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Authors' Abstract

A frequent dilemma in programming language design is the choice between a
language with a rich set of notations and a small, simple core language. We
address this dilemma by proposing extensible grammars, a syntax-de�nition
formalism for incremental language extensions and restrictions.

The translation of programs written in rich object languages into a small
core language is de�ned via syntax-directed patterns. In contrast to macro-
expansion and program-rewriting tools, our extensible grammars respect scoping
rules. Therefore, we can introduce binding constructs while avoiding problems
with unwanted name clashes.

We develop extensible grammars and illustrate their use by extending the
lambda calculus with let-bindings, conditionals, and constructs from database
programming languages, such as SQL query expressions. We then give a formal
description of the underlying rules for parsing, transformation, and substitution.
Finally, we sketch how these rules are exploited in an implementation of a
generic, extensible parser package.
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1 Introduction

A frequent dilemma in programming language design is the choice between a
user-friendly language with a rich set of notations and a small, conceptually
simple core language. We address this dilemma by introducing extensible gram-
mars, a syntax-de�nition formalism for incremental, problem-speci�c language
extensions and restrictions.

The translation of programs written in rich object languages into a small
core language is de�ned via syntax-directed patterns. The translation resembles
macro expansion, with some essential di�erences. Traditional macro-expansion
and program-rewriting tools attempt to manipulate programs as mere strings
or trees. This is the source of many of their well-known defects. In contrast, our
extensible grammars recognize and respect the scoping structure of programs.

The features of our approach are as follows:

� Lexical scoping is strictly preserved. Therefore, we can introduce new
binding constructs like quanti�ers, iterators, and type declarations, while
avoiding problems with unwanted name clashes (\variable captures").

� Parsing remains independent of type checking and evaluation. It always
terminates.

� We can determine, statically, what is the legal syntax in any region of the
text of a program.

� We can freely introduce new notation and mix it with existing notation
without special quotations, antiquotations, or explicit macro calls.

� New notation can be de�ned in terms of old notation, incrementally.

� Our syntax-de�nition package is language-independent.

The form of extensible grammars discussed in this paper was invented during
the implementation of a polymorphically typed lambda calculus [Car93]. Here,
we develop extensible grammars in a more general context and describe them
in more detail.

We motivate and illustrate the use of extensible grammars with examples
from various domains, but we emphasize the application of extensible grammars
for database programming. Current database systems typically rely on macro
preprocessors in order to embed query notations in host languages like C or
Cobol. Our extensible grammars may serve as a safe alternative to macros in
this context.

Both syntax extensions and syntax restrictions occur commonly in practice,
and extensible grammars are designed to support them both.

Syntax extensions provide syntactic sugar for problem-speci�c abstrac-
tion. Syntax extensions have long been used in Lisp systems; recent work has
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focused on avoiding variable captures (see section 6). Notational de�nitions
make sense not only in programming but also in mathematics, in particular in
logical frameworks [Gri88].

Syntax extensions have a variety of applications in database programming.
For example, embedded query notations like the relational calculus, the rela-
tional algebra, iteration statements, or set comprehensions can be introduced
as abstractions de�ned from primitive iteration constructs [OBBT89, BTBN91,
Tri91, MS91]. Transactions can be introduced as stylized patterns for side-e�ect
control and exception handling. Similarly, structured form de�nitions in user
interface code can be represented as abstractions over low-level routines for data
formatting, input, and validation. At the type level, data modeling constructs
like classes, objects, and binary relationships can be viewed as syntactic sugar
for more complex type expressions involving recursive types, record types, func-
tion types, or abstract data types [SSS+92, SSS88, PT93].

Syntax restrictions introduce intentional limitations on the expressive-
ness or orthogonality of a core language. One rationale behind restrictions is to
facilitate meta-level reasoning and optimizations tailored to a particular appli-
cation domain. In addition, syntax restrictions can serve to enforce the use of
subsets of languages. For instance, a syntax restriction may forbid imperative
programming in student projects.

While ad-hoc syntax restrictions are generally considered harmful in pro-
gramming language design (from a pragmatic and a semantic perspective),
they are common practice in database models and languages. For example,
many schema de�nition languages disallow nested declarations (nested sets,
nested classes) or limit recursive declarations to top-level class or type def-
initions. Furthermore, user-de�ned types frequently do not have �rst-class
status, and in particular they may not appear as arguments to collection-
type constructors. Similarly, query languages typically impose restrictions to
rule out side-e�ecting operations or calls to user-de�ned functions in selection
and join predicates [SQL87]. Some query languages require static bindings to
function identi�ers (disallowing higher-order functions or dynamic method dis-
patch) [SFL83], and some disallow lambda abstractions within quanti�ed ex-
pressions [BTBN91]. Finally, recursive queries or views are often subject to
strati�cation constraints [Naq89].

The next section gives an overview of the issues that must be addressed by
a formalism for language extensions and restrictions. In section 3 we introduce
extensible grammars by examples. An initial grammar for the lambda calcu-
lus is extended incrementally with new syntactic forms such as let-bindings,
conditionals, and query notations. In section 4 we de�ne the static type rules
for grammar de�nitions and the semantics of parsers generated from extensible
grammars. We also present a soundness result for the type system with re-
spect to the evaluation semantics. In section 5 we describe the implementation
of an extensible parser module for the Tycoon database environment [Mat93].
Finally, section 6 is a comparison with other approaches to syntax extension.
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Figure 1: The syntax-de�nition scenario

2 Overview

The syntax extension formalism described in this paper assumes the scenario
depicted in �gure 1. Given the abstract syntax and the scoping structure of
a target language TL, a new object language OL0 can be de�ned by giving
its context-free grammar and the rewrite rules that map OL0 terms into TL

terms. The mapping also de�nes the scoping structure of OL0. Our formalism
is incremental since it also allows the de�nition of an object language OLn by
a translation (rewriting) into another object language OLn�1.

For example, assuming TL to be a functional language, the object language
OL0 could have either a Lisp-like list notation or an Algol-like keyword-based
notation:

(defn succ(x) (plus x 1))

function succ (x); begin return plus(x, 1) end

Both syntactic forms translate into the same abstract syntax tree in the target
language TL that is passed to the TL type checker and code generator:

Bind(succ Abs(x App(App(plus x) 1)))

Subsection 3.1 gives a complete example of the target-language and the object-
language de�nition for an untyped lambda calculus.

A simple example of an incremental syntax de�nition is the de�nition of a
language with in�x function application (OL1) as an extension of a language
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with only pre�x application (OL0). The notation A ) B is used to indicate
that the input A in an extended language is equivalent to the input B in a
non-extended language:

function succ (x); function succ(x);

begin return x + 1 end ) begin return plus(x,1) end

In a database programming setting, OLn could be a language with SQL-like
query notations that is translated into a lambda calculus, OLn�1, with primitive
operations on a collection type (nil, cons, iter) [Tri91]:

select x.a iter(X)(nil)(fun(x)fun(z)

from x in X ) if p(x) then cons(x.a)(z) else z)

where p(x)

Incremental grammar de�nitions are discussed in more detail in subsections 3.2
and 3.3. The de�nition of an SQL-like grammar in our formalism is given in
subsection 3.4.

Extensible grammars require extensible parsers. That is, a parser has to be
dynamically extensible to handle programmer-de�ned object languages. New
grammar de�nitions should be checked to avoid problems typical of macro def-
initions [KR77], such as grammar ambiguity, non-termination of macro expan-
sion, and generation of illegal syntax trees. Our checking is done at grammar-
de�nition time and includes standard grammar analysis [ASU87] to avoid the
�rst two problems. To address the third problem, we develop a typing discipline
on productions (see subsection 4.1).

A more subtle source of di�culties associated with incremental grammar
de�nition is the binding structure of the target language. The rewriting of
object-language expressions into target-language expressions must be sensitive
to the scoping rules of the target language and may require renaming operations
to avoid name clashes (\variable captures"). A small example using C and the
C preprocessor illustrates the issue in a familiar setting:

#define swap(x,y) fint z; z = x; y = x; x = z;g

fint a, b; swap(a,b);g /* ok */

fint z, y; swap(z,y);g /* name clash */

The expansion of swap(z, y) leads to the program fragment fint z; z = z;

y = z; z = zg, where the local declaration of z hides the variable z that is
passed as an argument to the macro. Removing the curly brackets in the macro
de�nition does not solve the problem, but causes a name clash between two
declarations of the variable z in the same scope.

