
Page 1

Operations on Records

Luca Cardelli John C. Mitchell
Digital Equipment Corporation Department of Computer Science

Systems Research Center Stanford University

Abstract
We define a simple collection of operations for creating and manipulating record

structures, where records are intended as finite associations of values to labels. A
second-order type system over these operations supports both subtyping and
polymorphism. We provide typechecking algorithms and limited semantic models.

Our approach unifies and extends previous notions of records, bounded
quantification, record extension, and parametrization by row-variables. The general
aim is to provide foundations for concepts found in object-oriented languages, within
a framework based on typed lambda-calculus.

Appears in: Theoretical Aspects of Object-Oriente Programming, C.Gunter, J.C.Mitchell Eds. MIT Press, 1994.

Appears in: Mathematical Structures in Computer Science, vol 1, pp. 3-48, 1991

SRC Research Report 48, August 25, 1989. Revised October 22, 1993.
© Digital Equipment Corporation 1989,1993.
This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment
Corporation in Palo Alto, California; an acknowledgment of the authors and individuals contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license
with payment of fee to the Systems Research Center. All rights reserved.

1. Introduction
Object-oriented programming is based on record structures (called objects)

intended as named collections of values (attributes) and functions (methods).

Page 2

Collections of objects form classes. A subclass relation is defined on classes with the
intention that methods work “appropriately” on all members belonging to the
subclasses of a given class. This property is important in software engineering
because it permits after-the-fact extensions of systems by subclasses, without
requiring modifications to the systems themselves.

The first object-oriented language, Simula67, and most of the more recent ones
(see references) are typed by using simple extensions of the type rules for Pascal-like
languages. These extensions mainly involve a notion of subtyping. In addition to
subtyping, we are interested here in more powerful type systems that smoothly
incorporate parametric polymorphism.

Type systems for record structures have recently received much attention. They
provide foundations for typing in object-oriented languages, data base languages, and
their extensions. In [Cardelli 1988] the basic notions of record types, as intended here,
were defined in the context of a first-order type system for fixed-size records. Then
Wand [Wand 1987] introduced the concept of row-variables while trying to solve the
type inference problem for records; this led to a system with extensible records and
limited second-order typing. His system was later refined and shown to have principal
types in [Jategaonkar, Mitchell 1988] [Rémy 1989], and again in [Wand 1989]. The
resulting system provides a flexible integration of record types and Milner-style type
inference [Milner 1978].

Meanwhile [Cardelli, Wegner 1985] defined a full second-order extension of the
system with fixed-size records, based on techniques from [Mitchell 1984]. In that
system, a program can work polymorphically over all the subtypes B of a given record
type A, and it can preserve the “unknown” fields (the ones in B but not in A) of record
parameters from input to output. However, some natural functions are not expressible.
For example, by the nature of fixed-size records there is no way to add a field to a
record and preserve all its unknown fields. Less obviously, a function that updates a
record field, in the purely applicative sense of making a modified copy of it, is forced
to remove all the unknown fields from the result. Imperative update also requires a
careful typing analysis.

In this paper we describe a second-order type system that incorporates extensible
records and solves the problem of expressing the natural functions mentioned above.
We believe this second-order approach makes the presentation of record types more
natural. The general idea is to extend a standard second-order (or even higher-order)
type system with a notion of subtyping at all types. Record types are then introduced
as specialized type constructions with some specialized subtyping rules. These new
constructions interact well with the rest of the system. For example, row-variables fall
out naturally from second-order type variables, and contravariance of function spaces
and universal quantifiers mixes well with record subtyping.

In moving to second-order typing we give up the principal type property of
weaker type systems, in exchange for some additional expressiveness. But most
importantly for us, we gain some perspective on the space of possible operations on
records and record types, unencumbered (at least temporarily) by questions about type

Page 3

inference. Since it is not clear yet where the bounds of expressiveness may lie, this
perspective should prove useful for comparisons and further understanding.

The first part of the paper is informal and introduces the main concepts and
problems by means of examples. Then we formalize our intuitions by a collection of
type rules. We give a normalization procedure for record types, and we show
soundness of the rules with respect to a simple semantics for the pure calculus of
records. Finally, we discuss applications and extensions of the basic calculus.

2. Informal development
Before looking at a formal system, we describe informally the desired operations

on records and we justify the rules that are expected to hold. The final formal system
is rather subtle, so these explanations should be useful in understanding it.

We also give simple examples of how records and their operations can be used in
the context of object-oriented languages.

2.1 Record values
A record value is intended to represent, in some intuitive semantic sense, a finite

map from labels to values where the values may belong to different types.
Syntactically, a record value is a collection of fields, where each field is a labeled
value. To capture the notion of a map, the labels in a given record must be distinct.
Hence the labels can be used to identify the fields, and the fields can be taken to be
unordered. This is the notation we use:

Üá the empty record.

Üx=3, y=trueá a record with two fields, labeled x and y,
equivalent to Üy=true, x=3á.

There are three basic operations on record values.
 ¢ Extension Ür | x=aá ; adds a field of label x and value a to a record r, provided a field
of label x is not already present. (This condition will be enforced statically.) We write
Ür | x=a | y=bá for ÜÜr | x=aá | y=bá.
 ¢ Restriction r\ x ; removes the field of label x, if any, from the record r. We write
r\ xy for r\ x\ y.
 ¢ Extraction r.x ; extracts the value corresponding to the label x from the record r,
provided a field having that label is present. (This condition will be enforced
statically.)

We have chosen these three operations because they seem to be the fundamental
constituents of more complex operations. An alternative, considered in [Wand 1987],
would be to replace extension and restriction by a single operation that either modifies
or adds a field of label x, depending on whether another field of label x is already
present. In our system, the extension operation is not required to check whether a new
field is already present in a record: its absence is guaranteed statically. The restriction

Page 4

operation has the task of removing unwanted fields and fulfilling that guarantee. This
separation of tasks has advantages for efficiency, and for static error detection since
fields cannot be overwritten unintentionally by extension alone. Based on a
comparison between the systems of [Wand 1987] and [Jategaonkar, Mitchell 1988], it
also seems possible that a reasonable fragment of our language will have a practical
type inference algorithm.

Here are some simple examples. The symbol óïñ (value equivalence) means that
two expressions denote the same value.

ÜÜá | x=3á óïñ Üx=3á extension
ÜÜx=3á | y=trueá óïñ Üx=3, y=trueá

Üx=3, y=trueá\ y óïñ Üx=3á restriction (cancelling y)
Üx=3, y=trueá\ z óïñ Üx=3, y=trueá (no effect)
Üx=3, y=trueá.x óïñ 3 extraction

ÜÜx=3á | x=4á invalid extension
Üx=3á.y invalid extraction

Some useful derived operators can be defined in terms of the ones above.
 ¢ Renaming r[xóïôy] =def Ür\ x | y=r.xá: changes the name of a record field.
 ¢ Overriding Ür óïô x=aá =def Ür\ x | x=aá: if x is present in r, overriding replaces its value
with one of a possibly unrelated type, otherwise extends r (compare with [Wand
1989]). Given adequate type restrictions, this can be seen as an updating operator, or a
method overriding operator. We write Ür óïô x=a óïô y=bá for ÜÜr óïô x=aá óïô y=bá.

Obviously, all records can be constructed from the empty record using extension
operations. In fact, in the formal presentation of the calculus, we regard the syntax for
a record of many fields as an abbreviation for iterated extensions of the empty record,
e.g.:

Üx=3á =def ÜÜá | x=3á
Üx=3, y=trueá =def ÜÜÜá | x=3á | y=trueá

This definition allows us to express the fundamental properties of records in terms of
combinations of simple operators of fixed arity, as opposed to n-ary operators. Hence,
we never have to use schemas with ellipses, such as Üx1=a1 , ..., xn=aná, in our formal
treatment.

Since r\ x óïñ r whenever r lacks a field of label x, we can formulate the definition
above using any of the following expressions:

ÜÜá | x=3 | y=trueá óïñ ÜÜÜá\ x | x=3á\ y | y=trueá óïñ ÜÜá óïô x=3 óïô y=trueá

The latter forms match better a similar definition for record types, given in the next
section.

Page 5

2.2 Record types
In describing operations on record values we made positive assumptions of the

form “a field of label x must occur in record r” and negative assumptions of the form
“a field of label x must not occur in record r”.

These constraints will be verified statically by embedding them in a type system,
hence record types will convey both positive and negative information. Positive
information describes the fields that members of a record type must have. (Members
may have additional fields.) Negative information describes the fields the members of
that type must not have. (Members may lack additional fields.)

Note that both positive and negative information expresses constraints, hence
increasing either kind of information will lead to smaller sets of values. The smallest
amount of information is expressed by the record type with no fields, äã, which
therefore denotes the collection of all records, since all records have at least no fields
and lack at least no fields. This type is called the total record type.

äã the type of all records.
Contains, e.g.: Üá, Üx=3á.

äã\ x the type of all records which lack fields of
label x. E.g.: Üá, Üy=trueá, but not Üx=3á.

äx:Int, y:Boolã the type of all records which have at least fields
of labels x and y, with values of types Int and
Bool. E.g.: Üx=3, y=trueá, Üx=3, y=true, z="str"á,
but not Üx=3, y=4á, Üx=3á.

äx:Intã\ y the type of all records which have at least a field
of label x and type Int, and no field of label y.
E.g. Üx=3, z="str"á, but not Üx=3, y=trueá.

Hence a record type is characterized by a finite collection of (positive) type fields
(i.e. labeled types) and negative type fields (i.e. labels)1. We often simply say “fields”
for “type fields”. The positive fields must have distinct labels and are unordered.
Negative fields are also unordered. We have assumed so far that types are normalized
so that positive and negative labels are distinct, otherwise positive and negative fields
may cancel, as described shortly.

As with record values, we have three basic operations on record types.
 ¢ Extension äR | x:Aã : This type denotes the collection obtained from R by adding x
fields with values in A in all possible ways (provided that none of the elements of R
has x fields). More precisely, this is the collection of those records Ür | x=aá such that r
is in R and a is in A, provided that a positive type field x is not already present in R.
(This condition will be enforced statically.) We sometimes write äR | x:A | y:Bã for
ääR | x:Aã | y:Bã.

1In this section we consider only ground record types, i.e., those containing no record type variables.

Page 6

 ¢ Restriction R\ x : this type denotes the collection obtained from R by removing the
field x (if any) from all its elements. More precisely, this is the collection of those
records r\ x such that r is in R. We write R\ xy for R\ x\ y.
 ¢ Extraction R.x : this type denotes the type associated with label x in R, provided R
has such a positive field. (This condition will be enforced statically.)

Again, derived operators can be defined in terms of the ones above.
 ¢ Renaming R[xóïôy] =def äR\ x | y=R.xã: changes the name of a record type field.
 ¢ Overriding äR óïô x:Aã =def äR\ x | x:Aã: if a type field x is present in R, overriding
replaces it with a field x of type A , otherwise extends R. Given adequate type
restrictions, this can be used to override a method type in a class signature (i.e. record
type) with a more specialized one, to produce a subclass signature.

The crucial formal difference between these operators on types and the similar
ones on values is that type restrictions do not cancel as easily, for example: äã\ y ≠ äã,
äx:Aã\ y ≠ äx:Aã, etc., since äã\ y is a smaller set than äã. As a consequence, one must
always make a type restriction before making a type extension, as can be seen in the
examples below, because the extension operator needs proof that the extension label
is missing. The symbol óïñ (type equivalence) means also that two type expressions
denote the same type.

ääã\ x | x:Intã óïñ äx:Intã extension
ääx:Intã\ y | y:Boolã óïñ äx:Int, y:Boolã

äx:Int, y:Boolã\ y óïñ äx:Intã\ y restriction (cancelling y)
äx:Int, y:Boolã\ z óïñ äx:Int, y:Boolã\ z (no effect on

x,y)
äx:Int, y:Boolã.x óïñ Int extraction

ääã | x:Intã invalid extension
ääx:Intã | x:Intã invalid extension

äx:Intã.y invalid extraction

It helps to read these examples in terms of the collections they represent. For
example, the first example for restriction says that if we take the collection of records
that have x and y (and possibly more) fields, and remove the y field from all the
elements in the collection, then we obtain the collection of records that have an x field
(and possibly more fields) but no y field. In particular, we do not obtain the collection
of records that have x and possibly more fields, because those would include y.

The way positive and negative information is formally manipulated is easier to
understand if we regard record types as abbreviations, as we did for record values,
e.g.:

äx:Intã =def ääã\ x | x:Intã
äx:Int, y:Boolã =def äääã\ x | x:Intã\ y | y:Boolã

Page 7

Then, when considering äy:Boolã\ y we actually have the expansion ääã\ y | y:Boolã\ y. If
we allow the outside positive and negative y labels to cancel, we are still left with
äã\ y. In other words, the inner y restriction reminds us that y fields have been
eliminated.

Remark. It is deceptive to think that every record in äR | x:Aã has at least the
fields of some record in R (i.e., that äR | x:Aã has “more type fields” than R),
since äR | x:Aã is not necessarily contained in R. For example, if R=äã\ x the two
collections are incomparable.

Based on this example, one might then think that äR\ x | x:Aã has more type
fields than R, and this is indeed true for R=äã. However, in general this fails;
for example R=äã\ x makes the collections incomparable, and R=ääã\ x | x:Aã
causes the two collections to have the same fields.

It is also deceptive to think that R\ x has fewer type fields than R, since R is
in general not contained in R\ x. This containment is true for R=äã\ x, but false
for R =äã where the opposite is true, and R = ääã\ x | x:Aã makes the two
collections incomparable.

These observations might appear to conflict with our previous assertion
that positive and negative information always makes things smaller. The
assertion is true for normalized record types, but not for arbitrary applications
of operators which may later cancel out. We shall study the normalization
process in a later section.

