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Abstract. We explore the range of probabilistic behaviours that can be
engineered with Chemical Reaction Networks (CRNs). We show that at
steady state CRNs are able to “program” any distribution with finite
support in Nm, with m ≥ 1. Moreover, any distribution with countable
infinite support can be approximated with arbitrarily small error under
the L1 norm. We also give optimized schemes for special distributions,
including the uniform distribution. Finally, we formulate a calculus to
compute on distributions that is complete for finite support distributions,
and can be compiled to a restricted class of CRNs that at steady state
realize those distributions.

1 Introduction

Individual cells and viruses operate in a noisy environment and molecular inter-
actions are inherently stochastic. How cells can tolerate and take advantage of
noise (stochastic fluctuations) is a question of primary importance. It has been
shown that noise has a functional role in cells [11]; indeed, some critical func-
tions depend on the stochastic fluctuations of molecular populations and would
be impossible in a deterministic setting. For instance, noise is fundamental for
probabilistic differentiation of strategies in organisms, and is a key factor for
evolution and adaptation [5]. In Escherichia coli, randomly and independently
of external inputs, a small sub-population of cells enters a non-growing state in
which they can elude the action of antibiotics that can only kill actively growing
bacterial cells. Thus, when a population of E. coli cells is treated with antibiotics,
the persisted cells survive by virtue of their quiescence before resuming growth
[14]. This is an example in which molecular systems compute by producing a
distribution. In other cases cells need to shape noise and compute on distri-
butions instead of simply mean values. For example, in [16] the authors show,
both mathematically and experimentally, that microRNA confers precision on
the protein expression: it shapes the noise of genes in a way that decreases the
intrinsic noise in protein expression, maintaining its expected value almost con-
stant. Thus, although fundamentally important, the mechanisms used by cells
to compute in a stochastic environment are not well understood.

Chemical Reaction Networks (CRNs) with mass action kinetics are a well
studied formalism for modelling biochemical systems, more recently also used as
a formal programming language [10]. It has been shown that any CRN can be
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physically implemented by a corresponding DNA strand displacement circuit in
a well-mixed solution [18]. DNA-based circuits thus have the potential to operate
inside cells and control their activity. Winfree and Qian have also shown that
CRNs can be implemented on the surface of a DNA nanostructure [15], enabling
localized computation and engineering biochemical systems where the molecular
interactions occur between few components. When the number of interacting
entities is small, the stochastic fluctuations intrinsic in molecular interactions
play a predominant role in the time evolution of the system. As a consequence,
“programming” a CRN to provide a particular probabilistic response for a subset
of species, for example in response to environmental conditions, is important for
engineering complex biochemical nano-devices and randomized algorithms. In
this paper, we explore the capacity of CRNs to “program” discrete probability
distributions. We aim to characterize the probabilistic behaviour that can be
obtained, exploring both the capabilities of CRNs for producing distributions
and for computing on distributions by composing them.

Contributions. We show that at steady state CRNs are able to compute any
distribution with support in Nm, with m ≥ 1. We propose an algorithm to sys-
tematically “program” a CRN so that its stochastic semantics at steady state
approximates a given distribution with arbitrarily small error under the L1 norm.
The approximation is exact if the support of the distribution is finite. The re-
sulting network has a number of reactions linear in the dimension of the support
of the distribution and the output is produced monotonically allowing composi-
tion. Since distributions with large support can result in unwieldy networks, we
also give optimised networks for special distributions, including a novel scheme
for the uniform distribution. We formulate a calculus that is complete for finite
support distributions, which can be compiled to a restricted class of CRNs that
at steady state compute those distributions. The calculus allows for modelling
of external influences on the species. Our results are of interest for a variety
of scenarios in systems and synthetic biology. For example, they can be used
to program a biased stochastic coin or a uniform distribution, thus enabling
implementation of randomized algorithms and protocols in CRNs.

Related work. It has been shown that CRNs with stochastic semantics are
Turing complete, up to an arbitrarily small error [17]. If we assume error-free
computation, their computational power decreases: they can decide the class of
the semi-linear predicates [4] and compute semi-linear functions [9]. A first at-
tempt to model distributions with CRNs can be found in [12], where the problem
of producing a single distribution is studied. However, their circuits are approx-
imated and cannot be composed to compute operations on distributions.

2 Chemical Reaction Networks
A chemical reaction network (CRN) (Λ,R) is a pair of finite sets, where Λ is
the set of chemical species, |Λ| denotes its size, and R is a set of reactions. A
reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the source complex,
pτ ∈ N|Λ| is the product complex and kτ ∈ R>0 is the coefficient associated to
the rate of the reaction, where we assume kτ = 1 if not specified; rτ and pτ
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represent the stoichiometry of reactants and products. Given a reaction τ1 =
([1, 0, 1], [0, 2, 0], k1) we often refer to it as τ1 : λ1 +λ3 →k1 2λ2. The net change
associated to τ is defined by υτ = pτ − rτ .

We assume that the system is well stirred, that is, the probability of the
next reaction occurring between two molecules is independent of the location of
those molecules, at fixed volume V and temperature. Under these assumptions a
configuration or state of the system x ∈ N|Λ| is given by the number of molecules
of each species. A chemical reaction system (CRS) C = (Λ,R, x0) is a tuple where
(Λ,R) is a CRN and x0 ∈ N|Λ| represents its initial condition.