In order to solve the scoping problems caused by rewriting inside binding
structures, a formalization of the scoping rules of the target language is re-
quired. To adapt our grammar formalism easily to several target languages,
we divide the scoping problem into a generic bookkeeping task for the exten-
sible parser and a parameterized language-speci�c renaming operation. This
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conceptual division of labor is exploited in the implementation of the exten-
sible grammar package to factor out target-language dependencies. Scoping
problems are avoided by distinguishing between binding and applied identi�er
occurrences, and by renaming when name clashes between identi�ers in input
programs and identi�ers in rewrite rules could occur. Note that this solution is
not an option for a simple token-based preprocessor. Subsection 4.2 describes
the parsing and renaming rules of our formalism (for initial as well as incremen-
tal grammar de�nitions). We are also able to prove that these dynamic parse
rules are consistent with the static type rules given in subsection 4.1.

3 Grammar De�nitions

In this section we introduce our extensible grammar formalism by examples.
We start with a small initial grammar for an untyped lambda calculus that is
extended incrementally to support database programming language constructs.

3.1 Initial Grammar De�nitions

This subsection explains how to de�ne the abstract syntax and the scoping rules
of a particular target language TL as well as the syntax for an initial object
language OL0 (see the oval boxes in �gure 1). This information is validated
by the grammar checker and then used to generate an initial parser for OL0
programs.

We use an untyped lambda calculus with records as the target language for
our examples. Given a set of identi�ers x, the sets of terms (a; b) and �elds (f)
are recursively de�ned as follows:

a, b ::= x j �x.a j a(b) j ffg j a.x

f ::= ; j x=a f

The �rst step in the de�nition of an extensible grammar is to de�ne the
names of the sorts and the signatures of the constructors available for the
construction of target-language terms. Our example uses the following sorts,
speci�c to the target language:

Term terms of the lambda calculus
Fields ordered associations between �eld names and terms

Since identi�ers require particular attention during expression rewriting, three
prede�ned sorts exist to distinguish the binding properties of identi�ers:

Binder identi�ers appearing in binding positions
Var identi�ers appearing in the scope of a binder
Label identi�ers that are not subject to scoping
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These sort names appear in the signatures of the term constructors for the
lambda calculus:

mkTermVar(x:Var):Term

mkTermFun(x:Binder a:Term):Term

mkTermApp(a:Term b:Term):Term

mkTermRcd(f:Fields):Term

mkTermDot(a:Term x:Label)

mkFieldNil():Fields

mkFieldCons(x:Label a:Term f:Fields):Fields

Lambda abstractions (mkTermFun) introduce identi�ers in binding positions,
while other identi�ers inside terms (mkTermVar) appear in non-binding posi-
tions. In our example, �eld labels (mkTermDot, mkFieldCons) are not subject
to block-structured scoping rules and are therefore de�ned to be of sort Label.
For the purpose of grammar de�nitions it is not necessary to present the binding
rules of the target language in more detail.

Given a target-language description in terms of constructors and sorts, a
context-free grammar is de�ned as a collection of productions that translate
phrases in an input stream into terms of the target language. A concrete syntax
for the lambda calculus with records is de�ned in �gure 2. The notation used
is explained in the rest of this subsection.

This grammar consists of four mutually recursive productions that de�ne
left-associativity of applications and precedence of applications over abstrac-
tions. Here are examples of input phrases parsed according to the root produc-
tion term:

peter mkTermVar(peter)

peter.age mkTermDot(mkTermVar(peter) age)

fun(p)p(b) mkTermFun(p mkTermApp(mkTermVar(p) mkTermVar(b)))

The result of parsing is a structured term of the target language. This term
can be viewed as a tree in which the inner nodes correspond to term constructor
applications and the leaves correspond to identi�ers (or literals) extracted from
the source text. A token sequence to which no production applies is rejected by
the parser with an error message.

A grammar introduces a set of non-terminals (simpleTerm, term, : : : ) as
identi�ers for productions. Productions can be parameterized by terms of the
target language (see, e.g., termIter). The signature of a non-terminal de�nes
its parameter names and sorts as well as the sort of terms returned by the
production. For example, the production termIter takes a parameter a of sort
Term and returns a term of sort Term.

The body of each production consists of n � 1 expression sequences sepa-
rated from each other by a vertical bar (|). Each expression speci�es an input
syntax and a result expression (following the => symbol) to construct a term of
the target language. Based on the token sequence encountered during parsing,
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grammar

simpleTerm:Term ==

x=ide => mkTermVar(x)

|"(" a=term ")" => a

|"fun" "(" x=ide ")" a=term => mkTermFun(x a)

|"f" f=fields "g" => mkTermRcd(f)

|a=pIde:Term => a

fields:Fields ==

x=ide "=" a=term f=fields => mkFieldCons(x a f)

| => mkFieldNil()

|f=pIde:Fields => f

term:Term ==

a=simpleTerm b=termIter(a) => b

termIter(a:Term):Term ==

"(" b=term ")" => termIter(mkTermApp(a b))

|"." x=ide => termIter(mkTermDot(a x))

| => a

end

Figure 2: De�nition of a concrete syntax for the lambda calculus

one of the alternative expression sequences is selected and its corresponding
result expression is evaluated in an environment that contains the actual pa-
rameter bindings and local bindings introduced on the left of the => symbol.

The input syntax accepted by an alternative is de�ned using the following
notation:

"x" accept the keyword x

ide accept any non-keyword identi�er
x accept the input speci�ed by the production identi�ed by the non-

terminal x
x(y) accept the input speci�ed by the parameterized production iden-

ti�ed by the non-terminal x with the argument y
x=y bind the term de�ned by y to a local variable x
pIde:S accept a pattern variable of sort S (see subsection 3.3)

Each grammar determines a set of keywords reachable from productions of
the grammar. The set of identi�ers accepted by ide in a given grammar g
excludes the keywords of g. Therefore, syntax extensions may introduce new
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keywords while syntax restrictions may change existing keywords into identi�ers.

The binding structure of the concrete syntax is de�ned implicitly by passing
identi�er tokens from the input as arguments to term constructors. For example,
the variable x in the grammar de�nition

"fun" "(" x=ide ")" a=term => mkTermFun(x a)

appears in a Binder position of the term constructor mkTermFun. Therefore, it
can be deduced that the variable person in the source text fun(person) : : :

appears in a binding position.

The recursive production fields in �gure 2 generates right-associative syn-
tax trees for �eld lists while the production termIter generates left-associative
syntax trees for function applications. Because we use an LL(1) parser, left-
associative grammars are handled in our grammar formalism by passing the
syntax tree for the left context of a phrase as a production argument for the
recursive invocation of a production (e.g., a:Term in production termIter in
�gure 2).

3.2 Incremental Grammar De�nitions

This subsection explains how to de�ne the syntax of a new object language OLn
as an extension or a restriction of an existing object language OLn�1. Such a
syntax rede�nition is validated by the grammar checker and used to derive a
parser for OLn from an existing parser for OLn�1.

A grammar de�nes a mapping from non-terminals (e.g., simpleTerm, term)
to variables that are initialized with productions. Inside a production, each
non-terminal denotes the production identi�ed by its variable. Three incremen-
tal grammar operations are available: addition, extension, and update. The
rationale behind these operations is to allow the update and re-use of existing
non-terminal de�nitions, preserving the recursive structure of the grammar.

A grammar addition (==) de�nes a mapping from a non-terminal to a newly
created variable initialized with a production. For example, we could use the
standard encoding of let bindings:

let x=a in b ) (fun(x) b)(a)

to add the new non-terminal topLevel:

grammar

topLevel:Term ==

a=term => a

|"let" x=ide "=" a=term

"in" b=topLevel => mkTermApp(mkTermFun(x b) a)

end
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The non-terminal topLevel is mapped to a newly created variable initialized
with a production that accepts terms of the base language and (nested) let
bindings at the top level, but not inside terms.

