
2010-02-19 19:48:24 1

Exploring DNA Strand-Displacement

Computational Elements

Luca Cardelli1, Andrew Phillips1, Simon Youssef
2

1Microsoft Research Cambridge
2Ludwig Maximilians Universität Munich

Abstract

Using the Visual DSD language and tool for describing DNA computational structures, we investi-

gate a gate buffering technique that helps maintaining desired reaction kinetics for unbounded

time. We test it by simulation on an oscillator and on an ultrasensitive system.

1 Introduction

Visual DSD is an implementation of the programming language for composable DNA circuits de-

scribed in [1]. The language includes basic elements of sequence domains, toeholds and branch migra-

tion, and assumes that strands do not possess any secondary structure. The Visual DSD tool compiles

a collection of DNA molecules into a set of chemical reactions. It also includes a stochastic simulator

which computes a possible trajectory of the system and graphs the populations of species over time.

In this paper we use Visual DSD to investigate implementations of some basic computational el-

ements (‘gates’) that are sufficient to represent interesting classes of dynamical systems; namely chemi-

cal reaction networks [3], stochastic Petri nets, and interacting automata [4]. In particular, we provide

buffered implementations of those gates that support long-running and even unbounded computations

at fixed rates.

The principle of operation of our gates is entropy-driven reactions [11] that proceed autonomous-

ly without external intervention (in contrast, for example, to thermal cycling or some form of refuel-

ing). These systems must necessarily stop when the entropy is eventually maximized, and the reac-

tions slow down while approaching that limit, implying that the desired kinetic regime is achieved

only in the initial stages of system evolution. In turn, this requires using large initial populations so

that the desired kinetic regime lasts sufficiently long for the intended purposes. Some of these systems

are based on fuel strands (components that are turned to waste and provide energy for other reactions),

and it is possible to refuel the system periodically by replenishing the fuel strands. However, refueling

will normally change the rate of the reactions that use the fuel, resulting in uneven kinetics.

A buffering technique is proposed in [4] to the effect that refueling has no kinetic effect on base

reactions and only af-

fects the rate at which

gates are replenished.

The rate of gate replen-

ishment can be made

arbitrarily fast by keep-

 Fig. 1: Strand Displacement

2010-02-19 19:48:24 2

ing the buffers sufficiently high, to compensate for the uneven

consumption of gates by the base reactions. This way, one can

envision replenishing the buffers periodically and indefinitely

without significantly affecting the kinetics of the desired system,

and without needing to initialize the system with larger and larg-

er populations to make it run longer.

The paper is organized as follows. In Section 2 we give an in-

troduction to Visual DSD and basic gate architecture. In Section

3.1 we describe the buffered gates and in Sections 3.2 and 3.3 we

exercise them on two examples: an oscillator and an ultrasensitive system. The former requires a long

running computation, and the latter involves an exponential growth, both stressing the supply of

buffered gates.

2 DNA Strand Displacement Language

In [1] we introduced a programming language able to describe a class of DNA strand-displacement

systems. The systems that can be expressed include general chemical kinetics [3] and automata-like

computation [4]. All the systems that can be expressed in this language are composed of a finite num-

ber of species and reactions (more generally, DNA strands can combine in an unbounded number of

configurations). The class of expressible systems is still a rich one, equivalent to Finite Stochastic Reac-

tion Networks and Petri Nets, and the restriction to a finite set of species means that we can automati-

cally generate all the species that can arise during the evolution of a system. Even for small source

programs, the set of species and reactions can easily grow to a large size, and hence it is useful to have

a tool to analyze them. The result of this analysis can be depicted in various ways, and can be used as

input for stochastic and deterministic simulation.

The design of strand-displacement systems presents a number of logical pitfalls, even beyond all

the care that needs to be taken while designing non-interfering DNA codings [7]. These logical pitfalls

include unwanted interference between elements of a single construction, unwanted interference be-

tween separately designed constructions, and unimagined interactions due to the sheer combinatorial

complexity of the systems, sometimes affecting performance rather than functionality. We believe that

all these issues will eventually require formal verification, but here we carry out a more empirical

analysis of the state space to verify whether certain systems function as expected, and to gain experi-

ence in their logical and functional design. In particular, we investigate a number of relatively simple

constructions that have been previously proposed [4].

