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Abstract
We develop an imperative calculus of objects that is both tiny and expressive. Our calculus
provides a minimal setting in which to study the operational semantics and the typing rules
of object-oriented languages. We prove type soundness using a simple subject-reduction
approach.

1.  Introduction
Procedural languages are generally well-understood; their constructs are by now standard, and

their formal underpinnings are solid. The fundamental features of procedural languages have been
distilled into formalisms that prove useful in identifying and explaining issues of implementation,
static analysis, semantics, and verification.

An analogous understanding has not yet emerged in object-oriented programming. There is no
widespread agreement on the choice of basic constructs and on their properties. Consequently,
practical object-oriented languages support many features and programming techniques, often with
little concern for orthogonality.

With the aim of clarifying the fundamental features of object-oriented languages, we introduce
a tiny but expressive imperative calculus. The calculus comprises objects, method invocation,
method update, object cloning, and local definitions. In a quest for minimality, we take objects to be
just collections of methods. Fields are important too, but they can be seen as a derived concept; for
example a field can be viewed as a method that does not use its self parameter.

When fields and methods are identified it is trivial to convert one into the other, conceptually
turning passive data into active computation and vice versa. The hiding of fields from public view
has been widely advocated as a means of concealing representation choices, and thereby allowing
flexibility in implementation. Identifying fields with methods confers much of the same flexibility,
by eliminating fields.

The unification of fields with methods has also the advantage of simplicity. Both objects and
object operations assume a uniform structure. In contrast, the separation of fields from methods
induces a corresponding separation of object operations, and leads to the implicit or explicit split-
ting of objects into two components. Unifying fields with methods gives more compact and there-
fore more elegant calculi.

This unification, however, has one debatable consequence. The natural operation on methods is
method invocation, and the natural operations on fields are field selection and field update. By uni-
fying fields with methods, we can collapse field selection and method invocation into a single op-
eration. To complete the unification, though, we are forced to generalize field update to method up-
date.
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The reliance on method update is one of the most unusual aspects of our formal treatment: this
operation is not normally found in programming languages. However, method update can be seen
as a form of dynamic inheritance [25] which is a feature found in object-based languages [7] but
not yet in class-based languages [6]. Like other forms of dynamic inheritance, method update
supports the dynamic modification of object behavior allowing objects, in a sense, to change their
class dynamically. Thus, method update gives us an edge in modeling object-based constructions,
in addition to allowing us to model the more traditional class-based constructions where fields and
methods are sharply separated.

A further justification for method update can be found in the desire to tame dynamic inheri-
tance. Dynamic inheritance has potentially unpredictable effects, due to the updating of shared state.
These concerns have led to the search for better-behaved, restricted, dynamic inheritance mecha-
nisms [23]. Method update is one of these better-behaved mechanisms, especially in the absence of
delegation, as in our calculus. Method update is statically typable, and can be used to emulate the
mode-switching applications of dynamic inheritance [13]. With method update we avoid some dan-
gerous aspects of dynamic inheritance [14, 23], while maintaining its dynamic specialization aspects
originally advocated by the Treaty of Orlando [22].

In this paper, we study an untyped calculus (section 2), and then we present a type structure for
it (section 3). The only type constructor is one for object types: an object type is a list of method
names and method result types. A subtyping relation between object types supports object sub-
sumption, which allows an object to be used where an object with fewer methods is expected. We
prove the consistency of our rules using a subject-reduction approach (section 4). Our technique is
an extension of Harper’s [16], using closures and stacks instead of formal substitutions. This ap-
proach yields a manageable proof for a realistic implementation strategy.

Elsewhere we have considered functional calculi [2-4]. The main novelty here is the treatment
of imperative features, with corresponding proof techniques. In further work [5] we treat second-or-
der type structures (with Self types) for an imperative calculus.

A few other object formalisms have been defined and studied. Many of these rely on purely
functional models, with an emphasis on types [1, 8, 10, 12, 17, 19-21, 26]. Others deal with
imperative features in the context of concurrency; see for example [28]. The works most closely
related to ours are that of Eifrig et al. on LOOP [15] and that of Bruce and van Gent on TOIL [9].
LOOP and TOIL are typed, imperative, object-oriented languages with procedures, objects, and
classes. Both take procedures, objects, and classes as primitive, with fairly complex rules; they also
distinguish methods from fields. LOOP is translated into a somewhat simpler calculus, which
includes record, function, reference, recursive, and F-bounded types. Our calculus is centered
entirely on objects: procedures and classes can be defined from them. The collections of programs
that can be written and typed in these formalisms are different. In spite of this, we all share the goal
of modeling imperative object-oriented languages by precise semantic structures and sound type
systems.

