
February 9, 2003, 11:07 pm 1

Semistructured Computation

Luca Cardelli

Microsoft Research

1 Introduction
This paper is based on the observation that the areas of semistructured databases [1]
and mobile computation [3] have some surprising similarities at the technical level.
Both areas are inspired by the need to make better use of the Internet. Despite this com-
mon motivation, the technical similarities that arise seem largely accidental, but they
should still permit the transfer of some techniques between the two areas. Moreover, if
we can take advantage of the similarities and generalize them, we may obtain a broader
model of data and computation on the Internet.

The ultimate source of similarities is the fact that both areas have to deal with ex-
treme dynamicity of data and behavior. In semistructured databases, one cannot rely on
uniformity of structure because data may come from heterogeneous and uncoordinated
sources. Still, it is necessary to perform searches based on whatever uniformity one can
find in the data. In mobile computation, one cannot rely on uniformity of structure be-
cause agents, devices, and networks can dynamically connect, move around, become
inaccessible, or crash. Still, it is necessary to perform computations based on whatever
resources and connections one can find on the network.

We will develop these similarities throughout the paper. As a sample, consider the
following arguments. First, one can regard data structures stored inside network nodes
as a natural extension of network structures, since on a large time/space scale both net-
works and data are semistructured and dynamic. Therefore, one can think of applying
the same navigational and code mobility techniques uniformly to networks and data.
Second, since networks and their resources are semistructured, one can think of apply-
ing semistructured database searches to network structure. This is a well-known major
problem in mobile computation, going under the name of resource discovery.

2 Information

2.1 Representing Dynamic Information
In our work on mobility [3, 5] we have been describing mobile structures in a variety
of related ways. In all of these, the spatial part of the structure can be represented ab-
stractly as an edge-labeled tree.

For example, the following figure shows at the top left a nested-blob representation
of geographical information. At the bottom left we have an equivalent representation in
the nested-brackets syntax of the Ambient Calculus [5]. When hierarchical information
is used to represent document structures, a more appropriate graphical representation is
in terms of nested folders, as shown at the bottom right. Finally, at the top right we have
a more schematic representation of hierarchies in terms of edge-labeled trees.

2 February 9, 2003, 11:07 pm

We have studied the Ambient Calculus as a general model of mobile computation.
The Ambient Calculus has so far been restricted to edge-labeled trees, but it is not hard
to imagine an extension (obtained by adding recursion) that can represent edge-labeled
directed graphs. As it happens, edge-labeled directed graphs are also the favorite repre-
sentation for semistructured data [1]. So, basic data structures used to represent semis-
tructured data and mobile computation, essentially agree. Coincidence?

It should be stressed that edge-labeled trees and graphs are a very rudimentary way
of representing information. For example, there is no exact representation of record or
variant data structures, which are at the foundations of almost all modern programming
languages. Instead, we are thrown back to a crude representation similar to LISP’s S-
expressions.

The reason for this step backward, as we hinted earlier, is that in semistructured da-
tabases one cannot rely on a fixed number of subtrees for a given node (hence no
records) and one cannot even rely of a fixed set of possible shapes under a node (hence
no variants). Similarly, on a network, one cannot rely on a fixed number of machines
being alive at a given node, or resources being available at a given site, nor can one rule
out arbitrary network reconfiguration. So, the similarities in data representation arise
from similarities of constraints on the data.

In the rest of this section we discuss the representation of mobile and semistructured
information. We emphasize the Ambient Calculus view of data representation, mostly
because it is less well known. This model arose independently from semistructured da-
ta; it can be instructive to see a slightly different solution to what is essentially the same
problem of dynamic data representation.

2.2 Information Expressions and Information Trees
We now describe in more detail the syntax of information expressions; this is a subset
of the Ambient Calculus that concerns data structures. The syntax is interpreted as rep-
resenting finite-depth edge-labeled unordered trees; for short: information trees.

The tree that consists just of a root node is written as the expression 0:

Earth
US EU

UK
...

Earth[US[...] | EU[UK[...] | ...] ...]

Earth

US EU

UK

...

...
...

...

Geographical maps Edge-labeled trees

Expressions
Folders

Earth

...

