

Wednesday, January 31, 1996, 12:20 pm

1

Abstract.

We develop an imperative calculus of objects. Its main type con-
structor is the one for object types, which incorporate variance annotations
and Self types. A subtyping relation between object types supports object
subsumption. The type system for objects relies on unusual but beneficial as-
sumptions about the possible subtypes of an object type. With the addition of
polymorphism, the calculus can express classes and inheritance.

1 Introduction

Object calculi are formalisms at the same level of abstraction as

λ

-calculi, but based
exclusively on objects rather than functions. Unlike

λ

-calculi, object calculi are de-
signed specifically for clarifying features of object-oriented languages. There is a wide
spectrum of relevant object calculi, just as there is a wide spectrum of

λ

-calculi. One can
investigate untyped, simply-typed, and polymorphic calculi, as well as functional and
imperative calculi.

In object calculi, as in

λ

-calculi, a small untyped kernel is enriched with derived
constructions and with increasingly sophisticated type systems, until language fea-
tures can be realistically modeled. The compactness of the initial kernel gives concep-
tual unity to the calculi, and enables formal analysis.

In this paper we introduce a tiny but expressive imperative calculus. It provides a
minimal setting in which to study the imperative operational semantics and the deli-
cate typing rules of practical object-oriented languages. The calculus comprises objects,
method invocation, method update, object cloning, and local definitions. In a quest for
minimality, we take objects to be just collections of methods. Fields are important too,
but they can be seen as a derived concept; for example a field can be viewed as a meth-
od that does not use its self parameter. In our calculus, methods are themselves muta-
ble, so we can dispense with fields.

The main type constructor of our calculus is the one for object types; an object type
is a list of method names and method result types. A subtyping relation between object
types supports object subsumption, which allows an object to be used where an object
with fewer methods is expected. Variance annotations enable flexible subtyping and
protection from side effects.

The object type constructor incorporates a notion of Self types. Intuitively, Self is
the partially unknown type of the self parameter of each method. Several object-orient-
ed languages have included it in their type systems [23, 27], sometimes with unsound
rules [16]. Therefore, it seems important to have a precise understanding of Self. Un-
fortunately, it has proven hard to reduce Self to more primitive and well-understood

An Imperative Object Calculus

Mart�n Abadi and Luca Cardelli

Digital Equipment Corporation, Systems Research Center

2

Wednesday, January 31, 1996, 12:20 pm

notions (see [3, 7, 24] for recent progress). We aim to provide a satisfactory treatment
of Self by taking it as primitive and axiomatizing its desired properties.

The treatment of Self types relies on assumptions about the possible subtypes of
object types. These assumptions are operationally sound, but would not hold in natural
semantic models. We show the necessity of these assumptions in finding satisfactory
typings for programs involving Self types.

We consider also bounded type quantifiers for polymorphism. Taken together, ob-
jects with imperative features, object types, and polymorphism form a realistic kernel
for a programming language. Using these primitives, we account for classes, subclass-
es, inheritance, method and field specialization in subclasses, parametric method up-
date, and protection from external updates.

We prove the consistency of our rules using a subject-reduction approach. Our
technique is an extension of HarperÕs [19], using closures and stacks instead of formal
substitutions. This approach yields a manageable proof for a realistic implementation
strategy.

A few other object formalisms have been defined and studied. Many of these rely
on purely functional models, with an emphasis on types [1, 7, 11, 13, 20, 24, 25, 26, 32].
Others deal with imperative features in the context of concurrency; see for example
[34]. The works most closely related to ours are that of Eifrig

et al.

 on LOOP [18] and
that of Bruce

et al.

 on PolyTOIL [9]. LOOP and PolyTOIL are typed, imperative, object-
oriented languages with procedures, objects, and classes. PolyTOIL takes procedures,
objects, and classes as primitive, with fairly complex rules. LOOP is translated into a
somewhat simpler calculus. Our calculus is centered on objects; procedures and classes
can be defined from them. Despite these differences, we all share the goal of modeling
imperative object-oriented languages by precise semantic structures and sound type
systems.

This paper is self-contained, but continues our work of [2, 3, 4, 5]. The most appar-
ent novelties are the imperative features, the variance annotations, the treatment of Self
types, and the representation of classes and inheritance. The new typing features led
us to prefer syntactic proof techniques over denotational methods.

In section 2 we give the untyped term syntax of our calculus and its operational
semantics. In section 3 we present object types. In section 4 we add bounded universal
quantifiers. In section 5 we discuss soundness. In section 6 we consider the typing of
some critical examples, and provide a representation of classes and method inherit-
ance.

2 An Untyped Imperative Calculus

We begin with the syntax of an untyped imperative calculus. The initial syntax is
minimal, but in sections 2.2, 2.3, and 6.2 we show how to express convenient constructs
such as fields, procedures, and classes. We omit how to encode basic data types and
control structures, which can be treated much as in [4]. In section 2.5 we give an oper-
ational semantics.

Wednesday, January 31, 1996, 12:20 pm

3

2.1 Syntax and Informal Semantics

The evaluation of terms is based on an imperative operational semantics with a
store, and generally proceeds deterministically from left to right. The letter

ς

 (sigma) is
a binder; it delays evaluation of the term to its right.

Syntax of terms

An object is a collection of components

l

i

=

ς

(

x

i

)

b

i

, for distinct labels

l

i

 and associated
methods

ς

(

x

i

)

b

i

; the order of these components does not matter, even for our determin-
istic operational semantics. Each binder

ς

 binds the self parameter of a method;

ς

(

x

)

b

 is
a method with self variable

x

 and body

b

.
A method invocation

a

.

l

 results in the evaluation of

a

, followed by the evaluation
of the body of the method named

l

, with the value of

a

 bound to the self variable of the
method.

A cloning operation

clone

(

a

) produces a new object with the same labels as

a

, with
each component sharing the methods of the corresponding component of

a

.
The method update construct,

a

.

l

fiü

(

y

,

z

=

c

)

ς

(

x

)

b

, is best understood by first looking
at the special case

a

.

l

fiü

ς

(

x

)

b

. This simple method update construct evaluates

a

, replaces
the method named

l

 with the new method

ς

(

x

)

b

, and returns the modified object. The
general form of method update adds the ability to evaluate a term at the time of the up-
date, and to use the result of the evaluation later when the updated method is invoked.
The construct

a

.

l

fiü

(

y

,

z

=

c

)

ς

(

x

)

b

 first evaluates

a

 and binds its value to

y

, then evaluates

c

and binds its value to

z

, and finally updates the

l

 method of

y

 and returns the modified
object. The variable

y

 may occur in

c

 and

b

, and the variables

z

 and

x

 may occur in

b

.
After the update, when the method

l

 is invoked,

y

 still points to the value of

a

, and

x

points to the current self. In general, the current self and the value of

a

 need not coin-
cide; for example the current self may be a clone of

a

, as in

clone

(

a

.

l

fiü

(

y

,

z

=

c

)

ς

(

x

)

b

).

l

.
In an untyped calculus, the construct

a

.

l

fiü

(

y

,

z

=

c

)

ς

(

x

)

b

 can be expressed in terms of

let

 and simple method update, as

let

y

 =

a

in

let

z

 =

c

in

y

.

l

fiü

ς

(x)b. However, the construct
a.lfiü(y,z=c)ς(x)b yields better typings, as shown in section 6.1.

Conversely, simple method update, let, and sequencing are definable from method
update:

a,b ::=
x
[li=ς(xi)bi iÏ1..n]
a.l
a.lfiü(y,z=c)ς(x)b
clone(a)

term
variable
object (li distinct)
method invocation
method update
cloning

a.lfiüς(x)b @ a.lfiü(y,z=y)ς(x)b where y,z Ì FV(b)

let x = a in b @ ([val = ς(y)y.val].valfiü(z,x=a)ς(w)b).val
where y,z,w Ì FV(b) and z Ì FV(a)

a ; b @ let x = a in b where x Ì FV(b)

4 Wednesday, January 31, 1996, 12:20 pm

2.2 Fields

In our calculus, every component of an object contains a method. However, we can
encode fields with eagerly evaluated contents. We write [li=bi iÏ1..n, lj=ς(xj)bj jÏ1..m] for an
object where li=bi are fields and lj=ς(xj)bj are methods. We also write a.l:=b for field up-
date, and a.l, as before, for field selection. We abbreviate:

Field notation

The semantics of an object with fields may depend on the order of its components, be-
cause of side-effects in computing contents of fields. The encoding specifies an evalua-
tion order.

When fields and methods are identified, as in our calculus, it is trivial to convert
one into the other, conceptually turning passive data into active computation and vice
versa. Thus, we use somewhat interchangeably the names selection and invocation.

The hiding of fields from public view has been widely advocated as a means of
concealing representation choices, and thereby allowing flexibility in implementation.
Identifying fields with methods confers much of the same flexibility, by turning all
fields into methods that access a hidden representation.

The unification of fields with methods has also the advantage of simplicity. Both
objects and object operations assume a uniform structure. In contrast, the separation of
fields from methods induces a corresponding separation of object operations, and
leads to the implicit or explicit splitting of objects into two components. Unifying fields
with methods gives more compact and therefore more elegant calculi.

This unification, however, has one debatable consequence. The natural operation
on methods is method invocation, and the natural operations on fields are field selec-
tion and field update. By unifying fields with methods, we can collapse field selection
and method invocation into a single operation. To complete the unification, though, we
are forced to generalize field update to method update.

The reliance on method update is one of the most unusual aspects of our formal
treatment. This operation is not normally found in programming languages, with some
exceptions (for example: Beta [22], Obliq [12]). Method update can be seen as a form of
dynamic inheritance [31], which is a feature found in object-based languages [10] but
not yet in class-based languages. Like other forms of dynamic inheritance, method up-
date supports the dynamic modification of object behavior allowing objects, in a sense,
to change their class dynamically. Thus, method update gives us an edge in modeling
object-based constructions, in addition to allowing us to model the more traditional
class-based constructions where fields and methods are sharply separated.