2.  An Untyped Imperative Calculus
We begin with the syntax of an untyped imperative calculus.  The initial syntax is minimal, but

in sections 2.2 and 2.3 we show how to express convenient constructs such as fields and proce-
dures. We omit how to encode basic data types, control structures, and classes, which can be treated
much as in [4]. In section 2.5 we give an operational semantics.
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2.1  Syntax

Syntax of the imp-ς calculus

a,b ::= term

x variable

[li=ς(xi)bi iì1..n] object (li distinct)

a.l method invocation

a.lÞ�ς(x)b method update

clone(a) cloning

let x = a in b let

An object is a collection of components li=ς(xi)bi, for distinct labels li and associated methods
ς(xi)bi; the order of these components does not matter, even for our deterministic operational se-
mantics. The letter ς (sigma) is used as a binder for the self parameter of a method; ς(x)b is a method
with self parameter x, to be bound to the host object, and body b.

A method invocation o.l results in the evaluation of the body of the method named l, with o
bound to the self parameter.

A method update o.lÞ�ς(y)b replaces the method named l with ς(y)b in o, and returns the modi-
fied object.

A cloning operation clone(o) produces a new object with the same labels as o, with each com-
ponent sharing the methods of the corresponding component of o.

The let construct evaluates a term, binds it to a variable, and then evaluates a second term with
that variable in scope. Sequential evaluation can be defined from let, by:

a;b   @   let x=a in b,

for x í FV(b).

2.2  Fields

In our imp-ς calculus, every component of an object contains a method. However, we can en-
code fields with eagerly evaluated contents by using the let construct. We write [li=bi iì1..n,
lj=ς(xj)bj jì1..m] for an object where li=bi are fields and lj=ς(xj)bj are methods. We also write a.l:=b for
field update, and a.l, as before, for field selection. We abbreviate:

Encoding of fields

[li=bi iì1..n, lj=ς(xj)bj jì1..m] for yi í FV(bi iì1..n, bj jì1..m), yi distinct, iì0..n

@   let y1=b1 in ... let yn=bn in [li=ς(y0)yi iì1..n, lj=ς(xj)bj jì1..m]

a.l:=b @   let y1=a in let y2=b in y1.lÞ�ς(y0)y2 for yi í FV(b), yi distinct, iì0..2

The semantics of an object with fields may depend on the order of its components, because of side-
effects in computing contents of fields. The encoding specifies an evaluation order.

By an update, a method can be changed into a field and vice versa. Thus, we use somewhat in-
terchangeably the names selection and invocation.
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2.3  Procedures

The imp-ς calculus is so minimal that it does not include procedures, but these can be ex-
pressed too. We begin by considering informally a call-by-value λ-calculus with side-effects, imp-λ,
that includes abstraction, application, and assignment to λ-bound variables. For example, assuming
arithmetic primitives, (λ(x) x:=x+1; x)(3) is an imp-λ term yielding 4. We translate imp-λ into imp-ς.

Translation of procedures

�x�ρ @   ρ(x) if xìdom(ρ), and x otherwise

�λ(x)b�ρ @   [arg = ς(x)x.arg, val = ς(x)�b�ρ{x←x.arg}]

�b(a)�ρ @   (clone(�b�ρ).arg:=�a�ρ).val

�x:=a�ρ @   x.arg:=�a�ρ

In the translation, an environment ρ maps each variable x either to x.arg if x is λ-bound, or to x if x
is a free variable. A λ-abstraction is translated to an object with an arg component, for storing the
argument, and a val method, for executing the body. The arg component is initially set to a diver-
gent method, and is filled with an argument upon procedure call. A call activates the val method that
can then access the argument through self as x.arg. An assignment x:=a updates x.arg, where the ar-
gument is stored (assuming that x is λ-bound). A procedure needs to be cloned when it is called; the
clone provides a fresh location in which to store the argument of the call, preventing interference
with other calls of the same procedure. Such interference would derail recursive invocations. (This
encoding has similarities with the mechanism of method activation in the Self language [25].)

2.4  A Small Example

We give a trivial example as a notation drill. We use fields, procedures, and basic data types in
defining a memory cell with get, set, and dup (duplicate) components:

let m = [get = 0,  set = ς(self) λ(b) self.get:=b,  dup = ς(self) clone(self)]

in m.set(1); m.get yields 1

This cell can be used as a prototype for building cells, which can then be customized by method
update. For example, we may create a cell that accepts only non-negative integers through the set
method:

let m = [get = 0,  set = ς(self) λ(b) self.get:=b,  dup = ς(self) clone(self)]

in m.dup.set Þ� ς(self) λ(b) if b<0 then self.get:=0 else self.get:=b

2.5  Operational Semantics

We now give an operational semantics that relates terms to results in a global store. Object
terms reduce to results consisting of sequences of store locations, one location for each object com-
ponent. In order to stay close to standard implementation techniques, we avoid using formal substi-
tutions during reduction. We describe a semantics based on stacks and closures. A stack S associ-
ates variables with results; a closure �ς(x)b,S� is a pair of a method together with a stack that is used
for the reduction of the method body. A store maps locations to method closures; we write stores in
the form ι iÖ���ς(xi)bi,Si� iì1..n; we write σ.ι��×m for the result of putting m in the ι  location of σ.