Stochastic semantics. In this paper we consider CRNs with stochastic se-
mantics. The propensity rate ατ of a reaction τ is a function of the current
configuration of the system x such that ατ (x)dt is the probability that a reac-
tion event occurs in the next infinitesimal interval dt. We assume mass action
kinetics [2]. That is, if τ : λ1 + ...+ λk →k ·, then ατ (x) = k ·

∏|Λ|
i=1

x(λi)!
(x(λi)−rτ,i)! ,

where rτ,i is the i−th component of vector r.3 The time evolution of a CRS C =
(Λ,R, x0) can be modelled as a time-homogeneous Continuous Time Markov
Chain (CTMC) (XC(t), t ∈ R≥0), with state space S [2]. When clear from the
context we write X(t) instead of XC(t). Q : S × S → R is the generator matrix
of X, given by Q(xi, xj) =

∑
{τ∈R|xj=xi+vτ} ατ (xi) for i 6= j and Q(xi, xi) =

−
∑|S|
j=1∧ j 6=iQ(xi, xj). We denote PC(t)(x) = Prob(XC(t) = x|XC(0) = x0),

where x0 is the initial configuration. PC(t)(x) represents the transient evolution
of X, and can be calculated exactly by solving the Chemical Master Equation
(CME) or by approximation of the CME [7].

Definition 1 The steady state distribution (or limit distribution) of XC is de-
fined as πC = limt→∞ PC(t).

Again, when clear from the context, instead of πC we simply write π. π calculates
the percentage of time, in the long-run, that X spends in each state x ∈ S. If
S is finite, then the above limit distribution always exists and is unique [13]. In
this paper we focus on discrete distributions, and will sometimes conflate the
term distribution with probability mass function, defined next.

Definition 2 Suppose that M : S → Rm with m > 0 is a discrete random vari-
able defined on a countable sample space S. Then the probability mass function
(pmf) f : Rm → [0, 1] for M is defined as f(x) = Prob(s ∈ S |M(s) = x).

For a pmf π : Nm → [0, 1] we call J = {y ∈ Nm|π(y) 6= 0} the support of π. A pmf
is always associated to a discrete random variable whose distribution is described
by the pmf. However, sometimes, when we refer to a pmf, we imply the associated
random variable. Given two pmfs f1 and f2 with values in Nm, m > 0, we define
the L1 norm (or distance) between them as d1(f1, f2) =

∑
n∈Nm(|f1(n)−f2(n)|).

Note that, as f1, f2 are pmfs, then d1(f1, f2) ≤ 2. It is worth stressing that, given
the CTMC X, for each t ∈ R≥0, X(t) is a random variable defined on a countable

3The reaction rate k depends on the volume V . However, as the volume is fixed, in
our notation V is embedded inside k.
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state space. As a consequence, its distribution is given by a pmf. Likewise, the
limit distribution of a CTMC, if it exists, is a pmf.

Definition 3 Given C = (Λ,R) and λ ∈ Λ, we define πλ(k) =
∑
{x∈S|x(λ)=k} π(x)

as the probability that for t→∞, in XC , there are k molecules of λ.

πλ is a pmf representing the steady state distribution of species λ.

3 On approximating discrete distributions with CRNs

We now show that, ffor a pmf with support in N, we can always build a CRS such
that, at steady state (i.e. for t→∞) the random variable representing the molec-
ular population of a given species in the CRN approximates that distribution
with arbitrarily small error under the L1 norm. The result is then generalised
to distributions with domain in Nm, with m ≥ 1. The approximation is exact in
case of finite support.

3.1 Programming pmfs

Definition 4 Given f : N→ [0, 1] with finite support J = (z1, ..., z|J|) such that∑|J|
i=1 f(zi) = 1, we define the CRS Cf = (Λ,R, x0) as follows. Cf is composed of

2|J | reactions and 2|J |+2 species. For any zi ∈ J we have two species λi, λi,i ∈ Λ
such that x0(λi) = zi and x0(λi,i) = 0. Then, we consider a species λz ∈ λ such
that x0(λz) = 1, and the species λout ∈ Λ, which represents the output of the
network and such that x0(λout) = 0. For every zi ∈ J , R has the following two
reactions: τi,1 : λz →f(zi) λi,i and τi,2 : λi + λi,i → λout + λi,i.

Example 1. Consider the probability mass function f : N → [0, 1] defined as
f(y) = { 16 if y = 2; 1

3 if y = 5; 1
2 if y = 10; 0 otherwise}. Let Λ = {λ1, λ2, λ3,

λz, λ1,1, λ2,2, λ3,3, λout}, then we build the CRS C = (Λ,R, x0) following Defini-
tion 4, where R is given by the following set of reactions:

λz →
1
6 λ1,1; λz →

1
3 λ2,2; λz →

1
2 λ3,3;

λ1 + λ1,1 →1 λ1,1 + λout; λ2 + λ2,2 →1 λ2,2 + λout; λ3 + λ3,3 →1 λ3,3 + λout.

The initial condition x0 is x0(λout) = x0(λ1,1) = x0(λ2,2) = x0(λ3,3) = 0;
x0(λ1) = 2; x0(λ2) = 5; x0(λ3) = 10; x0(λz) = 1. Theorem 1 ensures πλout = f .

Theorem 1. Given a pmf f : N → [0, 1] with finite support J , the CRS Cf as

defined in Definition 4 is such that π
Cf
λout

= f .

