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Abstract
We develop an imperative calculus of objects that is both tiny and expressive. Our
calculus provides a minimal setting in which to study the operational semantics and
the typing rules of object-oriented languages. We prove type soundness using a simple
subject-reduction approach.

1.  Introduction
Procedural languages are generally well-understood; their constructs are by now standard,

and their formal underpinnings are solid. The fundamental features of procedural languages
have been distilled into formalisms that prove useful in identifying and explaining issues of
implementation, static analysis, semantics, and verification.

An analogous understanding has not yet emerged in object-oriented programming. There is
no widespread agreement on the choice of basic constructs and on their properties.
Consequently, practical object-oriented languages support many features and programming
techniques, often with little concern for orthogonality.

With the aim of clarifying the fundamental features of object-oriented languages, we
introduce a tiny but expressive imperative calculus. The calculus comprises objects, method
invocation, method update, object cloning, and local definitions. In a quest for minimality, we
take objects to be just collections of methods. Fields are important too, but they can be seen as
a derived concept; for example a field can be viewed as a method that does not use its self
parameter.

When fields and methods are identified it is trivial to convert one into the other,
conceptually turning passive data into active computation and vice versa. The hiding of fields
from public view has been widely advocated as a means of concealing representation choices,
and thereby allowing flexibility in implementation. Identifying fields with methods confers
much of the same flexibility, by eliminating fields.

The unification of fields with methods has also the advantage of simplicity. Both objects
and object operations assume a uniform structure. In contrast, the separation of fields from
methods induces a corresponding separation of object operations, and leads to the implicit or
explicit splitting of objects into two components. Unifying fields with methods gives more
compact and therefore more elegant calculi.

This unification, however, has one debatable consequence. The natural operation on
methods is method invocation, and the natural operations on fields are field selection and field
update. By unifying fields with methods, we can collapse field selection and method invocation
into a single operation. To complete the unification, though, we are forced to generalize field
update to method update.

The reliance on method update is one of the most unusual aspects of our formal treatment:
this operation is not normally found in programming languages. However, method update can
be seen as a form of dynamic inheritance [25], which is a feature found in object-based
languages [7] but not yet in class-based languages [6]. Like other forms of dynamic inheritance,



Page 2

method update supports the dynamic modification of object behavior allowing objects, in a
sense, to change their class dynamically. Thus, method update gives us an edge in modeling
object-based constructions, in addition to allowing us to model the more traditional class-based
constructions where fields and methods are sharply separated.

A further justification for method update can be found in the desire to tame dynamic inheri-
tance. Dynamic inheritance has potentially unpredictable effects, due to the updating of shared
state. These concerns have led to the search for better-behaved, restricted, dynamic inheritance
mechanisms [23]. Method update is one of these better-behaved mechanisms, especially in the
absence of delegation, as in our calculus. Method update is statically typable, and can be used
to emulate the mode-switching applications of dynamic inheritance [13]. With method update
we avoid some dangerous aspects of dynamic inheritance [14, 23], while maintaining its
dynamic specialization aspects originally advocated by the Treaty of Orlando [22].

In this paper, we study an untyped calculus (section 2), and then we present a type structure
for it (section 3). The only type constructor is one for object types: an object type is a list of
method names and method result types. A subtyping relation between object types supports
object subsumption, which allows an object to be used where an object with fewer methods is
expected. We prove the consistency of our rules using a subject-reduction approach (section 4).
Our technique is an extension of Harper’s [16], using closures and stacks instead of formal
substitutions. This approach yields a manageable proof for a realistic implementation strategy.

Elsewhere we have considered functional calculi [2-4]. The main novelty here is the
treatment of imperative features, with corresponding proof techniques. In further work [5] we
treat second-order type structures (with Self types) for an imperative calculus.

A few other object formalisms have been defined and studied. Many of these rely on purely
functional models, with an emphasis on types [1, 8, 10, 12, 17, 19-21, 27]. Others deal with
imperative features in the context of concurrency; see for example [29]. The works most closely
related to ours are that of Eifrig et al. on LOOP [15] and that of Bruce and van Gent on TOIL
[9]. LOOP and TOIL are typed, imperative, object-oriented languages with procedures, objects,
and classes. Both take procedures, objects, and classes as primitive, with fairly complex rules;
they also distinguish methods from fields. LOOP is translated into a somewhat simpler calculus,
which includes record, function, reference, recursive, and F-bounded types. Our calculus is
centered entirely on objects: procedures and classes can be defined from them. The collections
of programs that can be written and typed in these formalisms are different. In spite of this, we
all share the goal of modeling imperative object-oriented languages by precise semantic
structures and sound type systems.

2.  An Untyped Imperative Calculus
We begin with the syntax of an untyped imperative calculus.  The initial syntax is minimal,

but in sections 2.2 and 2.3 we show how to express convenient constructs such as fields and
procedures. We omit how to encode basic data types, control structures, and classes, which can
be treated much as in [4]. In section 2.5 we give an operational semantics.