A grammar extension (j==) destructively updates the variable identi�ed by
a non-terminal with a new production. The new production extends the old
production with additional alternatives. For example, to extend simpleTerm,
we could write:

grammar

simpleTerm:Term j==

"unit" => mkTermRcd(mkFieldNil())

|"let" x=ide "=" a=term

"in" b=term => mkTermApp(mkTermFun(x b) a)

end

This grammar extension a�ects all productions referring to term, allowing unit
and nested let bindings within terms.

A grammar update (:==) destructively updates the contents of a variable
identi�ed by a non-terminal with a new production that has the same signature,
thereby a�ecting all productions referring to that non-terminal. For example,
the de�nition of term could be updated as follows:

grammar

term:Term :==

x=ide => mkTermVar(x)

|"(" a=term b=term ")" => mkTermApp(a b)

|"f" f=fields "g" => mkTermRcd(f)

end

This rede�nition a�ects all productions referring to term (simpleTerm, fields,
termIter), thereby restricting the expressiveness of the original language by
disallowing abstractions.

3.3 Pattern-based Action De�nitions

In subsection 3.2, abstract syntax trees produced by actions are speci�ed with
explicit constructor applications. In this subsection we introduce patterns which
allow us to write grammars more conveniently by using the existing target lan-
guage. For example, the syntax for let and where bindings could be written
more clearly using a pattern:

grammar

simpleTerm:Term j==

"let" x=ide "=" a=term

"in" b=term => term<<(fun(x) b)(a)>>

end
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Inside the pattern term<<(fun(x) b)(a)>>, the variables x, a, and b, intro-
duced on the left-hand side of the production, act as placeholders (pattern
variables) of sort Binder, Term, and Term, respectively. A pattern p<<s>> in a
grammar g is translated into constructor applications by parsing the input token
stream s starting with the production p. For example, when the token stream
(fun(y) b)(a) is parsed as a term, the pattern term<<(fun(y) b)(a)>> yields
the nested constructor application mkTermApp(mkTermFun(y b) a). Note that
the concrete syntax and the binding structure inside the <<>> brackets is de�ned
by the grammar that is valid before the enclosing grammar end block.

The keyword pIde followed by a sort identi�er is used in the initial grammar
de�nition (see subsection 3.1) to indicate those positions in the input syntax
where pattern variables may appear. For example, f is a pattern variable of
sort Fields in the pattern <<ffg>>. Pattern variables of the sorts Binder,
Var, and Label may appear also at those places in the input syntax where the
keyword ide is used to accept identi�er tokens of the appropriate sort.

To avoid variable captures and name clashes, many pattern-based syntax
extensions require the introduction of fresh identi�ers, that is, identi�ers distinct
from other identi�ers appearing in Binding and Var positions. For example, the
syntax for functional composition (f*g) could be de�ned as:

grammar

termIter(a:Term):Term j==

"*" b=term x=local => termIter(term<<fun(x)a(b(x))>>)

end

The notation x=local guarantees that a fresh identi�er is bound to x for ev-
ery instantiation of this production during parsing. For example, f*g*h is
expanded to fun(x2)(f(fun(x1)g(h(x1))) (x2)), and x*y is expanded to
fun(x1)(x(y(x1))), avoiding a variable capture of the input variable x by a
binder introduced in the pattern.

Since grammar de�nitions can be interspersed with object-language expres-
sions, it is desirable to allow patterns to contain variables that refer to global
bindings. For example, the boolean constants true and false are sometimes
represented by the following functions which, when applied to two arguments,
return one of them:

let T = fun(x)fun(y)x

let F = fun(x)fun(y)y

In the scope of these de�nitions, the following grammar could be de�ned to
replace the keywords true and false by the variables T and F, respectively.

grammar

simpleTerm:Term j==

"true" => term<<T>>

|"false" => term<<F>>
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|"if" a=term "then" b=term

"else" c=term => term<<a(b)(c)>>

end

During expansion of a pattern with free variables (T and F in the example
above), unwanted variable captures must be avoided. For example, a naive
macro expansion of the term fun(T) T(true) would yield the term fun(T)

T(T) where the expansion of the keyword true is bound incorrectly. Therefore,
free variables in extensible grammars are handled as follows: Each occurrence
of a free variable x in a grammar de�nition is replaced by a fresh variable
x'. During parsing, these modi�ed patterns generate expansions that contain
unbound variables (T' and F'). For example, T(fun(T) T(true)) is expanded
to T(fun(T) T(T')). After the full input has been parsed, a renaming function
is applied to the parsed term. The renaming function depends on the target
language. In this case, it replaces the binder T and its bound variables by T'',
and T' by T. The resulting term T(fun(T'') T''(T)) is then submitted to the
type checker and code generator.

3.4 Further Examples: Query Notations

In this subsection we show how some typical database query notations can be
viewed as mere \syntactic sugar" for the application of a single higher-order
iterator function. The reduction of query notations into a single canonical
iteration construct has been exploited in the literature to simplify the type
checking of database programming languages [OBBT89], the code generation
for query expressions [Tri91], and the veri�cation of functional database pro-
grams [SS91, SSS88]. The following examples demonstrate that extensible gram-
mars provide su�cient expressive power to de�ne the syntax of typical database
query languages as well as their translation into lambda calculus. This transla-
tion preserves the usual scoping rules de�ned for these query languages.

We assume the grammar extension for booleans de�ned above, and the fol-
lowing global de�nitions that provide a standard encoding of the list construc-
tors nil and cons and of the list iterator iter:

let nil = fun(x)fun(n)fun(c) n

let cons = fun(hd)fun(tl)fun(n)fun(c) c(hd)(tl(n)(c))

let iter = fun(l)fun(n)fun(c) l(n)(c)

The syntax of a \list algebra" with selection, projection, and binary join can
then be de�ned as follows:

grammar

simpleTerm:Term j==

"select" x=ide "in" a=term "where" b=term y=local

=> term<<iter(a)(nil)(fun(x)fun(y)if b then cons(x)(y) else y)>>
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| "project" x=ide "in" a=term "onto" f=fieldList(x) y=local

=> term<<iter(a)(nil)(fun(x)fun(y)cons(ffg)(y))>>

| "join" x=ide "in" a=term "," y=ide "in" b=term

"where" c=term x2=local y2=local

=> term<<iter(a)(nil)(fun(x)fun(x2)iter(b)(x2)(fun(y)fun(y2)

if c then cons(ffst=x snd=yg)(y2)else y2))>>

fieldList(x:Var):Fields ==

y=ide "," f=fieldList(x) => fields<<y=x.y f>>

| => fields<<>>

end

For example, a selection expression with a variable identi�er x, a range expres-
sion a, and a selection predicate b is translated into an iterative loop. This loop
over a has x as its loop variable. Starting with the empty list nil, the loop adds
those elements that satisfy the selection predicate b:

iter(a)(nil)(fun(x)fun(y)if b then cons(x)(y) else y)

In this expression, y is a fresh local variable which is bound during iteration to
the result of the previous iteration step. This translation correctly captures the
scoping rules for the list algebra, since the variable x is visible only in b and not
in a. Furthermore, global identi�ers are visible in a and b.

The parameterized production fieldList demonstrates how parameters
may be used to distribute terms (in this case a variable identi�er x) into mul-
tiple subterms. Using the extended grammar one can write, for example, the
following queries that use global identi�ers Persons, thirty, and equal:

select p in Persons where greater(p.age)(thirty)

project p in Persons onto name, age

join p in Persons, s in Students where equal(p.name)(s.name)

Furthermore, it is possible to nest queries and to parameterize queries:

fun(limit) select p in

select p in Persons where greater(p.salary)(limit)

where greater(p.age)(thirty)

Note that the identi�er p in the subquery will be correctly bound to the inner
p in the generated lambda term.