Proof. Let J = (z1, .., z|J|) be the support of f , and |J | its size. Suppose |J | is
finite, then the set of reachable states from x0 is finite by construction and the
limit distribution of XCf , the induced CTMC, exists. By construction, in the
initial state x0 only reactions of type τi,1 can fire, and the probability that a
specific τi,1 fires first is exactly:

ατi,1(x0)∑|J|
j=1 ατj,1(x0)

=
f(zi) · 1∑|J|
j=1 f(zj) · 1

=
f(zi)∑|J|
j=1 f(zj)

=
f(zi)

1
= f(zi)
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Observe that the firing of the first reaction uniquely defines the limit distribution
of XCf , because λz is consumed immediately and only reaction τi,2 can fire,
with no race condition, until λi are consumed. This implies that at steady state
λout will be equal to x0(λi), and this happens with probability f(x0(λi)). Since

x0(λi) = zi for i ∈ [1, |J |], we have π
Cf
λout

= f . �

Then, we can state the following corollary of Theorem 1.

Corollary 1. Given a pmf f : N → [0, 1] with countable support J , we can

always find a finite CRS Cf such that π
Cf
λout

= f with arbitrarily small error

under the L1 norm.

Proof. Let J = {z1, ..., z|J|}. Suppose J is (countably) infinite, that is, |J | → ∞.
Then, we can always consider an arbitrarily large but finite number of points in
the support, such that the probability mass lost is arbitrarily small, and applying
Definition 4 on this finite subset of the support we have the result.

In order to prove the result consider the function f ′ with support J ′ =
{z1, ..., zk}, k ∈ N, such that f(zi) = f ′(zi), for all i ∈ N≤k. Consider the series∑∞
i=1 f(n). This is an absolute convergent series by definition of pmf. Then, we

have that limi→∞ f(i) = 0 and, for any ε > 0, we can choose some κε ∈ N, such
that:

∀k > κε |
k∑
i=1

f ′(i)−
∞∑
i=1

f(i)| < ε

2
.

This implies that for k > κε given f ′k =
∑k
i=1 f

′(i) we have, d1(f ′k, f) < ε. �

The following remark shows that the need for precisely tuning the value of reac-
tion rates in Theorem 1 can be dropped by introducing some auxiliary species.

Remark 1. In practice, tuning the rates of a reaction can be difficult or impos-
sible. However, it is possible to modify the CRS derived using Definition 4 in
such a way the probability value is not encoded in the rates, and we just require
that all reactions have the same rates. We can do that by using some auxiliary
species Λc = {λc1 , λc2 , ..., λc|Λc|}. Then, the reactions τi,1 for i ∈ [1, J ] become

τi,1 : λz +λci →k λi,i, for k ≥ 0, instead of τi,1 : λz →f(yi) λi,i, as in the original
definition. The initial condition of λci is x0(λci) = f(yi) · L, where L ∈ N is
such that for j ∈ [1, |J |] and J = {z1, ..., z|J|} we have that f(zj) ·L is a natural
number, assuming all the f(zj) are rationals.

Remark 2. In biological circuits the probability distribution of a species may de-
pend on some external conditions. For example, the lambda Bacteriofage decides
to lyse or not to lyse with a probabilistic distribution based also on environmen-
tal conditions [5]. Programming similar behaviour is possible by extension of
Theorem 1. For instance, suppose, we want to program a switch that with rate
50 + Com goes in a state O1, and with rate 5000 goes in a different state O2,
where Com is an external input. To program this logic we can use the following
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reactions: τ1,1 : λz + λc1 →k1 λO1
and τ1,2 : λz + λc2 →k1 λO2

, where λO1
and

λO2 model the two logic states, initialized at 0. The initial condition x0 is such
that x0(λz) = 1, x0(λc1) = 50 and x0(λc2) = 5000. Then, we add the following
reaction Com →k2 λc1 . It is easy to show that if k2 >>> k1 then we have the
desired probabilistic behaviour for any initial value of Com ∈ N. This may be of
interest also for practical scenarios in synthetic biology, where for instance the
behaviour of synthetic bacteria needs to be externally controlled [3]; and, if each
bacteria is endowed with a similar logic, then, by tuning Com, at the population
level, it is possible to control the fraction of bacteria that perform this task.

In the next theorem we generalize to the multi-dimensional case.

Theorem 2. Given f : Nm → [0, 1] with m ≥ 1 such that
∑
i∈N f(i) = 1,

then there exists a CRS C = (Λ,R, x0) such that the joint limit distribution of
(λout1 , λout2 , ..., λoutm) ∈ Λ approximates f with arbitrarily small error under
the L1 distance. The approximation is exact if the support of f is finite.

To prove this theorem we can derive a CRS similar to that in the uni-dimensional
case. The firing of the first reaction can be used to probabilistically determine
the value at steady state of the m output species, using some auxiliary species.

3.2 Special distributions

For a given pmf the number of reactions of the CRS derived from Definition
4 is linear in the dimension of its support. As a consequence, if the support
is large then the CRSs derived using Theorems 1 and 2 can be unwieldy. In
the following we show three optimised CRSs to calculate the Poisson, binomial
and uniform distributions. These CRNs are compact and applicable in many
practical scenarios. However, using Definition 4 the output is always produced
monotonically. In the circuits below this does not happen, but, on the other
hand, the gain in compactness is substantial. The first two circuits have been
derived from the literature, while the CRN for the uniform distribution is new.