2.1  Syntax

Syntax of the imp-ς calculus

a,b ::= term

x variable

[li=ς(xi)bi iÏ1..n] object (li distinct)

a.l method invocation

a.lfiüς(x)b method update
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clone(a) cloning

let x = a in b let

An object is a collection of components li=ς(xi)bi, for distinct labels li and associated
methods ς(xi)bi; the order of these components does not matter, even for our deterministic
operational semantics. The letter ς (sigma) is used as a binder for the self parameter of a method;
ς(x)b is a method with self parameter x, to be bound to the host object, and body b.

A method invocation o.l results in the evaluation of the body of the method named l, with o
bound to the self parameter.

A method update o.lfiüς(y)b replaces the method named l with ς(y)b in o, and returns the
modified object.

A cloning operation clone(o) produces a new object with the same labels as o, with each
component sharing the methods of the corresponding component of o.

The let construct evaluates a term, binds it to a variable, and then evaluates a second term
with that variable in scope. Sequential evaluation can be defined from let, by:

a;b   @   let x=a in b,

for x Ì FV(b).

2.2  Fields

In our imp-ς calculus, every component of an object contains a method. However, we can
encode fields with eagerly evaluated contents by using the let construct. We write [li=bi iÏ1..n,
lj=ς(xj)bj jÏ1..m] for an object where li=bi are fields and lj=ς(xj)bj are methods. We also write a.l:=b
for field update, and a.l, as before, for field selection. We abbreviate:

Encoding of fields

[li=bi iÏ1..n, lj=ς(xj)bj jÏ1..m] for yi Ì FV(bi iÏ1..n, bj jÏ1..m), yi distinct, iÏ0..n

@   let y1=b1 in ... let yn=bn in [li=ς(y0)yi iÏ1..n, lj=ς(xj)bj jÏ1..m]

a.l:=b @   let y1=a in let y2=b in y1.lfiüς(y0)y2 for yi Ì FV(b), yi distinct, iÏ0..2

The semantics of an object with fields may depend on the order of its components, because of
side-effects in computing contents of fields. The encoding specifies an evaluation order.

By an update, a method can be changed into a field and vice versa. Thus, we use somewhat
interchangeably the names selection and invocation.

2.3  Procedures

The imp-ς calculus is so minimal that it does not include procedures, but these can be ex-
pressed too. We begin by considering informally a call-by-value λ-calculus with side-effects,
imp-λ, that includes abstraction, application, and assignment to λ-bound variables. For example,
assuming arithmetic primitives, (λ(x) x:=x+1; x)(3) is an imp-λ  term yielding 4. We translate
imp-λ into imp-ς.

Translation of procedures

äxãρ @   ρ(x) if xÏdom(ρ), and x otherwise

äλ(x)bãρ @   [arg = ς(x)x.arg, val = ς(x)äbãρ{x←x.arg}]

äb(a)ãρ @   (clone(äbãρ).arg:=äaãρ).val

äx:=aãρ @   x.arg:=äaãρ
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In the translation, an environment ρ maps each variable x either to x.arg if x is λ-bound, or to x
if x is a free variable. A λ -abstraction is translated to an object with an arg component, for
storing the argument, and a val method, for executing the body. The arg component is initially
set to a divergent method, and is filled with an argument upon procedure call. A call activates
the val method that can then access the argument through self as x.arg. An assignment x:=a
updates x.arg, where the argument is stored (assuming that x is λ-bound). A procedure needs to
be cloned when it is called; the clone provides a fresh location in which to store the argument of
the call, preventing interference with other calls of the same procedure. Such interference would
derail recursive invocations. (This encoding has similarities with the mechanism of method
activation in the Self language [26].)

2.4  A Small Example

We give a trivial example as a notation drill. We use fields, procedures, and basic data
types in defining a memory cell with get, set, and dup (duplicate) components:

let m = [get = 0,  set = ς(self) λ(b) self.get:=b,  dup = ς(self) clone(self)]

in m.set(1); m.get yields 1

This cell can be used as a prototype for building cells, which can then be customized by
method update. For example, we may create a cell that accepts only non-negative integers
through the set method:

let m = [get = 0,  set = ς(self) λ(b) self.get:=b,  dup = ς(self) clone(self)]

in m.dup.set fiü ς(self) λ(b) if b<0 then self.get:=0 else self.get:=b

2.5  Operational Semantics

We now give an operational semantics that relates terms to results in a global store. Object
terms reduce to results consisting of sequences of store locations, one location for each object
component. In order to stay close to standard implementation techniques, we avoid using
formal substitutions during reduction. We describe a semantics based on stacks and closures. A
stack S associates variables with results; a closure Üς(x)b,Sá is a pair of a method together with a
stack that is used for the reduction of the method body. A store maps locations to method
closures; we write stores in the form ι i÷ïñÜς(xi)bi,Siá iÏ1..n; we write σ.ι óï◊m for the result of putting
m in the ι  location of σ.

The operational semantics is expressed in terms of a relation that relates a store σ, a stack S,
a term b, a result v, and another store σ’. This relation is written σ°S ∫ b Òñ v°σ’, and it means
that with the store σ and the stack S, the term b reduces to a result v, yielding an updated store
σ’. The stack does not change. The operational semantics is presented formally as follows.