February 9, 2003, 11:07 pm 3

A tree with a single edge labeled n from the root, leading to a subtree represented by
P, is written as the expression n[P]:

A tree obtained by joining two trees, represented by P and Q, at the root, is written
as the expression P | Q.

A tree obtained by joining an infinite number of equal trees, represented by P, at the
root, is written as the expression !P. (This can be used to represent abstractly unbounded
resources.)

The description of trees in this syntax is not unique. For example the expressions
P | Q and Q | P represent the same (unordered) tree; similarly, the expressions 0 | P and
P represent the same tree. More subtle equivalences govern !. We will consider two ex-
pression equivalent when they represent the same tree.

The Ambient Calculus uses these tree structures to describe mobile computation,
which is seen as the evolution of tree structures over time. The following figure gives,
first, a blob representation of an agent moving from inside node a to inside node b, with
an intermediate state where the agent is traveling over the network.

Then, the same situation is represented as transformation of information trees, where hi-
erarchy represents containment and the root is the whole network. Finally, the same sit-

0 represents

n

P

n[P] represents

P | Q represents P Q

!P represents ...P P

agent
a b a b

agentagent
a b

� �

a b

agent
�

a b
agent

�

a b

agent

a[agent[...]] | b[0] � �a[0] | agent[...] | b[0] a[0] | b[agent[...]]

4 February 9, 2003, 11:07 pm

uation is represented again as transformation of information expressions. The Ambient
Calculus has additional syntax to represent the actions of the agent as it travels from a
to b (indicated here by “...”); we will discuss these actions later.

Note that information trees are not restricted to be finite-branching. For example,
the following information tree describes, in part, the city of Cambridge, the Cambridge
Eagle pub, and within the pub two empty chairs and an unbounded number of full glass-
es of beer.

This tree can be represented by the following expression:

Cambridge[Eagle[chair[0] | chair[0] | !glass[pint[0]]] | ...]

Here is another example: an expression representing the (invalid!) fact that in Cam-
bridge there is an unlimited number of empty parking spaces:

Cambridge[!ParkingSpace[0] | ...]

Equivalence of information trees can be characterized fairly easily, even in presence
of infinite branching. Up to the equivalence relation induced by the following set of
equations, two information expressions are equivalent if and only if they represent the
same information tree [9]. Because of this, we will often confuse expressions with the
trees they represent.

P | Q = Q | P !(P | Q) = !P | !Q
(P | Q) | R = P | (Q | R) !0 = 0
P | 0 = P !P = P | !P

!P = !!P

In contrast to our information trees, the standard model of semistructured data con-
sists of finitely-branching edge-labeled unordered directed graphs. There is no notion
of unbounded resource there, but there is a notion of node sharing that is not present in
the Ambient Calculus. It should be interesting to try and combine the two models; it is
not obvious how to do it, particularly in terms of syntactical representation. Moreover,
the rules of equivalence of graph structures are more challenging; see Section 6.4 of [1].

2.3 Ambient Operations
The Ambient Calculus provides operations to describe the transformation of data. In the
present context, the operations of the Ambient Calculus may look rather peculiar, be-
cause they are intended to represent agent mobility rather than data manipulation. We
present them here as an example of a set of operations on information trees; other sets

chair chair
...

Eagle

Cambridge

...

...

pint pint pint
glass glass glass

......

February 9, 2003, 11:07 pm 5

of operations are conceivable. In any case, their generalization to directed graphs does
not seem entirely obvious.

Information expressions and information trees are a special case of ambient expres-
sions and ambient trees; in the latter we can represent also the dynamic aspects of mo-
bile computation and mutable information. An ambient tree is an information tree
where each node in the tree may have an associated collection of concurrent threads that
can execute certain operations. The fact that threads are associated to nodes means that
the operations are “local”: they affect only a small number of nodes near the thread node
(typically three nodes). In our example of an agent moving from a to b, there would usu-
ally be a thread in the agent node (the node below the agent edge) that is the cause of
the movement.

Therefore, the full Ambient Calculus has both a spatial and a temporal component.
The spatial component consists of information trees, that is, semistructured data. The
temporal component includes operations that locally modify the spatial component.
Rather than giving the syntax of these operations, we describe them schematically be-
low. The location of the thread performing the operations is indicated by the thread
icon.