The particular DNA architecture we exploit here is based on two kinds of DNA strand domains,

short and long, each encoded as a sequence of nucleotides. For a fixed set of physical parameters, the

short domains are such that they hybridize reversibly to their Watson-Crick complements, while the

long domains are such that they hybridize irreversibly. The short domains are used as toeholds to initi-

 Fig. 3: Transducer Reactions

 Fig. 2: Transducer

2010-02-19 19:48:24 3

ate branch migration on the long domains,

which then leads to strand displacement.

This process is illustrated in Fig. 1 with the

initial reversible binding of a top strand to

a double strand by a free toehold. Then,

branch migration consists of a branching

point between two equal top segments

performing a random walk by reversible

single-nucleotide swaps. When the ran-

dom walk reaches the right end, the origi-

nal top strand is irreversibly displaced. If

the two top strands do not match, then the

random walk cannot reach the right end

and will eventually go back to the left end,

where the toehold can detach as if ‘noth-

ing’ had happened.

 This basic mechanism of toehold mediated strand displacement can be used to design computational

elements that process signals. An abstract signal ‘x’ is encoded as a single-stranded DNA sequence

consisting of three consecutive domains (see top left of Fig. 3). The first (long) domain is a history do-

main that is produced by past interactions and that is not significant for future interactions; it is indi-

cated as ‘hx’ or ‘h’. All computational elements are designed so that they are oblivious to the history

segments of their inputs, but may produce outputs with specific history segments due to their own

mechanics. The second (short) domain is a toehold that initiates the interaction between signals and

gates, and that starts branch migration on the third domain; the toehold for signal x is denoted by ‘tx’.

Toeholds are, again, short enough that they bind reversibly: this assumption limits the number of toe-

holds one can encode, but for simplicity we assume that we have an arbitrary number of distinct ones

(it is in fact possible to identify toeholds, but care must then be taken to avoid unwanted interfer-

ences). The third (long) domain is the proper recognition domain: for a signal x we also denote this

domain as ‘x’, although strictly it is only a part of the signal strand.

Computational elements (gates) transform signals into other signals, and are made from double-

stranded DNA structures with a free toehold-complement that can bind to an input. The Watson-Crick

complement of a segment x is indicated by x⊥, with x⊥⊥ = x. As noted above, if the toehold of a signal

binds to a gate, but the signal recognition region does not match, then the branch migration of the

recognition segment cannot complete, and the signal will eventually unbind from the gate. These un-

productive interactions however should be properly modeled as chemical reactions, because they can

have a kinetic effect by temporarily sequestering signals and occluding gate toeholds.

Let us start with perhaps the simplest example of a computational element: a transducer ‘x.y’ that

can transform an arbitrary symbolic signal ‘x’ into another arbitrary symbolic signal ‘y’. The transduc-

er is composed of three structures: Gb (gate backbone), Gt (gate trigger), and Gc (gate collector) (Fig. 2).

Its intended kinetics is described schematically in Fig. 3, in presence of an input signal x. The annota-

tion ‘h generic’ means that the transducer works for any history domain of the input signal. The anno-

tations ‘ta new’ and ‘a new’ mean that those segment are dis-

tinct from the segments of any other signal or gate in the

system, to prevent unwanted interferences. The first reaction

between the input x and the gate backbone Gb is reversible,

but the gate trigger Gt may combine with the result of the

x+Gb reaction to make the whole transduction irreversible,

leaving an inert residual, ‘0’ (that is, one that does not con-

tain any exposed toeholds), as well as the output y. The ac-

 Fig. 4: Transducer Reactions

 Fig. 5: Transducer Composition

2010-02-19 19:48:24 4

tive residual r1 is removed by the Gc structure,

again leaving inert residuals.