2.3 Record value variables
Now that we have a first understanding of record types, we can introduce record

value variables which are declared to have some record type. For example, r:äã\ y
means that r must not have a field y, and r:äx:Aã means that r must have a field x of
type A. The well-formed record expressions can now be formulated more precisely:

Ür | x=aá where r:äã\ x
r\ x where r:äã
r.x where r:äx:Aã for some A

Record value variables can now be used to write function abstractions. Here we
have a function that increments a field of a record, and adds another field to it:

let f(r: äx:Intã\ y) : äx:Int, y:Intã =
Ür óïô x=r.x+1 | y=0á

This function requires an argument with a field x and no field y; it has type:

f : äx:Intã\ y îïñ äx:Int, y:Intã

and can be used as follows:

f(Üx=3á) óïñ Üx=4, y=0á : äx:Int, y:Intã
f(Üx=3, z=trueá) óïñ Üx=4, y=0, z=trueá : äx:Int, y:Intã

Page 8

The first application uses the non-trivial fact that Üx=3á : äx:Intã\ y. We could also have
matched the parameter type precisely by f(Üx=3á\ y), which is of course equivalent. The
second application is noticeable for several reasons. First, it uses the non-trivial fact
that Üx=3, z=trueá : äx:Intã\ y. Second, the “extra” field z is preserved in the result
value, because of the way f is defined. Third, the “extra” field z is not preserved in the
result type, because f has a fixed result type; we shall come back to this problem.

Remark. An alternative syntactic notation, along the lines of [Jategaonkar,
Mitchell 1988], could use pattern matching of record parameters:

let f(Ürr\ y | x=rxá) : äx:Int, y:Intã =
Ürr | x=rx+1 | y=0á

Here the actual parameter must match the shape of a record with a field x and
a collection of remaining components that lack y. The variables rr and rx are
bound to the appropriate components and then used in the body of f, where rr
acquires the assumption that it does not contain either x or y fields. There are
some non-trivial details to pattern matching in the presence of subtyping.
Since our main objective is to illustrate the fundamental ideas, we choose the
simpler syntax.

2.4 Record type variables
In the previous section we introduced record value variables, and we used record

types to impose restrictions on the values which could be bound to such variables.
Now we want to introduce record type variables in order to write programs that are
polymorphic over a collection of record types. We similarly need to express
restrictions on the admissible types that these variables can be bound to; these
restrictions are written as subtype specifications.

To write subtype specifications, we use a predicate A<:B meaning that A is a
subtype of B: in other words, every value of A is also a value of B. The typing rule
based on this condition is called subsumption, and will play a central role in the
formal system.

Using subtype assumptions, we can better formulate the restrictions on the record
type operators:

äR | x:Aã where R <: äã\ x
R\ x where R <: äã
R.x where R <: äx:Aã for some A

We may now write a polymorphic version of the function f of the previous
section:

let f(R<:äx:Intã\ y)(r:R) : äR | y:Intã =
Ür óïô x=r.x+1 | y=0á

Page 9

This function expects first a type parameter R which must be a subtype of äx:Intã\ y,
and then an actual value parameter of type R. An example application is:

f(äx:Int, z:Boolã\ y)(Üx=3, z=trueá) óïñ
Üx=4, y=0, z=trueá : äx:Int, y:Int, z:Boolã

First, note that R is bound to äx:Int, z:Boolã\ y, which is a subtype of äx:Intã\ y as
required. Second, Üx=3, z=trueá has type äx:Int, z:Boolã\ y as required. Third, the result
type, obtained by instantiating R, is ääx:Int, z:Boolã\ y | y:Intã, which is the same as
äx:Int, y:Int, z:Boolã by definition. Finally, note that the “extra” field z has not been
forgotten in the result type this time, because all the “extra” fields are carried over
from input to output type by the type variable R. This is the advantage of writing f in
polymorphic style.

What is the type of f then? We cannot write this type with simple function arrows,
because we have a free variable R to bind. Moreover, we want to mark the precise
location where this binding occurs, because this permits more types to be expressed.
Hence, we use an explicit bounded universal quantifier:

f : Ó(R<:äx:Intã\ y) R îïñ äR | y:Intã

This reads rather naturally: “for all types R which are subtypes of äx:Intã\ y, f is a
function from R to äR | y:Intã”. (The scope of a quantifier extends to the right as much
as possible.)

Remark. Notice that we have freedom in the typing of the polymorphic
function f; for example, we could have chosen the typing:

let f(R<:äã\ x y)(r:äR | x:Intã) : äR | x:Int | y:Intã =
Ür óïô x=r.x+1 | y=0á

f(äz:Boolã\ x y)(Üx=3, z=trueá) : äx:Int, y:Int, z:Boolã

This typing turns out to be incomparable with the previous one; in general we
do not seem to have a “best” way of typing an expression. However, we have
not studied this aspect of the system carefully.

2.5 Subtype hierarchies
Our operations on record types and record values make it easy to define new types

and values by reusing previously defined types and values.
For example, we want to express the subtype hierarchy shown in the diagram

below, where various entities can have a combination of coordinates x and y, radius r,
and color c.

First, we could define each type independently:

let Point = äx:Real, y:Realã
let ColorPoint = äx:Real, y:Real, c:Colorã
let Disc = äx:Real, y:Real, r:Realã

Page 10

let ColorDisc = äx:Real, y:Real, r:Real, c:Colorã

But these explicit definitions do not scale up easily to large hierarchies; it is much
more convenient to define each type in terms of previous ones, e.g:

let Point = äx:Real, y:Realã
let ColorPoint = äPoint óïô c:Colorã
let Disc = äPoint óïô r:Realã
let ColorDisc = äColorPoint óïô r:Realã

Note that äPoint | c:Colorã would not be well-formed here, since members of Point
may have a c label. In section 4.3 we shall examine another way of defining this
hierarchy, for example deriving Point from ColorPoint by “retracting” the c field.

Point
x y

ColorPoint
x y c

Disc
x y r

ColorDisc
x y r c

Similarly, record values can be defined by reusing available values:

let p:Point = Üx=3, y=4á
let cp:ColorPoint = Üp óïô c=greená
let cd:ColorDisc = Ücp óïô r=1á
let d:Disc = cd\ c

We should notice here that the subtyping relation depends only on the structure of
the types, and not on how the types are named or constructed. Similarly, record values
belong to record types uniquely based on their structure, independently of how they
are declared or constructed.

Another observation, which we already made in a more abstract context, is that
Point\ r <: Point since Point does not contain r, but Point\ y is incomparable with Point
since Point requires y:Int while Point\ y forbids it.

2.6 The update problem
The type system for records we have described in the previous sections was

initially motivated by a single example which involves typing an update function.
Here updating is intended in the functional sense of creating a copy of a record with a
modified field, but the discussion is also relevant to imperative updating.

The problem is to define a function that updates a field of a record and returns the
new record; the type of this function should be such that when an argument of the

Page 11

function has a subtype of the expected input type, the result has a related subtype.
That is, no type information regarding additional fields should be lost in updating.
(We have already seen that bounded quantification can be useful in this respect.)

It is pretty clear what the body of such a function should look like; for example for
an input r and a boolean field b which has to be negated, we would write:

Ür óïô b=not(r.b)á (an abbreviation for Ür\ b | b=not(r.b)á)

The overriding operator here preserves the additional fields of r.
One might expect the following typing, which seems to preserve subtype

information as desired:

let update(R<:äb:Boolã)(r:R): R =
Ür óïô b=not(r.b)á

In words, we expect update to be a function from R to R , for any subtype R of
äb:Boolã. But this typing is not derivable from our rules and, worse, it is semantically
unsound. To see this, assume we have a type True <: Bool with unique element true,
as follows2:

true : True <: Bool
not : Bool îïñ Bool (alternatively, not : Ó(A<:Bool)AîïñBool)

update(äb:Trueã)(Üb=trueá) óïñ Üb=falseá : äb:Trueã

This use of update produces an obviously incorrect result type. In general, a function
with result type R has a fixed range; it cannot restrict its output to an arbitrary subtype
of R, even when this subtype is given as a parameter.

To avoid this problem, we must update the result type as well as the result. The
correct typing comes naturally from typechecking the body of update according to the
rules for each construct involved; note how the shape of the result type matches the
shape of the body of the function:

let update(R<:äb:Boolã)(r:R): äRóïôb:Boolã =
Ür óïô b=not(r.b)á

update(äb:Trueã)(Üb=trueá) óïñ
Üb=falseá : (ääb:Trueãóïôb:Boolã óïñ äb:Boolã)

The outcome is that the overriding operator on types, which involves manipulation
of negative information, is necessary to express the type of update functions. Bounded
quantification by itself is not sufficient.

The type Ó(B<:A) B îïñ B turns out to contain only the identity function on A in
many natural semantic models, such as [Bruce, Longo 1990]. For example take A=Int
and let the subranges [n..m] be subtypes of Int. Then any function of type Ó(B<:Int) B

2Although the singleton type True may seem artificial, this argument can be reformulated with any proper inclusion

between two types.

Page 12

îïñ B can be instantiated to [n..n] îïñ [n..n], hence it must be the identity on [n..n] for
any n, and hence the identity over all of Int.

A further complication manifests itself when updating acts deep in a structure,
because then we have to preserve type information with subtyping occurring at
multiple levels. Here is the body of a function that negates the s.a.b field of a record s
of type äa:äb:Boolãã :

Üsóïôa=Üs.aóïôb=not(s.a.b)áá

The following is a correct typing which does not lose information on subtypes
(simpler typings would). Here we need to introduce an additional type parameter in
order to use two type variables in the result type and to avoid two possible ways of
losing type information:

let deepUpdate(R<:äb:Boolã)(S<:äa:Rã)(s:S): äSóïôa:äRóïôb:Boolãã =
Üsóïôa=Üs.aóïôb=not(s.a.b)áá

Of course this is rather clumsy; we need one additional type parameter for each
additional depth level of updating. Fortunately, we can avoid the extra type
parameters by using extraction types S.a. Again, the following typing comes naturally
from typechecking the body of deepUpdate according to the rules for each construct:

let deepUpdate(S<:äa:äb:Boolãã)(s:S): äSóïôa:äS.aóïôb:Boolãã =
Üsóïôa=Üs.aóïôb=not(s.a.b)áá

The output type is still complex (it could be inferred) but the input is more natural.
Here is a use of this function:

deepUpdate(äa:äb:True, c:Cã, d:Dã)(Üa=Üb=true, c=vá, d=wá) óïñ
Üa=Üb=false, c=vá, d=wá : äa:äb:Bool, c:Cã, d:Dã

Here we have provided an argument type that is a subtype of äa:äb:Boolãã in “all
possible ways”.

Finally, we should remark that the complexity of the update problem seems to
manifests itself only in the functional case, while simpler solutions are available in the
imperative case. Simpler type systems for records, such as the one in [Cardelli,
Wegner 1985], may be adequate for imperative languages when properly extended
with imperative constructs, as sketched below.

The imperative updating operator := has the additional constraint that the new
record should have the same type as the old record, since intuitively updating is done
“in place”. This requirement produces something very similar to the typing we have
initially shown to be unsound. Here assignable fields are identified by var:

let update(R<:ävar b:Boolã)(r:R): R =
r.b := not(r.b)

Page 13

Soundness is then recovered by requiring that assignable fields be both covariant and
contravariant. Hence, True <: Bool does not imply ävar b:Trueã <: ävar b:Boolã,
thereby blocking the counterexamples to soundness.

Imperative update, with the natural requirement of not changing the type of a
record, leads to simpler typing. However, this approach does not completely solve the
problem we have discussed in this section. Imperative update alone does not provide
the functionality of polymorphically extending existing records; when this is added,
all the problems discussed above about functional update resurface.

3. Formal development
Now that we have acquired some intuitions, we can discuss the formal type

inference rules in detail. We first define judgment forms and environment structures.
Then we look at inference rules individually, and we analyze their properties. Finally,
we provide a set-theoretical semantics for the pure calculus of records.

3.1 Judgments and inferences
A judgment is an inductively defined predicate between environments, value

terms, and type terms. The following judgments are used in formalizing our system:

 ∫ E env E is an environment

E ∫ A type A is a type
E ∫ A <: B A is a subtype of B
E ∫ a : A a has type A

E ∫ A óïñ B equivalent types
E ∫ a óïñ b : A equivalent values of type A

The formal system is given by a set of inference rules below, each expressed as a
finite set of antecedent judgments and side conditions (above a horizontal line) and a
single conclusion judgment (below the line). Most inference rules are actually rule
schemas, where meta-variables must be instantiated to obtain concrete inferences. For
typographical reasons, we write the side conditions for these schemas as part of the
antecedent.

3.2 Environments
An environment E is a finite sequence of (a) unconstrained type variables, (b) type

variables constrained to be subtypes of a given type, and (c) value variables associated
with their type.

We use dom(E) for the set of type and value variables defined in an environment.

(ENV1) (ENV2) (ENV3) (ENV4)

XÌdom(E) E ∫ A type XÌdom(E) E ∫ A type xÌdom(E)
 ———— ————— ——————————– ——————————–

∫  env ∫ E, X env ∫ E, X<:A env ∫ E, x:A env

Page 14

Hence, a legal environment is obtained by starting with the empty environment  and
extending it with a finite set of assumptions for type and value variables. Note that the
assumptions involve distinct variables; we could perhaps allow multiple assumptions
(e.g.,  , X<:A, X<:B) but this would push us into the more general discipline of
conjunctive types.

Assumptions about variables can then be extracted from well-formed
environments:

(VAR1) (VAR2) (VAR3) (VAR4)

∫ E,X,E' env ∫ E,X<:A,E' env ∫ E,X<:A,E' env ∫ E,x:A,E' env
 ——————— ————————– ———————— ——————–

E,X,E' ∫ X type E,X<:A,E' ∫ X type E,X<:A,E' ∫ X<:A E,x:A,E' ∫ x:A

All legal inferences take place in (well-formed) environments. All judgments are
recursively defined in terms of other judgments. For example, above we have used the
typing judgment E ∫ A type in constructing environments; vice versa, well-formed
environments are involved in constructing types.

We now consider the remaining judgments in turn.

3.3 Record type formation
The following collection of rules determines when record types are well-formed.

There is some interdependence between this section and the following ones, since
equivalence rules have assumptions that involve subtyping, which is discussed later.
Fortunately, these assumptions are fairly simple, so a full understanding of the
subtype relation is not required at this point.

(F1) (F2) (F3) (F4)

∫ E env E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã E ∫ R<:äS | x:Aã<:äã
————— ——————————— ——————————————

—

E ∫ äã type E ∫ äR | x:Aã type E ∫ R\ x type E ∫ R.x type

As shown above, and already discussed informally, the legal record types are: the
type of all records, äã; a record type variable X, (because of (VAR2) in the previous
section); an extension äR | x:Aã of a record type R, provided R does not have x; and a
restriction R\ x of a record type R. Moreover, extracting a component R.x of a record
type R that has a label x, produces a legal type.