The operation in n, causes an ambient to enter another ambient named n (i.e., it caus-
es a subtree to slide down along an n edge). The converse operation, out n, causes an
ambient to exit another ambient named n (i.e., it causes a subtree to slide up along an n
edge). The operation open n opens up an ambient named n and merges its contents (i.e.,
it collapses an edge labeled n); these contents may include threads and subtrees. Finally,
the spawning operation creates a new configuration within the current ambient (i.e., it
creates a new tree and merges its root with the current node).

a b

agent

� thread

in n
n

�

n

�
�

out n
n

�

n

�
�

6 February 9, 2003, 11:07 pm

It should be clear that, by strategically placing agents on a tree, we can rearrange,
collapse, and expand sections of the tree at will.

2.4 Summary
We have seen that there are some fundamental similarities of data representation in the
areas of semistructured data and mobile computation. Moreover, in the case of mobile
computation, we have ways of describing the manipulation of data. (In semistructured
database, data manipulation is part of the query language, which we discuss later.)

3 Data Structures
We discuss briefly how traditional data structures (records and variants) fit into the sem-
istructured data and ambients data models.

3.1 Records
A record r is a structure of the form {l1=v1, ..., ln=vn}, where li are distinct labels and vi

are the associated values; the pairs li,vi are called record fields. Field values can be ex-
tracted by a record selection operation, r.li, by indexing on the field labels.

Semistructured data can naturally represent record-like structures: a root node rep-
resents the whole record, and for each field li=vi, the root has an edge labeled li leading
to a subtree vi. Record fields are unordered, just like the edges of our trees. However,
semistructured data does not correspond exactly to records: labels in a record are
unique, while semistructured data can have any number of edges with the same label
under a node. Moreover, records usually have uniform structure throughout a given col-
lection of data, while there is no such uniformity on semistructured data.

It is interesting to compare this with the representation of records in the Ambient
Calculus. There, we represent records {l1=v1, ..., ln=vn} as:

r[l1[... v1 ...] | ... | ln[... vn ...]]

where r is the name (address) of the record, which is used to name an ambient r[...]
representing the whole record. This ambient contains subambients l1[...] ... ln[...] repre-
senting labeled fields (unordered because | is unordered). The field ambients contain the
field values v1, ..., vn and some machinery (omitted here) to allow them to be read and
rewritten.

However, ambients represent mobile computation. This means that, potentially,

open nn
� �

�

spawn P� �

P
�

February 9, 2003, 11:07 pm 7

field subambients li[...] can take off and leave, and new fields can arrive. Moreover, a
new field can arrive that has the some label as an existing field. In both cases, the stable
structure of ordinary records is destroyed.

3.2 Variants
A variant v is a structure of the form [l=v], where l is a label and v is the associated val-
ue, and where l is restricted to be a member of a finite set of labels l1 ... ln. A case anal-
ysis operation can be used to determine which of these labels is present in the variant,
and to extract the associated value.

A variant can be easily represented in semistructured data, as an edge labeled l lead-
ing to a subtree v, with the understanding that l is a unique edge of its parent node, and
that l is a member of a finite collection l1 ... ln. But the latter restrictions are not enforced
in semistructured data. A node meant to represent a variant could have zero outgoing
edges, or two or more edges with different labels, or even two or more edges with the
same label, or an edge whose label does not belong to the intended set. In all these sit-
uations, the standard case analysis operation becomes meaningless.

A similar situation happens, again, in the case of mobile computation. Even if the
constraints of variant structures are respected at a given time, a variant may decide to
leave its parent node at some point, or other variants may come to join the parent node.

3.3 Summary
We have seen that fundamental data structures used in programming languages be-
comes essentially meaningless both in semistructured data and in mobile computation.
We have discussed the untyped situation here, but this means in particular that funda-
mental notions of types in programming languages become inapplicable. We discuss
type systems next.

4 Type Systems

4.1 Type Systems for Dynamic Data
Because of the problems discussed in the previous section, it is quite challenging to de-
vise type systems for semistructured data or mobile computation. Type systems track
invariants in the data, but most familiar invariants are now violated. Therefore, we need
to find weaker invariants and weaker type systems that can track them.