[li=bi iÏ1..n, lj=ς(xj)bj jÏ1..m] @
let y1=b1 in ... let yn=bn in [li=ς(y0)yi iÏ1..n, lj=ς(xj)bj jÏ1..m]

for yi Ì FV(bi iÏ1..n, bj jÏ1..m), with yi distinct for iÏ0..n

a.l:=b @
a.lfiü(y,z=b)ς(x)z

for y Ì FV(b), with x,y,z distinct

Wednesday, January 31, 1996, 12:20 pm 5

A further justification for method update can be found in the desire to tame dy-
namic inheritance. Dynamic inheritance has potentially unpredictable effects, due to
the updating of shared state. These concerns have led to the search for better-behaved,
restricted, dynamic inheritance mechanisms [29]. Method update is one of these better-
behaved mechanisms; it is statically typeable, and can be used to emulate the mode-
switching applications of dynamic inheritance [15]. With method update we avoid
some dangerous aspects of dynamic inheritance [17, 29], while maintaining its dynam-
ic specialization aspects [28].

2.3 Procedures

Our object calculus is so minimal that it does not include procedures, but these can
be expressed too. To illustrate this point, we consider informally an imperative call-by-
value λ-calculus that includes abstraction, application, and assignment to λ-bound
variables. For example, assuming arithmetic primitives, (λ(x) x:=x+1)(3) is a term yield-
ing 4. We translate this λ-calculus into our object calculus:

Translation of procedures

In the translation, an environment ρ maps each variable x either to x.arg if x is λ-bound,
or to x if x is a free variable. A λ-abstraction is translated to an object with an arg com-
ponent, for storing the argument, and a val method, for executing the body. The arg
component is initially set to a divergent method, and is filled with an argument upon
procedure call. A call activates the val method that can then access the argument
through self as x.arg. An assignment x:=a updates x.arg, where the argument is stored
(assuming that x is λ-bound). A procedure needs to be cloned when it is called; the
clone provides a fresh location in which to store the argument of the call, preventing
interference with other calls of the same procedure. Such interference would derail re-
cursive invocations.

2.4 A Small Example

We give a trivial example as a notation drill. We use fields, procedures, and bool-
eans in defining a memory cell with get, set, and dup (duplicate) components:

äxãρ @ ρ(x) if xÏdom(ρ), and x otherwise

äx:=aãρ @ x.arg:=äaãρ

äλ(x)bãρ @ [arg = ς(x)x.arg, val = ς(x)äbãρ{x←x.arg}]

äb(a)ãρ @ (clone(äbãρ).arg:=äaãρ).val

let m = [get = false, set = ς(self) λ(b) self.get:=b, dup = ς(self) clone(self)]
in m.set(true); m.get

yields true

6 Wednesday, January 31, 1996, 12:20 pm

2.5 Operational Semantics

We now give an operational semantics for the basic calculus of section 2.1; the se-
mantics relates terms to results in a global store. Object terms reduce to object results
[li=ι i iÏ1..n] consisting of sequences of store locations, one location for each object com-
ponent. In order to stay close to standard implementation techniques, we avoid using
formal substitutions during reduction: we describe a semantics based on stacks and
closures. A stack S associates variables with results; a closure Üς(x)b,Sá is a pair of a
method and a stack that is used for the reduction of the method body. A store σ maps
locations ι to method closures; we write stores in the form ι i÷ïñÜς(xi)bi,Siá iÏ1..n. We let
σ.ιóï◊m denote the result of writing m in the ι location of σ.

The operational semantics is expressed in terms of a relation that relates a store σ,
a stack S, a term b, a result v, and another store σÕ. This relation is written
σ°S ∫ b Òñ v°σÕ, and it means that with the store σ and the stack S, the term b reduces to
a result v, yielding an updated store σÕ; the stack does not change.

Notation

Well-formed store judgment: σ ∫ Q

Well-formed stack judgment: σ°S ∫ Q

ι
v ::= [li=ι i iÏ1..n]
σ ::= ι i÷ïñÜς(xi)bi,Siá iÏ1..n

S ::= xi÷ïñvi iÏ1..n

store location (e.g., an integer)
object result(li distinct)
store(ι i distinct)
stack (xi distinct)

(Store )

 ∫ Q

(Store ι)
σ°S ∫ Q ιÌdom(σ)

σ, ι ÷ïñÜς(x)b,Sá ∫ Q

(Stack )

σ ∫ Q

σ° ∫ Q

(Stack x) (li,ι i distinct)

σ°S ∫ Q ι iÏdom(σ) xÌdom(S) ÓiÏ1..n

σ ° S, x÷ïñ[li=ι i iÏ1..n] ∫ Q

Wednesday, January 31, 1996, 12:20 pm 7

Term reduction judgment: σ°S ∫ a Òñ v°σÕ

A variable reduces to the result it denotes in the current stack. An object reduces to a
result consisting of a fresh collection of locations; the store is extended to associate
method closures to those locations. A selection operation a.lj first reduces the object a
to a result, then activates the appropriate method closure. An update operation
a.ljfiü(y,z=c)ς(x)b first reduces the object a to the final result; next, with y bound to that
result, it reduces the term c to another result; finally, it updates the appropriate store
location with a closure consisting of the new method ς(x)b and a stack binding y and z.
A clone operation reduces its object to a result; then it allocates a fresh collection of lo-
cations that are associated to the existing method closures from the object.

We illustrate method update, and the creation of loops through the store, by the
reduction of the term [l=ς(x)x.l:=x].l, that is, [l=ς(x)x.lfiü(y,z=x)ς(w)z].l:

The store σ contains a loop, because it maps the index 0 to a closure that binds the vari-
able z to a value that contains index 0. Hence, an attempt to read out the result of
[l=ς(x)x.l:=x].l by ÒinliningÓ the store and stack mappings would produce the infinite
term [l=ς(w)[l=ς(w)[l=ς(w)...]]].

(Red x)

σ ° SÕ,x÷ïñv,SÓ ∫ Q

σ ° SÕ,x÷ïñv,SÓ ∫ x Òñ v°σ

(Red Object) (li, ι i distinct)

σ°S ∫ Q ι iÌdom(σ) ÓiÏ1..n

σ°S ∫ [li=ς(xi)bi iÏ1..n] Òñ [li=ι i iÏ1..n] ° (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n)

(Red Select)

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ σÕ(ι j)=Üς(xj)bj,SÕá xjÌdom(SÕ) jÏ1..n
σÕ ° SÕ, xj÷ïñ[li=ι i iÏ1..n] ∫ bj Òñ v°σÓ

σ°S ∫ a.lj Òñ v°σÓ

(Red Update)

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ ι jÏdom(σÕ) jÏ1..n
σÕ°S, y÷ïñ[li=ι i iÏ1..n] ∫ c Òñ v°σÓ

σ°S ∫ a.ljfiü(y,z=c)ς(x)b Òñ [li=ι i iÏ1..n] ° σÓ.ι jóï◊Üς(x)b, (S, y÷ïñ[li=ι i iÏ1..n], z÷ïñv)á

(Red Clone) (ι iÕ distinct)

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ ι iÏdom(σÕ) ι iÕÌdom(σÕ) ÓiÏ1..n

σ°S ∫ clone(a) Òñ [li=ι iÕ iÏ1..n] ° (σÕ, ι iÕ÷ïñσÕ(ι i) iÏ1..n)

° ∫ [l=ς(x)x.lfiü(y,z=x)ς(w)z].l Òñ [l=0]°σ
where σ 7 0÷ïñÜς(w)z, (x÷ïñ[l=0], y÷ïñ[l=0], z÷ïñ[l=0])á

8 Wednesday, January 31, 1996, 12:20 pm

3 Typing
In this section we develop a type system for the calculus of section 2. We have the

following syntax of types:

Syntax of types

Let A 7 Obj(X)[liυi:Bi{X} iÏ1..n]. The notation Bi{X} indicates that X may occur free in
Bi. The binder Obj binds a Self type named X, which is known to be a subtype of A.
Then A is the type of those objects with methods named li iÏ1..n having self parameters
of type X, and with corresponding result types Bi{X}. The type X may occur only cova-
riantly in the result types Bi. This covariance requirement is necessary for the sound-
ness of our rules; covariance is defined precisely below.

Each υi is a variance annotation; it is one of the symbols Ð, o, and +, for contravari-
ance, invariance, and covariance, respectively. Covariant components allow covariant
subtyping, but prevent update. Symmetrically, contravariant components allow con-
travariant subtyping, but prevent invocation. Invariant components can be both in-
voked and updated; by subtyping, they can be regarded as either covariant or
contravariant. Therefore, variance annotations support flexible subtyping and a form
of protection.

The rules for our object calculus are given next. The first three groups of rules con-
cern typing environments, types, and the subtyping relation. The final group concerns
typing of terms: there is one rule for each construct in the calculus; in addition, a sub-
sumption rule connects term typing with subtyping. In the rules, a premise of the form
ÒE,Ei ∫ ℑ i ÓiÏ1..nÓ is an abbreviation for n premises ÒE,E1 ∫ ℑ 1 ... E,En ∫ ℑ nÓ if n>0, and
if n=0 for ÒE ∫ QÓ, which means that E is well-formed. Instead, ÒjÏ1..nÓ in the premise
indicates that there are n separate rules, one for each j.

Well-formed environment judgment: E ∫ Q

Well-formed type judgment: E ∫ A

Formally, B{X+} indicates that X occurs only covariantly in B; that is, either B is a

A,B ::=
X
Top
Obj(X)[liυi:Bi{X} iÏ1..n]

type
type variable
the biggest type
object type (υi Ï {Ð,o,+}, li distinct)

(Env ) (Env x) (Env X<:)

E ∫ A xÌdom(E) E ∫ A XÌdom(E)

 ∫ Q E,x:A ∫ Q E,X<:A ∫ Q

(Type X<:) (Type Top) (Type Object) (li distinct, υiÏ{o,Ð,+})

EÕ,X<:A,EÓ ∫ Q E ∫ Q E,X<:Top ∫ Bi{X+} ÓiÏ1..n

EÕ,X<:A,EÓ ∫ X E ∫ Top E ∫ Obj(X)[liυi:Bi{X} iÏ1..n]

Wednesday, January 31, 1996, 12:20 pm 9

variable (possibly X), or B7Top, or B7Obj(Y)[liυi:Bi iÏ1..n] and either Y7X or for each υi7
+

we have Bi{X+}, for each υi7
Ð we have Bi{XÐ}, and for each υi7

o we have XÌFV(Bi). Sim-
ilarly, B{XÐ} indicates that X occurs only contravariantly in B; that is, either B is a vari-
able different from X, or B7Top, or B7Obj(Y)[liυi:Bi iÏ1..n] and either Y7X or for each υi7

+

we have Bi{XÐ}, for each υi7
Ð we have Bi{X+}, and for each υi7

o we have XÌFV(Bi).
The formation rule for object types (Type Object) requires that all the component

types be covariant in Self. According to the definition of covariant occurrences, more
than one Self type may be active in a given context, as in the type Obj(X)[lo:
Obj(Y)[m+:X, no:Y]].