Operational semantics

ι store location (e.g., an integer)

v ::= [li=ι i iÏ1..n] result (li distinct)

σ ::= ι i÷ïñÜς(xi)bi,Siá iÏ1..n store (ι i distinct)

S ::= xi÷ïñvi iÏ1..n stack (xi distinct)

Well-formed store judgment:   σ ∫ Q

(Store ) (Store ι )

σ°S ∫ Q      ι  Ì dom(σ)
—— ————————

 ∫ Q σ, ι ÷ïñÜς(x)b,Sá ∫ Q
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Well-formed stack judgment:   σ°S ∫ Q

(Stack ) (Stack x)

σ ∫ Q σ°S ∫ Q      ι i Ï dom(σ)      x Ì dom(S)      li,ι i distinct      ÓiÏ1..n
——— ——————————————————————

σ° ∫ Q σ ° S, x÷ïñ[li=ι i iÏ1..n] ∫ Q

Term reduction judgment:   σ°S ∫ a Òñ v°σ’

(Red x) (Red Object)

σ ° S’,x÷ïñv,S” ∫ Q σ°S ∫ Q      ι i Ì dom(σ)      ι i distinct      ÓiÏ1..n
———––————— ————————————————————

σ ° S’,x÷ïñv,S” ∫ x Òñ v°σ σ°S ∫ [li=ς(xi)bi iÏ1..n] Òñ [li=ι i iÏ1..n] ° (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n)

(Red Select)

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’      σ’(ι j)=Üς(xj)bj,S’ á      xj Ì dom(S’)      jÏ1..n

σ’ ° S’, xj÷ïñ[li=ι i iÏ1..n] ∫ bj Òñ v°σ”
————————————————————————

σ°S ∫ a.lj Òñ v°σ”

(Red Update)

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’      jÏ1..n      ι jÏdom(σ’)
—————————————————

σ°S ∫ a.ljfiüς(x)b Òñ [li=ι i iÏ1..n] ° σ’.ι jóï◊Üς(x)b,Sá

(Red Clone)

σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’      ι i Ï dom(σ’)      ι ’i Ì dom(σ’)      ι ’i distinct      ÓiÏ1..n
————————————————————————————

σ°S ∫ clone(a) Òñ [li=ι ’i iÏ1..n] ° (σ’, ι ’i÷ïñσ’(ι i) iÏ1..n)

(Red Let)

σ°S ∫ a Òñ v’°σ’      σ’°S, x÷ïñv’ ∫ b Òñ v”°σ”
————————————————

σ°S ∫ let x = a in b Òñ v”°σ”

A variable reduces to the result it denotes in the current stack. An object reduces to a result
consisting of a fresh collection of locations; the store is extended to associate method closures
to those locations. A selection operation reduces its object to a result, and activates the
appropriate method closure. An update operation reduces its object to a result, and updates the
appropriate store location with a new method closure. A clone operation reduces its object to a
result; then it allocates a fresh collection of locations that are associated to the existing method
closures from the object. A let construct reduces to the result of reducing its body in a stack
extended with the bound variable and the result of its associated term.

We illustrate reduction with two examples. The first one is a simple terminating reduction
for the term [l = ς(x)[]].l. The following represents a derivation tree, with bracketed subtrees:

 ° ∫ [l=ς(x)[]] Òñ [l=0]°(0÷ïñÜς(x)[],á) by (Red Object)

 (0÷ïñÜς(x)[],á)°(x÷ïñ[l=0]) ∫ [] Òñ []°(0÷ïñÜς(x)[],á) by (Red Object)

° ∫ [l=ς(x)[]].l Òñ []°(0÷ïñÜς(x)[],á) by (Red Select)

We illustrate method updating, and the creation of loops through the store, by evaluating the
term [l = ς(x) x.lfiüς(y)x].l.

let σ0 7 0÷ïñÜς(x)x.lfiüς(y)x, á   and   σ1 7 0÷ïñÜς(y)x, (x÷ïñ[l=0])á

 ° ∫ [l=ς(x)x.lfiüς(y)x] Òñ [l=0]°σ0 by (Red Object)

  σ0°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°σ0 by (Red x)

 σ0°(x÷ïñ[l=0]) ∫ x.lfiüς(y)x Òñ [l=0]°σ1 by (Red Update)

° ∫ [l=ς(x)x.lfiüς(y)x].l Òñ [l=0]°σ1 by (Red Select)



Page 6

The store σ1 contains a loop, because it maps the index 0 to a closure that binds the variable x
to a value that contains index 0. Hence, an attempt to read out the result of [l=ς(x)x.lfiüς(y)x].l by
“inlining” the store and stack mappings would produce the infinite term
[l=ς(y)[l=ς(y)[l=ς(y)...]]].

The potential for creating loops in the store is characteristic of imperative semantics. Loops
in the store complicate reasoning about programs and, as we see in the next chapter, they also
demand special attention in the treatment of type soundness.