In the area of semistructured data, ordinary database schemas are too rigid, for the
same reasons that ordinary type systems are too rigid. New approaches are needed; for
example, union types have been proposed [2]. Here we give the outline of a different
solution devised for mobile computation. Our task is to find a type system for the infor-
mation trees of Section 2, subject to the constraint that information trees can change dy-
namically, and that the operations that change them must be typeable too.

4.2 A Type System for Information Trees
The type system we present here may appear to be very weak, in the sense of imposing
very few constraints on information trees. However, this appearance is deceptive: with-
in this type system, when applied to the full Ambient Calculus, we can represent stan-

8 February 9, 2003, 11:07 pm

dard type systems for the λ-calculus and the π-calculus [6]. Moreover, more refined
type systems for mobility studied in [4] enforce more constraints by forcing certain sub-
structures to remain “immobile”. Here we give only an intuitive sketch of the type sys-
tem; details can be found in [6].

The task of finding a type systems for information trees is essentially the same as
the task of finding a type system for ordinary hierarchical file systems. Imagine a file
system with the following constraints. First, each folder has a name. Second, each name
has an associated data type (globally). Third, each folder of a given name can contain
only data of the type associated with its name. Fourth, if there is a thread operating at a
node, it can only read and write data of the correct type at that node. Fifth, any folder
can contain any other kind of folder (no restrictions).

In terms of information trees, these rules can be depicted as follows. Here we add
the possibility that the nodes of information tree may contain atomic data (although in
principle this data can also be represented by trees):

Next, we need to examine the operations described in section 2.3 (or any similar set
of operations) to make sure they can be typed. The type system can easily keep track of
the global associations of types to names. Moreover, we need to type each thread ac-
cording to the type of data it can read, write, or merge (by performing open) at the cur-
rent node.

The in and out operations change the structure of the tree (which is not restricted by
the type system) but do not change the relationship between an edge and the contents of
the node below it; so no type invariant is violated. The open operation, though, merges
the contents of two nodes. Here the type system must guarantee that the labels above
those two nodes have the same type; this can be done relatively easily, by keeping track
of the type of each thread, as sketched above. Finally, the spawn operation creates a new
subtree, so it must simply enforce the relationship between the edges it creates and the
attached data.

This is a sensible type system in the sense that it guarantees well-typed interactions:
any process that reads or writes data at a particular node (i.e., inside a particular folder)
can rely on the kind of data it will find there. On the other hand, this type system does
not constrain the structure of the tree, therefore allowing both heterogeneity (for semi-
structured data) and mutability (for mobile computation).

Note also that this type system does not give us anything similar to ordinary record
types. Folder types are both weaker than record types, because they do not enforce uni-
formity of substructures, and stronger, because they enforce global constraints on the
typing of edges.

n:T
� only atomic data of type T at this node

all n edges have type T

arbitrary subtree

February 9, 2003, 11:07 pm 9

4.3 Summary
Because of the extreme dynamicity present both in semistructured data and in mobile
computation, new type systems are needed. We have presented a particular type system
as an example of possible technology transfers: we have several ready-made type sys-
tems for mobile computation that could be applicable to semistructured data.

5 Queries
Semistructured databases have developed flexible ways of querying data, even though
the data is not rigidly structured according to schemas [1]. In relational database theory,
query languages are nicely related to query algebras and to query logics. However, que-
ry algebras and query logics for semistructured database are not yet well understood.

For reasons unrelated to queries, we have developed a specification logic for the
Ambient Calculus [7]. Could this logic, by an accident of fate, lead to a query language
for semistructured data?

5.1 Ambient Logic
In classical logic, assertions are simply either true or false. In modal logic, instead, as-
sertions are true or false relative to a state (or world). For example, in epistemic logic
assertions are relative to the knowledge state of an entity. In temporal logic, assertions
are relative to the execution state of a program. In our Ambient Logic, which is a modal
logic, assertions are relative to the current place and the current time.