The operational semantics is expressed in terms of a relation that relates a store σ, a stack S, a
term b, a result v, and another store σ’. This relation is written σ¡S º b ñ� v¡σ’, and it means that
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with the store σ and the stack S, the term b reduces to a result v, yielding an updated store σ’. The
stack does not change. The operational semantics is presented formally as follows.

Operational semantics

ι store location (e.g., an integer)

v ::= [li=ι i iì1..n] result (li distinct)

σ ::= ι iÖ���ς(xi)bi,Si� iì1..n store (ι i distinct)

S ::= xiÖ��vi iì1..n stack (xi distinct)

Well-formed store judgment:   σ º Q

(Store ð) (Store ι )

σ¡S º Q      ι  í dom(σ)
—— ————————

ð º Q σ, ι Ö���ς(x)b,S� º Q

Well-formed stack judgment:   σ¡S º Q

(Stack ð) (Stack x)

σ º Q σ¡S º Q      ι i ì dom(σ)      x í dom(S)      li,ι i distinct      îiì1..n
——— ——————————————————————

σ¡ð º Q σ ¡ S, xÖ��[li=ι i iì1..n] º Q

Term reduction judgment:   σ¡S º a ñ� v¡σ’

(Red x) (Red Object)

σ ¡ S’,xÖ��v,S” º Q σ¡S º Q      ι i í dom(σ)      ι i distinct      îiì1..n
———––————— ————————————————————

σ ¡ S’,xÖ��v,S” º x ñ� v¡σ σ¡S º [li=ς(xi)bi iì1..n] ñ� [li=ι i iì1..n] ¡ (σ, ι iÖ���ς(xi)bi,S� iì1..n)

(Red Select)

σ¡S º a ñ� [li=ι i iì1..n]¡σ’      σ’(ι j)=�ς(xj)bj,S’ �      xj í dom(S’)      jì1..n

σ’ ¡ S’, xjÖ��[li=ι i iì1..n] º bj ñ� v¡σ”
————————————————————————

σ¡S º a.lj ñ� v¡σ”

(Red Update)

σ¡S º a ñ� [li=ι i iì1..n]¡σ’      jì1..n      ι jìdom(σ’)
—————————————————

σ¡S º a.ljÞ�ς(x)b ñ� [li=ι i iì1..n] ¡ σ’.ι j��×�ς(x)b,S�

(Red Clone)

σ¡S º a ñ� [li=ι i iì1..n]¡σ’      ι i ì dom(σ’)      ι ’i í dom(σ’)      ι ’i distinct      îiì1..n
————————————————————————————

σ¡S º clone(a) ñ� [li=ι ’i iì1..n] ¡ (σ’, ι ’iÖ��σ’(ι i) iì1..n)

(Red Let)

σ¡S º a ñ� v’¡σ’      σ’¡S, xÖ��v’ º b ñ� v”¡σ”
————————————————

σ¡S º let x = a in b ñ� v”¡σ”

A variable reduces to the result it denotes in the current stack. An object reduces to a result consist-
ing of a fresh collection of locations; the store is extended to associate method closures to those lo-
cations. A selection operation reduces its object to a result, and activates the appropriate method
closure. An update operation reduces its object to a result, and updates the appropriate store loca-
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tion with a new method closure. A clone operation reduces its object to a result; then it allocates a
fresh collection of locations that are associated to the existing method closures from the object. A let
construct reduces to the result of reducing its body in a stack extended with the bound variable and
the result of its associated term.

We illustrate reduction with two examples. The first one is a simple terminating reduction for
the term [l = ς(x)[]].l. The following represents a (partial) derivation tree, with bracketed subtrees:

 ð¡ð º [l=ς(x)[]] ñ� [l=0]¡(0Ö���ς(x)[],ð�) by (Red Object)

 (0Ö���ς(x)[],ð�)¡(xÖ��[l=0]) º [] ñ� []¡(0Ö���ς(x)[],ð�) by (Red Object)

ð¡ð º [l=ς(x)[]].l ñ� []¡(0Ö���ς(x)[],ð�) by (Red Select)

We illustrate method overriding, and the creation of loops through the store, by evaluating the term
[l = ς(x) x.lÞ�ς(y)x].l.

let σ0 7 0Ö���ς(x)x.lÞ�ς(y)x, ð�   and   σ1 7 0Ö���ς(y)x, (xÖ��[l=0])�

 ð¡ð º [l=ς(x)x.lÞ�ς(y)x] ñ� [l=0]¡σ0 by (Red Object)

  σ0¡(xÖ��[l=0]) º x ñ� [l=0]¡σ0 by (Red x)

 σ0¡(xÖ��[l=0]) º x.lÞ�ς(y)x ñ� [l=0]¡σ1 by (Red Update)

ð¡ð º [l=ς(x)x.lÞ�ς(y)x].l ñ� [l=0]¡σ1 by (Red Select)

The store σ1 contains a loop, because it maps the index 0 to a closure that binds the variable x to a
value that contains index 0. Hence, an attempt to read out the result of [l=ς(x)x.lÞ�ς(y)x].l by
“inlining” the store and stack mappings would produce the infinite term [l=ς(y)[l=ς(y)[l=ς(y)...]]].