In general, if R does not have x, then R will be a subtype of the type äã\ x of all
records without x. This explains the hypothesis of rule (F2). In rule (F4) we use
R<:äS | x:Aã to guarantee that every record in R has an x field.

3.4 Record type equivalence
When are two record types equivalent? We discuss here the formal rules for

answering such a question. Type equivalence, as a relation, is reflexive (over well-
formed expressions), symmetric, and transitive; it is denoted by the symbol óïñ.
Substituting two equivalent types in a third type should produce an equivalent result;
this is called the congruence property, and requires a number of rules to be fully

Page 15

formalized (these are listed in section 3.7). We now consider, by cases, the
equivalence of extended, restricted and extracted record types.

Two extended record types are equivalent if we can reorder their fields to make
them identical (or, recursively, equivalent). This simple fact is expressed by the
following rule. A number of applications of this rule, and of the congruence property,
may be necessary to adequately reorder the fields of a record type.

(TE1)

E ∫ R<:äã\ xy E ∫ A,B type x≠y
——————————————

E ∫ ääR | x:Aã | y:Bã óïñ ääR | y:Bã | x:Aã

Similarly, we can reorder restrictions. Moreover, a double restriction R\ xx reduces to
R\ x. This fact is expressed in slightly more general form below, since the assumption
that R does not have x is sufficient to deduce that R\ x is the same as R:

(TE2) (TE3)

E ∫ R<:äã\ x E ∫ R<:äã
—————— ————————

E ∫ R\ x óïñ R E ∫ R\ xy óïñ R\ yx

The most interesting rules concern the distribution of restriction over extension.
An outside restriction and inner extension of the same variable can cancel each other.
Otherwise, a restriction can be pushed inside or outside of an extension of a different
variable.

(TE5) (TE6)

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã\ x E ∫ A type x≠y
——————————— ——————————————

E ∫ äR | x:Aã\ x óïñ R E ∫ äR | x:Aã\ y óïñ äR\ y | x:Aã

Note however that in a situation like äR\ x | x:Aã no cancellation or swap can occur. The
inner restriction may be needed to guarantee that the extension is sensible, and so
neither is redundant.

Finally, a record extraction is equivalent to the extracted type:

(TE7) (TE8)

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äS | y:Bã\ x<:äã E ∫ A type x≠y
—————————— ————————————————

E ∫ äR | x:Aã.x óïñ A E ∫ äR | x:Aã.y óïñ R.y

(TE4)

E ∫ R<:äS | y:Bã<:äã x≠y
——————————

E ∫ R\ x.y óïñ R.y

These equivalence rules can be given a direction and interpreted as rewrite rules
producing a normal form for record types; normalization is investigated in a later
section.

Page 16

3.5 Record subtyping
We have seen that subtyping is central to the notion of abstracting over record

type variables, and we have intuitively justified some of the valid subtype assertions.
In this section we take a more rigorous look at the subtype relation.

Subtyping should at least be a pre-order: a reflexive and transitive relation. Given
a substitutive type equivalence relation óïñ, such as the one discussed in the previous
section, we require:

(G1) (G2)

E ∫ A óïñ B E ∫ A <: B E ∫ B <: C
————— ——————————

E ∫ A <: B E ∫ A <: C

Reflexivity is a special case of (G1).
It would be natural to require subtyping to be anti-symmetric, hence obtaining a

partial order. A reasonable semantics of subtyping will in fact construct such a partial
order. However, it might be too strong to require anti-symmetry as a type rule. In
some systems anti-symmetry may introduce obscure ways of proving type
equivalence, while in other systems it may be provable from the other rules.
Moreover, anti-symmetry does not seem very useful for typechecking, hence we do
not include it.

The basic intuition about subtyping is that it behaves much like the subset
relation; this is expressed by the subsumption rule, which claims that if A<:B and a is
an element of A, then a is also an element of B.

(G3)

E ∫ a:A E ∫ A <: B
—————————

E ∫ a : B

We feel strongly that subsumption should be included in the type system, since this
rule gives object-oriented programming much of its flavor. One should not be
satisfied, for programming purposes, with emulating subsumption by explicit
coercions. The latter technique is interesting and adequate for providing semantics to
a language with subsumption [Breazu-Tannen, et al. 1989] [Curien, Ghelli 1992], but
even then it would seem more satisfactory to exhibit a model that satisfies
subsumption directly.

Combining (G1) and (G3) we obtain another standard type rule:

E ∫ a:A E ∫ A óïñ B
—————————

E ∫ a : B

This rule is normally taken as primitive, but here it is derived.

We are now ready to talk about subtyping between record types. It helps if we
break this problem into pieces and ask what are the subtypes of: (1) the total record

Page 17

type äã, (2) an extended record type äR | x:Aã, (3) a restricted record type R\ x, and (4) a
record type extraction R.x.

Case (1). Every record type should be a subtype of the total record type. Hence,
we have three subcases: (1a) the total record type is of course a subtype of itself, and
this is simply a consequence of (G1); (1b) any well-formed extended record type is a
subtype of äã; and (1c) any well-formed restricted record type is a subtype of äã.
Hence we have the following rules corresponding to 1b and 1c respectively:

(S1) (S2)

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã
——————————— ——————

E ∫ äR | x:Aã <: äã E ∫ R\ x <: äã

Case (2). A subtype of an extended record type will be another extended record
type, provided all respective components are in the subtype relation:

(S3)

E ∫ R<:S<:äã\ x E ∫ A<:B
————————————

E ∫ äR | x:Aã <: äS | x:Bã

The condition A<:B says that we can produce a subtype by weakening the type of a
given field. The condition R<:S tells us that we can produce a subtype either (a) by
weakening other fields inductively, because of (S3) itself, or (b) by requiring the
presence of additional components, because of (S1), or (c) by requiring the absence of
additional components, for example y, because from (S2) we are able to derive äã\ yx <:
äã\ x.

Case (3). The subtype rule for restricted types is semantically straightforward: if
every r in R occurs in S, then every r\ x in R\ x occurs in S\ x:

(S4)

E ∫ R<:S<:äã
——————

E ∫R\ x <: S\ x

Remark. Although this rule looks innocent, it hides some interesting subtlety
in its assumption. Let us analyze R<:S by cases.

The cases when R and S are themselves restrictions (either of x or of some
other variable) are straightforward. Similarly simple are the cases when R and
S are matching extensions, both of them either containing or not containing an
x field.

Suppose however that R has a positive x field and S does not, for example
R=äT | x:Aã and S=T. In that case, if we had R<:S we would erroneously
conclude that R\ x = äT | x:Aã\ x óïñ T <: T\ x = S\ x (which is false for T=äã).

Fortunately there was a flaw in this argument; the assumption for (S4)

requires R = äT | x:Aã <: T = S, but this is false (for T=äã\ x). Note also that
taking R=äT\ x | x:Aã and S=T leads to a similar contradiction for T=äã\ x.

Page 18

A legal instance of the assumption is R = ääã\ x | x:Aã <: äã = S, from which
we conclude that R\ x = ääã\ x | x:Aã\ x óïñ äã\ x <: äã\ x = S\ x, which is correct.

Case (4). We have to consider the subtypes of record type extractions; that is
situations of the form R.x <: T.x, or more generally R.x <: A under an assumption R <:
äS | x:Bã . If R can be converted to the form R=äR' | x:Aã, then the extraction R.x
simplifies and no special rule is required to deduce R.x<:A. But if R is a type variable,
for example, the following rule is necessary:

(S5)

E ∫ R<:äS | x:Aã<:äã
————————

E ∫ R.x <: A

This says that if R has an x field of type A, then R.x is a subtype of A (and possibly
equal to A).

Finally, there is a another subtyping rule that we must consider. If every record r
in R has an x field, then any such r is described also by the type äR\ x | x:R.xã, since r\ x
is described by R\ x and the x field of r is described by R.x. Therefore we have the
following inclusion:

(S6)

E ∫ R<:äS | x:Aã<:äã
————————–

E ∫ R <: äR\ x | x:R.xã

The inverse inclusion is not necessarily valid, although it might seem natural to
require it as we shall see later.

 The rule (S6) can be used in the following derivation, which provides a
“symmetrical” version of (S5) as a derived rule:

E ∫ R<:S<:äT | x:Aã<:äã
—————————–

(S6) E ∫ S<:äS\ x | x:S.xã
———————–

(G2) E ∫ R<:äS\ x | x:S.xã
———————–

(S5) E ∫ R.x <: S.x

In absence of (S6), the derived rule above would have to be taken as primitive,
replacing (S5).

3.6 Record typing and equivalence
Now that we have seen the rules for type equivalence and subtyping, the rules for

record values follow rather naturally. The only subtle point is about the empty record.
We must be able to assign it a type which lacks any given set of labels. This is
obtained by repeatedly applying the following two rules:

(I1) (I2)

∫ E env E ∫ Üá\ x1..xn : R<:äã
——————— —————————

E ∫ Üá\ x1..xn : äã E ∫ Üá\ x1..xn : R\ y

Page 19

The remaining constructions on record values are typed by the corresponding
constructions on record types, given the appropriate assumptions:

(I3) (E1) (E2)

E ∫ r:R<:äã\ x E ∫ a:A E ∫ r:R<:äã E ∫ r:äR | x:Aã<:äã
——————————– —————— ————————

E ∫ Ür | x=aá : äR | x:Aã E ∫ r\ x : R\ x E ∫ r.x : A

As we did in the previous section, we can use the rule (S6) to derive a
“symmetrical” version of (I2):

E ∫ r:R<:äS | x:Aã<:äã
—————————

(S6) E ∫ R<:äR\ x | x:R.xã
————————

(G3) E ∫ r:äR\ x | x:R.xã
———————

(E2) E ∫ r.x : R.x

Finally, we have to examine the rules for record value equivalence. These rules
are formally very similar to the ones already discussed for record type equivalence;
record extensions can be permuted, record components can be extracted, and
restrictions can be permuted and pushed inside extensions, sometimes cancelling each
other.

The main formal difference between these and the rules for types is that we equate
Üá\ x óïñ Üá. Hence, restriction can always be completely eliminated from variable-free
records.

Because of the formal similarity we omit a detailed discussion; the complete set of
rules for our type system follows in the next section.

3.7 Type rules
We can now summarize and complete the rules for record types and values, along

with selected auxiliary rules. These rules are designed to be immersed in a second-
order λ-calculus with bounded quantification (see [Cardelli, Wegner 1985]), and
possibly with recursive values and types.

We only list the names of the rules that have already been discussed.

Environments

(ENV1)...(ENV4), (VAR1)...(VAR4)

General properties of <: and óóóóïïïïññññ

(G1)...(G3)

(G4) (G5)

E ∫ A óïñ B E ∫ A óïñ B E ∫ B óïñ C
————— ——————————

E ∫ B óïñ A E ∫ A óïñ C

(G6) (G7)

E ∫ a óïñ b : A E ∫ a óïñ b : A E ∫ b óïñ c : A
—————— ————————————

Page 20

E ∫ b óïñ a : A E ∫ a óïñ c : A

Formation

(F1)...(F4)

Subtyping

(S1)...(S6)

Introduction/Elimination

(I1)...(I3), (E1), (E2)

Type Congruence

(TC1) (TC2) (TC3)

∫ E env E ∫ X type E ∫ R óïñ S <: äã\ x E ∫ A óïñ B
————— ————— ——————————————

E ∫ äã óïñ äã E ∫ X óïñ X E ∫ äR | x:Aã óïñ äS | x:Bã

(TC4) (TC5)

E ∫ R óïñ S <: äã E ∫ R óïñ S <: äT | x:Aã<:äã
——————— ————————————

E ∫ R\ x óïñ S\ x E ∫ R.x óïñ S.x

Type Equivalence

(TE1)...(TE8)

Value Congruence

(VC1a) (VC2) (VC3)

∫ E env E ∫ x : A E ∫ r óïñ s : R<:äã\ x E ∫ a óïñ b : A
—————— —————— ———————————————–

E ∫ Üá óïñ Üá : äã E ∫ x óïñ x : A E ∫ Ür | x=aá óïñ Üs | x=bá : äR | x:Aã

(VC4) (VC5)

E ∫ r óïñ s : R<:äã E ∫ r óïñ s : R<:äS | x:Aã<:äã
————————— ————————————

E ∫ r\ x óïñ s\ x : R\ x E ∫ r.x óïñ s.x : R.x

Value Equivalence

(VE1) (VE2)

E ∫ r:R<:äã\ xy E ∫ a:A E ∫ b:B x≠y ∫ E env
————————————————————– ———————

E ∫ ÜÜr | x=aá | y=bá óïñ ÜÜr | y=bá | x=aá : ääR | x:Aã | y:Bã E ∫ Üá\ x óïñ Üá : äã

(VE3) (VE4) (VE5)

E ∫ r:R<:äã\ x E ∫ r:R<:äã E ∫ r:äR | x:Aã<:äã x≠y
——————— —————————– ——————————

E ∫ r\ x óïñ r : R E ∫ r\ xy óïñ r\ yx : R\ xy E ∫ r\ y.x óïñ r.x : A

(VE6) (VE7)

E ∫ r:R<:äã\ x E ∫ a:A E ∫ r:R<:äã\ x E ∫ a:A x≠y
——————————– ———————————————

E ∫ Ür | x=aá\ x óïñ r : R E ∫ Ür | x=aá\ y óïñ Ür\ y | x=aá : äR | x:Aã\ y

Page 21

(VE8) (VE9)

E ∫ r:R<:äã\ x E ∫ a:A E ∫ r:äR | y:Bã\ x<:äã E ∫ a:A x≠y
——————————– ———————————————

E ∫ Ür | x=aá.x óïñ a : A E ∫ Ür | x=aá.y óïñ r.y : B

(VE10)

E ∫ r:R<:äS | x:Aã<:äã
——————————

E ∫ r óïñ Ür\ x | x=r.xá : R

Special rules
In the following sections we discuss the rules (VC1b) and (TE9) below; these are valid

only with respect to particular semantic interpretations.