3.  Typing
We define a type system for the untyped calculus of section 2, and give a typed example.

3.1  Typing Rules

The typing rules for objects are the same ones we would have for a functional semantics.
They are in fact a superset of those of [4], except that terms do not contain type annotations (to
match our untyped operational semantics).

Typing rules

Well-formed environment and type judgments:   E ∫ Q,  E ∫ A

(Env ) (Env x) (Type Object)  (li distinct)

E ∫ A      xÌdom(E) E ∫ Bi      ÓiÏ1..n
—— ——————— ——————

 ∫ Q E,x:A ∫ Q E ∫ [li:Bi iÏ1..n]

Subtyping judgment:   E ∫ A <: B

(Sub Refl) (Sub Trans) (Sub Object)  (li distinct)

E ∫ A E ∫ A <: B      E ∫ B <: C E ∫ Bi      ÓiÏ1..n+m
———— ————————— ——————————

E ∫ A <: A E ∫ A <: C E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

Value typing judgment:   E ∫ a : A

(Val Subsumption) (Val x) (Val Object)  (where  A7[li:Bi iÏ1..n])

E ∫ a : A      E ∫ A <: B E’,x:A,E” ∫ Q E, xj:A ∫ bj : Bj      ÓjÏ1..n
———————— ————–— —————————

E ∫ a : B E’,x:A,E” ∫ x:A E ∫ [li=ς(xi)bi iÏ1..n] : A

(Val Select) (Val Update)  (where  A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n]      jÏ1..n E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x)b : A

(Val Clone)  (where  A7[li:Bi iÏ1..n]) (Val Let)

E ∫ a : A E ∫ a : A      E, x:A ∫ b : B
—–———— —————————

E ∫ clone(a) : A E ∫ let x = a in b : B

The first two groups of rules concern typing environments, types, and the subtyping relation. An
object type is a collection of method names and associated method result types. A longer object
type is a subtype of a shorter one, without variation in the common type components. The final
group concerns typing of values. There is one rule for each construct in the calculus; in
addition, a subsumption rule connects value typing with subtyping judgments.



Page 7

3.2  A Typed Example

This section illustrates how to type a simple imperative example: movable points. In this ex-
ample we rely on fields and procedures, as encoded in section 2. The encoding of procedures
typechecks with A→B translated as [arg:A, val:B].

Trivial as it may seem, the example of movable points has been a notorious source of
difficulties in functional settings (see [4]). These difficulties have resulted in the use of
sophisticated type theories. In an imperative setting, however, some of these difficulties can be
avoided altogether.

Consider one-dimensional and two-dimensional points, with coordinate fields (x and y) and
methods that modify these fields (mv_x and mv_y). The coordinates are integers. We assume that
integers and reals are available, perhaps through an encoding. For example, the origin points
are:

p1   @ [x = 0, mv_x = ς(s) λ(dx) s.x:=s.x+dx]

p2   @ [x = 0,

 y = 0,

 mv_x = ς(s) λ(dx) s.x:=s.x+dx,

 mv_y = ς(s) λ(dy) s.y:=s.y+dy]

In the type system of section 3.1, p1 and p2 can be given the types:

P1   @   [x:Int, mv_x:Int→[]]

P2   @   [x,y:Int, mv_x,mv_y:Int→[]]

where P2 is a subtype of P1. This result type [] is obtained by subsumption. The imperative
operational semantics produces the desired effect of moving a point, without requiring any
particular result type for move methods. In contrast, in a functional framework an informative
result type is necessary.

Imperatively, there is no loss of type information when moving a point. For example,
suppose that f is defined with one-dimensional points in mind, with the type P1→[], and norm2

is defined for two-dimensional points, with the type P2→Real:

f: P1→[]   @   λ(p) p.mv_x(1)

norm2: P2→Real   @   λ(p) sqrt(p.x^2 + p.y^2)

Since P2 is a subtype of P1, f(p2) is a legal call for p2:P2. Therefore, the following code typechecks
and, as expected, returns 1:

f(p2); norm2(p2)

Thus, we have applied a P1 procedure to a P2 point, and after this we are still able to use the
point as a member of P2. In contrast, in a functional setting we may try to write norm2(f(p2)),
which is not well-typed if f:P1→[].

Even in an imperative setting, however, it is common to define methods that produce new
objects, as opposed to modifying existing ones. If mv_x is to return a new object, one must
declare it with result type P1 or P2, to take advantage of any change to the x coordinate. One
may try to redefine P1 and P2 as recursive types (for example, P1 @ µ(X)[x:Int, mv_x:Int→X]), but
then P2 is not a subtype of P1. With this definition, all the typing difficulties common in
functional settings resurface.

4.  Soundness
We show the type soundness of our operational semantics, using an approach similar to

subject reduction. We build on the techniques developed by Tofte, Wright and Felleisen, Leroy,
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and Harper [16, 18, 24, 28]. Our proof technique is an extension of Harper’s, in that we deal
with closures and stacks and thus avoid introducing locations into the term language.