Simulating SQL expressions is slightly more complicated, since SQL allows
the repetition of range expressions to express selections, projections, and n-way
joins using a uniform notation:

select target(x) from x in a where predicate(x)

select target(x)(y) from x in a, y in b where predicate(x)(y)

select target(x)(y)(z) from x in a, y in b, z in c

where predicate(x)(y)(z)

: : :
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Therefore, the rewrite rules have to ensure that the target and the selection
expressions appear in the scope of n (n > 1) fun binders in the generated
lambda term. The following grammar uses a recursive, parameterized produc-
tion rangeIter to achieve the desired rewriting:

grammar

simpleTerm:Term j==

"select" a=term "from" x=ide "in" b=term c=rangeIter(a)

=> term<<iter(b)(nil)(fun(x)c)>>

rangeIter(a:Term):Term ==

"," x=ide "in" b=term c=rangeIter(a) y=local

=> term<<fun(y)iter(b)(y)(fun(x)c)>>

|"where" b=term y=local

=> term<<fun(y)if b then cons(a)(y) else y>>

end

For example, a two-way join would be expanded as follows:

select fx.a y.bg iter(X)(nil)(fun(x)
from x in X, y in Y ) fun(z1) iter(Y)(z1)(fun(y)
where p(x.c)(y.c) fun(z2) if p(x.c)(y.c) then

cons(fx.a y.bg)(z2) else z2))

4 Formalizing Grammars and Parsers

In subsection 4.1 we describe the rules that are used in the grammar checker
(see �gure 1) to statically decide whether a sequence of grammar de�nitions
and grammar extensions is well-formed. In subsection 4.2 we formalize the
parse rules that de�ne the mapping from an input stream into a constructed
term of the target language. We also present a soundness result of the dynamic
parse rules with respect to the static type rules of subsection 4.1. This result
guarantees that parsers derived from well-typed grammars return well-formed
parse trees. In subsection 4.3 we generalize the result to parsers derived from
incremental pattern-based grammar de�nitions.

4.1 Static Typing of Grammar De�nitions

To describe the type rules for grammar de�nitions and extensions, we �rst de-
�ne the relevant syntactic objects (sorts, signatures, productions, grammars,
grammar sequences).

The syntax for term sorts B and signatures S is de�ned as follows:

B ::= Unit j Var j Binder j Label prede�ned term sorts

j B1
j : : : j Bn sorts speci�c to the target language

S ::= (B1; : : : ; Bk)B production signatures (k � 0)

13



The abstract syntax of productions is slightly more orthogonal than the con-
crete syntax we have used in the examples. In particular, terminal produc-
tions like ide(B) or "x" may appear nested within constructor and production
argument lists. Furthermore, the syntactic separation of productions into a
binding sequence and a constructor application (to the right and left of the
=>, respectively) is no longer enforced. For example, the production x=ide

=> mkTermVar(x) in the concrete syntax is translated into a simple sequential
composition x = ide(Var) mkTermVar(x).

p ::= unit unit production
j "x" keyword token production
j ide(B) variable token production (of sort B)
j local fresh object-language variable
j global(x) global object-language variable
j x term variable
j p1 p2 sequential composition
j x = p1 p2 pattern variable binding
j p1 j p2 choice
j x(p1; : : : ; pk) non-terminal application (k � 0)
j c(B1;:::;Bk)B(p1; : : : ; pk) sorted constructor application (k � 0)

The set of constructors c(B1;:::;Bk)B with argument sorts Bi and result sort B
contains the constructors speci�c to the target language (e.g., mkTermVar, mk-
TermFun).

A grammar consists of a list of non-terminal de�nitions that de�ne a signa-
ture, a modi�cation operator, and a production.

g ::= [] empty grammar
j g x : (x1:B1; : : : ; xk:Bk)B a p non-terminal de�nition

a ::= == grammar addition
j :== grammar update
j j== grammar extension

Each grammar (a block of possibly recursive de�nitions) is de�ned in the scope
of its preceding grammar de�nitions:

gseq ::= empty grammar sequence
j gseq g grammar composition

A global environment E assigns signatures to non-terminals:

E ::= � empty environment
j E; x : S non-terminal x has signature S

A local environment L assigns signatures to term variables:

L ::= � empty environment
j L; x : B variable x has sort B

14



Environments are ordered so that they model block-structured scoping. En-
vironment concatenation is written as E;E0. The domain of an environment,
denoted by Dom(E), is the set of variables x de�ned in E. A variable name x
may occur more than once in an environment. In this case, the type rules for
variables retrieve the rightmost sort or signature assigned to x.

The static semantics of grammars involves the following four kinds of judg-
ments, de�ned in the remainder of this subsection:

E;L ` p : B production p has sort B assuming E and L

E ` g :: E0 grammar g de�nes signatures E0 consistent with E

E ` g ok grammar g de�nes productions consistent with E

` gseq) E grammar sequence gseq de�nes a �nal environment E

The structure of the sort rules for productions resembles the structure of
typing rules for terms in a simply typed lambda calculus:

E;L ` unit : Unit

E;L ` "x" : Unit

E;L ` ide(B) : B

E;L ` local : Binder

E;L ` global(x) : Var

x 62 Dom(L0)

E;L; x : B;L0 ` x : B

E;L ` p1 : B E;L ` p2 : B
0

E;L ` p1 p2 : B
0

E;L ` p1 : B E;L; x : B ` p2 : B
0

E;L ` x = p1 p2 : B
0

E;L ` p1 : B E;L ` p2 : B

E;L ` p1 j p2 : B

E;L ` pi : Bi 1 � i � k

E;L ` c(B1;:::;Bk)B(p1; : : : ; pk) : B

E;L ` pi : Bi 1 � i � k x 62 Dom(E0)

E; x : (B1; : : : ; Bk)B;E
0;L ` x(p1; : : : ; pk) : B

The type checking of a grammar g is performed in two passes in order to
handle recursive non-terminal de�nitions correctly. A �rst pass (E ` g :: E0) col-
lects the signatures E0 of all non-terminals in g, veri�es that each non-terminal
is de�ned at most once in g, and asserts that all grammar updates (x : S:==p)
and grammar extensions (x : Sj==p) refer to non-terminals with matching sig-
natures in the scope E of g:
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E ` [] :: �

E ` g :: E0 x 62 Dom(E0)

E ` g x : (x1:B1; : : : ; xk:Bk)B == p :: E0; x : (B1; : : : ; Bk)B

E ` g :: E0 x 62 Dom(E0) a 2 f:==; j==g
E ` x : (B1; : : : ; Bk)B

E ` g x : (x1:B1; : : : ; xk:Bk)B a p :: E0; x : (B1; : : : ; Bk)B

In a second pass (E ` g ok), the bodies p of all non-terminal de�nitions in g

are checked to match their signatures in E. The rules for parameterized non-
terminal de�nitions resemble the type rules for lambda abstractions:

E ` [] ok

E ` g ok E;�; x1 : B1; : : : ; xk : Bk ` p : B a 2 f==; :==; j==g

E ` g x : (x1:B1; : : : ; xk:Bk)B a p ok

A sequence of grammars is veri�ed by performing the two passes above on each
grammar in the sequence using the environment established by its preceding
grammars:

`) �
` gseq) E E ` g :: E0 E;E0 ` g ok

` gseq g ) E;E0

It is possible to derive a simple consistency-checking algorithm from these
inference rules as follows: Starting with the proof goal ` gseq) E, the inference
rules have to be applied \backwards" (from the conclusions to the assumptions).
Since for each syntactic construct there is exactly one applicable inference rule,
the derivation either reaches the axioms (in time proportional to the size of
the grammar) or gets stuck in a con�guration where no inference rule can be
applied. In the latter case the grammar sequence is rejected as ill-typed. In the
next subsection we prove that parsers derived from well-typed grammars never
generate ill-formed syntax trees.

4.2 Parsing and Term Construction

Each non-terminal x in a grammar serves a dual purpose. On the one hand,
it determines how to parse an input token stream and how to construct a cor-
responding term of the target language. On the other hand, it de�nes how to
transform a pattern (a token stream inside <<>> brackets) occurring in an incre-
mental grammar de�nition into an equivalent production. In this subsection we
describe the parsing of input token streams, while pattern parsing is described
in the subsection 4.3.

For the purpose of parsing it is convenient to rewrite a grammar sequence
gseq into a single grammar g of the form []; x1 : S1==p1; : : : ; xk : Sk==pk
(k � 0) such that xi 6= xj for i 6= j. We use the notation:
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gseq; g grammar sequence gseq normalizes to g

In this rewrite process, grammar updates (x : S:==p) and grammar ex-
tensions (x : Sj==p) are eliminated by changing their corresponding original
de�nitions (x : S==p0) into x : S==p and x : S==p j p0, respectively. Name
conicts between grammar additions x : S== p and x : S0==p0 (p 6= p0) in two
grammars of gseq are resolved by consistently renaming one of the non-terminals
to a fresh non-terminal x0 within its local scope. It is easy to see that normal-
ization preserves typing, that is, if gseq ; g and ` gseq ) E, then ` g ) E0,
where E0 is equal to E up to duplicate elimination.