(VC1b) (TE9)

E ∫ r:äã E ∫ s:äã E ∫ R<:äS | x:Aã<:äã
———————– —————————

E ∫ r óïñ s : äã E ∫ R óïñ äR\ x | x:R.xã

In presence of (TE9), the rule (S6) is redundant, and the rules (TC5) and (VC5) are implied
by the simpler (TC5b) and (VC5b) below.

(TC5b) (VC5b)

E ∫ R óïñ äS | x:Aã<:äã E ∫ r óïñ s : äR | x:Aã<:äã
—————————— ———————————

E ∫ R.x óïñ A E ∫ r.x óïñ s.x : A

Properties

Lemma 3.7.1:
(1) If E ∫ A type, then ∫ E env.
(2) If E ∫ A <: B, then ∫ E env.

Proof
Simple simultaneous induction on derivations, with (F1) as the base case.

M

Lemma 3.7.2:
(1) If E ∫ A óïñ B, then E ∫ A type and E ∫ B type.
(2) If E ∫ A <: B, then E ∫ A type and E ∫ B type.

Proof
Show (1) and (2) simultaneously by induction on derivations. The hardest case
is (TE1). The next hardest is (TE8). All the others are substantially simpler. We
prove (TE1) below and leave the remaining cases to the reader.

To prove (1) for (TE1), we assume E ∫ R<:äã\ xy and E ∫ A,B type. Using (S2)

and (S4) we may derive E ∫ äã\ xy<:äã\ x and so by transitivity and (F2) we have
E ∫ äR | x:Aã type. The next goal is to show that äR | x:Aã is a subtype of äã\ y.
Using (S2) and (S4) we have E ∫ R<:äã\ y by transitivity, and so by (TE2), E ∫ R\ y
óïñ R. The type congruence rules give E ∫ äR | x:Aã óïñ äR\ y | x:Aã. By (TE6) and
transitivity we now have E ∫ äR | x:Aã óïñ äR | x:Aã\ y. From (S1) and the original
hypotheses, it is easy to show E ∫ äR | x:Aã <: äã and so by (S4), E ∫ äR | x:Aã\ y
<: äã\ y. This allows us to derive E ∫ äR | x:Aã <: äã\ y, from which we may
finally obtain E ∫ ääR | x:Aã | y:Bã type.

Page 22

The proof of E ∫ ääR | y:Bã | x:Aã type is similar.
M

Sample derivations
We show the main steps of some derivations that can be carried out in this system,

assuming rules for typing basic constants.

The first example simply builds a record of two fields, with its natural type.
——–

(I1) Üá : äã
———— ——–

(E1) Üá\ x : äã\ x (const) 3 : Int
————————————

(I3) ÜÜá\ x | x=3á : ääã\ x | x:Intã
——————————— ————–

(E1) ÜÜá\ x | x=3á\ y : ääã\ x | x:Intã\ y (const) true : Bool
——————————————————————–

(I3) ÜÜÜá\ x | x=3á\ y | y=trueá : äääã\ x | x:Intã\ y | y:Boolã
——————————————————

(def) Üx=3, y=trueá : äx:Int, y:Boolã

Next, we derive a non-trivial type inclusion. To construct record types of different
lengths on the two sides of <:, we start with the basic asymmetry of (S1) and we build
up symmetrically from there (there is no more direct way).

———–

(G1) äã <: äã
—————

(S4) äã\ x <: äã\ x
——————–

(S1) ääã\ x | x:Intã <: äã
———————— —————–

(S4) ääã\ x | x:Intã\ y <: äã\ y (G1) Bool <: Bool
————————————————————–

(S3) äääã\ x | x:Intã\ y | y:Boolã <: ääã\ y | y:Boolã
——————————————–––

(def) äx:Int, y:Boolã <: äy:Boolã

Now we show that a given record lacks a given label. This time the key rule is (I2).
Some type equivalence rules are used to rearrange the type into a standard form.

——–

(I1) Üá : äã
———– ————

(I2) Üá : äã\ y (S2) äã\ y <: äã
————— —————– ——–

(E1) Üá\ x : äã\ y\ x (S4) äã\ y\ x <: äã\ x (const) 3 : Int
———————————————————————–

(I3) ÜÜá\ x | x=3á : ääã\ y\ x | x:Intã
—————————–

(TE3,TC3,G1,G3) ÜÜá\ x | x=3á : ääã\ x\ y | x:Intã
—————————–

(TE6,G1,G3) ÜÜá\ x | x=3á : ääã\ x | x:Intã\ y
—————————–

(def) Üx=3á : äx:Intã\ y

Finally, we show that by removing a label we obtain a subtype. The basic
asymmetry here is provided by (S2).

———–

(G1) äã <: äã
————

(S2) äã\ y <: äã
—————– ————

Page 23

(S4) äã\ y\ x <: äã\ x (G1) Int <: Int
——————————————–

(S3) ääã\ y\ x | x:Intã <: ääã\ x | x:Intã
———————————–

(TE3,TC2,G1,G2) ääã\ x\ y | x:Intã <: ääã\ x | x:Intã
———————————–

(TE6,G1,G2) ääã\ x | x:Intã\ y <: ääã\ x | x:Intã
———————————–

(def) äx:Intã\ y <: äx:Intã

3.8 Semantics of the pure calculus of records
Our stated intent is to define a second-order type system for record structures.

However, models of such a system are rather complex, and outside the scope of this
paper.

In this section we provide a simple set-theoretical model of the pure calculus of
records, without any additional functional or polymorphic structure. The intent here is
to show the plausibility of the inference rules for records, by proving their soundness
with respect to a natural model.

This model is natural because it embodies the strong set-theoretical intuitions of
subtyping seen as a subset relation, and of records seen as finite tuples. Although this
model does not extend to more complex language features, it exhibits the kind of
simple-minded but (usually) sound reasoning that guides the design and
implementation of object-oriented languages.

Syntax
We start with the language implied by the type rules of section 3.7. Since no basic

non-record values are expressible in this calculus, we must make some arbitrary
choices to get started. To this end, we will consider an extension of the pure calculus
with any collection G1 , G 2 , ... of basic (ground) type symbols and an arbitrary
collection of subtype relations Gi <: G j between them. To incorporate these new
symbols into the calculus, we add the following two rules (which preserve lemmas
3.7.1 and 3.7.2):

∫ E env ∫ E env
————— —————

E ∫ Gi type E ∫ Gi <: Gj (as appropriate)

For simplicity, we do not introduce value constants; instead we work with
environments containing assumptions of the form k : Gi .

We will now construct a model of the extended calculus.

Semantic domains
In the following, we rely largely on context to distinguish between syntactic

expressions and semantic expressions, and we often identify terms with their
denotations.

We start by choosing some fixed set of labels L, and a collection of sets G1 , G2 , ...
corresponding to the type symbols G1 , G2 , ... such that Gi ⊆ G j if Gi <: Gj is a
subtyping axiom.

Page 24

For simplicity, we assume that no element of any Gi is a finite partial function on
L (i.e. a record, as we shall see shortly). This assumption is useful when we define
the subtype relations of sections 3.9 and 3.10.

Since äã serves as a type of all records, we will need some value space closed
under record formation. This property may be accomplished by regarding records as
finite functions from L to values, and using ranked values with rank < ω. We use A
îïÕfin B for the set of partial functions from A to B with finite domain, f(x)¶ to indicate
that the partial function f is undefined at x, and f(x)ß to indicate that f is defined at x.

Define set R i of records of rank i, and set Vi of values of rank i, as follows:

V0 = êj Gj Vi+1 = R i ∪ Vi
R 0 = L îïÕfin V0 R i+1 = L îïÕfin Vi+1

R = êi < ω R i the set of records
V = êi < ω Vi the set of values

The essential properties of this construction are summarized by the relationship:

R = (L îïÕfin V) ⊆ V

It is clear by construction that R i ⊆ Vi+1 and so R ⊆ V. To see that R = L îïÕfinV, we
first show that L îïÕfinV ⊆ R . If r Ï L îïÕfinV , then since dom(r) is finite there is some i
with range(r) ⊆ Vi ; hence r Ï R i ⊆ R . The converse follows from the fact that if rÏR
, then r Ï R i = (L îïÕfinVi) ⊆ L îïÕfinV.

We now summarize the notation used to describe the semantic interpretation of
syntactic constants and operators:

 = λyÏL. ¶

r-x =def λyÏL. if y=x then ¶ else r(y)
provided rÏR and xÏL

r[x=a] =def λyÏL. if y=x then a else r(y)
provided rÏR , xÏL, aÏV, and xÌdom(r).

r(x) is well-defined,
provided rÏR , xÏL, and xÏdom(r).

Lemma 3.8.1:
(1) The empty record  is an element of R .
(2) For any rÏR we have r-xÏR .
(3) If rÏR is not defined on x, then for any aÏV we have r[x=a]ÏR .
(4) If rÏR is defined on x, then r(x)ÏV.

Proof
(1) The empty function is a finite function.
(2) If rÏR then r-x remains a finite partial function in R .
(3) Suppose rÏR with x Ì dom(r), and aÏV.

Then r[x=a] is well-defined (is a function) and belongs to R .

Page 25

(4) If rÏR = L îïÕfinV and r(x) is defined then r(x) Ï V.
M

Types and type operations
Types are interpreted as subsets of our global value set; hence we have a type of

all values, and a type of all records. Subtyping is interpreted as set inclusion.
We introduce the following notation for operations on record types:

R-x =def {r-x | rÏR}
if R ⊆ R

R[x:A] =def {r[x=a] | rÏR, aÏA}
if R ⊆ R -x (R undefined on x) and A ⊆ V

R(x) =def {r(x) | rÏR}
if R ⊆ S[x:A] for some S ⊆ R and A ⊆ V

Lemma 3.8.2:
Under the conditions stated above, the sets R-x and R[x:A] are subsets
of R , and the sets R(x) are subsets of V.

Proof
(1) If R ⊆ R , then R-x = {r-x | rÏR} ⊆ R , by 3.8.1.
(2) If R ⊆ R -x, then R is a set of functions rÏ L îïÕfinV with x Ì dom(r).

Hence for any A ⊆ V, R[x:A] = {r[x=a] | rÏR, aÏA} ⊆ R , by 3.8.1.
(3) If R ⊆ S[x:A], then for any rÏR, rÏS[x:A] = {s[x=a] | sÏS, aÏA};

so that r(x)ÏA. Hence R(x) = {r(x) | rÏR} ⊆ A ⊆ V.
M

Interpretation of judgments
An assignment ρ is a partial map from type variables to subsets of V, and from

ordinary variables to elements of V . We say that an assignment ρ satisfies an
environment E if the following conditions are satisfied:

If X in E, then ρ(X) ⊆ V
If X <: A in E, then ρ(X) ⊆ Aρ ⊆ V
If x : A in E, then ρ(x) Ï Aρ ⊆ V

where Aρ is the type defined by A under the assignment ρ. Similarly, by aρ we
indicate the value of a term a under an assignment ρ for its free variables.

The judgments of our system are interpreted as follows.

∫ E env 1 for every initial segment E',X<:A or E',x:A of E,
if ρ satisfies E' then Aρ ⊆ V.

E ∫ A type 1 Aρ ⊆ V, for every ρ satisfying E.
E ∫ A <: B 1 Aρ ⊆ Bρ ⊆ V, for every ρ satisfying E.
E ∫ A óïñ B 1 Aρ = Bρ ⊆ V, for every ρ satisfying E.
E ∫ a : A 1 aρ Ï Aρ ⊆ V, for every ρ satisfying E.

Page 26

E ∫ a óïñ b : A 1 aρ = bρ Ï Aρ ⊆ V, for every ρ satisfying E.

Type and value expressions are interpreted using:

äã 1 R
R\ x 1 R-x
äR | x:Aã 1 R[x:A]
R.x 1 R(x)

Üá 1 
r\ x 1 r-x
Ür | x=aá 1 r[x=a]
r.x 1 r(x)

Soundness
Finally, we can show that this semantics satisfies the type rules. More precisely,

we consider the system S1 consisting of all the rules listed in section 3.7, except for
the special rules (VC1b) and (TE9).

Theorem 3.8.3 (soundness):
The inference rules of system S1 are sound with respect to the
interpretation of judgments given in this section.

Proof
See appendix.

M

3.9 A construction giving R = ääääR\ x | x:R.xãããã
The type equivalence rule below seems very natural semantically. It also

simplifies the types associated with the override operation, and has application to
extensional models studied in the next section.

(TE9)

E ∫ R<:äS | x:Aã<:äã
—————————–

E ∫ R óïñ äR\ x | x:R.xã

In the simple model described in section 3.8, it is easy to see that if R ⊆ äx:Aã,
then, as required by (S6):

R ⊆ äR\ x | x:R.xã

The reason is that every record r in R has an x component r(x) Ï R(x), and remaining
components r-x in R-x. However, it is not necessarily true that every combination of r-
x from R-x and r(x) from R(x) occur together in a single record in R. For example, the
set of records:

R = {Üx=1, y=trueá, Üx=0, y=falseá}

Page 27

is clearly a subset of äx:Intã. However, R ≠ äR\ x | x:R.xã since the records Üx=1,
y=falseá and Üx=0 , y=trueá do not appear in R. In category-theoretic terms, the
equation R = äR\ x | x:R.xã says that R is the product of R\ x and R.x.

In this section we present a variant of the construction of section 3.8 in which rule
(TE9) is sound. Since we are ultimately interested in polymorphism and bounded
quantification, we construct a model with R = äR\ x | x:R.xã for every semantic type R
with R.x defined. The construction uses the same collection of values as before, but
allows only certain subsets of V as types. In this way we eliminate sets of records
which violate (TE9).

We use a value space satisfying:

R = (L îïÕfin V) ⊆ V

constructed as in section 3.8. Then for each natural number i, we define the collection
Ti of subsets of V which we wish to consider types of stage i. At the first stage, we
may select any subsets of V, provided we include the given ground types Gj . For
definiteness, let us take:

T0 = {G1 , G2 , ... }

We now define record types over preceding types. At each stage we take all record
types defined by a finite set of labeled component types, and a finite set of absent
labels. Each component type must belong to the preceding stage.