By convention, any omitted υÕs are taken to be equal to o. We regard a simple object
type [li:Bi iÏ1..n] (as defined in [4]) as an abbreviation for Obj(X)[lio:Bi iÏ1..n], where X does
not appear in any Bi.

We denote by BYAZ the result of substituting A for X in B{X}, where X is clear from
context.

Subtyping judgments: E ∫ A <: B, E ∫ υ A <: υÕ B

The subtyping rule for object types (Sub Object) says, to a first approximation, that
a longer object type on the left is a subtype of a shorter one on the right. The anteced-
ents operate under the assumption that Self is a subtype of the longer type.

Because of the variance annotations we use an auxiliary judgment, E ∫ υ B <: υÕ BÕ,
for inclusion of components with variance. The rules say:

¥ (Sub Object) Components that occur both on the left and on the right are han-
dled by the other three rules. For components that occur only on the left, the
component types must be well-formed.

¥ (Sub Invariant) An invariant component on the right requires an identical one
on the left.

¥ (Sub Covariant) A covariant component type on the right can be a supertype of
a corresponding component type on the left, either covariant or invariant. Intu-
itively, an invariant component can be regarded as covariant.

¥ (Sub Contravariant) A contravariant component type on the right can be a sub-

(Sub Refl) (Sub Trans) (Sub Top) (Sub X)

E ∫ A E ∫ A <: B E ∫ B <: C E ∫ A EÕ,X<:A,EÓ ∫ Q

E ∫ A <: A E ∫ A <: C E ∫ A <: Top EÕ,X<:A,EÓ ∫ X<:A

(Sub Object) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n+m], AÕ 7 Obj(X)[liυiÕ:BiÕ{X} iÏ1..n])

E ∫ A E ∫ AÕ E,Y<:A ∫ υi BiYYZ <: υiÕ BiÕYYZ ÓiÏ1..n

E ∫ A <: AÕ

(Sub Invariant) (Sub Covariant) (Sub Contravariant)

E ∫ B E ∫ B <: BÕ υÏ{o,+} E ∫ BÕ <: B υÏ{o,Ð}

E ∫ o B <: o B E ∫ υ B <: + BÕ E ∫ υ B <: Ð BÕ

10 Wednesday, January 31, 1996, 12:20 pm

type of a corresponding component type on the left, either contravariant or in-
variant. Intuitively, an invariant component can be regarded as contravariant.

The type Obj(X)[...] can be viewed as a recursive type, but with differences in sub-
typing that are crucial for object-oriented applications. The subtyping rule for object
types (Sub Object), with all components invariant, would read:

An analogous rule would be unsound with recursive types instead of Self types [6].

Term typing judgment: E ∫ a : A

The typing rules are largely the same ones we would have for a functional calculus;
the main novelty is the construct for method update. Because of the eager evaluation
associated with imperative semantics, there is a need for a mechanism to express se-
quential evaluation. We have considered using let for this purpose, but we prefer to use
our general form of method update; see section 6.1.

To preserve soundness, the rules for selection and update are restricted: selection
cannot operate on contravariant components, while update cannot operate on covari-
ant components.

A remarkable aspect of our type system is that the rules (Val Select), (Val Update),
and (Val Clone) are based on structural assumptions about the universe of types (cf.

E,X<:Top ∫ Bi{X+} ÓiÏ1..n+m

E ∫ Obj(X)[li:Bi{X} iÏ1..n+m] <: Obj(X)[li:Bi{X} iÏ1..n]

(Val Subsumption) (Val x)

E ∫ a : A E ∫ A <: B EÕ,x:A,EÓ ∫ Q

E ∫ a : B EÕ,x:A,EÓ ∫ x:A

(Val Object) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])

E, xi:A ∫ bi : BiYAZ ÓiÏ1..n

E ∫ [li=ς(xi)bi iÏ1..n] : A

(Val Select) (where AÕ 7 Obj(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A E ∫ A<:AÕ υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Update) (where AÕ 7 Obj(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A E ∫ A<:AÕ E, Y<:A, y:Y ∫ c : C
E, Y<:A, y:Y, z:C, x:Y ∫ b : BjYYZ υjÏ{o,Ð} jÏ1..n

E ∫ a.ljfiü(y,z=c)ς(x)b : A

(Val Clone) (where AÕ 7 Obj(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A E ∫ A<:AÕ

E ∫ clone(a) : A

Wednesday, January 31, 1996, 12:21 pm 11

[3]). These assumptions are operationally valid, but would not hold in natural semantic
models. For example, the update rule implies that if x:X and X<:AÕ where AÕ is a given
object type with an invariant component l:B, then we may update l in x with a term b
of type B yielding an updated object of type X, and not just AÕ. This rule is based on the
assumption that any X<:AÕ is closed under updating of l with elements of B. The clo-
sure property holds in a model only if any subtype of AÕ allows the result of l to be any
element of B. Intuitively, this condition may fail because a subtype of AÕ may be a sub-
set with l:BÕ for BÕ strictly included in B. Operationally, the closure property holds be-
cause any possible instance of X in the course of a computation is a closed object type
that, being a subtype of AÕ, has a component l of type exactly B.

Rules based on structural assumptions (structural rules, for short) are critical for
Self types; they are required for typing programs satisfactorily. Structural rules allow
methods to act parametrically over any X<:AÕ, where X is the Self type and AÕ is a given
object type. In section 6 we demonstrate the power of structural rules by examples, and
by our representation of classes and inheritance. We can prove that structural rules are
sound for our operational semantics (see section 5).

4 Self and Polymorphism
Self types produce an expressive type system, sufficient for interesting examples.

However, this type system still lacks facilities for type parameterization. Type param-
eterization has useful interactions with objects; in particular, it supports method reuse
and inheritance, as we show in section 6. To allow for parameterization, we add bound-
ed universal quantifiers [14].

First we extend the syntax of terms. We add two new forms. We write λ()b for a
type abstraction and a() for a type application. In typed calculi, it is common to find
λ(X<:A)b and a(A) instead. However, we are already committed to an untyped opera-
tional semantics, so we strip the types from those terms. Technically, we adopt λ()b, in-
stead of dropping λ() altogether, in order to distinguish the elements of quantified
types from those of object types. The distinction greatly simplifies case analysis in
proofs.

Additional syntax of terms

This choice of syntax affects the operational semantics. In particular, a closure
Üλ()b,Sá, consisting of a type abstraction and a stack, is a result:

a,b ::=
. . .
λ()b
a()

term
(as before)
type abstraction
type application

12 Wednesday, January 31, 1996, 12:21 pm

Additional results

We add two rules to the operational semantics. According to these rules, evalua-
tion stops at type abstractions and is triggered again by type applications. This is a sen-
sible semantics of polymorphism, particularly in presence of side-effects.

Additional term reductions

The typing rules for bounded universal quantifiers are:

Additional typing rules

The variance of quantifiers, implied by (Sub All), is the usual one: Ó(X<:A)B is contra-
variant in the bound (A) and covariant in the body (B).

5 Soundness
We show the type soundness of our operational semantics, using an approach sim-

ilar to subject reduction. Our technique for proving typing soundness is an extension
of HarperÕs [19], but using closures and stacks instead of formal substitutions (see [21,
30, 33] for related techniques). This approach yields a manageable proof for a realistic
implementation strategy, and deals easily with typing rules that seem hard to justify
denotationally. Our soundness result covers subtyping and polymorphism in the pres-
ence of side-effects. The proof is an extension of the one given in [5] for an imperative
object calculus with a simpler type structure.

v ::=
. . .
Üλ()b,Sá

result
(as before)
type abstraction result

(Red Fun2)

σ°S ∫ Q

σ°S ∫ λ()b Òñ Üλ()b,Sá°σ

(Red Appl2)

σ°S ∫ a Òñ Üλ()b,SÕá°σÕ σÕ°SÕ ∫ b Òñ v°σÓ

σ°S ∫ a() Òñ v°σÓ

(Type All<:) (Sub All)

E,X<:A ∫ B E ∫ AÕ <: A E,X<:AÕ ∫ B <: BÕ

E ∫ Ó(X<:A)B E ∫ Ó(X<:A)B <: Ó(X<:AÕ)BÕ

(Val Fun2<:) (Val Appl2<:)

E,X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ AÕ<:A

E ∫ λ()b : Ó(X<:A)B E ∫ b() : BYAÕZ

Wednesday, January 31, 1996, 12:21 pm 13

5.1 Basic Notions

The typing of results with respect to stores is delicate. We would not be able to de-
termine the type of a result by examining its substructures recursively, including the
ones accessed through the store, because stores may contain loops. Store types, intro-
duced next, allow us to type results independently of particular stores. This is possible
because type-sound computations do not store results of different types in the same lo-
cation. In this section we give an overview of store types and other notions necessary
for the proof of subject reduction.

A store type Σ associates a method type to each store location. A method type has
the form:

The type of the self argument for a method of method type M is Obj(X)[liυi:Bi{X} iÏ1..n],
and its result type is BjYObj(X)[liυi:Bi{X} iÏ1..n]Z. The index j on the right of ⇒ determines
the choice of Bj{X}.

Using store types we can introduce a judgment for typing results:

This means that the result v has type A with respect to the store type Σ. The locations
contained in v are assigned types in Σ.