The DNA Strand Displacement Language

(DSD [1]) allows us to express the structures of

Fig. 2 in a machine readable format, namely as

follows:

Gb = tx^:[x ta^]:[a ty^]<y>

Gt = <ta^ a ty^>

Gc = [x]:ta^

A suffix ‘^’ is required for a toehold; binding and unbinding rates are separately associated to

toeholds (the branch migration rates are instead assumed instantaneous). A strand S is a concatenation

of abstract domains like x or t^. The syntax <S> represents an upper-strand, and S a bottom strand. The

syntax [S⊥] represents instead a double-strand with lower strand S⊥ and upper strand S. The syntax

<S1>[S2
⊥]<S3> represents the bottom strand S2

⊥ hybridized to the top strand S1S2S3, with the S1 and S3

parts ‘hanging out’ if non-empty. A ‘:’ indicates the concatenation by the bottom strand; for example,

[S1
⊥]:[S2

⊥] has a contiguous bottom strand S1
⊥S2

⊥, but an interruption in the top strand between S1 and

S2. Any expressible structure has a single contiguous bottom strand, but may have interrupts, gaps, or

overhangs on the top strand. Finally, we assume that all the hybridization reactions are pre-built into

the gate structures, and no hybridization is modeled during execution: only toehold-mediated branch

migrations and strand displacements are modeled.

It is convenient to be able to use multiple instances of the transducer structure of Fig. 2 in the

same system, but for different inputs and outputs. To this end, the DSD language allows parameteri-

zation, and we can thus abstract a reusable transducer gate Tr:

def Tr(N, tx,x, ty,y) =

 new a

 new ta@bind,unbind

 (N * tx^:[x ta^]:[a ty^]<y>

 | N * <ta^ a ty^>

 | N * [x]:ta^)

Here the line ‘def Tr(N, tx,x, ty,y) =’ indicates that we are defining a gate named Tr, parameter-

ized by N,tx,x,ty,y, where N is the number of copies of the gate that we wish to produce, x is the input

signal with toehold tx, and y is the output signal with toehold ty (more precisely, x and y are the third

segments of the input and the output signals). The line ‘new a’ indicates that a is taken to be distinct

from all other segments; in particular, if we instantiate Tr twice we need to generate two distinct DNA

sequences for the distinct a’s. For a toehold, ‘new ta@bind,unbind’ includes the binding and unbind-

ing rates. The body of the definition contains the three structures Gb, Gt, Gc defined as above, each

multiplied by the number of copies N, and separated by

the symbol ‘|’ that generally indicates parallel composi-

tion of structures, akin to chemical ‘+’.

Given the above definition of Tr, and a suitable inte-

ger value for a scaling constant S, the following script

produces a full executable system consisting of 10*S copies

of the transducer gate, and S copies of the x input. We

specify a history ‘h’ for the input, but the system would

behave similarly for any other history, including an empty

 Fig. 6: Buffered Transducer

 Fig. 7: Buffered Transducer

2010-02-19 19:48:24 5

one.

(Tr(10*S, tx,x, ty,y)

| S * <h tx^ x>)

Our Visual DSD tool can ana-

lyze such a system and generate the

set of all possible species and reac-

tions, resulting in the diagram in Fig.

4, which closely matches Fig. 3: there

is a node for each species, with starting species in bold, and arcs for the reactions. However, the analy-

sis reveals a ‘forgotten’ reversible reaction between Gt and Gc, resulting in an extra species [x]:[ta^]<a

ty^>. The tool can be set to produce or ignore these unproductive reactions that do not lead to success-

ful strand displacements and can be very numerous. In an actual chemical system, all these would of

course occur and have some kinetic effect.