This construction may be clarified using an auxiliary definition. Suppose P: L îïÕfin
Ti is a finite partial function from labels to types at stage i, and N ⊆ fin L is a finite set
of labels disjoint from the domain of P. Then the set RP,N of records with components
present according to P and components absent according to N is defined by:

RP,N = {rÏR | ÓxÏL. (P(x)ß ⊃ r(x)ÏP(x)) ∧ (xÏN ⊃ r(x)¶)}

We define the set of record types at stage i+1 to be the set of all RP,N for suitable
“present” function P and “absent” set N:

Ti+1 = {RP,N | P: L îïÕfin Ti ∧ N ⊆ fin L ∧ dom(P) ∩ N = } ∪ Ti

Note that R = R, belongs to every Ti+1.
The collection T of all types is defined by:

T = êi < ω Ti

As we have defined T, the set V of all values is not a type. However, it is possible
to include V in T0 if desired.

It is natural to consider any set of records RP,N with P: L îïÕfin T and N ⊆ fin L, as a
“record type” over V. Define RT to be the collection of all record types:

RT =def {RP,N | P: L îïÕfin T , N ⊆ fin L, and dom(P)∩N = }

Page 28

Note that R, = êRT , so R T has a maximal element. We may show that T is
precisely the union of T0 and the record types over V ; that is T = T0 ∪ RT.

Lemma 3.9.1:
If P: L îïÕfin T and N ⊆ fin L with dom(P)∩N = , then RP,N Ï T.
That is, RT ⊆ T.

Proof
Suppose P: L îïÕfin T and N ⊆ fin L. Since the domain of P is finite,
there is some i with P: L îïÕfin Ti . Hence, RP,N Ï Ti+1 ⊆ T.

M

In this model we will interpret all judgments as before, except that type variables
and type expressions must denote elements of T. Since we consider only elements of T
as types, we define the relation A ⊆ : B (A semantic subtype of B) as:

A ⊆ : B iff A ⊆ B and A,B Ï T

By the simplifying assumption in section 3.9 that no ground type contains records, we
know that every subtype of R will be an element of RT. If we had not made this
assumption, then we might have some subtype of R which “accidentally” could cause
(TE9) to fail.

We may show that for any non-empty R Ï RT, a function P and set N with R = RP,N

are determined uniquely.

Lemma 3.9.2:
Let R Ï RT be non-empty. Then R = RP,N where:

dom(P) = {xÏL | ÓrÏR. r(x)ß},
N = {xÏL | ÓrÏR. r(x)¶}, and
P(x) = R(x) for all xÏdom(P)

Proof
Suppose R Ï RT is non-empty and let r0ÏR.
We know that R = RP,N for some P,N.

(1) By construction of RP,N we have ÓrÏR. dom(P) ⊆ dom(r).
Moreover, if ÓrÏR. r(x)ß, then xÏdom(P), since xÌdom(P) implies
r0-xÏR and (r0-x)(x)¶. Consider the function f defined by:

f(x) = r0(x) if ÓrÏR. r(x)ß, and ¶ otherwise
This function belongs to R, and dom(f) = {xÏL | ÓrÏR. r(x)ß} ⊆ dom(P).
Hence dom(P) =dom(f) = {xÏL | ÓrÏR. r(x)ß}.

(2) By construction of RP,N we have ÓrÏR. N ⊆ ¶(r) =def {xÏL | r(x)¶}.
Moreover, if ÓrÏR. r(x)¶, then xÏN (since xÌN implies either r0(x)ß
or (r0[x=a])(x)ß for an appropriately chosen r0[x=a]ÏR).
Choose rx from Rx =def {rÏR | r(x)ß} whenever Rx ≠ , and define:

g(x) = ¶ if ÓrÏR. r(x)¶, and rx(x) otherwise
This function belongs to R and ¶(g) = {xÏL | ÓrÏR. r(x)¶} ⊆ N.
Hence, N = ¶(g) = {xÏL | ÓrÏR. r(x)¶}.

Page 29

(3) Assume xÏdom(P).
R(x) = RP,N(x) = {r(x) | rÏR , ÓyÏL. r(y)ÏP(y)} (since xÌN)

= {r(x) | rÏR , r(x)ÏP(x)} = {aÏV | aÏP(x)} = P(x)
M

This allows us to write each non-empty record type R Ï RT as RP,N without
ambiguity. The lemma also demonstrates that whenever R(x) is defined, R(x) =
RP,N(x) = P(x) Ï T is a type.

It is now straightforward to show that the record types are closed under restriction
(R-x) and extension (R[x:B]):

Lemma 3.9.3:
If R = RP,N is any record type, then R-x = RP',N', where

P' = P - {<x÷ïñP(x)>} if P(x)ß, and P otherwise.
N' = N ∪ {x}

Proof
Straightforward.

M

Lemma 3.9.4:
If R = RP,N with xÏN, and BÏ T, then R[x:B] = RP',N' , with:

P' = P ∪ {<x÷ïñB>}
N' = N-{x}

Proof
By definition, R[x:B] = {r[x=b] | rÏR, bÏB}. It is easy to check
that every r[x=b] belongs to RP',N' and conversely.

M

The semantic subtyping relation on record types R ⊆ : R' is now determined by the
present and absent information.

Lemma 3.9.5:
RP,N ⊆ : RP',N' iff

ÓxÏdom(P'). P(x)ß ∧ P(x) ⊆ : P'(x)
N' ⊆ N

Proof
Assume RP,N ⊆ : RP',N'.
It is easy to check that N' ⊆ N by the definition of RP,N.
Similarly, if P'(x)ß then we must have P(x)ß ∧ P(x) ⊆ P'(x).
By definition P(x) and P'(x) are types.
The converse is straightforward.

M

Since the point of this model construction is to give R = (R-x)[x:R(x)] for every
record type R with R(x)ß, we must also prove this equation. Given the preceding
lemmas, the proof is almost immediate.

Page 30

Lemma 3.9.6:
Let R Ï RT be a record type with r(x)ß for all rÏR.
Then R = (R-x)[x:R(x)].

Proof
We know R = RP,N for some finite function P and finite set N.
By preceding lemmas, we also have:

R-x = RP',N'

(R-x)[x:R(x)] = RP",N"

with P' = P - {<x÷ïñR(x)>}, N' = N ∪ {x}
and P" = P' ∪ {<x÷ïñR(x)>}, N" = N' - {x}.
Since P" = P and N" = N, it follows that R = (R-x)[x:R(x)].

M

Finally, we have the soundness theorem. System S2 is system S1 of Theorem 3.8.3
plus the rule (TE9).

Theorem 3.9.7 (soundness):
The inference rules of system S2 are sound with respect to the
interpretation of judgments given above.

Proof
See appendix.

M

3.10 An extensional model construction
The following inference rule gives us an extensional equality between records:

(VC1b)

E ∫ r:äã E ∫ s:äã
———————–

E ∫ r óïñ s : äã

The intuitive reason for adopting this rule is that if r and s both belong to äã, then
r and s are indistinguishable. In fact, assume r and s differ at some label x. We cannot
use r.x or s.x to distinguish them since neither is well-typed; if we use r\ x or s\ x then
we simply remove the difference.

In addition to giving us more equations between records of type äã, rule (VC1b)

implies the following extensionality property: for any r,s : äx1:A1 , ... , xk:Akã, we have
r óïñ s : äx1:A1 , ... , xk:Akã iff r.xióïñs.xi : Ai for i = 1...k. The straightforward proof of
this uses r\ x1...xk óïñ s\ x1...xk : äã and the value congruence rules.

Recall that in the previous models a record type was simply a set of records, and
equality of records was independent of the type. Therefore, any two distinct records
would be unequal elements of äã, causing (VC1b) to fail.

In this section, we will construct a model of the pure record calculus satisfying
(TE9) and (VC1b). It will be clear from the construction that (TE9) is essential; we do not
know how to construct an extensional model satisfying (VC1b) without requiring that
record types satisfy R = äR\ x | x:R.xã. The main use of (TE9) lies in showing that if R is a

Page 31

record type with extensional equality, then both R-x and R(x), when defined, are
extensional record types.

We begin with a value space V satisfying:

R = (L îïÕfin V) ⊆ V

constructed as in section 3.8, and define types as certain partial equivalence relations
(abbreviated PER's) over V (see [Longo, Moggi 1991]). A PER is a binary relation
which is symmetric and transitive, but not necessarily reflexive. An element of a type
is defined as an equivalence class of values in the PER.

Subtyping is based on set containment of partial equivalence relations, as in
[Bruce, Longo 1990], except that we consider only certain PER's as types.

The type of all records äã is interpreted by the PER R ×R . This type has only one
element since there is a single equivalence class in R ×R : while äã contains all
records, all records are equivalent in äã (hence (VC1b) holds).

The three operations on record types are defined as follows:

¢ If R is a PER on R with r(x)¶ for every record rRr, and A is a PER

on V, then R[x:A] is the relation on R given by:

r R[x:A] s iff r-x R s-x and r(x) A s(x)

In writing r(x) A s(x) we imply that r(x)ß and s(x)ß.

¢ If R is a PER on R , we define the relation R-x by:

R-x =def {<r-x, s-x> | rRs}

¢ If R is a PER on R , with r(x)ß whenever rRr, we define the
relation R(x) by:

R(x) =def {<r(x), s(x)> | rRs}

It is easy to show that under the hypotheses above, R[x:A] is a partial equivalence
relation on R . However, R-x and R(x) are not necessarily transitive. This will not
cause any problems, as it turns out, since by restricting the class of record types to
some collection satisfying (TE9), R-x and R(x) are guaranteed to be types (and hence
PER's).

The types over V will be defined in stages, as before. We begin with some
collection:

T0 = {E1 , E2 , ... }

of partial equivalence relations over V that do not relate any records to themselves. A
typical choice would be to begin with the identity relations on the ground types G1 , G2
,

Given any finite partial map P from L to PER's over V and a set N ⊆ fin L disjoint
from the the domain of P, we define the PER RP,N over R by:

Page 32

r RP,N s iff ÓxÏL. (P(x)ß ⊃ r(x) P(x) s(x)) ∧ (xÏN ⊃ r(x)¶∧ s(x)¶)

Note the similarity to RP,N for subsets of V ; if we represent a subset S⊆ V by the PER

(S×S) ⊆ (V ×V), the two definitions coincide. It is easy to see that if each P(x) is a
PER, then so is RP,N.

Following the earlier definition of record types in stages, we define:

Ti+1 = {RP,N | P:L îïÕfinTi ∧ N⊆ finL ∧ dom(P)∩N = } ∪ Ti

and let:

T = êi < ω Ti

This construction has much the same character as the previous non-extensional
one, although we have the added complication of establishing that R-x and R(x) (when
defined) are PER's whenever RÏT. Since every RÏT is easily seen to be a PER, we will
do this by showing R-xÏT and R(x)ÏT.

It is easy to prove Lemma 3.9.1 for this model, showing that we need not consider
stages of the construction in later arguments.

Lemma 3.10.1:
If P: L îïÕfin T and N ⊆ fin L with dom(P)∩N = , then RP,N Ï T.

Define the collection of all record types by RT = {RP,N}.
Subtyping is interpreted as before, with:

A ⊆ : B iff A ⊆ B and A,B Ï T

We now use present functions and absent sets to show that for every R Ï RT, we
have R-xÏT and R(x)ÏT if r(x)ß for every rRr.

Lemma 3.10.2:
If R Ï RT , then R-xÏT .
If R Ï RT with r(x)ß whenever rRr, then R(x)ÏT .

Proof
The lemma is trivial if R= , hence we assume R≠ .

(1) Let R=RP,N. Then R-x = RP',N' with P' = P - {<x÷ïñP(x)>} and
N' = N ∪ {x}. To see this, suppose r R-x s. Then there must
be records r',s'ÏR with r'Rs' and r=r'-x, s=s'-x.
Since P'(y)ß ⊃ r(y) P(y) s(y) and yÏN' ⊃ r(y)¶ ∧ s(y)¶,
it follows that r RP',N' s.
To show the converse, we assume r RP',N' s and note that since
R≠ , there must be some bÏV with b P(x) b. It is easy to see
that r[x=b] R s[x=b], and so r R-x s.

(2) We now assume r(x)ß whenever rRr. Since R=RP,N
 , we have

P(x)ÏT. It remains to show that R(x)=P(x). If a R(x) b,
then there exist r and s with rRs and a=r(x), b=s(x).
By definition of RP,N it follows that a P(x) b.

Page 33

For the converse, we assume a P(x) b; since R≠ , there exist
r and s with r RP,N s and r(x)=a, s(x)=b. Hence a R(x) b.

M

Lemma 3.10.3:
If R Ï RT with r(x)¶ whenever rRr, and BÏT, then R[x:B]ÏT .

Proof
The lemma is trivial if R= . Otherwise, we let R=RP,N and show that
R[x:B]=RP',N' with P' = P ∪ {<x÷ïñB>} and N' = N-{x}.
This is straightforward.

M

It is now an easy matter to show analogs of Lemma 3.9.2 and Lemma 3.9.6. These
conclude the basic properties of the construction. System S3 is system S1 of Theorem
3.8.3 plus the rules (TE9) and (VC1b).

Theorem 3.10.4 (soundness):
The inference rules of system S3 are sound for the PER model
construction.

Proof
See appendix.

M

3.11 The update operator
Extensional models are useful to characterize a natural form of record update, here

denoted by r.x :- a for functional update. The discussion is also relevant to the typing
of imperative update, r.x := a, although our models do not directly capture side-
effects.

The functional update operator cannot be introduced by a simple definition. We
want:

r.x :- a =def Ür\ x | x=aá

but only provided that r.x exists, and that r.x :- a does not modify the type of the x
field. Sufficient assumptions are that r:R<:äã and a:R.x; then we can derive the
following typing:

E ∫ r:R<:äã
——————

(E1) E ∫ r\ x : R\ x E ∫ a:R.x
———————————–

(I1) E ∫ Ür\ x | x=aá : äR\ x | x:R.xã
——————————–

(def) E ∫ r.x :- a : äR\ x | x:R.xã

This is not quite satisfactory, because we would expect the result type to be R,
meaning that the type of a record is not modified by updating one of its fields (with a
value of the correct type).