Poisson distribution. The main result of [1] guarantees that all the CRNs that
respect some conditions (weakly reversible, deficiency zero and irreducible state
space, see [1]) have a distribution given by the product of Poisson distributions.
As a particular case, we consider the following CRS composed of only one species
λ and the following two reactions τ1 : ∅ →k1 λ; τ2 : λ →k2 ∅. Then, at steady
state, λ has a Poisson distribution with expected value k1

k2
.

Binomial distribution. We consider the network introduced in [1]. The CRS is
composed of two species, λ1 and λ2, with initial condition x0 such that x0(λ1) +
x0(λ2) = K and the following set of reactions: τ1 : λ1 →k1 λ2; τ2 : λ2 →k2 λ1. As
shown in [1], λ1 and λ2 at steady state have a binomial distribution such that:
πλ1

(y) = (Ky )c1
y(1− c1)K−y and πλ2

(y) = (Ky )c2
y(1− c2)K−y.

Uniform distribution. The following CRS computes the uniform distribution
over the sum of the initial number of molecules in the system, independently of
the initial value of each species. It has species λ1 and λ2 and reactions:

τ1 : λ1 →k λ2; τ2 : λ2 →k λ1; τ3 : λ1+λ2 →k λ1+λ1; τ4 : λ1+λ2 →k λ2+λ2
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For k > 0, τ1 and τ2 implement the binomial distribution. These are combined
with τ3 and τ4, which implement a Direct Competition system [6], which has a
bimodal limit distribution in 0 and in K, where x0(λ1) + x0(λ2) = K, with x0
initial condition. This network, surprisingly, according to the next theorem, at
steady state produces a distribution which varies uniformly between 0 and K.

Theorem 3. Let x0(λ1) +x0(λ2) = K ∈ N. Then, the CRS described above has
the following steady state distribution for λ1 and λ2:

πλ1(y) = πλ2(y) =

{
1

K+1 , if y ∈ [0,K]

0, otherwise

Proof. We consider a general initial condition x0 such that x0(λ1) = K −M
and x0(λ2) = M for 0 ≤ M ≤ K and K,M ∈ N. Because any reaction has
exactly 2 reagents and 2 products, we have the invariant that for any config-
uration x reachable from x0 it holds that x(λ1) + x(λ2) = K. Figure 1 plots
the CTMC semantics of the system. For any fixed K the set of reachable states

Fig. 1: The figure shows the CTMC induced by the CRS implementing the uni-
form distribution for initial condition x0 such that x0(λ1) + x0(λ2) = K.

from any initial condition in the induced CTMC is finite (exactly K states are
reachable from any initial condition) and irreducible. Therefore, the steady state
solution exists, is unique and independent of the initial conditions. To find this
limit distribution we can calculate Q, the infinitesimal generator of the CTMC,
and then solve the linear equations system πQ = 0, with the constraint that∑
i∈[0,K] πi = 1, where πi is the ith component of the vector π, as shown in [13].

Because the CTMC we are considering is irreducible, this is equivalent to solve
the balance equations with the same constraint. The resulting π is the steady
state distribution of the system.

We consider 3 cases, where (K − j, j) for j ∈ [0,K] represents the state of
the system in terms of molecules of λ1 and λ2.

– Case j = 0. For the state (K, 0), whose limit distribution is defined as
π(K, 0), we have the following balance equation:

−π(K, 0)Kk + π(K − 1, 1)[(K − 1)k + k] = 0 =⇒

π(K, 0) = π(K − 1, 1).
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– Case j ∈ [1,K − 1]. Observing Figure 1 we see that the states and the rates
follow a precise pattern: every state is directly connected with only two states
and for any transition the rates depend on two reactions, therefore we can
consider the balance equations for a general state (K−j, j) for j ∈ [1,K−1]
(for the sake of a lighter notation instead of π(K − j, j) we write πj):

πj−1[K + 1− j + (K + 1− j)(j − 1)]

− πj [2(K − j)j + j +K − j] + πj+1[j + 1 + (K − j − 1)(j + 1)] = 0

=⇒
πj−1[Kj − j2 + j]− πj [2Kj − 2j2 +K] + πj+1[Kj +K − j2 − j] = 0

It is easy to verify that if πj−1 = πj = πj+1 then the equation is verified.
– Case j = K. The case for the state (0,K) is similar to the case (K, 0).

We have shown that each reachable state has equal probability at steady state
for any possible initial condition. Therefore, because

∑K
i=0 π

i = 1 and πλi(y) =∑
xj∈S|xj(λi)=y π

j for y ≥ 0, we have that for both λ1 and λ2

πλ1
(y) = πλ2

(y) =

{
1

K+1 , if y ∈ [0,K]

0, otherwise

�

4 Calculus of limit distributions of CRNs

In the previous section we have shown that CRNs are able to program any pmf
on N. We now define a calculus to compose and compute on pmfs. We show it is
complete with respect to finite support pmfs on N. Then, we define a translation
of this calculus into a restricted class of CRNs. We prove the soundness of such a
translation, which thus yields an abstract calculus of limit distributions of CRNs.
For simplicity, in what follows we consider only pmfs with support in N, but the
results can be generalised to the multi-dimensional case in a straightforward way.

Definition 5 (Syntax). The syntax of formulae of our calculus is given by

P := (P + P ) |min(P, P ) | k · P | (P )D : P | one | zero

D := p | p · ci +D

where k ∈ Q≥0, p ∈ Q[0,1] are rational and V = {c1, ..., cn} is a set of variables
with values in N.