Since in the operational semantics a result is interpreted in a store, we need to con-
nect stores and store types; we use a judgment to express that a store is compatible with
a store type:

Checking this judgment reduces to checking that the contents of every store location
has the type determined by the store type for that location. Since locations contain clo-
sures, we need to determine when a closure has a method type. For this, it is sufficient
to check that a stack is compatible with an environment; the environment is then used
to type the method. To match a stack with an environment, we need to account for the
type variables present in the environment; for this purpose we introduce a type stack.
A type stack T is an association of type variables to types, of the form Xi÷ïñAi iÏ1..n where
Ai are closed types. We write:

to mean that the stack S and the type stack T together are compatible with the environ-
ment E in Σ. The judgment Σ ª S°T : E is defined via the result typing judgment, which
we have already discussed.

5.2 Typings with Stores

We now present the typing rules for the judgments described informally in the
previous section.

M 7 Obj(X)[liυi:Bi{X} iÏ1..n]⇒ j

Σ ª v : A

Σ ª σ

Σ ª S°T : E

14 Wednesday, January 31, 1996, 12:21 pm

Store types

Type stacks

Well-formed method type judgment: ª M Ï Meth (M closed)

Well-formed store type judgment: Σ ª Q

Result typing judgment: Σ ª v : A (A closed)

M ::= Obj(X)[liυi:Bi{X} iÏ1..n]⇒ j method type (jÏ1..n)

Σ ::= ι i÷ïñMi iÏ1..n

Σ1(ι) @ Obj(X)[liυi:Bi{X} iÏ1..n]
Σ2(A,ι) @ BjYAZ

store type (ι i distinct)
if Σ(ι) = Obj(X)[liυi:Bi{X} iÏ1..n]⇒ j
if Σ(ι) = Obj(X)[liυi:Bi{X} iÏ1..n]⇒ j

T 7 Xi÷ïñAi iÏ1..n type stack (Ai closed types)

Q{←T} @ Q substitution in Q

A{←T} @ A{Xi←Ai iÏ1..n} substitution in a type

(AÕ<:A){←T} @ (AÕ{←T})<:(A{←T}) substitution in a subtyping assertion

(υAÕ<:υAÕ){←T} @ υ(AÕ{←T})<:υ(A{←T}) substitution in a subtyping assertion
(with variance annotations)

(a:A){←T} @ a:(A{←T}) substitution in a typing assertion

{←T} @ 
(E,x:A){←T} @ E{←T},x:A{←T}
(E,X<:A){←T} @ E{←T}
(E,X<:A){←T} @ E{←T},X<:A{←T}

substitution in an environment

if XÏdom(T)
if XÌdom(T)

(Method Type) (li distinct, υiÏ{o,Ð,+})

,X<:Top ∫ Bi{X+} jÏ1..n

ª Obj(X)[liυi:Bi{X} iÏ1..n]⇒ j Ï Meth

(Store Type) (ι i distinct)

ª Mi Ï Meth ÓiÏ1..n

ι i÷ïñMi iÏ1..n ª Q

(Result Object)

Σ ª Q Σ1(ι i) 7 Obj(X)[liυi:Σ2(X,ι i) iÏ1..n] ÓiÏ1..n

Σ ª [li=ι i iÏ1..n] : Obj(X)[liυi:Σ2(X,ι i) iÏ1..n]

(Result Fun2<:)

Σ ª S° : E E, X<:A ∫ b : B{X}

Σ ª Üλ()b,Sá : Ó(X<:A)B{X}

Wednesday, January 31, 1996, 12:21 pm 15

Stack typing judgment: Σ ª S°T : E (dom(S)∪ dom(T)=dom(E); rng(T) closed)

Store typing judgment: Σ ª σ

The rule (Store Typing) deals with each closure with respect to the whole store, ac-
counting for cycles in the store.

Type stacks are not included in closures along with stacks; this preserves the un-
typed character of the operational semantics. Note, in particular, that (Store Typing)
deals with an empty type stack. Substitutions A{←T} must be applied appropriately, as
shown in (Stack x Typing) and (Stack X Typing).

5.3 Proof of Subject Reduction

In preparation for the subject reduction theorem, we state a few lemmas, without
proof.

The first lemma analyzes the possible forms of a type C that is a supertype of an
object type CÕ. According to this lemma, either C is Top or C is itself an object type, and
in the latter case the component types of C are subtypes or supertypes of the corre-
sponding component types of CÕ:

Lemma 5-1
If CÕ 7 Obj(X)[liυiÕ:BiÕ{X} iÏI] and E ∫ CÕ<:C then either C 7 Top,
or C 7 Obj(X)[liυi:Bi{X} iÏJ] with J⊆ I, and, for jÏJ we have:

(1) if υjÏ{o,+} then υjÕÏ{o,+} and E, X<:CÕ ∫ BjÕ{X} <: Bj{X},
(2) if υjÏ{o,Ð} then υjÕÏ{o,Ð} and E, X<:CÕ ∫ Bj{X} <: BjÕ{X}.
M

The second lemma is analogous, but concerns types of the form Ó(X<:A)B:

(Stack  Typing)

Σ ª Q

Σ ª ° : 

(Stack x Typing)

Σ ª S°T : E Σ ª v : A{←T} xÌdom(E)

Σ ª (S,x÷ïñv)°T : E,x:A

(Stack X Typing)

Σ ª S°T : E  ∫ B <: A{←T} XÌdom(E)

Σ ª S°(T,X÷ïñB) : E,X<:A

(Store Typing)

Σ ª Si° : Ei Ei, xi:Σ1(ι i) ∫ bi : Σ2(Σ1(ι i),ι i) ÓiÏ1..n

Σ ª ι i÷ïñÜς(xi)bi,Siá iÏ1..n

16 Wednesday, January 31, 1996, 12:21 pm

Lemma 5-2
If CÕ 7 Ó(X<:AÕ)BÕ and E ∫ CÕ <: C then either C 7 Top,
or C 7 Ó(X<:A)B with E ∫ A <: AÕ and E, X<:A ∫ BÕ <: B.

M

The proofs of both of these lemmas are by simple inductions on subtyping derivations.
The third lemma establishes that the syntactic criterion for covariance is a suffi-

cient condition for covariant behavior:

Lemma 5-3 (Variance)
Assume B{X+}.
If E, X<:A ∫ B{X} and E ∫ C1 <: C2 and E ∫ C2 <: A then E ∫ BYC1Z <: BYC2Z.

M

The proof of this lemma is fairly lengthy, but not surprising; one must prove by induc-
tion a stronger claim, dealing with more general environments and with both covariant
and contravariant occurrences.

The fourth lemma collects several standard properties with routine proofs. The
first one is a substitution property. The second one says that the provability of judg-
ments other than typing judgments does not depend on typing assumptions; for exam-
ple, it says that if , x:A ∫AÕ<:AÓ then  ∫AÕ<:AÓ. The third and the fourth properties
say that a type A can be replaced with a subtype AÕ in an environment. Throughout, ℑ
ranges over assertions of the forms Q, B, BÕ <: B, υÕBÕ <: υB, and b:B.

Lemma 5-4
(1) If EÕ,X<:A,EÓ{X} ∫ ℑ {X} and EÕ ∫ AÕ <: A then EÕ,EÓYAÕZ ∫ ℑ YAÕZ.
(2) If EÕ,x:A,EÓ ∫ ℑ then EÕ,EÓ ∫ ℑ for ℑ not of the form b:B.
(3) If EÕ,X<:A,EÓ ∫ ℑ and E ∫ AÕ<:A then EÕ,X<:AÕ,EÓ ∫ ℑ .
(4) If EÕ,x:A,EÓ ∫ ℑ and E ∫ AÕ<:A then EÕ,x:AÕ,EÓ ∫ ℑ .
M

The fifth lemma also deals with substitutions, this time of the form {←T}:

Lemma 5-5
Assume that Σ ª S°T : E, then:

(1) XÏdom(E) if and only if XÏdom(T).
(2) Σ ª S° : E{←T}.
(3) If E,EÕ ∫ ℑ then (E,EÕ){←T} ∫ ℑ {←T}.
M

By Lemma 5-5(3), if Σ ª S°T : E and E,EÕ ∫ ℑ then (E,EÕ){←T} ∫ ℑ {←T}. By Lemma 5-5(1),
Σ ª S°T : E implies that E{←T} has no type variables; therefore, if ℑ {←T} is not of the
form b:B then , EÕ{←T} ∫ ℑ {←T} by Lemma 5-4(2). The proof of the subject reduction
theorem will use Lemmas 5-5(3) and 5-4(2) in this fashion several times.

We say that ΣÕ is an extension of Σ (and write ΣÕ * Σ) if dom(Σ) ⊆ dom(ΣÕ) and for all
ιÏdom(Σ), ΣÕ(ι) = Σ(ι). The final lemma says that ΣÕ shares some of the properties of Σ.

Wednesday, January 31, 1996, 12:21 pm 17

Lemma 5-6
If Σ ª S°T : E and ΣÕ ª Q with ΣÕ * Σ, then ΣÕ ª S°T : E.
If Σ ª a : A and ΣÕ ª Q with ΣÕ * Σ, then ΣÕ ª a : A.

M

The two parts of the lemma are proved by a joint induction on the derivations of Σ ª
S°T : E and Σ ª a : A.

The subject reduction theorem is:

Theorem 5-7 (Subject reduction)
If E ∫ a : A ∧ σ°S ∫ a Òñ v°σ ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E
then there exist a closed type A and a store type Σ such that:
Σ * Σ ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª v : A ∧  ∫ A <: A{←T}.

Proof

By induction on the derivation of σ°S ∫ a Òñ v°σ .

Case (Red x)

By hypothesis, E ∫ x : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E where S 7
SÕ,x÷ïñ[li=ι i iÏ1..n],SÓ. Since E ∫ x : A, we must have E 7 EÕ,x:AÕ,EÓ for some AÕ such
that EÕ ∫ AÕ and E ∫ AÕ<:A. Then, by Lemmas 5-5(3) and 5-4(2),  ∫ AÕ{←T}<:A{←T}.

