+m] : A
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Appendix B:  Other Typing Fragments

∆x

(Env ) (Env x) (Val x)

E ∫ A      xÌdom(E) E’,x:A,E” ∫ Q
—— ——————— ———–——

 ∫ Q E,x:A ∫ Q E’,x:A,E” ∫ x:A

∆K

(Type Const)

E ∫ Q
——

E ∫ K

∆→

(Type Arrow) (Val Fun) (Val Appl)

E ∫ A      E ∫ B E,x:A ∫ b : B E ∫ b : A→B      E ∫ a : A
————— ——————— —————————

E ∫ A→B E ∫ λ(x:A)b : A→B E ∫ b(a) : B

∆<:

(Sub Refl) (Sub Trans) (Val Subsumption)

E ∫ A E ∫ A <: B      E ∫ B <: C E ∫ a : A      E ∫ A <: B
———— ————————— ————————

E ∫ A <: A E ∫ A <: C E ∫ a : B

(Type Top) (Sub Top)

E ∫ Q E ∫ A
——— —————

E ∫ Top E ∫ A <: Top

∆<:→

(Sub Arrow)

E ∫ A’ <: A      E ∫ B <: B’
—————————

E ∫ A→B <: A’→B’

∆<:X

(Env X<:) (Type X<:) (Sub X)

E ∫ A      XÌdom(E) E’,X<:A,E” ∫ Q E’,X<:A,E” ∫ Q
——————— —————— ———————

E,X<:A ∫ Q E’,X<:A,E” ∫ X E’,X<:A,E” ∫ X<:A

∆<:µ

(Type Rec<:) (Sub Rec)

E,X<:Top ∫ A E ∫ µ(X)A      E ∫ µ(Y)B      E,Y<:Top,X<:Y ∫ A<:B
————— ——————————————————

E ∫ µ(X)A E ∫ µ(X)A <: µ(Y)B
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(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
————————— ——————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}

Appendix C:  Other Equational Fragments

∆=

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A      E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

∆=x

(Eq x)

E’,x:A,E” ∫ Q
———————

E’,x:A,E” ∫ x↔x : A

∆=K

(Eq Const)

kÏOp(Ki iÏ1..n+1)      E ∫ ai ↔ ai’ : Ki     ÓiÏ1..n
————————————————

E ∫ k(ai iÏ1..n) ↔ k(ai’ iÏ1..n) : Kn+1

∆=→

(Eq Fun) (Eq Appl)

E,x:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : A→B    E ∫ a ↔ a’ : A
——————————— ————————————

E ∫ λ(x:A)b ↔ λ(x:A)b’ : A→B E ∫ b(a) ↔ b’(a’) : B

(Eval Beta) (Eval Eta)

E ∫ λ(x:A)b : A→B      E ∫ a : A E ∫ b : A→B      xÌdom(E)
————————–——— —––————————

E ∫ (λ(x:A)b)(a)  ↔  b{x←a} : B E ∫ λ(x:A)b(x)  ↔  b : A→B

∆=<:

(Eq Subsumption) (Eq Top)

E ∫ a ↔ a’ : A      E ∫ A <: B E ∫ a:A      E ∫ b:B
—————————— ———————

E ∫ a ↔ a’ : B E ∫ a ↔ b : Top

∆=<:µ

(Eq Fold)

 E ∫ a ↔ a’ : A{X←µ(X)A}
——–—————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(X)A, a’) : µ(X)A
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(Eq Unfold)

E ∫ a ↔ a’ : µ(X)A
———————————————

E ∫ unfold(a) ↔ unfold(a’): A{X←µ(X)A}

(Eval Fold) (Eval Unfold)

E ∫ a : µ(X)A E ∫ a : A{X←µ(X)A}
————————————— ————————————————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}
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