A formula P denotes a pmf that can be obtained as a sum, minimum, multiplica-
tion by a rational, or convex combination of pmfs one and zero. Given a formula
P , variables V = {c1, ..., cn}, called environmental inputs, model the influence
of external factors on the probability distributions of the system. V (P ) repre-
sents the variables in P . An environment E : V → Q[0,1] is a partial function
which maps each input ci to its valuation normalized to [0, 1]. Given a formula
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P and an environment E, where V (P ) ⊆ dom(E), with dom(E) domain of E,
we define its semantics, [[P ]]E , as a pmf (the empty environment is denoted as
∅). D expresses a summation of valuations of inputs ci weighted by rational
probabilities p, which evaluates to a rational [[D]]E for a given environment. We
require that, for any D, the sum of p coefficients in D is in [0, 1]. This ensures
that 0 ≤ [[D]]E ≤ 1. The semantics is defined inductively as follows, where the
operations on pmfs are defined in Section 4.1.

Definition 6 (Semantics). Given formulae P, P1, P2 and an environment E,
such that V (P ) ∪ V (P1) ∪ V (P2) ⊆ dom(E), we define

[[one]]E = πone [[zero]]E = πzero [[P1 + P2]]E = [[P1]]E + [[P2]]E

[[min(P1, P2)]]E = min([[P1]]E , [[P2]]E)

[[k · P ]]E =
k1 · ([[P ]]E)

k2
for k =

k1
k2

and k1, k2 ∈ N

[[(P1)D : (P2)]]E = ([[P1]]E)[[D]]E : ([[P2]]E)

[[p]]E = p [[p · ci +D]]E = p · E(ci) + ([[D]]E)

where πone(y) =

{
1, if y = 1
0, otherwise

and πzero(y) =

{
1, if y = 0
0, otherwise

.

To illustrate the calculus, consider the Bernoulli distribution with parameter
p ∈ Q[0,1]. We have bernp = (one)p : zero, where [[bernp]]∅(y) = {p if y = 1; 1−
p if y = 0; 0 otherwise}. The binomial distribution can be obtained as a sum of
n independent Bernoulli distributions of the same parameter. Given a random
variable with a binomial distribution with parameters (n, p), if n is sufficiently
large and p sufficiently small then this approximates a Poisson distribution with
parameter n · p.

4.1 Operations on distributions

In this section, we define a set of operations on pmfs needed to define the seman-
tics of the calculus. We conclude the section by showing that these operations
are sufficient to represent pmfs with finite support in N.

Definition 7 Let π1 : N→ [0, 1], π2 : N→ [0, 1] be two pmfs. Assume p ∈ Q[0,1],
y ∈ N, k1 ∈ N and k2 ∈ N>0, then we define the following operations on pmfs:

– The sum or convolution of π1 and π2 is defined as (π1 + π2)(y) =∑
(yi,yj)∈N×N s.t. yi+yj=y π1(yi)π2(yj).

– The minimum of π1 and π2 is defined as min(π1, π2)(y) =∑
(yi,yj)∈N×N s.t.min(yi,yj)=y π1(yi)π2(yj).

– The multiplication of π1 by the constant k1 is defined as (k1π1)(y) ={
π1( yk1 ), if y

k1
∈ N

0, otherwise
– The division of π1 by the constant k2 is defined as π

k2
(y) =∑

yi∈N s.t. y=byi/k2c π(yi).
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– The convex combination of π1 and π2, for y ∈ N, is defined ((π1)p : (π2))(y) =
pπ1(y) + (1− p)π2(y).

The convex combination operator is the only one that is not closed with respect
to pmfs whose support is a single point. Lemma 1 shows that this operator is
not associative with respect to minimum and sum of pmfs.

Lemma 1. Given probability mass functions π1, π2 : N→ [0, 1], p1, p2, p3, p4 ∈
[0, 1] and k ∈ Q≥0, then the following equations hold:

– k((π1)p : π2) = (kπ1)p : (kπ2)

– ((π1)p1 : π2)p2 : π3 = (π1)p3 : ((π2)p4 : π3) iff p3 = p1p2 and p4 = (1−p1)p2
1−p1p2

– (π1)p : π2 = (π2)1−p : π1
– (π1)p : π1 = π1.

Example 2. Consider the following formula

P1 = (one)0.001·c+0.2(4 · one) + (2 · one)0.4(3 · one),

with set of environmental variables V = {c} and an enviroment E such that
V (P1) ⊆ dom(E). Then, according to Definition 7 we have that

[[P1]]E(y) =


(0.001 · [[c]]E + 0.2) · 0.4, if y = 3
(0.001 · [[c]]E + 0.2) · 0.6, if y = 4
(1− (0.001 · [[c]]E + 0.2)) · 0.4, if y = 6
(1− (0.001 · [[c]]E + 0.2)) · 0.6, if y = 7
0, otherwise

Having formally defined all the operations on pmfs, we can finally state the
following proposition guaranteeing that the semantics of any formula of the
calculus is a pmf.

Proposition 1. Given P , a formula of the calculus defined in Definition 5, and
an environment E such that V (P ) ⊆ dom(E), then [[P ]]E is a pmf.

The following theorem shows that our calculus is complete with respect to finite
support distributions.

Theorem 4. For any pmf f : N → [0, 1] with finite support there exists a for-
mula P such that [[P ]]∅ = f .