Fortunately, by using (TE9) (äR\ x | x:R.xãóïñR) we can derive the expected type rule:

Page 34

(UPD)

E ∫ r:R<:äã E ∫ a:R.x
——————————

E ∫ r.x :- a : R

This seems to be a compelling reason for adopting (TE9), because of its impact on such
an important operator as updating.

Note that the (UPD) rule is very strong; it applies even when R is a variable. From it
we can derive a perhaps more natural but less general rule:

(UPD')

E ∫ r:äR | x:Aã<:äã E ∫ a:A
————————————

E ∫ r.x :- a : äR | x:Aã

Remark. Here we might be tempted to weaken the assumption to E ∫ a:A'<:A,
and strengthen the conclusion to E ∫ r.x :- a : äR | x:A'ã. This is valid but
undesirable, since we might then be unable to update the x field again with its
original contents.

The strong (UPD) rule would not be expressible without R.x types; the following
apparently natural variation is unsound:

E ∫ r:R<:äS | x:Aã E ∫ a:A
———————————

E ∫ r.x :- a : R

For example, take A=Bool, R=äx:Trueã , and r=Üx=trueá; then from r.x:Bool and
false:Bool we can derive r.x:-false : äx:Trueã.

3.12 Normalization and decidability
Even though the basic ideas behind the record calculus are relatively simple, the

formal system has quite a few rules. As a consequence, it is not easy to see, by
inspection, how we could determine whether a supposed type A is well-formed, or
whether a record expression has type R.

In this section, we show that all of the basic properties of the calculus are
decidable, using relatively natural algorithms. In the process, we show that every type
expression has a unique normal form (modulo permuting the order of fields) and
every typable record expression has a principal type in each suitable environment.

The first properties we consider are deciding whether a supposed environment E is
well-formed and whether a given A is a well-formed type expression in E. A quick
glance at the formation rules shows that in order to determine whether a type is well-
formed we must be able to decide the following apparently simple properties;
assuming E ∫ R type is derivable, we want to know whether E ∫ R<:äã\ x and whether
there exist S and A such that E ∫ R<:äS | x:Aã. Therefore, we consider these first. Once
we develop a simple method for these, it is easy to check whether a type or
environment is well-formed.

For each derivable E ∫ R type, we define a labeled tree Tree(E ∫ R type) with:

Page 35

edges: labeled by field names
vertices: labeled by finite sets of field names

If v is a vertex in Tree(E ∫ R type), we call the finite set of field names at v the absent
set at v.

Intuitively, if p = x1x2 ... xk is a path from the root of Tree(E ∫ R type) and N = {y1,
y2, ..., yl} is the absent set of the vertex designated by this path, then:

E ∫ (..(R.x1).x2 ...).xk type
E ∫ (..(R.x1).x2 ...).xk <: äã\ y1y2 ... yl

A convenient notational shorthand is to write R.p for (..(R.x1).x2 ...).xk, where p is the
path p = x1x2 ... xk. If p = ε is the empty path, then we may write R.ε for R. If e is an
edge leading from the root of a tree to the root of some subtree, we call e a root edge.

We define Tree(E ∫ R type) by induction on the length of E. If E has length 0 then
R must be the type constant äã. In this case, we define:

Tree( ∫ äã type) = single node with empty absent set.

For context E = E',X<:A we use induction on the form of type expressions:

Tree(E ∫ Y type) = Tree(E' ∫ Y type) for Y ≠ X

Tree(E ∫ X type) = Tree(E' ∫ A type)

Tree(E ∫ äS | x:Bã type) is obtained from
T = Tree(E ∫ S type) and T' = Tree(E ∫ B type)
by making T' a subtree of the root of T along a root edge
labelled x, and removing x from the absent set of the
root of T (if there).

Tree(E ∫ S\ x type) is obtained from Tree(E ∫ S type)
by deleting the subtree along the root edge labeled x (if there), and
adding x to the absent set of the root.

Tree(E ∫ S.x type) is the subtree of Tree(E ∫ S type)
located along the root edge labeled x.

For context E = E',X the definition of Tree(E ∫ R type) is the same as above, except
for the following case:

Tree(E,X ∫ X type) = empty tree.

For context E = E',x:A we let:

Tree(E ∫ R type) = Tree(E' ∫ R type)

This concludes the definition.

Page 36

In the clauses defining Tree(E ∫ äS | x:Bã type) and Tree(E ∫ S.x type), we have
assumed certain properties of Tree(E ∫ S type). These are justified by the following
lemma.

Lemma 3.12.1:
Suppose E ∫ R type and let T = Tree(E ∫ R type).
(1) If p is a path in T, then E ∫ R.p type.
(2) If x is in the absent set of T at position p, then E ∫ R.p <: äã\ x.

Proof
By induction on the derivation of T.
Case  ∫ äã type. Trivial.
Cases E',X<:A ∫ Y type and E',X ∫ Y type with Y≠X.

Induction hypothesis and the property that if E ∫ J for
any judgment J, and E,E' env, then E,E' ∫ J.

Case E',X<:A ∫ X type.
By induction hypothesis E' ∫ A.p type and E' ∫ A.p <: äã\ x.
The conclusion follows by repeated use of (F4) and (S6), and
transitivity of <: .

Case E',X ∫ X type. Vacuous.
Cases E',X<:A ∫ äS | y:Bã type and E',X ∫ äS | y:Bã type.

Case p = ε. (1) is trivial.
(2) by induction hypothesis E ∫ S <: äã\ x for x in
the absent set of T (x≠y). Hence, E ∫ äS | y:Bã <: äã\ x.

Case p = yp'. Use (TE7) and induction hypothesis for E ∫ B type.
Otherwise. Use (TE8) and induction hypothesis for E ∫ R type.

Case E',X<:A ∫ S\ y type and E',X ∫ S\ y type.
Case p = ε. Two subcases:

Case x=y. Since E ∫ S\ y type must follow from (F3), we must
have E ∫ S <: äã. The result follows by (S4).

Case x≠y. Then x must be in the absent set for Tree(E ∫ S type)
and so E ∫ S <: äã\ x. By (S4), E ∫ S\ y <: äã\ xy, and we
know that äã\ xy <: äã\ x.

Case p ≠ ε. Then p must be a path in Tree(E ∫ S type) not beginning
with y. It follows from the induction hypothesis that
E ∫ S<: äT | z:Aã for z≠y the first symbol of p. By (TE4), we have
E ∫ S.z óïñ S\ y.z, and the lemma follows by the congruence rules.

Cases E',X<:A ∫ S.y type and E',X ∫ S.y type.
Straightforward from induction hypothesis.

Case E',x:A ∫ R type. By induction hypothesis.
M

The preceding lemma shows that the path and absent information provided by
Tree(E ∫ R type) is “sound” with respect to the proof rules of the calculus. Since the
proof rules are sound with respect to our semantics, it follows that the assertions of

Page 37

the form E ∫ R<:äã\ x and ÔS,A. E ∫ R<:äS | x:Aã determined from Tree(E ∫ R type) are
semantically sound.

We may also show that the assertions are semantically complete. It follows from
the preceding lemma that the proof rules are also semantically complete for deducing
assertions of the form: (1) E ∫ R<:äã\ x, and (2) if there exists S and A with R<:äS | x:Aã
in every assignment satisfying E, then E ∫ R<:äS' | x:A'ã for some S' and A'.

Lemma 3.12.2:
Suppose E ∫ R type and let T = Tree(E ∫ R type).
There is a semantic model M and assignment ρ such that:
(1) If p is a sequence of labels which is not a path in T, then there

is some record r in Rρ with r.p undefined.
(2) If p is a path in T with x absent from every record in (R.p)ρ ,

then x is in the absent set of T at the vertex located at p.
Proof

We may use the model constructed in section 3.8 using a single
ground type G=N, for example. For each environment E, we define
an assignment ρE such that whenever E ∫ R type, there is some rÏR
with r.pß iff p is a path in Tree(E ∫ R type). (This is straightforward.)
It is easy to verify that for any vertex v in any Tree(E ∫ R type), if x is in
the absent set at v, then there is no child along any edge labeled x.
This and (1) imply part (2) of the lemma.

M

By constructing trees of absent sets, it is relatively easy to decide whether a
purported environment or type expression is well-formed. The basic idea is simply to
check whether ∫ E env or E ∫ R type by reading the environment and formation
rules backwards. This gives us mutually recursive procedures which rely on Tree(E ∫
R type) in checking the hypotheses of (F2) and (F4).

Theorem 3.12.3:
Given environment E and expression A, there are mutually
recursive procedures which decide whether ∫ E env and E ∫ A type.

The next problems to consider are, given well-formed types E ∫ A type and E ∫ B
type, whether E ∫ AóïñB or E ∫ A<:B. Since type equality may be used to prove
subtyping assertions, both depend on our choice of type equality rules. For
definiteness, let us assume we have (TE9). Similar results seem to hold without (TE9),
but we have not checked the details.

If E ∫ R type, then it is evident that by directing type equality rules, we may
rewrite R to one of the following “normal” forms:

(1) äã
(2) X (a type variable)
(3) (..(R0.x1)xi)\ y1 ... yj where R0 is either äã or a type variable.

Page 38

(4) äR0\ x1 ... xi | y1:A1 ... yj:Ajã where, considering T = Tree(E ∫ R type):
 ¢ R0 is either äã or a type variable;
 ¢ y1 ... yj are exactly the labels on the root edges of T;
 ¢ {y1 ... yj} ⊆ {x1 ... xi};
 ¢ {x1 ... xi} - {y1 ... yj} is the absent set at the root of T;
 ¢ A1 ... Aj are also in normal form.

In the semantics of section 3.9, the meaning of a type expression of form (4) is a
record type RP,N, where N={x1 ... xi} - {y1 ... yj}, dom(P) = {y1 ... yj}, and P(yn) is the
meaning of An. Since we may construct models in which no type is empty, and
assignments in which each type variable denotes a different type, we may show that
two type expressions are provably and semantically equal iff they have the same
normal forms, modulo differences in the order of field names and component types.
By lemma 3.9.5, we may also see that, semantically:

äR0\ x1 ... xi | y1:A1 ... yj:Ajã ⊆ : äS0\ u1 ... uk | v1:B1 ... vl:Blã
iff

 ¢ ({u1 ... uk} - {v1 ... vl}) ⊆ ({x1 ... xi} - {y1 ... yj})
 ¢ {v1 ... vl} ⊆ {y1 ... yj}
 ¢ if vm = yn then Am ⊆ Bn

This property allows us to decide semantic subtyping by normalizing type
expressions, comparing outer-most forms, and recursively examining corresponding
component types. Since all of the steps of the algorithm correspond to derivations in
the proof system, completeness of the proof rules (for type equality or subtyping
assertions) follows.

Theorem 3.12.4:
Given E ∫ A type and E ∫ B type, there are straightforward algorithms
to determine whether E ∫ AóïñB or E ∫ A<:B. Moreover, the proof rules
are semantically complete for deducing type equality and subtype
assertions.

The final algorithmic problem is, given E ∫ R type and an expression r, determine
whether E ∫ r:R.

Since we can decide whether one type is a subtype of another, it suffices to
compute a minimal type S with E ∫ r:S and check whether E ∫ S<:R.

However, most record expressions do not have a minimal type. This stems from
the fact that for any sequence x1 ... xk of labels, we have Üá : äã\ x1 ... xk , and we can
always obtain a smaller type by adding more labels. To get around this problem, we
use type schemas that contain sequence variables. We show that each typable record
expression r has a scheme S such that every type for r is a supertype of some instance
of S. This allows us to test whether a record expression has any given type. We use l,
l1, ... for sequence variables in schemas.

If S is any scheme with sequence variable l, then we say E ∫ S type if E ∫ S' type
for every S' obtained by replacing l with a sequence of labels (including the empty

Page 39

sequence). If E ∫ S type, then a useful algorithm is MakeAbsent(x,S) which attempts to
compute a substitution instance S' (possibly containing sequence variables) such that
E ∫ S'<:äã\ x. If such an instance exists, MakeAbsent(x,S) returns the smallest one. If
no instance exists, the algorithm fails. (Algorithm MakeAbsent uses an extension of
Tree(E ∫ R type) to schemas; details are straighforward and omitted.)

Using MakeAbsent, we may compute a principal type schema PTS(E,r), for any
well-formed environment E and expression r, as follows:

PTS(E, Üá) = äã\ l (where l is a fresh sequence variable)
PTS(E, x) = E(x)
PTS(E, r.x) = PTS(E, r).x if defined, else fail
PTS(E, r\ x) = PTS(E, r)\ x
PTS(E, Ür | x=aá) = äMakeAbsent(x, PTS(E, r)) | x:PTS(E, a)ã

Theorem 3.12.5:
Given ∫ E env and an expression r, if E ∫ r:R then PTS(E,r) succeeds,
producing S with E ∫ S'<:R for some instance S' of S. Otherwise,
PTS(E,r) fails. Furthermore, given S = PTS(E,r) and E ∫ R type, it is
easy to compute the smallest instance S' of S such that if any instance
is a subtype of R, then E ∫ S'<:R.

This concludes our investigation of decidability properties. We leave extensions
of these properties to functions and polymorphism for further work.

4. Applications and extensions
One might ask why we should go to the trouble of defining the subtle extension

and restriction operators, instead of adopting the override operator as a primitive, as in
[Wand 1989]. In particular, our explicit handling of negative information seems to
introduce much complexity.

One answer is that negative information seems necessary to a proper
understanding of the override operator. For example, the notion of absent fields is
critical to Rémy's account of overriding in [Rémy 1989]. Hence, it seems worthwhile
to investigate negative information as formalized by a separate operator.

A more pragmatic answer is that overriding really performs two different actions
in different situations; it either extends a record or updates it. From a methodological
point of view, a single override operator is rather undesirable because it may silently
destroy information. A separate extension operator is preferable, because a type error
occurs if we attempt to use it to destroy an existing field. A separate update operator
is also preferable, because normally we do not want to update a field with a value of a
totally different type.

Hence, in a programming language we would probably want to replace the
override operator by two separate operators: one for extension, which we have, and
one for updating, discussed in section 3.11. The restriction operator could still be used
when we really intend to delete a field.

Page 40

Admittedly, restriction is still ambiguous, because it may or may not remove a
field, depending on whether the field is actually present. It is however possible to
define a safe restriction operator which produces a type error if the restricted field is
not present. Unfortunately, we could not find a way of completely eliminating the
need for general restriction (at least on types); this operator seems necessary to
express crucial well-formedness conditions.