The typing of results with respect to stores is delicate. We would not be able to determine
the type of a result by examining its substructures recursively, including the ones accessed
through the store, because stores may contain loops. Store types, introduced below, allow us to
type results independently of particular stores. This is possible because type-sound
computations do not store results of different types in the same location. Next we formalize
store types and other notions necessary for the proof of soundness.

A store type Σ associates a method type to each store location. A method type has the form
[li:Β i iÏ1..n]⇒ Bj, where [li:Β i iÏ1..n] is the type of self, and Bj is the result type, for jÏ1..n. The
statement of soundness relies on a new judgment, result typing: Σ ª v : A. This means that the
result v has type A with respect to the store type Σ. The locations contained in v are assigned
types in Σ.

To connect stores and store types, we use a judgment Σ ª σ. Checking this judgment
reduces to checking that the contents of every store location has the type determined by the
store type for that location. Since locations contain closures and store types contain method
types, we need to determine when a closure has a method type. For this, it is sufficient to check
that a stack is compatible with an environment; the environment is then used to type the
method. We write Σ ª S : E to mean that the stack S  is compatible with the environment E in Σ.
Now, since stacks contain results and environments contain types, we can define Σ ª S : E via
the result typing judgment, which we have already discussed. The rule for store typing deals
with each closure with respect to the whole store, accounting for cycles in the store.

Store typing rules

M ::= [li:Βi iÏ1..n]⇒ Bj method type (jÏ1..n)

Σ ::= ι i÷ïñMi iÏ1..n store type (ι i distinct)

Σ1(ι) @  [li:Βi iÏ1..n] if Σ(ι ) = [li:Βi iÏ1..n]⇒ Bj

Σ2(ι ) @  Bj if Σ(ι ) = [li:Βi iÏ1..n]⇒ Bj

Well-formed method type and store type judgments:   ª M Ï Meth,  Σ ª Q

(Method Type) (Store Type)

jÏ1..n ª Mi Ï Meth      ι i distinct      Ó i Ï 1..n
————————— ———————————–——

ª [li:Βi iÏ1..n]⇒ Bj Ï Meth ι i÷ïñMi iÏ1..n  ª  Q

Result typing judgment:   Σ ª v : A

(Result Object)

Σ ª Q      Σ1(ι i) 7 [li:Σ2(ι i) iÏ1..n]      Ó i Ï 1..n
———————————————

Σ ª [li=ι i iÏ1..n] : [li:Σ2(ι i) iÏ1..n]

Stack typing judgment:   Σ ª S : E

(Stack  Typing) (Stack x Typing)

Σ ª Q Σ ª S : E      Σ ª [li=ι i iÏ1..n] : A    x Ì dom(E)
——— ———————————————

Σ ª  :  Σ ª S,x÷ïñ[li=ι i iÏ1..n] : E,x:A
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Store typing judgment:   Σ ª σ
(Store Typing)

Σ ª Si : Ei      Ei, xi:Σ1(ι i) ∫ bi : Σ2(ι i)       Ó i Ï 1..n
—————————————————

Σ ª ι i÷ïñÜς(xi)bi,Siá iÏ1..n

We say that Σ’ is an extension of Σ (and write Σ’ * Σ) iff dom(Σ) ⊆ dom(Σ’) and for all
ιÏ dom(Σ),  Σ’(ι) = Σ(ι).

Lemma 4-1
If Σ ª S : E and Σ’ ª Q with Σ’ * Σ, then Σ’ ª S : E.

M

If a term has a type, and the term reduces to a result in a store, then the result can be
assigned that type in that store:

Soundness Theorem
If  E ∫ a : A  ∧   σ°S ∫ a Òñ v°σ†  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E
then there exist a type A† and a store type Σ† such that:
Σ† * Σ  ∧   Σ† ª σ†  ∧   dom(σ†)=dom(Σ†)  ∧   Σ† ª v : A†  ∧   A† <: A.

Proof
By induction on the derivation of σ°S ∫ a Òñ v°σ†.

Case (Red x)
σ ° S’,x÷ïñ[li=ι i iÏ1..n],S” ∫ Q
———————————————

σ ° S’,x÷ïñ[li=ι i iÏ1..n],S” ∫ x Òñ [li=ι i iÏ1..n]°σ
By hypothesis  E ∫ x : A  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S’,x÷ïñ[li=ι i iÏ1..n],S” : E.
Because of E ∫ x : A, we must have E 7 E’,x:A†,E” for some A†<:A.

Now, Σ ª S’,x÷ïñ[li=ι i iÏ1..n],S” : E must have been derived via several applications of (Stack x
Typing) from, among others, Σ ª [li=ι i iÏ1..n] : A†.

Take Σ† 7 Σ. We conclude Σ† ª σ  ∧   dom(σ)=dom(Σ†) ∧   Σ† ª [li=ι i iÏ1..n] : A† ∧   A† <: A.

Case (Red Object)
σ°S ∫ Q      ι i Ì dom(σ)      ι i distinct      ÓiÏ1..n
——————————————————–—

σ°S ∫ [li=ς(xi)bi iÏ1..n] Òñ [li=ι i iÏ1..n] ° (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n).