Proof. Given a pmf f : N → [0, 1] with finite support J = (z1, ..., z|J|) we can
define P = (z1 · one)f(z1) : ((z2 · one) f(z2)

1−f(z1)

: (... : ((zi · one) f(zi)∏i−1
j=1

(1−f(zj))

: ... :

((zn · one))))). Then, [[P ]]∅ = f . �

Proof of Theorem 4 relies only on a subset of the operators, but the other
operators are useful for composing previously defined pmfs.
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5 CRN implementation

We now show how the operators of the calculus can be realized by operators on
CRSs. The resulting CRSs produce the required distributions at steady state,
that is, in terms of the steady state distribution of the induced CTMC. Thus, we
need to consider a restricted class of CRNs that always stabilize and that can be
incrementally composed. The key idea is that each such CRN has output species
that cannot act as a reactant in any reaction, and hence the counts of those
species increase monotonically.4 This implies that the optimized CRSs shown in
Section 3.2 cannot be used compositionally.

5.1 Non-reacting output CRSs (NRO-CRSs)

Since in the calculus presented in Definition 5 we consider only finite support
pmfs, in this section we are limited to finite state CTMCs. This is important
because some results valid for finite state CTMCs are not valid in infinite state
spaces. Moreover, any pmf with infinite support on natural numbers can always
be approximated under the L1 norm (see Corollary 1).

Given a CRS C = (Λ,R, x0), we call the non-reacting species of C the subset
of species Λr ⊆ Λ such that given λr ∈ Λr there does not exist τ ∈ R such
that rλrτ > 0, where rλrτ is the component of the source complex of the reaction
τ relative to λr, that is, λr is not a reactant in any reaction. Given C we also
define a subset of species, Λo ⊆ Λ, as the output species of C. Output species
are those whose limit distribution is of interest. In general, they may or may
not be non-reacting species; they depend on the observer and on what he/she is
interested in observing.

Definition 8 A non-reacting output CRS (NRO-CRS) is a tuple C = (Λ,Λo, R,
x0), where Λo ⊆ Λ are the output species of C such that Λo ⊆ Λr, where Λr are
the non-reacting species of C.

NRO-CRNs are CRSs in which the output species are produced monotonically
and cannot act as a reactant in any reaction. A consequence of Theorem 1 is the
following lemma, which shows that this class of CRNs can approximate any pmf
with support on natural numbers, up to an arbitrarily small error.

Lemma 2. For any probability mass function f : Nm → [0, 1] there exists a
NRO-CRS such that the joint limit distribution of its output species approximates
f with arbitrarily small error under the L1 norm. The approximation is exact if
the support of f is finite.

In Table 1, we define a set of operators on NRO-CRSs. Let C1 =
(Λ1, Λo1 , R1, x01) and C2 = (Λ2, Λo2 , R2, x02) be NRO-CRSs such that Λ1∩Λ2 =

4Note that this is a stricter requirement than those in [9], where output species are
produced monotonically, but they are allowed to act as catalysts in some reactions. We
cannot allow that because catalyst species influence the value of the propensity rate of
a reaction and so the probability that it fires.
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∅. Let λo1 ∈ Λo1 and λo2 ∈ Λo2 , then we define the set of reactions which im-
plements the operators of Sum, Minimum, Multiplication by a constant k1 ∈ N
and Division by a constant k2 ∈ N≥0 over the steady state distribution of λo1
and λo2 . The output species of each composed NRO-CRS is λout, and we assume
{λout} ∩ (Λ1 ∪ Λ2) = ∅ and x0(λout) = 0.

Table 1: CRS operators

Operator Resulting NRO-CRS
Sum (Λ1 ∪ Λ2 ∪ {λout}, {λout}, R1 ∪R2 ∪ {λo1 → λout, λo2 → λout}, x0)
Min (Λ1 ∪ Λ2 ∪ {λout}, {λout}, R1 ∪R2 ∪ {λo1 + λo2 → λout}, x0)
Mul by k1 (Λ1 ∪ {λout}, {λout}, R1 ∪ {λo1 → λout + ...+ λout︸ ︷︷ ︸

k1 times

}, x0)

Div by k2 (Λ1 ∪ {λout}, {λout}, R1 ∪ {λo1 + ...+ λo1︸ ︷︷ ︸
k2 times

→ λout}, x0)

We emphasize that proving that CRS operators of Table 1 implement the op-
erations in Definition 7 is not trivial. In fact, we need to compose stochastic
processes and show that the resulting process has the required properties. Fun-
damental to that end is a convenient representation of X in terms of a summa-
tion of time-inhomogeneous Poisson processes, one for each reaction [2]. In what
follows we present in slightly extended form the operators for convex combina-
tion, with or without external inputs (respectively Con(·) and ConE(·)). Formal
definitions and proofs of correctness of all the circuits are presented in [8].
Considering C1 and C2, as previously, then we need to derive a CRS oper-
ator Con(C1, λo1 , C2, λo2 , p, λout) such that πλout = (πC1

λo1
)p : (πC2

λo2
). That

is, at steady stade, λout equals πC1

λo1
with probability p and πC2

λo2
with

probability 1 − p. This can be done by using Theorem 2 to generate a
bi-dimensional synthetic coin with output species λr1 , λr2 such that their
joint limit distribution is πλr1 ,λr2 (y1, y2) = {p if y1 = 1 and y2 = 0 ; 1 −
p if y1 = 0 and y2 = 1; 0 otherwise}. That is, λr1 and λr2 are mutually exclu-
sive at steady state. Using these species as catalysts in τ3 : λo1 +λr1 → λr1 +λout
and τ4 : λo2 +λr2 → λr2 +λout we have exactly the desired result at steady state.