This said, we are now ready to investigate some useful derived operators.

4.1 The override operator
The override operator Ür óïô x=aá =def Ür\ x | x=aá is certainly very natural, in fact we

have used it almost exclusively in our examples. The derived type rules for this
operator, described below, are also very simple, especially if we consider the
subsystem with only overriding and extraction. The rules mixing overriding with
restriction are still rather interesting.

We recall the definition of the override operator:

Ür óïô x=aá =def Ür\ x | x=aá
äRóïôx:Aã =def äR\ x | x:Aã

The following rules are all simply derivable from the rules for our basic operators (we
assume (TE9)); with these, extension need not be a primitive.

Formation

E ∫ R<:äã E ∫ A type E ∫ R<:äSóïôx:Aã<:äã
—————————— —————————––

E ∫ äRóïôx:Aã type E ∫ R.x type

Subtyping

E ∫ R<:äã E ∫ A type E ∫ R<:S<:äã E ∫ A<:B
—————————— ———————————

E ∫ äRóïôx:Aã <: äã E ∫ äRóïôx:Aã <: äSóïôx:Bã

E ∫ R<:äSóïôx:Aã<:äã E ∫ R<:äSóïôx:Aã<:äã
—————————– ——————————

E ∫ R.x <: A E ∫ R <: äRóïôx:R.xã

Introduction/Elimination

E ∫ r:R<:äã E ∫ a:A E ∫ r:äRóïôx:Aã<:äã
—————————— —————————

E ∫ Üróïôx=aá : äRóïôx:Aã E ∫ r.x : A

Type Congruence

E ∫ R óïñ S <: äã E ∫ A óïñ B E ∫ R óïñ äSóïôx:Aã<:äã
————————————— ——————————

E ∫ äRóïôx:Aã óïñ äSóïôx:Bã E ∫ R.x óïñ A

Type Equivalence

E ∫ R<:äã E ∫ A,B type x≠y E ∫ R<:äSóïôx:Aã<:äã
—————————————————— —————————–

Page 41

E ∫ ääRóïôx:Aãóïôy:Bã óïñ ääRóïôy:Bãóïôx:Aã E ∫ R óïñ äRóïôx:R.xã

E ∫ R<:äã E ∫ A type E ∫ R<:äã E ∫ A type x≠y
——————————– ——————————————

E ∫ äRóïôx:Aã\ x óïñ R\ x E ∫ äRóïôx:Aã\ y óïñ äR\ yóïôx:Aã

E ∫ R<:äã E ∫ A type E ∫ R<:äSóïôy:Bã<:äã E ∫ A type x≠y
—————————— ——————————————————

E ∫ äRóïôx:Aã.x óïñ A E ∫ äRóïôx:Aã.y óïñ R.y

Value Congruence

E ∫ r óïñ s : R<:äã E ∫ a óïñ b : A E ∫ r óïñ s : äRóïôx:Aã<:äã
———————————————— ———————————

E ∫ Üróïôx=aá óïñ Üsóïôx=bá : äRóïôx:Aã E ∫ r.x óïñ s.x : A

Value Equivalence

E ∫ r:R<:äã E ∫ a:A E ∫ b:B x≠y
————————————————————————

E ∫ÜÜróïôx=aáóïôy=bá óïñ ÜÜróïôy=báóïôx=aá : ääRóïôx:Aãóïôy:Bã

E ∫ r:R<:äã E ∫ a:A E ∫ r:R<:äã E ∫ a:A x≠y
——————————— —————————————————–

E ∫ Üróïôx=aá\ x óïñ r\ x : R\ x E ∫ Üróïôx=aá\ y óïñ Ür\ yóïôx=aá : äRóïôx:Aã\ y

E ∫ r:R<:äã E ∫ a:A E ∫ r:äRóïôy:Bã<:äã E ∫ a:A x≠y
—————————– ———————————————

E ∫ Üróïôx=aá.x óïñ a : A E ∫ Üróïôx=aá.y óïñ r.y : B

E ∫ r:äRóïôx:Aã<:äã x≠y E ∫ r:R<:äSóïôx:Aã<:äã
——————————— —————————–

E ∫ r\ y.x óïñ r.x : A E ∫ r óïñ Üróïôx=r.xá : R

4.2 The rename operator
We may consider a rename operator, that shows another interesting use of R.x

types.

r[xóïôy] =def Ür\ x | y=r.xá
R[xóïôy] =def äR\ x | y:R.xã

The rules for this operator are easily derived. The only interesting questions are
whether renaming with an identical variable produces an equivalent value or type:

r[xóïôx] óïñ r ?
R[xóïôx] óïñ R ?

These equivalences are derivable for arbitrary r and R, by using:

(VE10) (TE9)

E ∫ r:R<:äS | x:Aã<:äã E ∫ R<:äS | x:Aã<:äã
—————————— —————————–

E ∫ r óïñ Ür\ x | x=r.xá : R E ∫ R óïñ äR\ x | x:R.xã

Recall that (VE10) is satisfied in all our models, but (TE9) only holds in the latter two.
These are similar to the surjective pairing rules in λ-calculus. An alternative, not
involving surjective pairing, is to axiomatize the renaming operators independently.

Page 42

4.3 The retraction operator: forgetting information
We have seen that even negative information should be considered as “additional”

information. So, one might ask whether there is any way to retract information, both
positive and negative. This would seem to be more a convenience than a necessity,
since one could avoid introducing information in the first place, rather then retracting
it later. However, it is still interesting to investigate the possibilities.

We have not been able to formulate operators that independently retract positive
and negative information, but we can describe an operator that retracts all information
about a given label in a type. This operator works purely on type information; there is
no corresponding operator on values.

The retraction operator, R~x, means “forget everything about x in record type R”;
the following rules enforce the cancellation of all the x information in R.

Formation/Subtyping

E ∫ R<:äã E ∫ R<:S<:äã E ∫ R<:äã
—————– ——————– —————–

E ∫ R~x type E ∫ R~x <: S~x E ∫ R <: R~x

Type Equivalence

∫ E env E ∫ R<:äã E ∫ R<:äã
——————– ———————– ————————

E ∫ äã~x óïñ äã E ∫ R~xx óïñ R~x E ∫ R~xy óïñ R~yx

E ∫ R<:äã E ∫ R<:äã x≠y
———————— —————————–

E ∫ R\ x~x óïñ R~x E ∫ R\ x~y óïñ R~y\ x

E ∫ R<:äã\ x E ∫ A type E ∫ R<:äã\ x E ∫ A type x≠y
——————————— ——————————————

E ∫ äR | x:Aã~x óïñ R~x E ∫ äR | x:Aã~y óïñ äR~y | x:Aã

The main consequences for values involve the rule R <: R~x together with the
subsumption rule: if r:R, then we are allowed to forget some information about r and
conclude r:R~x.

Here are some interesting inferences:

E ∫ R<:äã E ∫ R<:äã
——————– —————

E ∫ R~x<: äã~x E ∫ r:R E ∫ R <: R~x
——————– —————————–

E ∫ R~x<: äã E ∫ r : R~x

E ∫ r : R E ∫ r : R <: äã\ x E ∫ a : A
————— ———————————

E ∫ r\ x : R\ x E ∫ Ür | x=aá : äR | x:Aã
—————— —————————–

E ∫ r\ x : R\ x~x E ∫ Ür | x=aá : äR | x:Aã~x
—————— —————————–

E ∫ r\ x : R~x E ∫ Ür | x=aá : R~x

The conclusion r\ x : R~x above seems to say that restriction on values can be seen as a
retraction operator, as well as a restriction operator.

Page 43

Going back to a previous example from section 2.5, we can see the usefulness of
the retraction operator for defining hierarchies in “inverse” order:

let ColorDisc = äx:Real, y:Real, r:Real, c:Colorã
let ColorPoint = ColorDisc~r
let Disc = ColorDisc~c
let Point = ColorPoint~c

Note that the restriction operator would not produce the desired results.

4.4 The concatenation operator
Concatenation is a prime candidate for a primitive operator for a calculus of

records. Unfortunately this operator is very difficult to handle; so difficult that we
have instead chosen extension and restriction as our primitive notions. Here we
discuss the main problems.

Type hierarchies are naturally expressed by a concatenation operator R ∏ S on
types; for example we would like to define:

let ColorDisc = ColorPoint ∏ Disc

Given a corresponding operator of values, r ∏ s of type R ∏ S for r:R and s:S, we
would like to guarantee that if we can derive r ∏ s : R ∏ S then there is a succesful and
unambiguous way to execute r ∏ s at run-time.

Under these conditions, we can see that concatenation is in fundamental conflict
with the subsumption rule. Consider the function:

let f1(X<:äx:Intã)(Y<:äy:Boolã)(r:X)(s:Y) : X ∏ Y = r ∏ s
f1(äx:Int, z:Intã)(äy:Bool, z:Boolã)(Üx=3, z=4á)(Üx=3, z=trueá) óïñ ? : ?

There is no explicit conflict in the definition of f1, so it should typecheck. But
when f1 is used as above, we have to decide which z field to produce, both in the
result type and in the result value. A popular choice is to have X ∏ Y perform a left-to-
right (or right-to-left) overriding of common fields; similarly for r ∏ s at run-time.
However, run-time overriding can run into difficulties:

let f2(r:äx:Intã)(s:äy:Boolã) : äx:Int, y:Boolã = r ∏ s
f2(Üx=3, y=4á)(Üy=true, x=falseá) óïñ ?

Let us assume here that, whatever definition we give to ∏, it satisfies the equation:
äx:Intã ∏ äy:Boolã = äx:Int, y:Boolã; then f2 is well-typed. Could we use run-time
overriding in the invocation of f2 above? According to the result type of f2, the left x
should override the right x , while the right y should override the left y , so
monodirectional overriding will not work.

An option here is to give a run-time error, but this seems to defeat the purpose of
typechecking r ∏ s . Another option might be to compile special code for r ∏ s ,
according to the types of r and s, so as to pick the x field from r and the y field from s,

Page 44

and to do overriding on the additional fields (to deal with the polymorphic case,
below). This idea however runs into further difficulties:

f1(äx:Int, y:Int, z:Intã)(äy:Bool, x:Bool, z:Boolã)
(Üx=3, y=4, z=4á)(Üy=true, x=false, z=trueá) óïñ ? : ?

If X ∏ Y is computed by overriding, here, we get the wrong result. Making X ∏ Y
compatible with the behavior of r ∏ s above, would require violating some basic rules,
such as the beta-conversion rules for type parameters.

Because of all these difficulties, we should now feel compelled to define R ∏ S
only when R and S are disjoint: that is when any field present in an element of R is
absent from every element of S, and vice versa. Unfortunately, there is no way to
axiomatize this notion without drastically changing our type system: any two record
types R and S have a non-empty intersection, and an element of this intersection can
be exhibited via the subsumption rule.

5. Conclusions
We have investigated a theory of record operations in presence of type variables

and subtyping. The intent is to embed this record calculus in a polymorphic λ-
calculus, thus providing a full second-order theory of record structures and their types.
Although we have not investigated the type inference problem for this calculus, we
have provided typechecking and subtyping algorithms. We have also presented
several models of the basic record calculus; a full second-order model is left for future
work.

The result is a very flexible system for typing programs that manipulate records.
In particular, polymorphism and subtyping are incorporated in full generality. We
expect that this theory will be useful in analyzing fundamental aspects of object-
oriented programming.

Acknowledgements
We would like to acknowledge G. Longo and E. Moggi, for several clarifying

discussions.

Page 45

Appendix
This appendix contains soundness proofs for the semantic interpretations given in

the paper.

Semantics of the pure calculus of records
System S1 consists of all the rules listed in section 3.7, except for the special rules

(VC1b) and (TE9).

Theorem 3.8.3 (soundness):
The inference rules of systems S1 are sound with respect to the
interpretation of judgments given in section 3.8.

Proof
By induction on the length of the derivation of the judgments.

Environments
(ENV1). Vacuously true.
(ENV2). Vacuously true.
(ENV3). By hypothesis, E ∫ A type and so Aρ ⊆ V for any ρ satisfying E.

Moreover, E is well-formed by lemma 3.7.1, hence E,X<:A is also
well-formed.

(ENV4). Similar to (ENV3).

Variables
(VAR1). If ρ satisfies E,X,E', then by definition ρ(X) ⊆ V.
(VAR2). If ∫ E,X<:A,E' env, then for any ρ satisfying E we have Aρ ⊆ V.

Thus any ρ satisfying E,X<:A,E' must yield ρ(X) ⊆ Aρ ⊆ V.
(VAR3). Similar to (VAR2).

(VAR4). If ∫ E,x:A,E' env, then for any ρ satisfying E we have ρ(x) Ï Aρ
⊆ V. Thus any ρ satisfying E,x:A,E' must yield ρ(x) Ï Aρ ⊆ V.

General
(G1). If, for every ρ satisfying E, Aρ=Bρ ⊆ V then Aρ ⊆ Bρ.
(G2). By transitivity of subset.
(G3). If, for every ρ satisfying E, aρÏAρ and Aρ ⊆ Bρ then aρÏBρ.
(G4). By symmetry of equality.
(G5). By transitivity of equality.
(G6). If, for every ρ satisfying E, aρ=bρ Ï Aρ then bρ=aρ Ï Aρ.
(G7). If, for every ρ satisfying E, aρ=bρ Ï Aρ and bρ=cρ Ï Aρ

then aρ=cρ Ï Aρ.

Formation
(F1). R ⊆ V
(F2). If, for every ρ satisfying E, Rρ ⊆ R -x and Aρ ⊆ V

then Rρ[x:Aρ] ⊆ R ⊆ V, by Lemma 3.8.2.
(F3). If Rρ ⊆ R , then Rρ-x ⊆ R ⊆ V, by Lemma 3.8.2.
(F4). If Rρ ⊆ Sρ[x:Aρ] ⊆ R , then Aρ ⊆ V; hence Rρ(x) ⊆ V by Lemma 3.8.2.

Page 46

Subtyping
(S1). If, for every ρ satisfying E, Rρ ⊆ R -x, then Rρ is a set of finite

 functions r Ï L îïÕfinV with x Ì dom(r). For each such r, and any
a Ï Aρ ⊆ V, we have r[x=a] Ï L îïÕfinV. Thus Rρ[x:Aρ] ⊆ R .