The potential for creating loops in the store is characteristic of imperative semantics. Loops in
the store complicate reasoning about programs and, as we see in the next chapter, they also demand
special attention in the treatment of type soundness.

3.  Typing
We define a type system for the untyped calculus of section 2, and give a typed example.

3.1  Typing Rules

The typing rules for objects are the same ones we would have for a functional semantics. They
are in fact a superset of those of [4], except that terms do not contain type annotations (to match our
untyped operational semantics).

Typing rules

Well-formed environment and type judgments:   E º Q,  E º A

(Env ð) (Env x) (Type Object)  (li distinct)

E º A      xídom(E) E º Bi      îiì1..n
—— ——————— ——————

ð º Q E,x:A º Q E º [li:Bi iì1..n]
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Subtyping judgment:   E º A <: B

(Sub Refl) (Sub Trans) (Sub Object)  (li distinct)

E º A E º A <: B      E º B <: C E º Bi      îiì1..n+m
———— ————————— ——————————

E º A <: A E º A <: C E º [li:Bi iì1..n+m] <: [li:Bi iì1..n]

Value typing judgment:   E º a : A

(Val Subsumption) (Val x) (Val Object)  (where  A7[li:Bi iì1..n])

E º a : A      E º A <: B E’,x:A,E” º Q E, xj:A º bj : Bj      îjì1..n
———————— ————–— —————————

E º a : B E’,x:A,E” º x:A E º [li=ς(xi)bi iì1..n] : A

(Val Select) (Val Update)  (where  A7[li:Bi iì1..n])

E º a : [li:Bi iì1..n]      jì1..n E º a : A      E, x:A º b : Bj     jì1..n
————————— ————————————

E º a.lj : Bj E º a.ljÞ�ς(x)b : A

(Val Clone)  (where  A7[li:Bi iì1..n]) (Val Let)

E º a : A E º a : A      E, x:A º b : B
—–———— —————————

E º clone(a) : A E º let x = a in b : B

The first two groups of rules concern typing environments, types, and the subtyping relation. An ob-
ject type is a collection of method names and associated method result types. A longer object type
is a subtype of a shorter one, without variation in the common type components. The final group
concerns typing of values. There is one rule for each construct in the calculus; in addition, a sub-
sumption rule connects value typing with subtyping judgments.

3.2  A Typed Example

This section illustrates how to type a simple imperative example: movable points. In this ex-
ample we rely on fields and procedures, as encoded in section 2. The encoding of procedures type-
checks with A→B translated as [arg:A, val:B].

Trivial as it may seem, the example of movable points has been a notorious source of difficul-
ties in functional settings (see [4]). These difficulties have resulted in the use of sophisticated type
theories. In an imperative setting, however, some of these difficulties can be avoided altogether.

Consider one-dimensional and two-dimensional points, with coordinate fields (x and y) and
methods that modify these fields (mv_x and mv_y). The coordinates are integers. We assume that
integers and reals are available, perhaps through an encoding. For example, the origin points are:

p1   @ [x = 0, mv_x = ς(s) λ(dx) s.x:=s.x+dx]

p2   @ [x = 0,

 y = 0,

 mv_x = ς(s) λ(dx) s.x:=s.x+dx,

 mv_y = ς(s) λ(dy) s.y:=s.y+dy]

In the type system of section 3.1, p1 and p2 can be given the types:

P1   @   [x:Int, mv_x:Int→[]]

P2   @   [x,y:Int, mv_x,mv_y:Int→[]]
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where P2 is a subtype of P1. This result type [] is obtained by subsumption. The imperative opera-
tional semantics produces the desired effect of moving a point, without requiring any particular re-
sult type for move methods. In contrast, in a functional framework an informative result type is nec-
essary.

Imperatively, there is no loss of type information when moving a point. For example, suppose
that f is defined with one-dimensional points in mind, with the type P1→[], and norm2 is defined for
two-dimensional points, with the type P2→Real:

f: P1→[]   @   λ(p) p.mv_x(1)

norm2: P2→Real   @   λ(p) sqrt(p.x^2 + p.y^2)

Since P2 is a subtype of P1, f(p2) is a legal call for p2:P2. Therefore, the following code typechecks
and, as expected, returns 1:

f(p2); norm2(p2)

Thus, we have applied a P1 procedure to a P2 point, and after this we are still able to use the point as
a member of P2. In contrast, in a functional setting we may try to write norm2(f(p2)), which is not
well-typed if f:P1→[].

Even in an imperative setting, however, it is common to define methods that produce new ob-
jects, as opposed to modifying existing ones. If mv_x is to return a new object, one must declare it
with result type P1 or P2, to take advantage of any change to the x coordinate. One may try to rede-
fine P1 and P2 as recursive types (for example, P1 @ µ(X)[x:Int, mv_x:Int→X]), but then P2 is not a
subtype of P1. With this definition, all the typing difficulties common in functional settings resurface.