As an example of use of a parametric definition, consider the composition of two transducers:

Tr(N, tx,x, ty,y) | Tr(N, ty,y, tz,z), resulting in a transducer from x to z via y:

(Tr(10*S, tx,x, ty,y)

| Tr(10*S, ty,y, tz,z)

| S * <h tx^ x>)

If we were to expand the definition of Tr twice, the structures generated would be equivalent to the

following (for any new ta1,a1,ta2,a2: the tool automatically generates separate strands like a.1 and a.2):

(10*S * tx^:[x ta1^]:[a1 ty^]<y>

| 10*S * <ta1^ a1 ty^>

| 10*S * [x]:ta1^

| 10*S * ty^:[y ta2^]:[a2 tz^]<z>

| 10*S * <ta2^ a2 tz^>

| 10*S * [y]:ta2^

| S * <h tx^ x>)

This system results in 24 species and 11 reactions. We extract the system of chemical reactions as

an SBML file and simulate it in CellDesigner [6] using S = 1, resulting in the plot of Fig. 5. The reaction

rates used through the paper fall conservatively within experimental range [7]: toehold binding at

3×105/M/s and toehold unbinding at 0.1126/s. The vertical axis is in nM (with 10nM, not shown, of gate

species) and the horizon-

tal axis is in seconds.

3 Gate Architec-

ture

In this section we inves-

tigate a gate architecture

that supports long-term

system evolution by re-

plenishing gates from

 Fig. 8: Buffered Fork

 Fig. 9: Buffered Join 2x2

2010-02-19 19:48:24 6

buffer pools. We then show two examples of systems built

out of such gates: an oscillator and an ultrasensitive switch.

3.1 Buffered Gates

Gate structures are consumed during signal processing: the

energy driving the reactions is in fact provided by the gate

structures being turned into waste structures. Hence the

gate population is not fixed, and the kinetics of signal pro-

cessing changes over time. One could use a very large and hence almost-constant concentration of

gates with respect to the concentration of signals, but this puts limits on the concentration of signals.

Moreover, the instantaneous concentration of signals is dependent on the dynamics of the reactions,

and it may be difficult in general to keep it at a relatively low level. Finally, if there is a very large

amount of free toeholds (given by a very large populations of active gates) then the signals may too

often bind reversibly to the ‘wrong’ gates, impeding progress. The optimal situation would be to keep

the concentration of active gates at a constant level that is close to the concentration of the signals.

To alleviate these problems, an automatic buffering technique is proposed abstractly in [4]: here

we flesh it out with concrete strand structures. The idea is to keep a quasi-constant but relatively low

concentration of gate structures by means of a higher concentration of buffer structures that are turned

into gates on demand. The buffer levels do not significantly affect the kinetics of the reactions (at least

until they run out), and they could be replenished periodically without significantly affecting the on-

going kinetics of the gates. The effective rates of the signal processing reactions remain then almost

constant, provided the gates are replenished fast enough from the buffers.

A buffered gate is a curried gate; that is, a gate that produces another gate after an input. In Fig. 6,

an input signal <_ tB B> (where _ represents any segment) binding to the Gb structure ejects a <B tx^>

segment that is neutralized by the GB structure. The residual Gb structure, in dotted outline, then

works like a normal transducer from x to y together with Gt and Gc. But in addition to the y output,

this gate also outputs another <_ tB B> signal. Hence, every time one transducer gate is consumed, it

triggers the release of one similar gate from a pool of Gb structures. (We are assuming that B is a signal

used only for buffering purposes; otherwise the GB structure might interfere with other gates, and in

particular with the Join gate shown later. Here B is private to the buffer implementation, and the ‘new

B’ declaration is sufficient to prevent any interference: a slightly different solution is available for a

general curried gate where B is an arbitrary public signal [4].)

The buffered transducer can be abstracted in the following parametric definition, for arbitrary x

and y signals, for a number N of gates to be kept constant until the buffer runs out, and for a buffer of

initial size M. The five lines in the body of the script correspond to Gb, Gt, Gc, GB, and to a set of N buff-

er signals, <b tB^ B>, which cause the release of the initial N transducers from the buffer pool.

def BTr(M,N, tx,x, ty,y) =

new ta@bind,unbind new a new b new

tB@bind,unbind new B

(M * tB^:[B tx^]:[x ta^]:[a ty^]<y>:[b tB^]

| M * <ta^ a ty^ b tB^>

| M * [x]:ta^

| M * [B]:tx^

| N * <b tB^ B>)

 Fig. 10: Buffered Join 2x2

 Fig. 11: Oscillator

2010-02-19 19:48:24 7

The definition of BTr can be invoked on a set of x signals with

a scaling factor S (here set to 1), and a buffering factor Buff (set

to 100×S).