We use the following notation to describe how a production of a grammar g
applied to an input stream constructs a term t of the target language:

g;M ` hs; ii p ) hs0; i0i t

This formula states that production p executed in environment g;M starting in
the initial con�guration hs; ii returns a term t and a �nal con�guration hs0; i0i. A
dynamic environmentM contains local term variable bindings. A con�guration
hs; ii consists of the input stream s and an integer counter i to generate unique
fresh identi�ers xiB distinct from user-de�ned identi�ers of the form xB.

The parsing rules are given in �gure 3. These rules involve syntactic objects
of the following categories:

s ::= input streams

� empty input stream
j x :: s identi�er token

b ::= terms

unit trivial term
j xBinder binder identi�er
j xV ar variable identi�er
j xLabel label identi�er
j xiB fresh identi�er of sort B (i � 0)

B 2 fBinder;Var;Labelg
j c(B1;:::;Bk)B(b1; : : : ; bk) constructed term (k � 0)

t ::= parse results

b term
j wrong type error

M ::= dynamic environments

� empty environment
j M;x = b term binding

An input stream is a sequence of identi�ers, some of which may have been
declared to be keywords in g (e.g., "if", "("). We use the notation K(g) to
denote the set of keywords de�ned in productions of g. The parsing rules for
terminals use K(g) to distinguish between keywords and identi�ers appearing
in the input stream.
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g;M ` hs; iiunit ) hs; iiunit

g;M ` hx :: s; ii "x" ) hs; iiunit

g;M ` hx :: s; ii ide(B) ) hs; ii xB x 62 K(g) B 2 fBinder,Var,Labelg

g;M ` hs; ii local ) hs; i+ 1i xiBinder

g;M ` hs; iiglobal(x) ) hs; iixV ar

g;M;x = t;M 0

` hs; ii x ) hs; ii t x 62 Dom(M 0)

g;M ` hs; ii x ) hs; iiwrong x 62 Dom(M)

g;M ` hs; ii p1 ) hs
0; i0i t t 6= wrong

g;M ` hs0; i0i p2 ) hs
00; i00i t0

g;M ` hs; ii p1 p2 ) hs
00; i00i t0

g;M ` hs; ii p1 ) hs
0; i0iwrong

g;M ` hs; ii p1 p2 ) hs
0; i0iwrong

g;M ` hs; ii p1 ) hs
0; i0i t t 6= wrong

g;M;x = t ` hs0; i0i p2 ) hs
00; i00i t0

g;M ` hs; ii x = p1 p2 ) hs
00; i00i t0

g;M ` hs; ii p1 ) hs
0; i0iwrong

g;M ` hs; ii x = p1 p2 ) hs
0; i0iwrong

g;M ` hs; ii p1 ) hs
0; i0i t

g;M ` hs; ii p1 j p2 ) hs
0; i0i t

g;M ` hs; ii p2 ) hs
0; i0i t

g;M ` hs; ii p1 j p2 ) hs
0; i0i t

g;M ` hsj�1; ij�1i pj ) hsj; iji tj 1 � j � k

g;M ` hs0; i0i c(B1;:::;Bk)B
(p1; : : : ; pk) ) hsk; iki c(B1;:::;Bk)B

(t1; : : : ; tk)

g;M ` hsj�1; ij�1i pj ) hsj; iji tj 1 � j � k

(x : (x1:B1; : : : ; xk:Bk)B)==p 2 g

g;� x1 = t1 : : : xk = tk ` hski p ) hs
0; i0i t

g;M ` hs0; i0i x(p1; : : : ; pk) ) hs
0; i0i t

g;M ` hsj�1; ij�1i pj ) hsj; iji tj 1 � j � k

(x : (x1:B1; : : : ; xk:Bk)B==p) 62 g
g;� x1 = t1 : : : xk = tk ` hski p ) hs

0; i0i t

g;M ` hs0; i0ix(p1; : : : ; pk) ) hs
0; i0iwrong

Figure 3: Parse rules for terms
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The sort of a term can be determined without reference to an environment:

unit : Unit xB : B xiB : B
b1 : B1 : : : bk : Bk

c(B1;:::;Bk)B(b1; : : : ; bk) : B

A dynamic environmentM is said to match a static environment L (written
asM j= L) if its term bindings have names and sorts compatible with the names
and sorts in L.

� j= �
M j= L b : B

M;x = b j= L; x : B

The following theorem relates the dynamic parse rules in �gure 3 with the
static type rules presented in subsection 4.1.

Theorem 1 (Parsing respects typing) If g, E, L, p, M , s, s0, i, and i0 are such

that

� � ` g :: E

� � ` g ok

� E;L ` p : B

� M j= L

� g;M ` hs; ii p ) hs0; i0i t

then t : B.

The proof of this theorem can be found in the appendix. In particular, if a non-
parameterized (L =M = �) parser with result sort B for a root production p0
de�ned in a type-correct grammar g consumes the full input stream s (returning
the empty input stream �), the parse result t is guaranteed to be of sort B:

Corollary 1 If

� � ` g :: E

� � ` g ok,

� E;� ` p0 : B, and

� g;� ` hs; 1i p0 ) h�; i
0i t

then t : B and t 6= wrong.

19



It should be noted that the parse rules in �gure 3 are non-deterministic due
to the rules given for the choice operator p1 j p2. In the actual implementation,
each choice operator in a grammar g is replaced (at grammar-de�nition time)
by a choice construct of the form T1 : p1 j T2 : p2. The set Ti � K(g) [ fideg
of possible start tokens for phrases accepted by pi is called the director set for
pi. The re�ned parse rules perform a deterministic choice based on the current
input token:

Token(x; g) =

�
"x" if "x" 2 K
ide otherwise

g;M ` hx :: s; ii p1 ) hs
0; i0i t Token(x; g) 2 T1

g;M ` hx :: s; iiT1 : p1 j T2 : p2 ) hs
0; i0i t

g;M ` hx :: s; ii p2 ) hs
0; i0i t Token(x; g) 2 T2

g;M ` hx :: s; iiT1 : p1 j T2 : p2 ) hs
0; i0i t

The computation of the director sets is accomplished by standard algorithms
developed for non-incremental LL(1) parsers in time linear to the size of the
grammar [WG85]. A grammar is rejected as ambiguous if it contains a produc-
tion T1 : p1 j T2 : p2 where T1 \ T2 6= fg.

4.3 Pattern-based Production Generation

In the previous subsection we did not consider the parsing of productions de-
�ned by means of patterns enclosed in <<>>. In this subsection we describe a
translation of such productions into simpler ones, so that they are covered by
the parse rules and the theorem given in the previous subsection.

A pattern x<<s>> is a pair of a token stream s and a non-terminal x that
de�nes which production is to be used to parse s. The result of parsing s is itself
a production p that neither contains terminal productions that depend on input
tokens nor choice operators (p1 j p2). If p is later executed within an environment
that de�nes bindings for the pattern variables occurring in s, then p performs
the necessary steps to instantiate correctly (macro-expand) the pattern. These
steps include de�ning term bindings, performing term constructor applications,
and introducing fresh variables, where necessary.

We describe the e�ect of parsing a pattern p<<s>> with the notation

g;L;R ` hsi p ) hs0i p0

This formula states that production p when executed in environment g;L;R
starting with a token stream s returns a token stream s0 (the unread tokens of
s) and a constructed production p0.