As an example, here is a formula in our logic that makes an assertion about the shape
of the current location at the current time. It is asserting that right now, right here, there
is a location called Cambridge that contains at least a location called Eagle that contains
at least one empty chair (the formula 0 matches an empty location; the formula T
matches anything):

Cambridge[Eagle[chair[0] | T] | T]

This assertion happens to be true of the tree shown in Section 2.2. However, the truth
of the assertion will in general depend on the current time (is it happy hour, when all
chairs are taken?) and the current location (Cambridge England or Cambridge Mass.?).

Formulas of the Ambient Logic
η

�, � : Φ ::=
T
¬�

� ∨ �

a name n or a variable x

true
negation
disjunction

0
η[�]
� | �
��

��

void
location
composition
somewhere modality
sometime modality

10 February 9, 2003, 11:07 pm

More generally, our logic includes both assertions about trees, such as the one
above, and standard logical connectives for composing assertions. The following table
summarizes the formulas of the Ambient Logic. The first three lines give classical prop-
ositional logic. The next three lines describe trees. Then we have two modal connective
for assertions that are true somewhere or sometime. After the two adjunctions (dis-
cussed later) we have quantification over names, giving us a form of predicate logic; the
quantified names can appear in the location and location adjunct constructs.

5.2 Satisfaction
The exact meaning of logical formulas is given by a satisfaction relation connecting a
tree with an formula. The term satisfaction comes from logic; for reasons that will be-
come apparent shortly, we will also call this concept matching. The basic question we
consider: is this formula satisfied by this tree? Or: does this tree match this formula?

The satisfaction relation between a tree P (actually, an expression P representing a
tree) and a formula � is written:

P � �

For the basic assertions on trees, the satisfaction/matching relation can be described
as follows; for graphical effect we relate tree shapes to formulas:

• 0: here now there is absolutely nothing:

• n[�]: here now there is one edge called n, whose descendant satisfies the formula �:

• � | �: here now there are exactly two things next to each other, one satisfying � and
one satisfying �:

• ��: somewhere now, there is a place satisfying �:

�@η
���

�x.�

location adjunct
composition adjunct
universal quantification over names

matches 0

n

P

n[�]matches if P matches �.

� | �matches if P matches ��and Q matches �QP
(or if P matches ��and Q matches �)

P
��matches if P matches ��(i.e., there must be a

subtree P that matches �)

February 9, 2003, 11:07 pm 11

• ��: here sometime, there is a thing satisfying �, after some reductions:

The propositional connectives and the universal quantifier have fairly standard in-
terpretations. A formula ¬��is satisfied by anything that does not satisfy �. A formula
� ∨ ��is satisfied by anything that satisfies either ��or �. Anything satisfies the for-
mula T, while nothing satisfies its negation, F, defined as ¬T. A formula �x.� is satis-
fied by a tree P if for all names n, the tree P satisfies � where x is replaced by n.

Many useful derived connectives can be defined from the primitive ones. Here is a
brief list:

• Normal Implication: ��� � � ¬��∨ �. This is the standard definition, but note
that in our modal logic this means that P matches ��� � if whenever P matches �
then the same P matches � at the same time and in the same place. As examples,
consider Borders[T] � Borders[Starbucks[T] | T], stating that a Borders bookstore
contains a Starbucks shop, and (NonSmoker[T] | T) � (NonSmoker[T] | Smoker[T]
| T), stating that next to a non-smoker there is a smoker.

• Everywhere: �� � ¬�¬�. What is true everywhere? Not much, unless we
qualify it. We can write �(� � �) to mean that everywhere ��is true, � is true as
well. For example, US[�(Borders[T] � Borders[Starbucks[T] | T])].

• Always: �� � ¬�¬�. This can be used to express temporal invariants, such as:
�Pisa[LeaningTower[T] | T].

• Parallel Implication: � |� � � ¬(� | ¬�). This means that it is not possible to
split the root of the current tree in such a way that one part satisfies ��and the other
does not satisfy �. In other words, every way we split the root of the current tree, if
one part satisfies �, then the other part must satisfy �. For example, Bath[�(Non-
Smoker[T] |� Smoker[T] | T)] means that at the Bath pub, anywhere there is a non-
smoker there is, nearby, a smoker. Note that parallel implication makes the defini-
tion of this property a bit more compact than in the earlier example about smokers.