4.  Soundness
We show the type soundness of our operational semantics, using an approach similar to subject

reduction. We build on the techniques developed by Tofte, Wright and Felleisen, Leroy, and Harper
[16, 18, 24, 27]. Our proof technique is an extension of Harper’s, in that we deal with closures and
stacks and thus avoid introducing locations into the term language.

The typing of results with respect to stores is delicate. We would not be able to determine the
type of a result by examining its substructures recursively, including the ones accessed through the
store, because stores may contain loops. Store types, introduced below, allow us to type results in-
dependently of particular stores. This is possible because type-sound computations do not store re-
sults of different types in the same location. Next we formalize store types and other notions neces-
sary for the proof of soundness.

A store type Σ associates a method type to each store location. A method type has the form
[li:Βi iì1..n]⇒ Bj, where [li:Βi iì1..n] is the type of self, and Bj is the result type, for jì1..n. The statement
of soundness relies on a new judgment, result typing: Σ » v : A. This means that the result v has type
A with respect to the store type Σ. The locations contained in v are assigned types in Σ.

To connect stores and store types, we use a judgment Σ » σ. Checking this judgment reduces
to checking that the contents of every store location has the type determined by the store type for
that location. Since locations contain closures and store types contain method types, we need to
determine when a closure has a method type. For this, it is sufficient to check that a stack is compat-
ible with an environment; the environment is then used to type the method. We write Σ » S : E to
mean that the stack S is compatible with the environment E in Σ. Now, since stacks contain results
and environments contain types, we can define Σ » S : E via the result typing judgment, which we
have already discussed. The rule for store typing deals with each closure with respect to the whole
store, accounting for cycles in the store.
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Store typing rules

M ::= [li:Βi iì1..n]⇒ Bj method type (jì1..n)

Σ ::= ι iÖ��Mi iì1..n store type (ι i distinct)

Σ1(ι) @  [li:Βi iì1..n] if Σ(ι ) = [li:Βi iì1..n]⇒ Bj

Σ2(ι ) @  Bj if Σ(ι ) = [li:Βi iì1..n]⇒ Bj

Well-formed method type and store type judgments:   » M ì Meth,  Σ » Q

(Method Type) (Store Type)

jì1..n » Mi ì Meth      ι i distinct      î i ì 1..n
————————— ———————————–——

» [li:Βi iì1..n]⇒ Bj ì Meth ι iÖ��Mi iì1..n  »  Q

Result typing judgment:   Σ » v : A

(Result Object)

Σ » Q      Σ1(ι i) 7 [li:Σ2(ι i) iì1..n]      î i ì 1..n
———————————————

Σ » [li=ι i iì1..n] : [li:Σ2(ι i) iì1..n]

Stack typing judgment:   Σ » S : E

(Stack ð Typing) (Stack x Typing)

Σ » Q Σ » S : E      Σ » [li=ι i iì1..n] : A    x í dom(E)
——— ———————————————

Σ » ð : ð Σ » S,xÖ��[li=ι i iì1..n] : E,x:A

Store typing judgment:   Σ » σ
(Store Typing)

Σ » Si : Ei      Ei, xi:Σ1(ι i) º bi : Σ2(ι i)       î i ì 1..n
—————————————————

Σ » ι iÖ���ς(xi)bi,Si� iì1..n

We say that Σ’ is an extension of Σ (and write Σ’ *  Σ) iff dom(Σ) ⊆ dom(Σ’) and for all
ιìÊdom(Σ),  Σ’(ι) = Σ(ι).

Lemma 4-1
If Σ » S : E and Σ’ » Q with Σ’ * Σ, then Σ’ » S : E.

M

If a term has a type, and the term reduces to a result in a store, then the result can be assigned
that type in that store:

Soundness Theorem
If  E º a : A  ∧   σ¡S º a ñ� v¡σ†  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E
then there exist a type A† and a store type Σ† such that:
Σ† * Σ  ∧   Σ† » σ†  ∧   dom(σ†)=dom(Σ†)  ∧   Σ† » v : A†  ∧   A† <: A.

Proof
By induction on the derivation of σ¡S º a ñ� v¡σ†.
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Case (Red x)
σ ¡ S’,xÖ��[li=ι i iì1..n],S” º Q
———————————————

σ ¡ S’,xÖ��[li=ι i iì1..n],S” º x ñ� [li=ι i iì1..n]¡σ
By hypothesis  E º x : A  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S’,xÖ��[li=ι i iì1..n],S” : E. Because of
E º x : A, we must have E 7 E’,x:A†,E” for some A†<:A.

Now, Σ » S’,xÖ��[li=ι i iì1..n],S” : E must have been derived via several applications of (Stack x
Typing) from, among others, Σ » [li=ι i iì1..n] : A†.