By hypothesis E ∫ [li=ς(xi)bi iÏ1..n] : A  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E. Because of
E ∫ [li=ς(xi)bi iÏ1..n] : A, we must have E ∫ [li=ς(xi)bi iÏ1..n] : [li:Bi iÏ1..n] by (Val Object), for
some [li:Bi iÏ1..n] <: A. Take A† 7 [li:Bi iÏ1..n].

Take Σ† 7 Σ, ι j÷ïñ(A†⇒ Bj) jÏ1..n ; by (Store Type) we have Σ† ª Q, because the ι jÌdom(σ), and
hence ι jÌdom(Σ), and because ª A†⇒ Bj Ï Meth for jÏ1..n.

(1) Since Σ† is an extension of Σ, by Lemma 4-1 we also have Σ† ª S : E. Since E ∫
[li=ς(xi)bi iÏ1..n] : A†, we must have E, xi:A† ∫ bi : Bi, that is, E, xi:Σ†

1(ι i) ∫ bi : Σ†
2(ι i).

(2) We have that σ has the shape εk÷ïñÜς(xk)bk,Ská kÏ1..m. Now, Σ ª σ must come from the
(Store Typing) rule, with  Σ ª Sk : Ek and  Ek, xk:Σ1(εk) ∫ bk : Σ2(εk). By Lemma 4-1, Σ† ª
Sk : Ek; moreover Ek, xk:Σ†

1(εk) ∫ bk : Σ†
2(εk), because Σ†(εk)=Σ(εk) for k Ï 1..m since

dom(σ) = dom(Σ) = {εk kÏ1..m} and Σ† extends Σ.

By (1) and (2), via the (Store Typing) rule, we have  Σ† ª (σ, ι i÷ïñÜς(xi)bi,Sá iÏ1..n). Since Σ† ª Q
and Σ† 7 Σ, ι j÷ïñ(A†⇒ Bj) jÏ1..n, by the (Result Object) rule, we have Σ† ª [li=ι i iÏ1..n] : A†.

We conclude that Σ† *  Σ  ∧   Σ† ª (σ , ι i÷ïñÜς(xi)bi,Sá iÏ1..n)  ∧   dom(σ , ι i÷ïñÜς(xi)bi,Sá
iÏ1..n)=dom(Σ†) ∧   Σ† ª [li=ι i iÏ1..n] : A†  ∧   A† <: A.
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Case (Red Select)
σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’      σ’(ι j)=Üς(xj)bj,S’ á      xj Ì dom(S’)      jÏ1..n
σ’ ° S’, xj÷ïñ[li=ι i iÏ1..n] ∫ bj Òñ v°σ”
———————————————————————–—

σ°S ∫ a.lj Òñ v°σ”.

By hypothesis E ∫ a.lj : A  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E. Since E ∫ a.lj : A, we
must have E ∫ a : [lj:Bj ...], for some [lj:Bj ...] with Bj <: A.

By the first induction hypothesis:

Since E ∫ a : [lj:Bj ...]  ∧  σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’ ∧  Σ ª σ ∧  dom(σ)=dom(Σ) ∧  Σ ª S : E,
there exist a type A’ and a store type Σ’ such that:
Σ’ *  Σ  ∧   Σ’ ª σ’  ∧   dom(σ’)=dom(Σ’)  ∧   Σ’ ª [li=ι i iÏ1..n] : A’ ∧   A’ <: [lj:Bj ...].

Since σ’(ι j)=Üς(xj)bj,S’á, the judgment  Σ’ ª σ’ must come via (Store Typing) from Σ’ ª S’ : Ej

and  Ej, xj:Σ’1(ι j) ∫ bj : Σ’2(ι j)  for some Ej. Since Σ’ ª [li=ι i iÏ1..n] : A’ must come from (Result
Object), we have A’ 7 [li:Σ’2(ι j) iÏ1..n] 7 Σ’1(ι j). Since A’ <: [lj:Bj ...], we have Σ’2(ι j) 7 Bj. Then,
from Ej, xj:Σ’1(ι j) ∫ bj : Σ’2(ι j) we obtain Ej, xj:A’ ∫ bj : Bj. Moreover, by the (Stack x Typing)
rule we get Σ’ ª S’, xj÷ïñ[li=ι i iÏ1..n] : Ej, x:A’.

Let E’ 7 Ej, x:A’. By the second induction hypothesis:

Since E’ ∫  bj : Bj  ∧   σ ’ °  S ’, xj÷ ïñ[l i= ι i iÏ 1. .n] ∫  bj Ò ñ  v°σ ”   ∧   Σ ’ ª σ ’   ∧
dom(σ’)=dom(Σ’)

∧   Σ’ ª S’, xj÷ïñ[li=ι i iÏ1..n] : E’,
there exist A† and Σ† such that:
Σ† *  Σ’  ∧   Σ† ª σ”  ∧   dom(σ”)=dom(Σ†)  ∧   Σ† ª v : A† ∧   A† <: Bj.