The environment L contains the names and sorts of the pattern variables
bound in the scope enclosing the pattern. For example, L contains �; x :
Binder; a : Term; b : Term for the pattern term<<: : :>> in the following gram-
mar:
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g;L;R ` hsiunit ) hsiunit

g;L;R ` hx :: si \x00 ) hsiunit

g;L;R ` hx :: si ide(Var) ) hsiglobal(x) x 62 K(g); x 62 Dom(L)

g;L;x : B;L0;R ` hx :: si ide(B) ) hsix x 62 K(g); x 62 Dom(L0)

g;L;R ` hsi local ) hsi local

g;L;R ` hsiglobal(x) ) hsiglobal(x)

g;L;R; x x0;R0 ` hsi x ) hsi x0 x 62 Dom(R0)

g;L;R ` hsi p1 ) hs
0i p01

g;L;R ` hs0i p2 ) hs
00i p02

g;L;R ` hsi p1 p2 ) hs
00i p01 p

0

2

g;L;R ` hsi p1 ) hs
0i p01

g;L;R x x0 ` hs0i p2 ) hs
00i p02 x0 62 Dom(L) [Ran(R)

g;L;R ` hsix = p1 p2 ) hs
00ix0 = p01 p

0

2

g;L;R ` hsi p1 ) hs
0i p01

g;L;R ` hsi p1 j p2 ) hs
0i p01

g;L;R ` hsi p2 ) hs
0i p02

g;L;R ` hsi p1 j p2 ) hs
0i p02

g;L;R ` hsj�1i pj ) hsj ; i p
0

j 1 � j � k

g;L;R ` hs0i c(B1;:::;Bk)B
(p1; : : : ; pk) ) hski c(B1;:::;Bk)B

(p01; : : : ; p
0

k)

g;L;R ` hsj�1i pj ) hsj ; i p
0

j 1 � j � k

R0 = R;x1  x01; : : : ; xk  x0k x0i 62 Dom(E) [Ran(R) x0i 6= x0j for i 6= j

g;L;R0 ` hski p ) hs
0i p0 (x : (x1:B1; : : : ; xk:Bk)B==p) 2 g

g;L;R ` hs0ix(p1; : : : ; pk) ) hs
0ix01 = p01 : : : x0k = p0k p0

Figure 4: Parse rules for patterns in incremental grammar de�nitions
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grammar

simpleTerm:Term j==

"let" x=ide "=" a=term "in" b=term => term<<(fun(x) b)(a)>>

end

The notation g;L;R ` hsi p ) hs0i p0 uses a set R of renamings to avoid name
conicts between the pattern variables in L and the term variables introduced
during pattern parsing:

R ::= � empty renaming
j R; x x0 rename x by x0

When R = �; x1  x01; : : : ; xn x0n, we write Ran(R) for the set fx
0

1; : : : ; x
0

ng.
The complete set of rules for parsing patterns is given in �gure 4. As

an example, here is the production p0 that results from parsing the pattern
term<<(fun(x) b)(a)>> in the environment L = �; x : Binder; a : Term; b :
Term using the grammar de�ned in �gure 2:

a1=(x1=x

a2=(a3=(a4=b

a4)

b2=(a3)

b2)

mkTermFun(x1 a2))

b1=(b3=(a5=(a6=a

a6)

b4=(a5)

b4)

a4=mkTermApp(a1 b3)

a4)

b1

In this example, we use subscripted identi�ers for fresh term variable identi�ers
introduced during the translation process. Furthermore, we use brackets and
indentation to indicate the scope of these variable identi�ers. By removing
redundant intermediate bindings, the generated production can be simpli�ed to
mkTermApp(mkTermFun(x b) a), as expected.

The following theorem states that the successful parsing of a pattern p<<s>>

using a production p of a type-correct grammar g yields a well-typed production.

Theorem 2 If g, E, L1, L2, L3, p, B, and R are such that

� � ` g :: E

� � ` g ok

� E;L3 ` p : B where L3 = �; x1 : B1; : : : ; xn : Bn
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� R = �; x1  x01; : : : ; xn  x0n with x0i 6= x0j for i 6= j and Ran(R) \
Dom(L1) = �

� g;L1;R ` hsi p ) hs
0

i p0

then E;L1; L2 ` p
0 : B.

The proof can be found in the appendix. By specializing this theorem to a
non-parameterized production p0 with result sort B, we obtain that a pattern
p0<<s>> in an arbitrary local environment L can be translated into an equivalent
production p0 that has the result sort B also:

Corollary 2 If

� � ` g :: E

� � ` g ok

� E;� ` p0 : B

� g;L;� ` hsi p0 ) h�i p
0

then E;L;� ` p0 : B.

5 An Extensible Parser Package

Extensible grammars as described in this paper were developed in the context of
the Tycoon database programming environment [Mat93]. However, as sketched
in �gure 1, the extensible grammar package was implemented in a way that
factors out all target-language dependencies (the base sorts Bi, the abstract
syntax tree constructors c(B1;:::;Bk)B , and the renaming operation on abstract
syntax trees) from the package implementation.

A token stream s is represented as an object with a local state and methods
to inspect the current input token and to advance to the next input token.

A parser for terms of a sort B is represented as a function that takes a
scanner object and returns a typed abstract syntax tree; the function modi�es
the state of the scanner object and a variable counter used for generating fresh
variable identi�ers.

A grammar gi is represented as an object of an abstract data type encapsu-
lating information about the target language TL and the object language OLi
accepted by gi. The implementor of a compiler for a language with an extensible
grammar links the parser package into the compiler. A grammar for the target
language at hand is generated via calls to the parser interface. Finally, a parser
for this grammar is generated, and it is used to parse actual program input.

The following steps have to be taken to generate the grammar g0 and a
parser for the initial object language OL0. Each of these steps is implemented
by a function call to the parser package that passes the grammar as an explicit
argument.
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1. Creation of an initial (empty) grammar g0. Arguments to this operation
provide information about the tokens returned by the scanner, and func-
tions for creating fresh identi�ers. An initial grammar already contains
the names of the built-in sorts Label, Var, and Binder.

2. Addition of named sorts to g0. These sorts correspond to abstract-syntax-
tree types in the target-language compiler. For each newly de�ned sort, an
AST copy routine, an AST renaming routine, and a distinguished error
value have to be supplied. The error value is generated by the parser
package in case of parse errors.

3. Addition of named constructors to g0. Constructors correspond to func-
tions in the target-language compiler that take k � 0 typed abstract syn-
tax trees and return an aggregated syntax tree. For each constructor, the
list of its argument sorts and its result sort have to be speci�ed.

4. Addition of a concrete syntax for grammar de�nitions to g0. Target-
language implementors can either adopt the concrete syntax used in this
paper (grammar : : :end), or de�ne their own tailored syntax for the
de�nition of productions p that match the abstract syntax given in sub-
section 4.1.

5. Generation of a parser for g0. Parser generation involves calculating di-
rector sets to support e�cient LL(1) parsing. Furthermore, variable and
non-terminal references are resolved into direct table indices.

6. Parsing of a grammar extension g using the parser generated in the previ-
ous step. The grammar extension g de�nes the mapping from OL0 terms
to TL terms.

7. Extension of g0 by g.

8. Generation of a parser for the extended g0.

A parser for OLi derived from a grammar gi returns either a term of the
target language proper, or an abstract syntax tree for an incremental syntax
extension g�. In the latter case, the parser package is invoked to check the
type correctness of g� in the scope of the environment Ei established by the
current grammar gi. If this check succeeds, the extended grammar is obtained
by normalizing the grammar sequence gi; g� ; gi+1. Finally, a new parser is
generated for gi+1; this parser can then be used to parse further input in the
extended languageOLi+1.

If the parsing result is a term t of the target language, the parser package
also returns a list of variable renamings. These renamings have to be performed
by the target-language compiler in t to establish bindings to global variable
identi�ers (see subsection 3.3).
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6 Comparison with Related Work

Extensibility has been studied previously in the context of programming lan-
guages and theorem provers [Dow90]. In the early work on language extensi-
bility [Gal74, Sta75], both syntax and semantics could be modi�ed arbitrarily,
sometimes with disastrous e�ects [Chr90]. Traditional macro facilities allow only
syntax extensions. We have already discussed some of the defects of macros.
Several recent works propose improvements on macros.

Linguistic reection [SMM91, SSS+92, SSF92, Kir92] in persistent program-
ming languages has been used to add high-level (query) notations to strongly-
typed programming languages. These extensions are achieved by executing
user-de�ned code at compile time; this code transforms syntax trees returned
from the parser prior to further processing by the type checker and code gen-
erator. Our approach di�ers from this work since we are able to guarantee the
termination of compilation, even when our transformation operations are de�ned
recursively. Furthermore, we are not aware of work in the context of linguis-
tic reection to handle correctly the problematic binding situations sketched in
subsection 3.3.