• Nested Implication: n[��] � ¬n[¬�]. This means that it is not possible that the
contents of an n location do not satisfy �. In other words, if there is an n location,
its contents satisfy �. For example: US[�Borders[�Starbucks[T] | T]]; again, this
is a bit more compact than the previous formulation of this example.

5.3 Adjunctions
The adjunction connectives, ����and �@n, are of special interest; they are the logical
inverses, in a certain sense, of � | ��and n[�] respectively. In ordinary logic, we have
a fundamental adjunction between conjunction and implication given by the property:
�∧��entails � iff ��entails ���. Similarly, in our logic we have that � | ��entails �

P ��matches

�� � and P’ matches�� if P P’

12 February 9, 2003, 11:07 pm

iff ��entails ���, and that n[�]�entails � iff ��entails �@n. We now explore the ex-
plicit meaning of these adjunctions.

The formula ����means that the tree present here and now satisfies the formula �
when it is merged at the root with any tree that satisfies the formula �. We can think of
this formula as a requirement/guarantee specification: given any context that satisfies
�, the combination of that context with the current tree will satisfy �.

For example, consider a representation of a fish consisting of a certain structure (begin-
ning with fish[...]), and a certain behavior. A prudent fish would satisfy the following
specification, stating that even in presence of bait, the bait and the fish remain separate:

fish[...] � bait[T] ���(fish[T] | bait[T])

On the other hand, a good bait would satisfy the following specification, stating that in
presence of a fish, it is possible that the fish will eventually ingest the bait:

bait[...] � fish[T] ���fish[bait[T] | T]

These two specifications are, of course, incompatible. In fact, it is possible to show
within our logic that, independently of any implementation of fish and bait, the compo-
sition of the fish spec with the bait spec leads to a logical contradiction.

The formula �@n�means that the tree present here and now satisfies the formula �
when it is placed under an edge named n. This is another kind of requirement/guarantee
specification, regarding nested contexts instead of parallel contexts: even when
"thrown" inside an n context, the current tree will manage to satisfy the property �.

For example, an aquarium fish should satisfy the following property, stating that the fish
will survive when placed in a (persistent) tank:

(�tank[fish[T] | T]) @ tank

5.4 From Satisfaction to Queries
A satisfaction relation, such as the one defined in the previous section, is not always de-
cidable. However, in our case, if we rule out the !P operator on trees, which describes
infinite configurations, and also the ��� formulas, which involve a quantification over
an infinite set of trees, then the problem of whether P � ��becomes decidable [7]. A
decision procedure for such a problem is also called a modelchecking algorithm. Such

if for all that match � we have that matches �

matches ���

QP

P

Q

matches �@n if matches �P
n

P

February 9, 2003, 11:07 pm 13

an algorithm implements essentially a matching procedure between a tree and a formu-
la, where the result of the match is just success of failure.

For example, the following match succeeds. The formula can be read as stating that
there is an empty chair at the Eagle pub; the matching process verifies that this fact
holds in the current situation:

Eagle[chair[John[0]] | chair[Mary[0]] | chair[0]]
� Eagle[chair[0] | T]

More generally, we can conceive of collecting information during the matching pro-
cess about which parts of the tree match which parts of the formula. Further, we can en-
rich formulas with markers that are meant to be bound to parts of the tree during
matching; the result of the matching algorithm is then either failure or an association of
formula markers to the trees that matched them.

We thus extend formulas with matching variables, �, which are often placed where
previously we would have placed a T. For example by matching:

Eagle[chair[John[0]] | chair[Mary[0]] | chair[0]]
� Eagle[chair[�] | T]

we obtain, bound to �, either somebody sitting at the Eagle, or the indication that there
is an empty chair. Moreover, by matching:

Eagle[chair[John[0]] | chair[Mary[0]] | chair[0]]
� Eagle[chair[(¬0)∧�] | T]

we obtain, bound to �, somebody (not 0) sitting at the Eagle. Here the answer could be
either John[0] or Mary[0], since both lead to a successful global match. Moreover, by
using the same variable more than once we can express constraints: the formula Ea-
gle[chair[(¬0)∧�] | chair[�] | T] is successfully matched if there are two people with
the same name sitting at the Eagle.