Now, Σ ª S°T : E must have been derived from Σ ª (SÕ,x÷ïñ[li=ι i iÏ1..n])°TÕ : EÕ,x:AÕ, for
some prefix TÕ of T, and therefore Σ ª [li=ι i iÏ1..n] : AÕ{←TÕ}. Take A 7 AÕ{←TÕ} by
(Stack x Typing). We have AÕ{←TÕ} 7 AÕ{←T}, because the free variables of AÕ are
included in dom(EÕ), and hence in dom(TÕ) by Lemma 5-5(1), and hence A 7

AÕ{←T}. Take Σ 7 Σ.

We conclude Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª [li=ι i iÏ1..n] : A ∧  ∫ A <: A{←T}.

Case (Red Object) (li, ι i distinct)

By hypothesis, E ∫ [li=ς(xi)bi iÏ1..n] : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E. Since
E ∫ [li=ς(xi)bi iÏ1..n] : A, we must have E ∫ [li=ς(xi)bi iÏ1..n] : Obj(X)[liυi:Bi{X} iÏ1..n] by
(Val Object), for some type Obj(X)[liυi:Bi{X} iÏ1..n] such that E ∫ Obj(X)[liυi:Bi{X} iÏ1..n]
<: A. Therefore, E, xi:Obj(X)[liυi:Bi{X} iÏ1..n] ∫ bi : BiYObj(X)[liυi:Bi{X} iÏ1..n]Z for iÏ1..n.

Since we have E ∫ Obj(X)[liυi:Bi{X} iÏ1..n] <: A, we must also have E ∫

Obj(X)[liυi:Bi{X} iÏ1..n], and therefore E,X<:Top ∫ Bi{X+} for iÏ1..n and XÌdom(E).
Since XÌdom(E), we have XÌdom(T) by Lemma 5-5(1). Hence ,X<:Top ∫ Bi{X}{←T}
by Lemmas 5-5(3) and 5-4(2). Take A 7 Obj(X)[liυi:Bi{X} iÏ1..n]{←T}. Therefore, since
A 7 Obj(X)[liυi:Bi{X}{←T} iÏ1..n] and ,X<:Top ∫ Bi{X}{←T}, (Method Type) yields ª

σ ° SÕ,x÷ïñ[li=ι i iÏ1..n],SÓ ∫ Q

σ ° SÕ,x÷ïñ[li=ι i iÏ1..n],SÓ ∫ x Òñ [li=ι i iÏ1..n]°σ

σ°S ∫ Q ι iÌdom(σ) ÓiÏ1..n

σ°S ∫ [li=ς(xi)bi iÏ1..n] Òñ [li=ι i iÏ1..n] ° (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n)

18 Wednesday, January 31, 1996, 12:21 pm

A ⇒ j Ï Meth for jÏ1..n.

Take Σ 7 Σ, ι j÷ïñ(A ⇒ j) jÏ1..n ; by (Store Type) we have Σ ª Q, because the ι jÌdom(σ),
and hence ι jÌdom(Σ), and because ª A ⇒ j Ï Meth for jÏ1..n.

(1) Since Σ is an extension of Σ, we also have Σ ª S°T : E by Lemma 5-6, so Σ ª S°

: E{←T} by Lemma 5-5(2). From E, xi:Obj(X)[liυi:Bi{X} iÏ1..n] ∫ bi : BiYObj(X)[liυi:Bi{X}
iÏ1..n]Z we have E{←T}, xi:A ∫ bi : Bi{←T}YA Z by Lemma 5-5(3), that is, E{←T},
xi:Σ

1(ι i) ∫ bi : Σ
2(Σ

1(ι i),ι i).

(2) We have that σ has the shape εk÷ïñÜς(xk)bk,Ská kÏ1..m. Now, Σ ª σ must come from the
(Store Typing) rule, with Σ ª Sk° : Ek and Ek, xk:Σ1(εk) ∫ bk : Σ2(Σ1(εk),εk). By Lemma
5-6, Σ ª Sk° : Ek; moreover Ek, xk:Σ

1(εk) ∫ bk : Σ
2(Σ

1(εk),εk), because Σ (εk)=Σ(εk) for
kÏ1..m since dom(σ) = dom(Σ) = {εk kÏ1..m} and Σ extends Σ.

By (1) and (2), via the (Store Typing) rule, we have Σ ª (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n). Since
Σ ª Q and Σ 7 Σ, ι j÷ïñ(A ⇒ j) jÏ1..n, by the (Result Object) rule, we have Σ ª [li=ι i iÏ1..n]
: A .

We conclude that Σ * Σ ∧ Σ ª (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n) ∧ dom(σ, ι i÷ïñÜς(xi)bi,Sá
iÏ1..n)=dom(Σ) ∧ Σ ª [li=ι i iÏ1..n] : A ∧  ∫ A <: A{←T}.

Case (Red Select)

By hypothesis E ∫ a.lj : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E.

Since E ∫ a.lj : A, we must have E ∫ a.lj : BjYCZ by (Val Select), with E ∫ BjYCZ <: A,
and E ∫ a : C and E ∫ C <: D where D has the form Obj(X)[ljυj:Bj{X}, ...] and υjÏ{o,+}.

By induction hypothesis, since E ∫ a : C ∧ σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ ∧ Σ ª σ ∧
dom(σ)=dom(Σ) ∧ Σ ª S°T : E, there exist a closed type AÕ and a store type ΣÕ such
that ΣÕ * Σ ∧ ΣÕ ª σÕ ∧ dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª [li=ι i iÏ1..n] : AÕ ∧  ∫ AÕ <: C{←T}.

Since σÕ(ι j)=Üς(xj)bj,SÕá, the judgment ΣÕ ª σÕ must come via (Store Typing) from ΣÕ
ª SÕ° : Ej and Ej, xj:ΣÕ1(ι j) ∫ bj : ΣÕ2(ΣÕ1(ι j),ι j) for some Ej. Since ΣÕ ª [li=ι i iÏ1..n] : AÕ must
come from (Result Object), we have AÕ 7 Obj(X)[liυiÕ:ΣÕ2(X,ι j) iÏ1..n] 7 ΣÕ1(ι j). Since 
∫ AÕ <: C{←T} <: D{←T} by Lemma 5-1 we must have υjÕÏ{o,+} and , X<:AÕ ∫
ΣÕ2(X,ι j) <: Bj{X}{←T} with XÌdom(T). Hence  ∫ ΣÕ2(AÕ,ι j) <: BjYAÕZ{←T} by Lemma
5-4(1). Then, from Ej, xj:ΣÕ1(ι j) ∫ bj : ΣÕ2(ΣÕ1(ι j),ι j), that is, from Ej, xj:AÕ ∫ bj : ΣÕ2(AÕ,ι j),
we obtain Ej, xj:AÕ ∫ bj : BjYAÕZ{←T} by subsumption. Moreover, from ΣÕ ª SÕ° : Ej

and ΣÕ ª [li=ι i iÏ1..n] : AÕ we get ΣÕ ª (SÕ, xj÷ïñ[li=ι i iÏ1..n])° : Ej, xj:AÕ by (Stack x Typing).

Let EÕ 7 Ej, xj:AÕ. By induction hypothesis, since EÕ ∫ bj : BjYAÕZ{←T} ∧ σÕ ° SÕ,
xj÷ïñ[li=ι i iÏ1..n] ∫ bj Òñ v°σÓ ∧ ΣÕ ª σ Õ ∧ dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª (SÕ, xj÷ïñ[li=ι i iÏ1..n])°
: EÕ, there exist a closed type A and a store type Σ such that Σ * ΣÕ ∧ Σ ª σÓ ∧
dom(σÓ)=dom(Σ) ∧ Σ ª v : A ∧  ∫ A <: BjYAÕZ{←T}.

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ σÕ(ι j)=Üς(xj)bj,SÕá xjÌdom(SÕ) jÏ1..n
σÕ ° SÕ, xj÷ïñ[li=ι i iÏ1..n] ∫ bj Òñ v°σÓ

σ°S ∫ a.lj Òñ v°σÓ

Wednesday, January 31, 1996, 12:21 pm 19

We conclude:

¥ Σ * Σ by transitivity from Σ * ΣÕ and ΣÕ * Σ,

¥ Σ ª σÓ with dom(σÓ)=dom(Σ),

¥ Σ ª v : A ,

¥  ∫ A <: A{←T}. Since E,X<:Top ∫ Bj{X} and Bj{X} is covariant in X, we also have
,X<:Top ∫ Bj{X}{←T} by Lemmas 5-5(3) and 5-4(2), with Bj{X}{←T} covariant in X.
Since  ∫ AÕ<:C{←T}, we obtain  ∫ BjYAÕZ{←T} <: BjYC{←T}Z{←T}, by Lemma 5-3,
that is,  ∫ BjYAÕZ{←T} <: BjYCZ{←T}. Since E ∫ BjYCZ <: A, we obtain  ∫ BjYCZ{←T}
<: A{←T} by Lemmas 5-5(3) and 5-4(2). We conclude that  ∫ A <: A{←T} by tran-
sitivity from  ∫ A <: BjYAÕZ{←T},  ∫ BjYAÕZ{←T} <: BjYCZ{←T}, and  ∫ BjYCZ{←T}
<: A{←T}.

Case (Red Update)

By hypothesis E ∫ a.ljfiü(y,z=c)ς(x)b : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E.

Since E ∫ a.ljfiü(y,z=c)ς(x)b : A, we must have E ∫ a.ljfiü(y,z=c)ς(x)b : AÕ by (Val Up-
date), for some AÕ with E ∫ AÕ<:A. Hence we have E ∫ a : AÕ and E ∫ AÕ <: D where
D has the form Obj(X)[ljυj:Bj{X}, ...] and E, Y<:AÕ, y:Y ∫ c : C and E, Y<:AÕ, y:Y, z:C,
x:Y ∫ b : BjYYZ with υjÏ{o,Ð}. Since YÌdom(E), we have YÌdom(T) by Lemma 5-5(1).