Example 3. Consider the following NRO-CRSs C1 = ({λo1}, {λo1}, {}, x01) and
C2 = ({λo2}, {λo2}, {}, x02), with initial condition x01(λo1) = 10 and x02(λo2) =
20. Then, the operator ConE(C1, λo1 , C2, λo2 , 0.3, λout) implements the opera-
tion πλout = (πC1

λo1
)0.3(πC2

λo2
) and it is given by the following reactions:

λz →0.3 λr1 ; λz →0.7 λr2 ; λr1 + λo1 → λr1 + λout; λr2 + λo2 → λr2 + λout

with initial condition x0 such that x0(λz) = 1, x0(λr1) = x0(λr2) = x0(λout) = 0.

Let C1, C2 be as above and f = p0 + p1 · c1 + ... + pn · cn with p1, ..., pn ∈
Q[0,1], V = {c1, ..., cn} a set of environmental variables, and E, an en-
vironment such that V ⊆ dom(E). Then, computing a CRS operator
ConE(C1, λo1 , C2, λo2 , f(E(V )), λout) such that πλout = (πC1

λo1
)f(E(V )) : (πC2

λo2
)

is a matter of extending the previous circuit. First of all, we can derive the CRS
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to compute f(E(V )) and 1−f(E(V )) and memorize them in some species. This
can be done as f(E(V )) is semi-linear [9]. Then, as f(E(V )) ≤ 1 by assumption,
we can use these species as catalysts to determine the output value of λout, as
in the previous case. As shown in [8], this circuit, in the case of external inputs,
introduces an arbitrarily small, but non-zero, error, due to the fact that there is
no way to know when the computation of f(E(V )) terminates.

Example 4. Consider the following NRO-CRSs C1 = ({λo1}, {λo1}, {}, x01) and
C2 = ({λo2}, {λo2}, {}, x02), with initial condition x01(λo1) = 10 and x02(λo2) =
20. Then, consider the following functions f(E(c)) = E(c), where E is a partial
function assigning values to c, and it is assumed 0.001 ≤ E(c) ≤ 1 and that
E(c) · 1000 ∈ N. Then, the operator ConE(C1, λo1 , C2, λo2 , f, λout), implements
the operation πλout = (πC1

λo1
)E(c)(π

C2

λo2
) and it is given by the following reactions:

τ1 : λc →k1 λCat1 + λCat2 ; τ2 : λTot + λCat2 →k1 ∅
τ3 : λz + λCat1 →k2 λ1; τ4 : λz + λTot →k2 λ2

τ5 : λo1 + λ1 →k2 λ1 + λout; τ6 : λo2 + λ2 →k2 λ2 + λout

where λc, λCat1 , λCat2 , λz, λ1, λ2 are auxiliary species with initial condition x0
such that x0(λCat1) = x0(λCat2) = x0(λ1) = x0(λ2) = 0, x0(λTot) =
1000, x0(λz) = 1, x0(λc) = E(c) · 1000 and k1 � k2. Reactions τ1, τ2 imple-
ment f(E(c)) and 1 − f(E(c)) and store these values in λCat1 and λTot. These
are used in reactions τ3 and τ4 to determine the probability that the steady state
value of λout is going to be determined by reaction τ5 or τ6.

5.2 Compiling into the class of NRO-CRSs

Given a formula P as defined in Definition 5, then [[P ]]E associates to P and an
environment E a pmf. We now define a translation of P , T (P ), into the class of
NRO-CRSs that guarantees that the unique output species of T (P ), at steady
state, approximates [[P ]]E with arbitrarily small error for any environment E
such that V (P ) ⊆ dom(E). In order to define such a translation we need the
following renaming operator.

Definition 9 Given a CRS C = (Λ,R, x0), for λt ∈ Λ and λ1 6∈ Λ we define the
renaming operator C{λ1 ← λt} = Cc such that Cc = ((Λ−{λt})∪{λ1}, R{λ1 ←
λt}, x′0), where R{λ1 ← λt} substitutes any occurrence of λt with an occurrence
of λ1 for any τ ∈ R and x′0(λ) = {x0(λ) if λ 6= λt; x0(λt) if λ = λ1}.

This operator produces a new CRS where any occurrence of a species is substi-
tuted with an occurrence of another species previously not present.

Definition 10 (Translation into NRO-CRSs) Define the mapping T by induc-
tion on syntax of formulae P :
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T (one) = ({λout}, {λout}, ∅, x0) with x0(λout) = 1;

T (zero) = ({λout}, {λout}, ∅, x0) with x0(λout) = 0;

T (P1 + P2) = Sum(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 , λout);
T (k · P ) = Div(Mul(T (P ){λo ← λout}, λo, k1, λout){λo′ ← λout}), λo′ , k2, λout);
T (min(P1, P2) = Min(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 , λout);
T ((P1)D : P2) =Con(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 , D, λout), if D = p
ConE(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 , D, λout),

if D = p+
∑m
i=1 pi · ci

for m > 1, k ∈ Q>0, k1, k2 ∈ N such that k = k1
k2

and formulae P1, P2, which
are assumed to not contain species λo1 , λo2 .