We conclude:

° Σ† *  Σ by transitivity from Σ† *  Σ’ and Σ’ *  Σ,
° Σ† ª σ” with dom(σ”)=dom(Σ†),
° Σ† ª v : A† with A† <: A, by transitivity from A† <: Bj  and Bj <: A.

Case (Red Update)
σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’      jÏ1..n      ι jÏdom(σ’)
———————————————–—

σ°S ∫ a.ljfiüς(x)b Òñ [li=ι i iÏ1..n] ° σ’.ι jóï◊Üς(x)b,Sá.
By hypothesis E ∫ a.ljfiüς(x)b : A  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E.

Since E ∫ a.ljfiüς(x)b : A, we must have E ∫ a : [lj:Bj ...] and E, x:[lj:Bj ...] ∫ b : Bj for some
[lj:Bj ...] <: A.

By induction hypothesis:

Since E ∫ a : [lj:Bj ...]  ∧   σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ) ∧   Σ ª S
: E,

there exist a type A† and a store type Σ† such that:
Σ† *  Σ  ∧   Σ† ª σ’  ∧   dom(σ’)=dom(Σ†)  ∧   Σ† ª [li=ι i iÏ1..n] : A† ∧   A† <: [lj:Bj ...].

By assumption ι jÏdom(σ’), hence ι jÏdom(Σ†). But Σ† ª [li=ι i iÏ1..n] : A† must have been
derived via (Result Object) from Σ†

1(ι i) 7 [li:Σ†
2(ι i) iÏ1..n] 7 A† for all i Ï 1..n. Hence, since A† <:

[lj:Bj ...],  we have Σ†
2(ι j) = Bj. Take σ† 7 σ’.ι jóï◊Üς(x)b,Sá.

(1) We have Σ† ª S : E by Lemma 4-1. We also have E, x:A† ∫ b : Bj by a bound change
lemma (from E, x:[lj:Bj ...] ∫ b : Bj and A† <: [lj:Bj ...]), that is E, x:Σ†

1(ι j) ∫ b : Σ†
2(ι j).

(2) Since Σ† ª σ’ must come from (Store Typing), σ’ has the shape εk÷ïñÜς(xk)bk,Ská kÏ1..m, and
for all k such that εk≠ι j and for some Ek we have Σ† ª Sk : Ek, and Ek, xk:Σ†

1(εk) ∫ bk :
Σ†

2(εk).

Then by (1) and (2) we have Σ† ª σ’.ι jóï◊Üς(x)b,Sá, by the (Store Typing) rule.

We conclude Σ† *  Σ  ∧   Σ† ª σ†  ∧   Σ† ª [li=ι i iÏ1..n] : A†  and  A† <: A by transitivity from A†

<: [lj:Bj ...] and [lj:Bj ...] <: A.
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Case (Red Clone)
σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’      ι i Ï dom(σ’)      ι ’i Ì dom(σ’)      ι ’i distinct      ÓiÏ1..n
———————————————————————————–—

σ°S ∫ clone(a) Òñ [li=ι ’i iÏ1..n] ° (σ’, ι ’i÷ïñσ’(ι i) iÏ1..n).

By hypothesis E ∫ clone(a) : A  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E. Since E ∫
clone(a) : A, we must have E ∫ a : A (possibly via subsumption).

By the induction hypothesis:

Since E ∫ a : A   ∧   σ°S ∫ a Òñ [li=ι i iÏ1..n]°σ’  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E,
there exist a type A† and a store type Σ’ such that:
Σ’ *  Σ  ∧   Σ’ ª σ’  ∧   dom(σ’)=dom(Σ’)  ∧   Σ’ ª [li=ι i iÏ1..n] : A† ∧   A† <: A.

Let Σ†7(Σ’, ι ’i÷ïñΣ’(ι i) iÏ1..n) and σ†7(σ’, ι ’i÷ïñσ’(ι i) iÏ1..n). We have Σ† ª Q by (Store Type)
because ι ’i Ì dom(σ’)=dom(Σ’), ι ’i are all distinct, and Σ’ ª Q is a prerequisite of Σ’ ª σ’.

We conclude:

° A† <: A.

° Σ† * Σ, because Σ’ * Σ and Σ† * Σ’.

° dom(σ†)=dom(Σ†), by construction and dom(σ’)=dom(Σ’).