By induction hypothesis, since E ∫ a : AÕ ∧ σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ ∧ Σ ª σ ∧
dom(σ)=dom(Σ) ∧ Σ ª S°T : E, then there exist a closed type A and a store type ΣÕ
such that ΣÕ * Σ ∧ ΣÕ ª σÕ ∧ dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª [li=ι i iÏ1..n] : A ∧  ∫ A <:
AÕ{←T}.

Now, ΣÕ ª [li=ι i iÏ1..n] : A must have been derived via (Result Object) from ΣÕ ª Q

and ΣÕ1(ι i) 7 Obj(X)[liυiÕ:ΣÕ2(X,ι i) iÏ1..n] 7 A for all iÏ1..n. We have  ∫ AÕ{←T} <:
D{←T} by Lemma 5-5(3) and Lemma 5-4(2), and then  ∫ A <: D{←T} by transitiv-
ity. Hence by Lemma 5-1 we must have υjÕÏ{o,Ð} and , X<:A ∫ Bj{X}{←T} <:
ΣÕ2(X,ι j), for XÌdom(T). Therefore,  ∫ BjYA Z{←T} <: ΣÕ2(A ,ι j) by Lemma 5-4.

Let TÕ 7 T,Y÷ïñA . From Σ ª S°T : E we have ΣÕ ª S°T : E by Lemma 5-6. Then from
 ∫ A <: AÕ{←T} we obtain ΣÕ ª S°TÕ: E,Y<:AÕ by (Stack X Typing). Then from ΣÕ ª
[li=ι i iÏ1..n] : A 7Y{←TÕ} we obtain ΣÕ ª (S, y÷ïñ[li=ι i iÏ1..n])°TÕ: E,Y<:AÕ,y:Y by (Stack x
Typing).

By induction hypothesis, since E, Y<:AÕ, y:Y ∫ c : C ∧ σÕ°S, y÷ïñ[li=ι i iÏ1..n] ∫ c Òñ

v°σÓ ∧ ΣÕ ª σÕ ∧ dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª (S, y÷ïñ[li=ι i iÏ1..n])°TÕ: E,Y<:AÕ,y:Y, there
exist a closed type C and a store type Σ such that Σ * ΣÕ ∧ Σ ª σÓ ∧
dom(σÓ)=dom(Σ) ∧ Σ ª v : C ∧  ∫ C <: C{←TÕ}.

Take σ 7 σÓ.ι jóï◊Üς(x)b, (S, y÷ïñ[li=ι i iÏ1..n], z÷ïñv)á.

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ jÏ1..n ι jÏdom(σÕ)
σÕ°S, y÷ïñ[li=ι i iÏ1..n] ∫ c Òñ v°σÓ

σ°S ∫ a.ljfiü(y,z=c)ς(x)b Òñ [li=ι i iÏ1..n] ° σÓ.ι jóï◊Üς(x)b, (S, y÷ïñ[li=ι i iÏ1..n], z÷ïñv)á

20 Wednesday, January 31, 1996, 12:21 pm

¥ Σ * Σ by transitivity.

¥ We have dom(Σ) = dom(σÕ). Moreover dom(σÓ) = dom(σÕ) by the definition of re-
duction, and hence ι jÏdom(σÓ). So σ is well-defined, and dom(σÓ) = dom(σ). There-
fore, dom(Σ) = dom(σ).

¥ By (1), (2), and (3) below, we obtain Σ ª σÓ.ι jóï◊Üς(x)b, (S, y÷ïñ[li=ι i iÏ1..n], z÷ïñv)á via
the (Store Typing) rule.

(1) From ΣÕ ª S°T : E we have ΣÕ ª S° : E{←T} by Lemma 5-5(2). From ΣÕ ª [li=ι i iÏ1..n]
: A we have ΣÕ ª (S, y÷ïñ[li=ι i iÏ1..n])° : (E{←T},y:A) by (Stack x Typing). By Lemma
5-6 we have Σ ª (S, y÷ïñ[li=ι i iÏ1..n])° : (E{←T},y:A) From Σ ª v : C we have Σ ª (S,
y÷ïñ[li=ι i iÏ1..n], z÷ïñv)° : (E{←T}, y:A , z:C) by (Stack x Typing).

(2) From Σ ª S°T : E and E, Y<:AÕ, y:Y, z:C, x:Y ∫ b : Bj we obtain E{←T}, Y<:AÕ{←T},
y:Y, z:C{←T}, x:Y ∫ b : Bj{←T} by Lemma 5-5(3). Since  ∫ A <: AÕ{←T}, we have
E{←T}, y:A , z:C{←TÕ}, x:A ∫ b : Bj{←TÕ} by Lemma 5-4. Since  ∫ C <: C{←TÕ} we
have E{←T}, y:A , z:C , x:A ∫ b : Bj{←TÕ} by Lemma 5-4(4). Since  ∫

BjYA Z{←T}7Bj{←TÕ} <: ΣÕ2(A ,ι j) we have E{←T}, y:A , z:C , x:A ∫ b : ΣÕ2(A ,ι j) by
subsumption. That is, E{←T}, y:A , z:C , x:Σ

1(ι j) ∫ b : Σ
2(Σ

1(ι i),ι i).

(3) Since Σ ª σÓ must come from (Store Typing), σÓ has the shape εk÷ïñÜς(xk)bk,Ská
kÏ1..m, and for all k such that εk≠ι j and for some Ek we have Σ ª Sk° : Ek, and Ek,
xk:Σ

1(εk) ∫ bk : Σ
2(Σ

1(εk),εk).

¥ From ΣÕ ª [li=ι i iÏ1..n] : A and Σ * ΣÕ, by Lemma 5-6 we have Σ ª [li=ι i iÏ1..n] : A .
¥ By Lemma 5-5(3) and Lemma 5-4(2) we have  ∫ AÕ{←T} <: A{←T}, so by transitiv-

ity  ∫ A <: A{←T}.

We conclude Σ * Σ ∧ Σ ª σ ∧ dom(Σ) = dom(σ) ∧ Σ ª [li=ι i iÏ1..n] : A ∧  ∫
A <: A{←T}.

Case (Red Clone) (ι iÕ distinct)

By hypothesis E ∫ clone(a) : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E.

Since E ∫ clone(a) : A, we must have be E ∫ clone(a) : AÕ by (Val Clone), for some AÕ
with E ∫ a : AÕ and E ∫ AÕ <: D (where D is an object type) and such that E ∫ AÕ <: A.

By the induction hypothesis, since E ∫ a : AÕ ∧ σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ ∧ Σ ª σ ∧
dom(σ)=dom(Σ) ∧ Σ ª S°T : E, there exist a closed type A and a store type ΣÕ such
that ΣÕ * Σ ∧ ΣÕ ª σÕ ∧ dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª [li=ι i iÏ1..n] : A ∧  ∫ A <: AÕ{←T}.

Let Σ 7 (ΣÕ, ι iÕ÷ïñΣÕ(ι i) iÏ1..n) and σ 7 (σÕ, ι iÕ÷ïñσÕ(ι i) iÏ1..n). We have Σ ª Q by (Store
Type) because ι iÕ Ì dom(σÕ)=dom(ΣÕ), ι iÕ are all distinct, and ΣÕ ª Q is a prerequisite
of ΣÕ ª σÕ

We conclude:

¥  ∫ A <: AÕ{←T} <: A{←T}, by Lemmas 5-5(3) and 5-4(2).

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σÕ ι iÏdom(σÕ) ι iÕÌdom(σÕ) ÓiÏ1..n

σ°S ∫ clone(a) Òñ [li=ι iÕ iÏ1..n] ° (σÕ, ι iÕ÷ïñσÕ(ι i) iÏ1..n)

Wednesday, January 31, 1996, 12:21 pm 21

¥ Σ * Σ, because ΣÕ * Σ and Σ * ΣÕ.

¥ dom(σ)=dom(Σ), by construction and dom(σÕ)=dom(ΣÕ).

¥ We show that Σ ª σ . Since ΣÕ ª σÕ must come from (Store Typing), σÕ has the shape
εk÷ïñÜς(xk)bk,Ská kÏ1..m, and for all kÏ1..m and for some Ek we have ΣÕ ª Sk° : Ek and Ek,
xk:ΣÕ1(εk) ∫ bk : ΣÕ2(ΣÕ1(εk),εk). Then also Ek, xk:Σ

1(εk) ∫ bk : Σ
2(Σ

1(εk),εk), and by Lem-
ma 5-6 Σ ª Sk° : Ek. Let f:1..n→1..m be εÐ1†ι , so that for all iÏ1..n, ι i=εf(i). We have
Ef(i), xf(i):ΣÕ1(εf(i)) ∫ bf(i) : ΣÕ2(ΣÕ1(εf(i)),εf(i)) for iÏ1..n, so Ef(i), xf(i):ΣÕ1(ι i) ∫ bf(i) : ΣÕ2(ΣÕ1(ι i),ι i).
Moreover, since ΣÕ(ι i)=Σ (ι iÕ), we have Ef(i), xf(i):Σ

1(ι iÕ) ∫ bf(i) : Σ
2(Σ

1(ι iÕ),ι iÕ). The re-
sult follows by (Store Typing) from Σ ª Sk° : Ek, and Σ ª Sf(i)° : Ef(i), and Ek,
xk:Σ

1(εk) ∫ bk : Σ
2(Σ

1(εk),εk) and Ef(i), xf(i):Σ
1(ι iÕ) ∫ bf(i) : Σ

2(Σ
1(ι iÕ),ι iÕ), for kÏ1..m and

iÏ1..n.

¥ We show that Σ ª [li=ι iÕ iÏ1..n] : A . First, ΣÕ ª [li=ι i iÏ1..n] : A must come from the (Re-
sult Object) rule with A 7 ΣÕ1(ι i) 7 Obj(X)[liυiÕ:ΣÕ2(X,ι i) iÏ1..n] for iÏ1..n, and ΣÕ ª Q.
But Σ (ι iÕ) 7 ΣÕ(ι i) for iÏ1..n. So, Σ

1(ι iÕ) 7 ΣÕ1(ι i) 7 A 7 Obj(X)[liυiÕ:ΣÕ2(X,ι i) iÏ1..n] 7
Obj(X)[liυiÕ:Σ

2(X,ι iÕ) iÏ1..n], and by (Result Object) Σ ª [li=ι iÕ iÏ1..n] : Obj(X)[liυiÕ:
Σ

2(X,ι iÕ) iÏ1..n].