Example 5. Consider the formula P1 = (one)0.001·c+0.2(4·one)+(2·one)0.4(3·one)
of Example 2, and an environment E such that 0.000125 ≤ E(c) ≤ 1 and suppose
E(c) · 800 ∈ N. We show how the translation defined in Definition 10 produces
a NRO-CRS C with output species λout such that πλout = [[P1]]E . Consider
the following NRO-CRSs C1, C2, C3, C4 defined as C1 = ({λc1}, {λc1}, {}, x′0)
with x0(λc1) = 1, C2 = ({λc2}, {λc2}, {}, x0) with x0(λc2) = 1, , C3 =
({λc3}, {λc3}, {}, x0) with x0(λc3) = 1, and C4 = ({λc4}, {λc4}, {}, x0) with
x0(λc2) = 1. Then, we have that :

Cc1 = ConE(C1, λc1 ,Mul(C2, λc2 , 4, λout){λo2 ← λout}, λo2 , 0.001 · c+ 0.2, λout1)

Cc2 = Con(Mul(C3, λc3 , 2, λout){λo3 ← λout}, λo3 ,
Mul(C4, λc4 , 3, λout){λo4 ← λout}, λo4 , 0.4, λout2)

are such that πλout1 =

 (0.001 · [[c]]E + 0.2), if y = 1
1− (0.001 · [[c]]E + 0.2), if y = 4
0, otherwise

,

and πλout2 =

0.4, if y = 2
0.6, if y = 3
0, otherwise

. Then, consider the CRS C =

Sum(Cc1{λt1←λout1}, λt1 , C
c
2{λt2←λout2}, λt2 , λout) and we have πλout = [[P1]]E

with arbitrarily small error. The reactions of C are shown below

Mul on inputs {τ1 : λC2
→ 4λo1 ; τ2 : λC3

→ 2λo2 ; τ3 : λC4
→ 3λo3

Cc1

 τ4 : λenv →k λcat1 + λcat2 ; τ5 : λcat1 + λz → λ1
τ6 : λcat2 + λtot →k ∅; τ7 : λtot + λz → λ2
τ8 : λ1 + λo1 → λo1 + λout1 ; τ9 : λ2 + λo2 → λo2 + λout1

Cc2

{
τ9 : λz1 →0.6 λr1 ; τ10 : λz1 →0.4 λr2
τ11 : λr1 + λo3 ;→ λr1 + λout2 ; τ7 : λr2 + λo4 → λr2 + λout2

Sum {τ12 : λout1 → λout; τ13 : λout2 → λout

for k � 1 and initial condition such that x0(λenv) = E(c) · 800, x0(λtot) = 800,
x0(λz) = x0(λz1) = x0(λz2) = 1 = x0(λc1) = x0(λc2) = x0(λc3) = x0(λc4) = 1,
and all other species initialized with 0 molecules.
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Proposition 2. For any formula P we have that T (P ) is a NRO-CRS.

The proof follows by structural induction as shown in [8]. Given a formula
P and an environment E such that V (P ) ⊆ dom(E), the following theo-
rem guarantees the soundness of T (P ) with respect to [[P ]]E . In order to
prove the soundness of our translation we consider the measure of the mul-
tiplicative error between two pmfs f1 and f2 with values in Nm, m > 0 as

em(f1, f2) = maxn∈Nm min( f1(n)f2(n)
, f2(n)f1(n)

).

Theorem 5. (Soundness) Given a formula P and λout, unique output species
of T (P ), then, for an environment E such that V (P ) ⊆ dom(E), it holds that

π
T (P )
λout

= [[P ]]E with arbitrarily small error under multiplicative error measure.

The proof follows by structural induction.

Remark 3. A formula P is finite by definition, so Theorem 5 is valid because the
only production rule which can introduce an error is (P1)D : (P2) in the case
D 6= p0, and we can always find reaction rates to make the total probability
of error arbitrarily small. Note that, by using the results of [17], it would also
be possible to show that the total error can be kept arbitrarily small, even if
a formula is composed from an unbounded number of production rules. This
requires small modifications to the ConE operator following ideas in [17].

Note that compositional translation, as defined in Definition 10, generally pro-
duces more compact CRNs respect to the direct translation in Theorem 1, and
in both cases the output is non-reacting, so the resulting CRN can be used for
composition. For a distribution with support J direct translation yields a CRN
with 2|J | reactions, whereas, for instance, the support of the sum pmf has the
cardinality of the Cartesian product of the supports of the input pmfs.

6 Discussion
Our goal was to explore the capacity of CRNs to compute with distributions.
This is an important goal because, when molecular interactions are in low num-
ber, as is common in various experimental scenarios [15], deterministic methods
are not accurate, and stochasticity is essential for cellular circuits. Moreover,
there is a large body of literature in biology where stochasticity has been shown
to be essential and not only a nuisance [11]. Our work is a step forward towards
better understanding of molecular computation. In this paper we focused on
error-free computation for distributions. It would be interesting to understand
and characterize what would happen when relaxing this constraint. That is, if
we admit a probabilistically (arbitrarily) small error, does the ability of CRNs
to compute on distributions increase? Can we relax the constraint that output
species need to be produced monotonically? Can we produce more compact net-
works? Another topic we would like to address is if it is possible to implement the
CRNs without leaders (species being present with initial number of molecules
equal to 1). This is a crucial aspect in our theorems and having the same results
without these constraints would make the implementation easier. However, it is
worth noting that, in a practical scenario, such species could be thought of as a
single gene or as localized structures [15].
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