(S2). If Rρ ⊆ R , then Rρ-x ⊆ Rρ ⊆ R .
(S3). Suppose Rρ ⊆ Sρ ⊆ R -x and Aρ ⊆ Bρ ⊆ V. Let rÏRρ[x:Aρ].

This means ÔsÏRρ with r = s[x=a]. Since sÏSρ and Aρ ⊆ Bρ,
we have s[x=a] Ï Sρ[x:Bρ]. Hence Rρ[x:Aρ] ⊆ Sρ[x:Bρ].

(S4). Suppose Rρ ⊆ Sρ ⊆ R . If r'ÏRρ-x, then r' = r-x for some rÏRρ.
Since rÏSρ, it follows that r' = r-x Ï Sρ-x.

(S5). Suppose Rρ ⊆ Sρ[x:Aρ] ⊆ R , then for any rÏRρ, rÏSρ[x:Aρ] = {s[x=a] |
sÏSρ, aÏAρ}; so that r(x)ÏAρ. Hence Rρ(x) = {r(x) | rÏRρ} ⊆ Aρ.

(S6). Suppose Rρ ⊆ Sρ[x:Aρ] ⊆ R , then for any rÏRρ, rÏSρ[x:A], so that
 r=s[x=a] for some sÏSρ and aÏAρ. We have a=r(x)ÏRρ(x), and
s=r-xÏRρ-x, hence r=(r-x)[x=r(x)]Ï(Rρ-x)[x:Rρ(x)]. It follows that
Rρ⊆ (Rρ-x)[x:Rρ(x)].

Introduction
(I1).  Ï R ⊆ V.
(I2). If, for every ρ satisfying E, the empty function  Ï Rρ ⊆ R ,

then  =  -x1..xn Ï Rρ-y ⊆ R .
(I3). If rρÏRρ with x Ì dom(rρ) and aρÏAρ, then rρ[x=aρ] is well-defined,

by Lemma 3.8.1, and belongs to Rρ[x:Aρ] ⊆ R , by Lemma 3.8.2.

Elimination
(E1). If, for every ρ satisfying E, rρÏRρ ⊆ R , then x Ì dom(rρ-x).

Hence rρ-x Ï Rρ-x ⊆ R , by Lemma 3.8.2.
(E2). If rρÏRρ[x:Aρ] ⊆ R , then Aρ ⊆ V, and rρ is a record with rρ(x)ÏAρ.

Type congruence
(TC1). R =R ⊆ V.
(TC2). For every ρ satisfying E, Xρ =Xρ ⊆ V.
(TC3). Suppose Rρ=Sρ, Sρ ⊆ R -x, and Aρ=Bρ ⊆ V.

Then Rρ[x:Aρ] = Sρ[x:Bρ] ⊆ R ⊆ V.
(TC4). Suppose Rρ=Sρ ⊆ R , then Rρ-x=Sρ-x ⊆ R ⊆ V.
(TC5). Suppose Rρ=Sρ ⊆ Tρ[x:Aρ] ⊆ R .

Then both Rρ and Sρ are sets of functions r with x Ì dom(r).
Hence Rρ(x) = {r(x) | rÏRρ} = {r(x) | rÏSρ} = Sρ(x) ⊆ V.

Type equivalence
(TE1). Suppose, for every ρ satisfying E, Rρ ⊆ (R -x)-y, Aρ,Bρ ⊆ V,

and x,y Ï L. For each rÏRρ, x,y Ì dom(r). Then,
Rρ[x:Aρ][y:Bρ] =

{s[y=b] | sÏ{r[x=a] | rÏRρ, aÏAρ}, bÏBρ} =
{r[x=a][y=b] | rÏRρ,aÏAρ,bÏBρ} = {r[y=b][x=a] | rÏRρ,bÏBρ,aÏAρ}=

Page 47

{s[x=a] | sÏ{r[y=b] | rÏRρ, bÏBρ}, aÏAρ} =
Rρ[y:Bρ][x:Aρ] ⊆ R ⊆ V.

(TE2). If Rρ ⊆ R -x, then Rρ is a set of r with x Ì dom(r). Hence Rρ-x = Rρ.
(TE3). If Rρ ⊆ R then (Rρ-x)-y = (Rρ-y)-x.
(TE4). Suppose Rρ ⊆ Sρ[y:Bρ] ⊆ R and x≠y.

For each rÏRρ, y Ì dom(r). Then,
(Rρ-x)(y) =

{s(y) | sÏ{r-x | rÏRρ}} = {(r-x)(y) | rÏRρ} = {r(y) | rÏRρ} =
Rρ(y) ⊆ V.

(TE5). Suppose Rρ ⊆ R -x and Aρ ⊆ V.
Then Rρ[x:Aρ] = {r[x=a] | rÏRρ, aÏAρ}.
So (Rρ[x:Aρ])-x = {r | rÏRρ} = Rρ.

(TE6). Suppose Rρ ⊆ R -x, Aρ ⊆ V, and x≠y. Then,
(Rρ[x:Aρ])-y =

{(r[x=a])-y | rÏRρ, aÏAρ} = {(r-y)[x=a] | rÏRρ, aÏAρ} =
(Rρ-y)[x:Aρ] ⊆ R ⊆ V.

(TE7). Suppose Rρ ⊆ R -x and Aρ ⊆ V.
Then Rρ[x:Aρ] = {r[x=a] | rÏRρ, aÏAρ}.
Hence (Rρ[x:Aρ])(x) = {(r[x=a])(x) | rÏRρ, aÏAρ} = Aρ ⊆ V.

(TE8). Suppose Rρ ⊆ Sρ[y:Bρ]-x ⊆ R , Aρ ⊆ V, and x≠y. Then,
(Rρ[x:Aρ])(y) = {(r[x=a])(y) | rÏRρ, aÏAρ} = {r(y) | rÏRρ} = Rρ(y) ⊆ V.

Value congruence
(TC1). = ⊆ R
(TC2). If, for every ρ satisfying E, ρ(x) Ï Aρ ⊆ V, then ρ(x)=ρ(x) Ï Aρ.
(TC3). Suppose rρ=sρ Ï Rρ ⊆ R -x and aρ=bρ Ï Aρ ⊆ V.

Then x Ì dom(rρ)∪ dom(sρ). Hence rρ[x=aρ] = sρ[x=bρ] Ï Rρ[x:Aρ] ⊆ R ,
by case (I3).

(TC4). Suppose rρ=sρ Ï Rρ ⊆ R . Then rρ-x=sρ-x Ï Rρ-x ⊆ R , by case (E1).
(TC5). Suppose rρ=sρ Ï Rρ ⊆ Sρ[x:Aρ] ⊆ R .

Then Rρ ⊆ (Rρ-x)[x:Rρ(x)] (by case (S6)), and rρ,sρ Ï (Rρ-x)[x:Rρ(x)].
Hence, by case (E2), rρ(x)=sρ(x) Ï Rρ(x) ⊆ V.

Value equivalence
(VE1). Suppose, for every ρ satisfying E, rρÏRρ ⊆ R -x-y, aρÏAρ ⊆ V,

bρÏBρ ⊆ V, and x≠y. Then, x,y Ì dom(rρ), and
rρ[x=aρ][y=bρ] = rρ[y=bρ][x=aρ] Ï Rρ[x:Aρ][y:Bρ] ⊆ R .

(VE2).  -x =  Ï R .
(VE3). Suppose rρÏRρ ⊆ R -x. Since x Ì dom(rρ), rρ-x = rρ.
(VE4). Suppose rρÏRρ ⊆ R . (rρ-x)-y = (rρ-y)-x Ï (Rρ-x)-y ⊆ R .
(VE5). Suppose rρÏRρ[x:Aρ] ⊆ R and x≠y.

Then x Ï dom(rρ) and rρ-y.x = rρ.x Ï Aρ ⊆ V.
(VE6). Suppose rρÏRρ ⊆ R -x and aρÏAρ ⊆ V.

Then x Ì dom(rρ) and rρ[x=aρ]-x = rρ.
(VE7). Suppose rρÏRρ ⊆ R -x, aρÏAρ ⊆ V and x≠y.

Page 48

Then x Ì dom(rρ) and (rρ[x=aρ])-y = (rρ-y)[x=aρ] Ï (Rρ[x:Aρ])-y ⊆ R .
(VE8). Suppose rρÏRρ ⊆ R -x, and aρÏAρ ⊆ V.

Then x Ì dom(rρ) and (rρ[x=aρ])(x) = aρ.
(VE9). Suppose rρÏRρ[y:Bρ]-x ⊆ R , aρÏAρ ⊆ V and x≠y.

Then Bρ ⊆ V, x Ì dom(rρ), y Ï dom(rρ), and (rρ[x=aρ])(y) = rρ(y) Ï Bρ.
(VE10). Suppose rρÏRρ ⊆ Sρ[x:Aρ] ⊆ R .

Then rρÏSρ[x:Aρ], so that rρ=s[x=a] for some sÏSρ and aÏAρ.
We have a=rρ(x)ÏRρ(x), and s=rρ-xÏRρ-x, hence rρ=(rρ-x)[x=rρ(x)],
which is well-formed (is a member of (Rρ-x)[x:Rρ(x)]).

M

A construction giving R = äR\ x | x:R.xã
System S2 is system S1 of Theorem 3.8.3 plus the rule (TE9).

Theorem 3.9.7 (soundness):
The inference rules of system S2 are sound with respect to the
interpretation of judgments given in section 3.9.

Proof
The proof follows the general pattern of Theorem 3.8.3. The main new
properties that are needed are proved as lemmas in section 3.9.
In particular, (TE9) follows from Lemma 3.9.6. The formation rules
come from Lemmas 3.9.2, 3.9.3, 3.9.4, and 3.9.5.

M

An extensional model construction
System S3 is system S1 of Theorem 3.8.3 plus the rules (TE9) and (VC1b).

Theorem 3.10.4 (soundness):
The inference rules of system S3 are sound for the PER model
construction given in section 3.10.

Proof
The proof follows the general pattern of Theorem 3.8.3, using the lemmas
proved in section 3.10

M

Page 49

References

[Breazu-Tannen, et al. 1989] V. Breazu-Tannen, T. Coquand, C. Gunter, and A.
Scedrov. Inheritance and explicit coercion. Proc. 4th Annual IEEE Symposium
on Logic in Computer Science.

[Bruce, Longo 1990] K.B. Bruce and G. Longo, A modest model of records,
inheritance and bounded quantification, Information and Computation.
Information and Computation 87(1/2), 196-240.

[Bruce, Meyer, Mitchell 1990] K.B. Bruce, A.R. Meyer, and J.C. Mitchell, The
semantics of second order lambda calculus. Information and Computation
85(1), 76-134.

[Cardelli 1988] L. Cardelli, A semantics of multiple inheritance. Information and
Computation 76, 138-164.

[Cardelli, et al. 1989] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow,
and G. Nelson. Modula-3 report (revised). Research Report n.52. DEC Systems
Research Center.

[Cardelli, Wegner 1985] L. Cardelli and P. Wegner, On understanding types, data
abstraction and polymorphism. Computing Surveys 17(4), 471-522.

[Curien, Ghelli 1992] P.-L. Curien and G. Ghelli, Coherence of subsumption,
minimum typing and type-checking in F≤. Mathematical Structures in
Computer Science 2(1), 55-91.

[Dahl, Nygaard 1966] O. Dahl and K. Nygaard, Simula, an Algol-based simulation
language. Communications of the ACM 9, 671-678.

[Girard 1971] J.-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse,
et son application à l'élimination des coupures dans l'analyse et la théorie des
types. Proc. Second Scandinavian Logic Symposium. North-Holland.

[Girard 1972] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
dans l'arithmétique d'ordre supérieur. Thèse de doctorat d'état, University of
Paris.

[Jategaonkar, Mitchell 1988] L.A. Jategaonkar and J.C. Mitchell. ML with extended
pattern matching and subtypes. ACM Conference on Lisp and Functional
Programming.

[Longo, Moggi 1991] G. Longo and E. Moggi, Constructive natural deduction and
its ‘ω-set’ interpretation. Mathematical Structures in Computer Science 1(2).

[Meyer 1988] B. Meyer, Object-oriented software construction. Prentice Hall.
[Milner 1978] R. Milner, A theory of type polymorphism in programming. Journal

of Computer and System Sciences 17, 348-375.
[Mitchell 1984] J.C. Mitchell. Coercion and type inference. Proc. 11th Annual ACM

Symposium on Principles of Programming Languages.
[Mitchell 1986] J.C. Mitchell. A type inference approach to reduction properties

and semantics of polymorphic expressions (summary). Proc. Symposium on
Lisp and Functional Programming.

[Mitchell 1990] J.C. Mitchell, Type systems for programming languages. In
Handbook of Theoretical Computer Science, J. van Leeuwen, ed. North Holland.
365-458.

[Ohori, Buneman 1988] A. Ohori and P. Buneman. Type inference in a database
programming language. Proc. ACM Conference on LISP and Functional
Programming.

[Ohori, Buneman, Breazu-Tannen 1988] A. Ohori, P. Buneman, and V. Breazu-
Tannen. Database programming in Machiavelli - a polymorphic languaage
with static type inference. Report MS-CIS-88-103. University of Pennsylvania,
Computer and Information Science Dept.

Page 50

[Rémy 1989] D. Rémy. Typechecking records and variants in a natural extension
of ML. Proc. 16th Annual ACM Symposium on Principles of Programming
Languages.

[Reynolds 1974] J.C. Reynolds. Towards a theory of type structure. Proc.
Colloquium sur la programmation. Lecture Notes in Computer Science 19.
Springer-Verlag.

[Schaffert, et al. 1986] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt.
An introduction to Trellis/Owl. Proc. ACM Conference on Object Oriented
Programming Systems, Languages, and Applications.

[Stroustrup 1986] B. Stroustrup, The C++ programming language. Addison-
Wesley.

[Wand 1987] M. Wand. Complete type inference for simple objects. Proc. 2nd
Annual IEEE Symposium on Logic in Computer Science.

[Wand 1989] M. Wand. Type inference for record concatenation and multiple
inheritance. Proc. 4th Annual IEEE Symposium on Logic in Computer Science.