Take Σ† 7 Σ. We conclude Σ† » σ  ∧   dom(σ)=dom(Σ†) ∧   Σ† » [li=ι i iì1..n] : A† ∧   A† <: A.

Case (Red Object)
σ¡S º Q      ι i í dom(σ)      ι i distinct      îiì1..n
——————————————————–—

σ¡S º [li=ς(xi)bi iì1..n] ñ� [li=ι i iì1..n] ¡ (σ, ι iÖ���ς(xi)bi,S� iì1..n).

By hypothesis E º [li=ς(xi)bi iì1..n] : A  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E. Because of E º
[li=ς(xi)bi iì1..n] : A, we must have E º [li=ς(xi)bi iì1..n] : [li:Bi iì1..n] by (Val Object), for some
[li:Bi iì1..n] <: A. Take A† 7 [li:Bi iì1..n].

Take Σ† 7 Σ, ι jÖ��(A†⇒ Bj) jì1..n ; by (Store Type) we have Σ† » Q, because the ι jídom(σ), and
hence ι jídom(Σ), and because » A†⇒ Bj ì Meth for jì1..n.

(1) Since Σ† is an extension of Σ , by Lemma 4-1 we also have Σ† » S  : E. Since E º
[li=ς(xi)bi iì1..n] : A†, we must have E, xi:A† º bi : Bi, that is, E, xi:Σ†

1(ι i) º bi : Σ†
2(ι i).

(2) We have that σ has the shape εkÖ���ς(xk)bk,Sk� kì1..m. Now, Σ » σ must come from the (Store
Typing) rule, with  Σ » Sk : Ek and  Ek, xk:Σ1(εk) º bk : Σ2(εk). By Lemma 4-1, Σ† » Sk : Ek;
moreover Ek, xk:Σ†

1(εk) º bk : Σ†
2(εk), because Σ†(εk)=Σ(εk) for k ì 1..m since dom(σ) =

dom(Σ) = {εk kì1..m} and Σ† extends Σ.

By (1) and (2), via the (Store Typing) rule, we have  Σ† » (σ, ι iÖ���ς(xi)bi,S� iì1..n). Since Σ† » Q and
Σ† 7 Σ, ι jÖ��(A†⇒ Bj) jì1..n, by the (Result Object) rule, we have Σ† » [li=ι i iì1..n] : A†.

We conclude that Σ† * Σ  ∧   Σ† » (σ, ι iÖ���ς(xi)bi,S� iì1..n)  ∧   dom(σ, ι iÖ���ς(xi)bi,S� iì1..n)=dom(Σ†) ∧
Σ† » [li=ι i iì1..n] : A†  ∧   A† <: A.

Case (Red Select)
σ¡S º a ñ� [li=ι i iì1..n]¡σ’      σ’(ι j)=�ς(xj)bj,S’ �      xj í dom(S’)      jì1..n
σ’ ¡ S’, xjÖ��[li=ι i iì1..n] º bj ñ� v¡σ”
———————————————————————–—

σ¡S º a.lj ñ� v¡σ”.

By hypothesis E º a.lj : A  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E. Since E º a.lj : A, we must
have E º a : [lj:Bj ...], for some [lj:Bj ...] with Bj <: A.

By the first induction hypothesis:

Since E º a : [lj:Bj ...]  ∧  σ¡S º a ñ� [li=ι i iì1..n]¡σ’ ∧  Σ » σ ∧  dom(σ)=dom(Σ) ∧  Σ » S : E,
there exist a type A’ and a store type Σ’ such that:
Σ’ *  Σ  ∧   Σ’ » σ’  ∧   dom(σ’)=dom(Σ’)  ∧   Σ’ » [li=ι i iì1..n] : A’ ∧   A’ <: [lj:Bj ...].

Since σ’(ι j)=�ς(xj)bj,S’�, the judgment  Σ’ » σ’ must come via (Store Typing) from Σ’ » S’ : Ej

and  Ej, xj:Σ’1(ι j) º bj : Σ’2(ι j)  for some Ej. Since Σ’ » [li=ι i iì1..n] : A’ must come from (Result Ob-
ject), we have A’ 7 [li:Σ’2(ι j) iì1..n] 7 Σ’1(ι j). Since A’ <: [lj:Bj ...], we have Σ’2(ι j) 7 Bj. Then, from
Ej, xj:Σ’1(ι j) º bj : Σ’2(ι j) we obtain Ej, xj:A’ º bj : Bj. Moreover, by the (Stack x Typing) rule we
get Σ’ » S’, xjÖ��[li=ι i iì1..n] : Ej, x:A’.

Let E’ 7 Ej, x:A’. By the second induction hypothesis:

Since E’ º bj : Bj  ∧   σ’ ¡ S’, xjÖ��[li=ι i iì1..n] º bj ñ� v¡σ”  ∧   Σ’ » σ ’  ∧   dom(σ’)=dom(Σ’)
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∧   Σ’ » S’, xjÖ��[li=ι i iì1..n] : E’,
there exist A† and Σ† such that:
Σ† *  Σ’  ∧   Σ† » σ”  ∧   dom(σ”)=dom(Σ†)  ∧   Σ† » v : A† ∧   A† <: Bj.