These generalized formulas that include matching variables can thus be seen as que-
ries. The result of a successful matching can be seen as a possible answer to a query,
and the collection of all possible successful matches as the collection of all answers.

For serious semistructured database applications, we need also sophisticated ways
of matching names (e.g. with wildcards and lexicographic orders) and of matching
paths of names. For the latter, though, we already have considerable flexibility within
the existing logic; consider the following examples:

• Exact path. The formula n[m[p[�]] | T] means: match a path consisting of the names
n, m, p, and bind � to what the path leads to. Note that, in this example, other paths
may lead out of n, but there must be a unique path out of m and p.

• Dislocated path. The formula n[�(m[�] | T)] means: match a path consisting of a
name n, followed by an arbitrary path, followed by a name m; bind � to what the
path leads to.

• Disjunctive path. The formula n[p[�]] ∨ m[p[�]] means: bind ��to the result of fol-
lowing either a path n,p, or a path m,p.

14 February 9, 2003, 11:07 pm

• Negative path. The formula �m[¬(p[T] | T) | q[�]] means: bind �� to anything
found somewhere under m, inside a q but not next to a p.

• Wildcard and restricted wildcard. m[�y.y≠n ∧ y[�]] means: match a path consisting
of m and any name different from n, and bind � to what the path leads to. (Inequality
of names can be expressed within the logic [7]).

5.5 Adjunctive Queries
Using adjunctions, we can express queries that not only produce matches, but also re-
construct a results.

Consider the query:

m[�@n]

This is matched by a tree m[P] if P matches �@n. By definition of P matching �@n,
we must verify that n[P] matches �. The latter simply causes the binding of � to n[P],
and we have this association as the result of the query. Note that n[P] is not a subtree of
the original tree: it was constructed by the query process. A similar query,
�m[�@q@n], means: if somewhere there is an edge m, wrap its contents P into
q[n[P]], and return that as the binding for �.

Consider now the query

n[0]��

We have that P matches n[0]�� if for all Q that match n[0], P | Q matches �. This im-
mediately gives a result binding of P | Q for �. But what is Q? Fortunately there is only
one Q that matches the formula n[0], and that is the tree n[0]. So, this query has the fol-
lowing meaning: compose the current tree with n[0], and give that as the binding of �.
Note, again, that this composition is not present in the original tree: it is constructed by
the query. In this particular case, the infinite quantification over all Q does not hurt.
However, as we mentioned above, we do not have a general matching algorithm for �,
so we can at best handle some special cases.

It is not clear yet how much expressive power is induced by adjunctive queries, but
the idea of using adjunctions to express query-and-recombination seems interesting,
and it comes naturally out of an existing logic. It should be noted that basic questions
of expressive power for semistructured database query languages are still open.

In other work [8], we are using a more traditional SQL-style select construct for con-
structing answers to queries. The resulting query language seems to be very similar to
XML-QL [1], perhaps indicating a natural convergence of query mechanisms. Howev-
er, it is also clear that new and potentially useful concepts, such as adjunctive queries,
are emerging from the logical point of view.

5.6 Summary
We have seen that what was originally intended as a specification logic for mobile sys-
tems can be interpreted (with some extension) as a powerful query language for semis-
tructured data. Conversely, although we have not discussed this, well-known efficient
techniques for computing queries in databases can be used for modelchecking certain
classes of mobile specifications.

February 9, 2003, 11:07 pm 15

6 Update
Sometimes we wish to change the data. These changes can be expressed by computa-
tional processes outside of the domain of databases and query languages. For example,
we can use the Ambient Calculus operations described in Section 2.3 to transform trees.
In general, if we have a fully worked-out notion of semistructured computation, instead
of just semistructured data, then we already have a notion of semistructured update.

In database domains, however, we may want to be able express data transformations
more declaratively. For example, transformations systems based on tree grammar trans-
ducers have been proposed for XML. It turns out that in our Ambient Logic we also
have ways of specifying update operations declaratively, as we now discuss.