Case (Red Fun2)

By hypothesis, E ∫ λ()b : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E.

From Σ ª S°T : E and E ∫ λ()b : A we have E{←T} ∫ λ()b : A{←T} by Lemma 5-5(3).
Since E{←T} ∫ λ()b : A{←T} we must have E{←T} ∫ λ()b : Ó(X<:C)B for some type
Ó(X<:C)B such that E{←T}, X<:C ∫ b : B and E{←T} ∫ Ó(X<:C)B <: A{←T}.

We have Σ ª S° : E{←T} by Lemma 5-5(2), and hence Σ ª Üλ()b,Sá : Ó(X<:C)B by (Re-
sult Fun2<:). Moreover,  ∫ Ó(X<:C)B <: A{←T} by Lemma 5-4(2), since E{←T} has
no type variables.

Take A 7 Ó(X<:C)B and Σ 7 Σ. We conclude that Σ * Σ ∧ Σ ª σ ∧ dom(σ)=dom(Σ)
∧ Σ ª Üλ()b,Sá : A ∧  ∫ A <: A{←T}.

Case (Red Appl2)

By hypothesis, E ∫ a() : A ∧ Σ ª σ ∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E.

Since E ∫ a() : A we must have E ∫ a() : BYCZ with E ∫ BYCZ <: A by (Val Appl2<:) for
some types C and Ó(X<:D)B{X} such that E ∫ a : Ó(X<:D)B{X} and E ∫ C <: D. We
obtain  ∫ C{←T}<:D{←T}, by Lemma 5-5(3) and Lemma 5-4(2).

By induction hypothesis, since E ∫ a : Ó(X<:D)B ∧ σ°S ∫ a Òñ Üλ()b,SÕá°σÕ ∧ Σ ª σ
∧ dom(σ)=dom(Σ) ∧ Σ ª S°T : E, there exist a closed type AÕ and a store type ΣÕ such

σ°S ∫ λ()b Òñ Üλ()b,Sá°σ

σ°S ∫ a Òñ Üλ()b,SÕ á°σÕ σÕ°SÕ ∫ b Òñ v°σÓ

σ°S ∫ a() Òñ v°σÓ

22 Wednesday, January 31, 1996, 12:21 pm

that ΣÕ * Σ ∧ ΣÕ ª σÕ ∧ dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª Üλ()b,SÕá : AÕ ∧  ∫ AÕ <:
(Ó(X<:D)B){←T}.

Now, ΣÕ ª Üλ()b,SÕá : AÕ must come from (Result Fun2<:), with AÕ 7 Ó(X<:DÕ)BÕ, Σ ª
SÕ° : EÕ, and EÕ, X<:DÕ ∫ b : BÕ. We have also  ∫ D{←T} <: DÕ and , X<:D{←T} ∫ BÕ
<: B{←T} since  ∫ AÕ <: (Ó(X<:D)B){←T}, by Lemma 5-2.

Take TÕ 7 , X÷ïñC{←T}. We have ΣÕ ª SÕ° : EÕ by Lemma 5-6, and  ∫ C{←T} <: DÕ
by transitivity. Therefore, ΣÕ ª SÕ°TÕ: EÕ, X<:DÕ by (Stack X Typing).

By induction hypothesis, since EÕ, X<:DÕ ∫ b : BÕ ∧ σÕ°SÕ ∫ b Òñ v°σÓ ∧ ΣÕ ª σÕ ∧
dom(σÕ)=dom(ΣÕ) ∧ ΣÕ ª SÕ°TÕ: EÕ, X<:DÕ, there exist a closed type A and a store type
Σ such that Σ * ΣÕ ∧ Σ ª σÓ ∧ dom(σÓ)=dom(Σ) ∧ Σ ª v : A ∧  ∫ A <: BÕ{←TÕ}.

We have (BÕ{X}){←TÕ} 7 BÕYC{←T}Z by definition of TÕ, hence  ∫ A <: BÕYC{←T}Z.
Since  ∫ C{←T}<:D{←T} and , X<:D{←T} ∫ BÕ{X} <: B{X}{←T}, we have  ∫

BÕYC{←T}Z <: BYC{←T}Z{←T} by Lemma 5-4(1). Since E ∫ BYCZ <: A, we have  ∫ (BY-

CZ){←T} <: A{←T} by Lemmas 5-5(3) and 5-4(2). Finally  ∫ A <: A{←T} by transi-
tivity.

We conclude that Σ * Σ ∧ Σ ª σÓ ∧ dom(σÓ)=dom(Σ) ∧ Σ ª v : A ∧  ∫ A <:
A{←T}.

M

As an immediate corollary we have a simpler statement of subject reduction:

Corollary 5-8
If  ∫ a : A and ° ∫ a Òñ v°σ
then there exist a type A and a store type Σ such that
Σ ª σ and Σ ª v : A , with  ∫ A <: A.

M

6 Applications
We study some challenging examples. Then we show that quantifiers are useful

for factoring out methods as generic procedures, and we describe how collections of
generic procedures can be organized into classes and subclasses.

6.1 Typing Challenges and Solutions

We examine some delicate typing issues in the context of simple examples. We use
procedures, as defined in section 2.3, and booleans. Procedure types can be defined as:

The variance annotations yield the expected contravariant/covariant subtyping rule
for procedure types. The typing of procedures relies on the inclusion [argo: A, valo: B]
<: A→B.

¥ We define the type of memory cells with a get field and with a set method. Given a

A→B @ [argÐ: A, val+: B]

Wednesday, January 31, 1996, 12:21 pm 23

boolean, the set method stores it in the cell and returns the modified cell. For get, we use
a method. (Using a field, with the encoding of section 2.2, leads to simpler code but
makes it harder to check the typings of the examples against the rules.)

¥ Interesting uses of (Val Update) are required when updating methods that return a
value of type Self. Here we update the method set with a method that updates get to
ς(z)false:

To obtain this typing using (Val Update), we give type Y to x.getfiüς(z)false for an arbi-
trary Y<:Mem, parametrically in Y.

¥ With quantifiers, we can define Òparametric pre-methodsÓ as polymorphic proce-
dures that can later be used in updating. The method previously used for updating
m.set, for example, can be isolated as a procedure of type Ó(X<:Mem)X→X:

The derivation makes an essential use of the structural subtyping assumption in (Val
Update); without it we would obtain at best the type Ó(X<:Mem)X→Mem.

¥ It is natural to expect both components of Mem to be protected against external up-
date. To this end we can use covariance annotations, which block (Val Update). Take:

Since Mem <: ProtectedMem, any memory cell can be subsumed into ProtectedMem and
thus protected against updating from the outside. However, after subsumption, the set
method can still update the get field because it was originally typechecked with X equal
to Mem.

¥ Consider a type of memory cells with a duplicate method, as in section 2.4.

We have MemDup <: Mem, thanks to the subtyping rule for object types. This subtyping
would have failed had we used recursive type instead of Self types [4].

¥ Consider now a type of memory cells with backup and restore methods, and a can-
didate implementation:

The initial restore method is set to return the current memory cell. Whenever the backup
method is invoked, it places a clone of self into restore. Note that backup saves the self
that is current at backup-invocation time, not the self that will be current at restore-in-

Mem @ Obj(X)[get:Bool, set:Bool→X]
m: Mem @ [get = ς(x) false, set = ς(x) λ(b) x.get fiü ς(z) b]

m.set fiü ς(x) λ(b) x.get fiü ς(z) false : Mem

λ() λ(m) m.set fiü ς(x) λ(b) x.get fiü ς(z) false : Ó(X<:Mem)X→X

ProtectedMem @ Obj(X)[get+:Bool, set+:Bool→X]

MemDup @ Obj(X)[get:Bool, set:Bool→X, dup:X]

MemBk @ Obj(X)[restore:X, backup:X, get:Bool, set:Bool→X]
o @ [restore = ς(self) self, backup = ς(self) self.restore := clone(self),

 get = ... , set = ...]

24 Wednesday, January 31, 1996, 12:21 pm

vocation time.
The untyped behavior of backup and restore are the desired ones, but o cannot be

given the type MemBk. We can see why by expanding the definition of :=, obtaining:

In typing self.restorefiü(y,z=clone(self))ς(x)z, we have self:MemBk and z:MemBk as well.
The update requires that for an arbitrary Y<:MemBk we be able to show that z:Y. This
cannot be achieved.

The following alternative code has the same problem if we assume the obvious
typing rule for let:

Therefore, for typing this example, it is not sufficient to adopt let and simple update as
separate primitives.

The solution to this typing problem requires the general method update construct:

In typing self.restorefiü(y,z=clone(y))ς(x)z, we have self:MemBk. For an arbitrary Y<:Mem-
Bk, the update rule assigns to y the type Y. Therefore, clone(y) has type Y by (Val Clone),
and hence z has the required type Y.

Note that this typing problem manifests itself with field update, and is not a con-
sequence of allowing method update. It arises from the combination of Self and eager
evaluation, when a component of a type that depends on Self is updated.

6.2 Classes as Collections of Pre-Methods

As shown in section 6.1, types of the form Ó(X<:A)X→B{X} (with B{X} covariant in
X) arise naturally for methods used in updating. In our type system, these types con-
tain useful elements because of our structural assumptions. In contrast, they have no
interesting elements in standard models of subtyping; see [8].

Types of this form can be used for defining classes as collections of pre-methods,
where a pre-method is a procedure that is later used to construct a method. Each pre-
method must work for all possible subclasses, parametrically in self, so that it can be
inherited and instantiated to any of these subclasses. This is precisely what a type of
the form Ó(X<:A)X→B{X} expresses.

We associate a class type Class(A) to each object type A. (We make the components
of Class(A) invariant, for simplicity.)