We conclude:

¡ Σ† *  Σ by transitivity from Σ† *  Σ’ and Σ’ *  Σ,
¡ Σ† » σ” with dom(σ”)=dom(Σ†),
¡ Σ† » v : A† with A† <: A, by transitivity from A† <: Bj  and Bj <: A.

Case (Red Update)
σ¡S º a ñ� [li=ι i iì1..n]¡σ’      jì1..n      ι jìdom(σ’)
———————————————–—

σ¡S º a.ljÞ�ς(x)b ñ� [li=ι i iì1..n] ¡ σ’.ι j��×�ς(x)b,S�.

By hypothesis E º a.ljÞ�ς(x)b : A  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E.

Since E º a.ljÞ�ς(x)b : A, we must have E º a : [lj:Bj ...] and E, x:[lj:Bj ...] º b : Bj for some [lj:Bj ...]
<: A.

By induction hypothesis:

Since E º a : [lj:Bj ...]  ∧   σ¡S º a ñ� [li=ι i iì1..n]¡σ’  ∧   Σ » σ  ∧   dom(σ)=dom(Σ) ∧   Σ » S : E,
there exist a type A† and a store type Σ† such that:
Σ† *  Σ  ∧   Σ† » σ’  ∧   dom(σ’)=dom(Σ†)  ∧   Σ† » [li=ι i iì1..n] : A† ∧   A† <: [lj:Bj ...].

By assumption ι jìdom(σ’), hence ι jìdom(Σ†). But Σ† » [li=ι i iì1..n] : A† must have been derived
via (Result Object) from Σ†

1(ι i) 7 [li:Σ†
2(ι i) iì1..n] 7 A† for all i ì 1..n. Hence, since A† <: [lj:Bj ...],

we have Σ†
2(ι j) = Bj. Take σ† 7 σ’.ι j��×�ς(x)b,S�.

(1) We have Σ† » S : E by Lemma 4-1. We also have E, x:A† º b : Bj by a bound change lemma
(from E, x:[lj:Bj ...] º b : Bj and A† <: [lj:Bj ...]), that is E, x:Σ†

1(ι j) º b : Σ†
2(ι j).

(2) Since Σ† » σ’ must come from (Store Typing), σ’ has the shape εkÖ���ς(xk)bk,Sk� kì1..m, and for
all k such that εk≠ι j and for some Ek we have Σ† » Sk : Ek, and Ek, xk:Σ†

1(εk) º bk : Σ†
2(εk).

Then by (1) and (2) we have Σ† » σ’.ι j��×�ς(x)b,S�, by the (Store Typing) rule.

We conclude Σ† *  Σ  ∧   Σ† » σ†  ∧   Σ† » [li=ι i iì1..n] : A†  and  A† <: A by transitivity from A† <:
[lj:Bj ...] and [lj:Bj ...] <: A.

Case (Red Clone)
σ¡S º a ñ� [li=ι i iì1..n]¡σ’      ι i ì dom(σ’)      ι ’i í dom(σ’)      ι ’i distinct      îiì1..n
———————————————————————————–—

σ¡S º clone(a) ñ� [li=ι ’i iì1..n] ¡ (σ’, ι ’iÖ��σ’(ι i) iì1..n).

By hypothesis E º clone(a) : A  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E. Since E º clone(a) : A,
we must have E º a : A (possibly via subsumption).

By the induction hypothesis:

Since E º a : A   ∧   σ¡S º a ñ� [li=ι i iì1..n]¡σ’  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E,
there exist a type A† and a store type Σ’ such that:
Σ’ *  Σ  ∧   Σ’ » σ’  ∧   dom(σ’)=dom(Σ’)  ∧   Σ’ » [li=ι i iì1..n] : A† ∧   A† <: A.

Let Σ†7(Σ’, ι ’iÖ��Σ’(ι i) iì1..n) and σ†7(σ’, ι ’iÖ��σ’(ι i) iì1..n). We have Σ† » Q by (Store Type) because
ι ’i í dom(σ’)=dom(Σ’), ι ’i are all distinct, and Σ’ » Q is a prerequisite of Σ’ » σ’.

We conclude:

¡ A† <: A.

¡ Σ† * Σ, because Σ’ * Σ and Σ† * Σ’.