6.1 From Satisfiability to Update
In the examples of queries given so far we have considered only a static notion of
matching. Remember, though, that we also have a temporal operator in the logic, ��,
that requires matching � after some evolution of the underlying tree. If we want to talk
about update, we need to say that right now, we have a certain configuration, and later,
we achieve another configuration.

To this end, we consider a slightly different view of the satisfaction problem. So far
we have considered questions of the form P � ��when both P and ��are given. Consider
now the case where only � is given, and where we are looking for a tree that satisfies
it; we can write this problem as X � �. In some cases this is easy: any formula construct-
ed only by composing 0, n[�], and ��| � operations is satisfied by a unique tree. If other
logical operators are used, the problem becomes harder (possibly undecidable).

Consider, then, the problem X � ����. By definition, we have that X matches
���� if when composed with any tree P that matches �, the composition P | X can
evolve into a tree that satisfies �. Therefore, whatever X is, it must be something that
transforms a tree satisfying � into a tree satisfying �. In other words, X is a mutator of
arbitrary � trees into � trees, and X � ���� is a specification of such a mutator.

So, we can see X � ���� as an inference problem where we are trying to synthe-
size an appropriate mutator. We believe that this is very much in the database style,
where transformations are often specified declaratively, and synthesized by sophisticat-
ed optimizers. Of course, this problem can be hard. Alternatively, if we have a proposed
mutator P to transform � trees into � trees, we can try to verify the property P �
����, to check the correctness of the mutator.

6.2 Summary
We have seen that query languages for semistructured data and specification logics for
mobility can be related. In one direction, this can gives us new query languages for sem-
istructured data, or at least a new way of looking at existing query languages. In the oth-
er direction, this can gives us modelchecking techniques for mobility specifications.

16 February 9, 2003, 11:07 pm

Conclusions
In conclusion, we have argued that semistructured data and mobile computation are nat-
urally related, because of a hidden similarity in the problems they are trying to solve.

From our point of view, we have discovered that the Ambient Calculus can be seen
as a computational model over semistructured data. As a consequence, type systems al-
ready developed for the Ambient Calculus can be seen as weak schemas for semistruc-
tured data. Moreover, the Ambient Logic, with some modifications, can be seen as a
query language for semistructured data.

We have also discovered that it should be interesting to integrate ideas and tech-
niques arising from semistructured databases into the Ambient Calculus, and in mobile
computation in general. For example, the generalization of the Ambient Calculus to
graph structures, the use of database techniques for modelchecking, and the use of sem-
istructured query languages for network resource discovery.

We hope that, conversely, people in the semistructured database community will
find this connection interesting, and will be able to use it for their own purposes. Much,
of course, remains to be done.

Acknowledgments
This paper arose from discussions with Giorgio Ghelli about semistructured databases.

References
[1] Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. Morgan Kaufmann Publishers,

San Francisco, 2000.
[2] Buneman, P., Pierce, B.: Union Types for Semistructured Data. Proceedings of the Inter-

national Database Programming Languages Workshop, 1999. Also available as University
of Pennsylvania Dept. of CIS technical report MS-CIS-99-09.

[3] Cardelli, L.: Abstractions for Mobile Computation. Jan Vitek and Christian Jensen, Edi-
tors. Secure Internet Programming: Security Issues for Mobile and Distributed Objects.
LNCS. 1603, 51-94, Springer, 1999.

[4] Cardelli, L., Ghelli, G., Gordon, A.D.: Mobility Types for Mobile Ambients. ICALP’99.
LNCS 1644, 230-239, Springer, 1999.

[5] Cardelli, L., Gordon, A.D.: Mobile Ambients. FoSSaCS’98, LNCS 1378, 140-155, Spring-
er, 1998.

[6] Cardelli, L., Gordon, A.D.: Types for Mobile Ambients. POPL’99, 79-92, 1999.
[7] Cardelli, L., Gordon, A.D.: Anytime, Anywhere. Modal Logics for Mobile Ambients.

Proceedings POPL’00, 365-377, 2000.
[8] Cardelli, L., Ghelli, G.: A Query Language for Semistructured Data Based on the Am-

bient Logic. To appear.
[9] Engelfriet, J.: A Multiset Semantics for the π-calculus with Replication. TCS 153, 65-94,

1996.