A class c of type Class(A) consists of a particular collection of pre-methods li of the
appropriate types, along with a method, called new, for constructing new objects. The
implementation of new is uniform for all classes: it produces an object of type A by col-
lecting all the pre-methods of the class and applying them to the self of the new object.

backup = ς(self) self.restore fiü (y,z=clone(self)) ς(x) z

backup = ς(self) let z = clone(self) in self.restore fiü ς(x) z

backup = ς(self) self.restore fiü (y,z=clone(y)) ς(x) z

If A 7 Obj(X)[liυi:Bi{X} iÏ1..n]
then Class(A) @ [new:A, li:Ó(X<:A)X→Bi{X} iÏ1..n]

Wednesday, January 31, 1996, 12:21 pm 25

The methods li do not normally use the self of the class, but new does. For example:

We can now consider the inheritance relation between classes. Suppose that we
have another type AÕ 7 Obj(X)[liυiÕ:BiÕ{X} iÏ1..n+m] <: A, and a corresponding class type
Class(AÕ) 7 [new:AÕ, li:Ó(X<:AÕ)X→BiÕ{X} iÏ1..n+m]. For all iÏ1..n, we say that:

When li is inheritable, we have Ó(X<:A)X→Bi{X} <: Ó(X<:AÕ)X→BiÕ{X}. So, if c:Class(A)
and li is inheritable, we obtain c.li : Ó(X<:AÕ)X→BiÕ{X} by subsumption. Then, c.li has
the correct type to be reused when building a class cÕ:Class(AÕ). That is, it can be inher-
ited. For example, get and set are inheritable from Class(Mem) to Class(MemDup):

The inheritability condition holds for any invariant component li, since in this case
Bi{X}7BiÕ{X}. For contravariance, if AÕ 7 Obj(X)[liÐ:BiÕ{X}, ...] and A 7 Obj(X)[liÐ: Bi{X}, ...]
with AÕ<:A, then X<:AÕ always implies Bi{X}<:BiÕ{X}. Thus, inheritability of contravari-
ant components is also guaranteed.

Covariant components do not necessarily correspond to inheritable pre-methods.
For example, if AÕ 7 [l+:Nat] and A 7 [l+:Int] with Nat<:Int, and c : [new:A, l:Ó(X<:A)
X→Int], then c.l cannot be inherited into Class(AÕ) 7 [new:AÕ, l:Ó(X<:AÕ)X→Nat], be-
cause it would produce a bad result. However, a class cÕ : Class(AÕ) can include a differ-

c : Class(A) @ [new = ς(z) [li=ς(x) z.li()(x) iÏ1..n], l1 = ..., . . . , ln = ...]

Class(Mem) 7
[new: Mem,
 get: Ó(X<:Mem) X→Bool,
 set: Ó(X<:Mem) X→Bool→X]

memClass: Class(Mem) @
[new = ς(z) [get = ς(x) z.get()(x), set = ς(x) z.set()(x)],
 get = λ() λ(x) false,
 set = λ() λ(x) λ(b) x.get:=b]

m : Mem @ memClass.new

li is inheritable from Class(A) to Class(AÕ) iff X<:AÕ implies Bi{X}<:BiÕ{X}

Class(MemDup) 7
[new: MemDup,
 get: Ó(X<:MemDup) X→Bool,
 set: Ó(X<:MemDup) X→Bool→X,
 dup: Ó(X<:MemDup) X→X]

memDupClass: Class(MemDup) @
[new = ς(z) [get = ς(x) z.get()(x), set = ς(x) z.set()(x), dup = ς(x) z.dup()(x)],
 get = memClass.get,
 set = memClass.set,
 dup = λ() λ(x) clone(x)]

26 Wednesday, January 31, 1996, 12:21 pm

ent method for l with result type Nat: this corresponds to method specialization on
overriding.

In conclusion, covariant components induce mild restrictions in subclassing. In-
variant and contravariant components induce no restrictions. In practice, inheritability
is expected between a class type C and another class type CÕ obtained as an extension
of C (so that CÕ and C have identical common components). In this case, inheritability
trivially holds for components of any variance.

7 Conclusions
We have described a basic calculus for objects and their types. It includes a sound

type system with Self types within an imperative framework. Because of its compact-
ness and expressiveness, this calculus is appealing as a kernel for object-oriented lan-
guages that include subsumption and Self types.

The calculus is not class-based, since classes are not built-in, nor delegation-based
[31], since the method-lookup mechanism does not delegate invocations. However, the
calculus models class-based languages well: classes and inheritance arise from object
types and polymorphic types. In delegation-based languages, traits play the role of
classes; our calculus can model traits just as easily as classes, along with dynamic del-
egation based on traits.

Acknowledgments
We thank Jens Palsberg for suggesting improvements in the presentation and in

the proofs.

References
[1] Abadi, M., Baby Modula-3 and a theory of objects. Journal of Functional Programming

4(2), 249-283. 1994.
[2] Abadi, M. and L. Cardelli, A semantics of object types. Proc. IEEE Symposium on Logic

in Computer Science, 332-341. 1994.
[3] Abadi, M. and L. Cardelli, A theory of primitive objects: second-order systems. Proc.

ESOP'94 - European Symposium on Programming. Springer-Verlag. 1994.
[4] Abadi, M. and L. Cardelli, A theory of primitive objects: untyped and first-order sys-

tems. Proc. Theoretical Aspects of Computer Software. Springer-Verlag. 1994.
[5] Abadi, M. and L. Cardelli, An imperative object calculus: basic typing and sound-

ness. Proc. Second ACM SIGPLAN Workshop on State in Programming Languages, 19-32.
Technical Report UIUCDCS-R-95-1900, University of Illinois at Urbana Champaign.
1995.

[6] Amadio, R.M. and L. Cardelli, Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15(4), 575-631. 1993.

[7] Bruce, K.B., A paradigmatic object-oriented programming language: design, static
typing and semantics. Journal of Functional Programming 4(2), 127-206. 1994.

Wednesday, January 31, 1996, 12:21 pm 27

[8] Bruce, K.B. and G. Longo, A modest model of records, inheritance and bounded
quantification. Information and Computation 87(1/2), 196-240. 1990.

[9] Bruce, K.B., A. Schuett, and R. van Gent, PolyTOIL: a type-safe polymorphic object-
oriented language. Williams College. 1994.

[10] Borning, A.H., Classes versus prototypes in object-oriented languages. Proc. ACM/
IEEE Fall Joint Computer Conference, 36-40. 1986.

[11] Cardelli, L., Extensible records in a pure calculus of subtyping. In Theoretical Aspects
of Object-Oriented Programming, C.A. Gunter and J.C. Mitchell, ed. MIT Press. 373-425.
1994.

[12] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT
Press. 1995.

[13] Cardelli, L. and J.C. Mitchell, Operations on records. Mathematical Structures in Com-
puter Science 1(1), 3-48. 1991.

[14] Cardelli, L., J.C. Mitchell, S. Martini, and A. Scedrov, An extension of system F with
subtyping. Information and Computation 109(1-2), 4-56. 1994.

[15] Chambers, C., D. Ungar, B.-W. Chang, and U. H�lzle, Parents are shared parts of ob-
jects: inheritance and encapsulation in Self. Lisp and Symbolic Computation 4(3). 1991.

[16] Cook, W.R., A proposal for making Eiffel type-safe. Proc. European Conference of Ob-
ject-Oriented Programming, 57-72. 1989.

[17] Dony, C., J. Malenfant, and P. Cointe, Prototype-based languages: from a new taxon-
omy to constructive proposals and their validation. Proc. OOPSLA'92, 201-217. 1992.

[18] Eifrig, J., S. Smith, V. Trifonov, and A. Zwarico, An interpretation of typed OOP in a
language with state. Lisp and Symbolic Computation. (to appear). 1995.

[19] Harper, R., A simplified account of polymorphic references. Information Processing
Letters 51(4). 1994.

[20] Harper, R. and B. Pierce, A record calculus based on symmetric concatenation. Proc.
18th Annual ACM Symposium on Principles of Programming Languages. 1991.

[21] Leroy, X., Polymorphic typing of an algorithmic language. Rapport de Recherche
no.1778 (Ph.D Thesis). INRIA. 1992.

[22] Madsen, O.L., B. M¿ller-Pedersen, and K. Nygaard, Object-oriented programming in
the Beta programming language. Addison-Wesley. 1993.

[23] Meyer, B., Object-oriented software construction. Prentice Hall. 1988.
[24] Mitchell, J.C., F. Honsell, and K. Fisher, A lambda calculus of objects and method

specialization. Proc. 8th Annual IEEE Symposium on Logic in Computer Science. 1993.
[25] Pierce, B.C. and D.N. Turner, Simple type-theoretic foundations for object-oriented

programming. Journal of Functional Programming 4(2), 207-247. 1994.
[26] R�my, D., Typechecking records and variants in a natural extension of ML. Proc. 16th

Annual ACM Symposium on Principles of Programming Languages, 77-88. 1989.
[27] Szypersky, C., S. Omohundro, and S. Murer, Engineering a programming language:

the type and class system of Sather. TR-93-064. ICSI, Berkeley. 1993.
[28] Stein, L.A., H. Lieberman, and D. Ungar, A shared view of sharing: the treaty of Or-

lando. In Object-oriented concepts, applications, and databases, W. Kim and F. Lochowsky,
ed. Addison-Wesley. 31-48. 1988.

[29] Taivalsaari, A., Object-oriented programming with modes. Journal of Object Oriented
Programming 6(3), 25-32. 1993.

28 Wednesday, January 31, 1996, 12:21 pm

[30] Tofte, M., Type inference for polymorphic references. Information and Computation 89,
1-34. 1990.

[31] Ungar, D. and R.B. Smith, Self: the power of simplicity. Proc. OOPSLA'87. ACM SIG-
PLAN Notices 2(12). 1987.

[32] Wand, M., Type inference for record concatenation and multiple inheritance. Proc.
4th Annual IEEE Symposium on Logic in Computer Science, 92-97. 1989.

[33] Wright, A.K. and M. Felleisen, A syntactic approach to type soundness. Information
and Computation 115(1), 38-94. 1994.

[34] Yonezawa, A. and M. Tokoro, ed. Object-oriented concurrent programming. MIT
Press. 1987.