¡ dom(σ†)=dom(Σ†), by construction and dom(σ’)=dom(Σ’).
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¡ Σ† » σ†. Since Σ’ » σ’ must come from (Store Typing), σ’ has the shape εkÖ���ς(xk)bk,Sk� kì1..m,
and for all kì1..m and for some Ek we have Σ’ » Sk : Ek and Ek, xk:Σ’1(εk) º bk : Σ’2(εk). Then
also Ek, xk:Σ†

1(εk) º bk : Σ†
2(εk), and by Lemma 4-1 Σ† » Sk : Ek. Let f:1..n→1..m be ε-1 ι , so that

for all iì1..n, ι i=εf(i). We have Ef(i), xf(i):Σ’1(εf(i)) º bf(i) : Σ’2(εf(i)) for iì1..n, so Ef(i), xf(i):Σ’1(ι i) º
bf(i) : Σ’2(ι i). Moreover, since Σ’(ι i)=Σ†(ι ’i), we have  Ef(i), xf(i):Σ†

1(ι ’i) º bf(i) : Σ†
2(ι ’i). The result

follows by (Store Typing) from Σ† » Sk : Ek, and Σ† » Sf(i) : Ef(i), and Ek, xk:Σ†
1(εk) º bk : Σ†

2(εk)
and Ef(i), xf(i):Σ†

1(ι ’i) º bf(i) : Σ†
2(ι ’i), for kì1..m and iì1..n.

¡ Σ† » [li=ι ’i iì1..n] : A†. First, Σ’ » [li=ι i iì1..n] : A† must come from the (Result Object) rule with
A† 7 Σ’1(ι i) 7 [li:Σ’2(ι i) iì1..n] for iì1..n, and Σ’ » Q. But Σ†(ι ’i) 7 Σ’(ι i) for iì1..n. So, Σ†

1(ι ’i) 7
[li:Σ†

2(ι ’i) iì1..n] 7 A†, and by (Result Object) Σ† » [li=ι ’i iì1..n] : [li:Σ†
2(ι ’i) iì1..n].

Case (Red Let)
σ¡S º b ñ� v’¡σ’      σ’¡S, xÖ��v’ º c ñ� v”¡σ”
——————————————–—

σ¡S º let x=c in b ñ� v”¡σ”.

By hypothesis E º let x=c in b : A  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E. Since E º let x=c
in b : A, we must have E º c : C for some C, and E, x:C º b : A (possibly via subsumption).

By the first induction hypothesis:

Since E º c : C  ∧   σ¡S º c ñ� v’¡σ’  ∧   Σ » σ  ∧   dom(σ)=dom(Σ)  ∧   Σ » S : E,
there exist a type C' and a store type Σ’ such that:
Σ’ *  Σ  ∧   Σ’ » σ’  ∧   dom(σ’)=dom(Σ’)  ∧   Σ’ » v’ : C' ∧   C' <: C.

By Lemma 4-1, Σ’ » S : E, hence by (Stack x Typing) Σ’ » S, xÖ��v’ : E, x:C'. From E,x:C º b : A
by bound weakening, E, x:C' º b : A.

By the second induction hypothesis:

Since E, x:C' º b : A   ∧   σ’¡S, xÖ��v’ º b ñ� v”¡σ”  ∧   Σ’ » σ’  ∧   dom(σ’)=dom(Σ’)
∧   Σ’ » S, xÖ��v’ : E, x:C',
there exist a type A† and a store type Σ† such that:
Σ† *  Σ’  ∧   Σ† » σ”  ∧   dom(σ”)=dom(Σ†)  ∧   Σ† » v” : A† ∧   A† <: A.

We conclude that  Σ† *  Σ (by transitivity), Σ† » σ” with dom(σ”)=dom(Σ†), and Σ† » v” : A† with
A† <: A.

M

Corollary
If   ð º a : A  and  ð¡ð º a ñ� v¡σ
then there exist a type A† and a store type Σ† such that
Σ† » σ  and  Σ† » v : A†, with A† <: A.

M

Therefore, if a term has a type, and the term reduces to a result in a store, then the result can be
assigned that type in that store. That is, if a term produces a result, it does so by respecting the type
that it had been assigned statically.

This statement is vacuous if the term does not produce a result. This can happen either because
reduction diverges (the rules are applicable ad infinitum), or because it gets stuck (no rule is appli-
cable at a certain stage).

For each term there is at most one rule whose conclusion matches the syntactic form of the
term, and hence is potentially applicable to the term. The rule (Red x) is applicable to x unless x is
not defined in the stack. Assuming that b reduces to v, the rule (Red Update) is applicable to
b.ljÞ�ς(x)c provided v has lj. The applicability of the rule (Red Select) is determined with an analo-
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gous condition. Assuming the appropriate subterms converge, the rules (Red Object), (Red Clone),
and (Red Let) are always applicable to terms of the corresponding forms. Examining these cases, we
can prove that the reduction of a well-typed term in a well-typed store cannot get stuck (although it
may diverge).

5.  Conclusions
We view our calculus as a small kernel for object-oriented languages. (In fact, its primitives

have been used in the Obliq distributed scripting language [11].) The calculus is not class-based,
since classes are not built-in, nor delegation-based [25] since the method-lookup mechanism does
not delegate invocations. However, the calculus models class-based languages well, as we show in
[4, 5]. In delegation-based languages, traits play the role of classes. Our calculus can model traits
just as easily as classes, along with dynamic inheritance based on traits. Interpreting delegation
fully, though, would require significant formal complications, because of the complexity of method
lookup in delegation.
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