° Σ† ª σ†. Since Σ’ ª σ’ must come from (Store Typing), σ’ has the shape εk÷ïñÜς(xk)bk,Ská
kÏ1..m, and for all kÏ1..m and for some Ek we have Σ’ ª Sk : Ek and Ek, xk:Σ’1(εk) ∫ bk :
Σ’2(εk). Then also Ek, xk:Σ†

1(εk) ∫ bk : Σ†
2(εk), and by Lemma 4-1 Σ† ª Sk : Ek. Let

f:1..n→1..m be ε-1†ι , so that for all iÏ1..n, ι i=εf(i). We have Ef(i), xf(i):Σ’1(εf(i)) ∫ bf(i) : Σ’2(εf(i))
for iÏ1..n, so Ef(i), xf(i):Σ’1(ι i) ∫ bf(i) : Σ’2(ι i). Moreover, since Σ’(ι i)=Σ†(ι ’i), we have  Ef(i),
xf(i):Σ†

1(ι ’i) ∫ bf(i) : Σ†
2(ι ’i). The result follows by (Store Typing) from Σ† ª Sk : Ek, and Σ† ª

Sf(i) : Ef(i), and Ek, xk:Σ†
1(εk) ∫ bk : Σ†

2(εk) and Ef(i), xf(i):Σ†
1(ι ’i) ∫ bf(i) : Σ†

2(ι ’i), for kÏ1..m
and iÏ1..n.

° Σ† ª [li=ι ’i iÏ1..n] : A†. First, Σ’ ª [li=ι i iÏ1..n] : A† must come from the (Result Object) rule
with A† 7 Σ’1(ι i) 7 [li:Σ’2(ι i) iÏ1..n] for iÏ1..n, and Σ’ ª Q. But Σ†(ι ’i) 7 Σ’(ι i) for iÏ1..n. So,
Σ†

1(ι ’i) 7 [li:Σ†
2(ι ’i) iÏ1..n] 7 A†, and by (Result Object) Σ† ª [li=ι ’i iÏ1..n] : [li:Σ†

2(ι ’i) iÏ1..n].

Case (Red Let)
σ°S ∫ b Òñ v’°σ’      σ’°S, x÷ïñv’ ∫ c Òñ v”°σ”
——————————————–—

σ°S ∫ let x=c in b Òñ v”°σ”.

By hypothesis E ∫ let x=c in b : A  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E. Since E ∫ let
x=c in b : A, we must have E ∫  c : C for some C, and E, x:C ∫  b : A (possibly via
subsumption).

By the first induction hypothesis:

Since E ∫ c : C  ∧   σ°S ∫ c Òñ v’°σ’  ∧   Σ ª σ  ∧   dom(σ)=dom(Σ)  ∧   Σ ª S : E,
there exist a type C' and a store type Σ’ such that:
Σ’ *  Σ  ∧   Σ’ ª σ’  ∧   dom(σ’)=dom(Σ’)  ∧   Σ’ ª v’ : C' ∧   C' <: C.

By Lemma 4-1, Σ’ ª S : E, hence by (Stack x Typing) Σ’ ª S, x÷ïñv’ : E, x:C'. From E,x:C ∫ b
: A by bound weakening, E, x:C' ∫ b : A.

By the second induction hypothesis:

Since E, x:C' ∫ b : A   ∧   σ’°S, x÷ïñv’ ∫ b Òñ v”°σ”  ∧   Σ’ ª σ’  ∧   dom(σ’)=dom(Σ’)
∧   Σ’ ª S, x÷ïñv’ : E, x:C',
there exist a type A† and a store type Σ† such that:
Σ† *  Σ’  ∧   Σ† ª σ”  ∧   dom(σ”)=dom(Σ†)  ∧   Σ† ª v” : A† ∧   A† <: A.

We conclude that  Σ† *  Σ (by transitivity), Σ† ª σ” with dom(σ”)=dom(Σ†), and Σ† ª v” : A†

with A† <: A.

M
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Corollary
If    ∫ a : A  and  ° ∫ a Òñ v°σ
then there exist a type A† and a store type Σ† such that
Σ† ª σ  and  Σ† ª v : A†, with A† <: A.

M

Therefore, if a term has a type, and the term reduces to a result in a store, then the result can
be assigned that type in that store. That is, if a term produces a result, it does so by respecting
the type that it had been assigned statically.

This statement is vacuous if the term does not produce a result. This can happen either
because reduction diverges (the rules are applicable ad infinitum), or because it gets stuck (no
rule is applicable at a certain stage).

For each term there is at most one rule whose conclusion matches the syntactic form of the
term, and hence is potentially applicable to the term. The rule (Red x) is applicable to x unless x
is not defined in the stack. Assuming that b reduces to v, the rule (Red Update) is applicable to
b.ljfiüς(x)c provided v has lj. The applicability of the rule (Red Select) is determined with an
analogous condition. Assuming the appropriate subterms converge, the rules (Red Object), (Red
Clone), and (Red Let) are always applicable to terms of the corresponding forms. Examining
these cases, we can prove that the reduction of a well-typed term in a well-typed store cannot
get stuck (although it may diverge).

5.  Conclusions
We view our calculus as a small kernel for object-oriented languages. (In fact, its primitives

have been used in the Obliq distributed scripting language [11].). The calculus is not class-
based, since classes are not built-in, nor delegation-based [25], since the method-lookup
mechanism does not delegate invocations. However, the calculus models class-based languages
well, as we show in [4, 5]. In delegation-based languages, traits play the role of classes. Our
calculus can model traits just as easily as classes, along with dynamic delegation based on
traits. Interpreting delegation fully, though, would require significant formal complications,
because of the complexity of method lookup in delegation.
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