Some non-persistent language implementations, like CAML and SML, inte-
grate YACC or a similar parser generator that allows them to introduce new
syntax [MR92]. If the new syntax is to be mixed with the old one, the new
syntax must be quoted in some way. Instead, we can freely intermix new and
old syntax without special quotations; it is also possible to remove existing
keywords by rede�ning non-terminals with the :== operator.

Hygienic macros [KFFD92, Koh86] have goals similar to those of our ex-
tensible grammars; these macros also work on the abstract syntax and avoid
binding anomalies. However, these macros account only for explicit (parame-
terized) macro calls and not for more liberal keyword-based syntax extensions.
Hygienic macros employ a multi-pass time-stamping algorithm to prevent vari-
able capture; this algorithm is di�erent from our one-pass renaming algorithm.
Furthermore, we do not handle quotation and antiquotation in the style of Lisp.

Gri�n [Gri88] has enumerated desirable properties of notational de�nitions
and has studied their formalization. Unlike Gri�n, who translates notations to
combinator form, we are able to handle variables bound to non-local binders
in patterns. Moreover, while Gri�n discusses abstract translations, we pro-
vide a speci�c grammar de�nition technique and an e�cient parsing algorithm.
Parsing is e�cient because it is LL(1) and because it avoids the creation of
intermediate parse trees, producing abstract syntax trees that do not require
normalization.

Bove and Arbilla [BA92] discuss how to use explicit substitutions to imple-
ment syntax extensions. Theirs is an elegant idea that may be exploited in
systems where the target compiler supports explicit substitutions. As in the
previous case, their work does not describe a parsing algorithm, but presents an
interesting theory.
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Traditionally, the most sophisticated macro-de�nition facilities have been
developed for Lisp-like languages; the regular syntactic structure of Lisp simpli-
�es programmanipulation. Recent work has extended AST macro manipulation
to syntactically complex languages. For example, Weise and Crew use a full C
language extended with patterns as a preprocessor for the C language [WC93];
their macros have syntactic types (our sorts) that guarantee the generation of
well-formed AST's. We have achieved considerable exibility in the manipula-
tion of complex languages, but without resorting to a computationally complete
macro language. This way, we can guarantee termination of the parsing phase.

7 Conclusion

Extensible grammars avoid many of the problems associated with traditional
tools for macro expansion and program rewriting, by enforcing sort constraints
at grammar-de�nition time and by respecting lexical scoping. Furthermore,
since extensible parsers introduce only a small set of new concepts, they can be
integrated with little overhead in current compilation environments.

Traditional database programming languages have a bias towards a speci�c
data model by providing built-in syntactic support tailored to the structures
and operations of that data model. In a programming environment equipped
with extensible grammars, such syntactic forms can be eliminated from the core
language de�nition and can be introduced in shared application libraries.
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Appendix

This appendix contains the proofs of our theorems.

Proof of Theorem 1

The proof is carried out by induction on the parsing derivations with the rules
in �gure 3. We treat the rules one by one:

� g;M ` hs; iiunit ) hs; iiunit

Suppose E;L ` unit : B. Then B = Unit according to the type rules for
productions. Moreover, by de�nition unit : Unit.

� g;M ` hx :: s; ii "x" ) hs; iiunit

Suppose E;L ` "x" : B. Then B = Unit according to the type rules.
Again, unit : Unit.

� g;M ` hx :: s; ii ide(B) ) hs; iixB where x 62 K(g) and
B 2 fBinder;Var;Labelg

Suppose E;L ` ide(B) : B0. According to the type rules, B0 can be only
B and matches the type of the concrete term xB : B.

� g;M ` hs; ii local ) hs; i+ 1ixiBinder

Suppose E;L ` local : B. According to the type rules, B has to be
Binder. Moreover, the term xi

Binder
has type Binder.

� g;M ` hs; iiglobal(x) ) hs; iixV ar

Suppose E;L ` global(x) : B. Sort B has to be Var. Moreover, xV ar :
Var.

� g;M;x = t;M 0 ` hs; iix ) hs; ii t where x 62 Dom(M 0)

Suppose E;L ` x : B. According to the type rules, L has to be of the
form L0; x : B;L00 such that x 62 Dom(L00). Since M j= L, b : B.

� g;M ` hs; iix ) hs; iiwrong where x 62 Dom(M )

Suppose E;L ` x : B to obtain a contradiction. According to the type
rules, x 2 Dom(L). However, since M j= L, this implies x 2 Dom(M ),
contradicting the side condition of the parsing rule.

� g;M ` hs; ii p1 p2 ) hs
00; i00i t0 where t0 6= wrong

According to the parse rules there has to be a t 6= wrong such that
g;M ` hs; ii p1 ) hs

0; i0i t and g;M ` hs0; i0i p2 ) hs
00; i00i t0. Moreover,

suppose that E;L ` p1 p2 : B
0. According to the type rules E;L ` p2 : B

0.
Applying the induction hypothesis we obtain t0 : B0.
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� g;M ` hs; ii p1 p2 ) hs
00; i00iwrong and g;M ` hs; ii p1 ) hs

0; i0iwrong

Suppose E;L ` p1 p2 : B0 to obtain a contradiction. By the type rules
E;L ` p1 : B. However, applying the induction hypothesis, this contra-
dicts the assumptions since there is no B such that wrong : B.

� g;M ` hs; ii p1 p2 ) hs
00; i00iwrong and g;M ` hs; ii p1 ) hs

0; i0i t t 6=
wrong

Suppose E;L ` p1 p2 : B0 to obtain a contradiction. By the type
rules E;L ` p2 : B0. According to the parse rules g;M ` hs0; i0i p2 )

hs00; i00iwrong. Applying the induction hypothesis leads to the false state-
ment wrong : B0.

� g;M ` hs; iix = p1 p2 ) hs
00; i00i t0 where t0 6= wrong

Suppose E;L ` x = p1 p2 : B
0. According to the type rules, it must be

that, for some B, E;L ` p1 : B and E;L; x : B ` p2 : B
0. According to

the parse rules g;M ` hs; ii p1 ) hs
0; i0i t and g;M;x = t ` hs0; i0i p2 )

hs00; i00i t0. By induction hypothesis t : B. Hence M;x = t j= L; x : B and
by applying the induction hypothesis again one establishes that t0 : B0.

� g;M ` hs; iix = p1 p2 ) hs
00; i00iwrong and

g;M ` hs; ii p1 ) hs
0; i0iwrong

Suppose E;L ` x = p1 p2 : B0 to obtain a contradiction. According to
the type rules, it must be that, for some B, E;L ` p1 : B. Applying the
induction hypothesis, this leads to a contradiction since there is no B such
that wrong : B.

� g;M ` hs; iix = p1 p2 ) hs
00; i00iwrong and

g;M ` hs; ii p1 ) hs
0; i0i t t 6= wrong

Suppose E;L ` x = p1 p2 : B
0 to obtain a contradiction. According to the

type rules, it must be that, for some B, E;L; x : B ` p2 : B
0. Applying

the induction hypothesis, this leads to a contradiction since there is no B0

such that wrong : B0.

� g;M ` hs; ii p1 j p2 ) hs
0; i0i t and g;M ` hs; ii p1 ) hs

0; i0i t

Suppose E;L ` p1 j p2 : B. According to the type rules this implies
E;L ` p1 : B. Applying the induction hypothesis to the derivation for p1
establishes t : B.

� g;M ` hs; ii p1 j p2 ) hs
0; i0i t and g;M ` hs; ii p2 ) hs

0; i0i t

Suppose E;L ` p1 j p2 : B. According to the type rules this implies
E;L ` p2 : B. Applying the induction hypothesis to the derivation for p2
establishes t : B.
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� g;M ` hs0; i0i c(B1;:::;Bk)B(p1; : : : ; pk) ) hsk; iki t where t 6= wrong

Suppose E;L ` c(B1;:::;Bk)B(p1; : : : ; pk) : B
0. The type rules imply B0 =

B 6= wrong and E;L ` pj : Bj for 1 � j � k. Moreover, the parse
rules guarantee that t is of the form c(B1;:::;Bk)B(t1; : : : ; tk) with g;M `

hsj�1; ij�1i pj ) hsj ; iji tj for 1 � j � k. Applying the induction hy-
pothesis to the derivations for p1 through pk establishes t1 : B1 : : : tk :
Bk. Using the de�nition for the types of base terms, we obtain t =
c(B1;:::;Bk)B(t1; : : : ; tk) : B and this case is settled.

� g;M ` hs0; i0ix(p1; : : : ; pk) ) hs
0; i0i t where t 6= wrong

Suppose E;L ` x(p1; : : : ; pk) : B. The type rules assert that there exist
(1) Bi such that E;L ` pi : Bi (for 1 � i � k) and (2) a non-terminal
x : S 2 E such that S = (x1:B1; : : : ; xk:Bk)B. Applying the induction
hypothesis to (1) and g;M ` hsj�1; ij�1i pj ) hsj ; iji tj , we have tj : Bj .

Suppose � ` g :: E. This implies that x as de�ned in (1) is unique in
E. Furthermore, suppose that � ` g ok. This implies that (3) E;�; x1 :
B1; : : : ; xk : Bk ` p : B. Note that M 0 � �; x1 = t1; : : : ; xk = tk j=
�; x1 : B1; : : : ; xk : Bk. Applying the induction hypothesis to (3) and
g;M 0 ` hski p ) hs

0; i0i t, we �nally have t : B.

� g;M ` hs0; i0ix(p1; : : : ; pk) ) hs
0; i0iwrong and

(x : (x1:B1; : : : ; xk:Bk)B==p) 62 g

Suppose E;L ` x(p1; : : : ; pk) : B to obtain a contradiction. The type
rules assert that there exists a non-terminal x : S 2 E such that S =
(x1:B1; : : : ; xk:Bk)B. Furthermore, suppose that � ` g :: E. This implies
together with x : S 2 E that there is a non-terminal de�nition x : S==p 2
g contradicting our initial assumption about the derivation. 2

Proof of Theorem 2

The proof is performed by induction on the parsing derivations for patterns with
the rules in �gure 4. We treat each rule in turn:

� g;L1;R ` hsiunit ) hsiunit

Suppose E;L3 ` unit : B. Then B = Unit and E;L1; L2 ` unit : B.

� g;L1;R ` hx :: si "x" ) hsiunit

Suppose E;L3 ` "x" : B. Then B = Unit and E;L1; L2 ` unit : B.

� g;L1;R ` hx :: si ide(Var) ) hsiglobal(x) and x 62 K(g); x 62 Dom(L1)

Suppose E;L3 ` ide(Var) : B. Then B = Var and E;L1; L2 ` global(x) :
Var.
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� g;L; x : B;L0;R ` hx :: si ide(B) ) hsix and x 62 K(g); x 62 Dom(L0)

Suppose R = �; x1  x01; : : : ; xn  x0n, Ran(R) \ Dom(L; x : B;L0) =
fg, L3 = �; x1 : B1; : : : ; xn : Bn, and L2 = �; x01 : B1; : : : ; x

0

n : Bn.
Furthermore, suppose E;L3 ` ide(B) : B. Since x 62 Ran(R) = Dom(L2)
it follows that E;L; x : B;L0; L2 ` x : B.

� g;L1;R ` hsi local ) hsi local

Suppose E;L3 ` local : B. Then B = Binder and E;L;L2 ` local :
Binder.

� g;L1;R ` hsiglobal(x) ) hsiglobal(x)

Suppose E;L3 ` global : B. Then B = Var and E;L1; L2 ` global : Var.

� g;L1;R; x x0; R0 ` hsix ) hsix0 x 62 Dom(R0)

Suppose L3 = L03; x : B;L003 and E;L3 ` x : B and L2 = L02; x
0 : B;L002 .

Since x0i 6= x0j in L2 it follows that x0 62 Dom(R00). Hence E;L1; L
0

2; x
0 :

B;L002 ` x
0 : B.

� g;L1;R ` hsi p1 p2 ) hs
00i p01 p

0

2

Suppose E;L3 ` p1 p2 : B
0, that is, E;L3 ` p1 : B and E;L3 ` p2 : B

0.
We know that g;L1;R ` hsi p1 ) hs

0i p01 and g;L1;R ` hs
0i p2 ) hs

00i p02.
Applying the induction hypothesis givesE;L1; L2 ` p

0

1 : B and E;L1; L2 `

p02 : B
0. Hence via the type rules E;L1; L2 ` p

0

1 p
0

2 : B
0.

� g;L1;R ` hsix = p1 p2 ) hs
00ix0 = p01 p

0

2

Suppose E;L3 ` x = p1 p2 : B0, that is, (1) E;L3 ` p1 : B and
(2) E;L3; x : B ` p2 : B0. Using the induction hypothesis, (1) and
g;L1;R ` hsi p1 ) hs

0i p01 establish (3) E;L1; L2 ` p01 : B. Since the
environments R0 = R; x : B and L03 = L3; x : B and L02 = L2; x

0 : B
satisfy Ran(R) \ L1 = fg and x0 62 Dom(L1) [ Ran(R), we can apply
the induction hypothesis to g;L1;R; x  x0 ` hs0i p2 ) hs

00i p02 and (2)

giving E;L1; L2; x
0 : B ` p02 : B0. Using (3) the type rules establish

E;L1; L2 ` p1 p
0

2 : B
0.

� g;L1;R ` hsi p1 j p2 ) hs
0i p01 and g;L1;R ` hsi p1 ) hs

0i p01

Suppose E;L3 ` p1 j p2 : B. Because of the type rules E;L3 ` p1 : B.
Using the induction hypothesis for g;L1;R ` hsi p1 ) hs

0i p01 we obtain
E;L1; L2 ` p

0

1 : B.

� g;L1;R ` hsi p1 j p2 ) hs
0i p02 and g;L1;R ` hsi p2 ) hs

0i p02

Analogous to the previous case.
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� g;L1;R ` hs0i c(B1;:::;Bk)B(p1; : : : ; pk) ) hski c(B1;:::;Bk)B(p
0

1; : : : ; p
0

k)

Suppose E;L3 ` c(B1;:::;Bk)B(p1; : : : ; pk) : B. Because of the type rules
E;L3 ` pj : Bj for 1 � j � k. Together with g;L1;R ` hsj�1i pj )

hsj ; i p
0

j we can apply the induction hypothesis and obtain E;L1; L2 ` pj :
Bj and thereby E;L1; L2 ` c(B1;:::;Bk)B(p

0

1; : : : ; p
0

k
) : B.

� g;L1;R ` hs0ix(p1; : : : ; pk) ) hs
0ix01 = p01 : : : x0

k
= p0

k
p0

We know that

1. g;L1;R ` hsj�1i pj ) hsj ; i p
0

j for 1 � j � k

2. R0 = R; x1  x01; : : : ; xk  x0
k

x0i 62 Dom(L1) [ Ran(R) x0i 6=
x0j for i 6= j

3. g;L1;R
0 ` hski p ) hs

0i p0

4. (x : (x1:B1; : : : ; xk:Bk)B==p) 2 g

Suppose E;L3 ` x(p1; : : : ; pk) : B. From the type rules it follows that
E;L3 ` pj : Bj for 1 � j � k. We can apply the induction hypothesis to
(1) and obtain E;L1; L2 ` p

0

j : Bj . This judgment still holds if we insert
additional fresh identi�ers x0i 62 Dom(L1)[Ran(R) into the environment,
that is, E;L1; L2; x

0

1 : B1; : : : ; x
0

j�1 : Bj�1 ` p
0

j : Bj . Assume for now that
E;L1; L2; x

0

1 : B1; : : : ; x
0

k
: Bk ` p

0 : B. This allows us to apply the type
rule for pattern variable bindings k times and we obtain E;L1; L2 ` x

0

1 =
p01 : : : x0k = p0k p

0 : B.

Now we prove that indeed E;L1; L2; x
0

1 : B1; : : : ; x
0

k
: Bk ` p

0 : B. Since
` g ) E, we have � ` g :: E and � ` g ok. Together with (4) this
establishes E;�; x1 : B1; : : : ; xk : Bk ` p : B, and hence E;L3; x1 :
B1; : : : ; xk : Bk ` p : B. Applying the induction hypothesis to (3) we get
E;L1; L2; x

0

1 : B1; : : : ; x
0

k
: Bk ` p

0 : B. 2
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