(BTr(Buff,S, tx,x, ty,y)

| S * <h tx^ x>)

Fig. 7 shows the time evolution (21 species and 10 reactions):

the initial x signal rapidly finds a reversible equilibrium with

to the more numerous GB buffer structures, and therefore is

depressed to ~0.77. The y signal is then produced over time by

consuming x; the x.y curve is the freely available transducer gates being generated from the buffer.

A simple extension of the transducer design yields a buffered Fork gate with one input x and two

outputs y,z (Fig. 8), which we use in a later example. It is defined as follows:

def BF2(M,N, tx,x, ty,y, tz,z) =

new ta@bind,unbind new a new b new c new tB@bind,unbind new B

(M * tB^:[B tx^]:[x ta^]:[a ty^]<y>:[b tz^]<z>:[c tB^]

| M * <ta^ a ty^ b tz^ c tB^>

| M * [x]:ta^

| M * [B]:tx^

| N * <c tB^ B>)

We now develop a more challenging gate with 2 inputs x,y and 2 outputs to z,w, in addition to a

first curried input B and a third output B for its buffer. The construction in Fig. 9 is based on the Join

gate design from [4], including a garbage collecting component (the Gc1..Gc4 structures) that removes

the active residuals of Gb; namely, <x ty^> and <y ta^>. In Gc1 the [d td] segment has the purpose of

separating [ty] from [y]: without it, a segment <ty y> would be released during garbage collection that

would function as a y signal. Instead, a segment <td y> is released (and then collected by Gc3), and it is

essential that td≠ty. Similarly, <ty d> is released (and then collected by Gc4) and it is essential that d≠y.

Hence, td and d are chosen ‘new’. Moreover, the segment <x ty> from Gb is absorbed by Gc1, and it is

essential that no other free segment in the whole system has toehold ty and history x, because it would

be absorbed here. Because of this, we make sure that all gates (including BTr) always output signals

with a ‘new’ history, which is therefore different from a signal history like x. Simpler transducer de-

signs exist that do not have this property [4], and that therefore cause conflicts. Finally, the Gb and Gc1

structures are chained via the ta toehold, which must be unique to each join gate; this is again guaran-

teed by ‘new’.

Fig. 10 shows a trace of this gate with x and y inputs and including all unproductive reactions,

showing an almost stable active gate population (xy.zw) which is initially depressed under heavy

load, but that recovers from the buffer. The outputs z and w are produced over time (their curves over-

lap). The script for this system is:

def BJ2x2(M,N, tx,x, ty,y, tz,z, tw,w) =

new ta@bind,unbind new a new b new c

new td@bind,unbind new d new tB@bind,unbind

new B

(M * tB^:[B tx^]:[x ty^]:[y ta^]:[a tz^]<z>:[b

tw^]<w>:[c tB^]

 Fig. 13: Oscillator

 Fig. 12: Oscillator Buffers

2010-02-19 19:48:24 8

| M * <ta^ a tz^ b tw^ c tB^>

| M * [B]:tx^

| M * [x]:[ty^ d]:[td^ y]:ta^

| M * <d td^>

| M * td^:[y]

| M * ty^:[d]

| N * <c tB^ B>)

(BJ2x2(Buff,S, tx,x, ty,y, tz,z, tw,w)

| S * <hx tx^ x>

| S * <hy ty^ y>)

3.2 Oscillating System

We compose three buffered join gates into a circuit to obtain a three-way oscillator. Given three signals

p,q,r, the gates perform the reactions p+q→q+q, q+r→r+r, r+p→p+p [8]. This is an intrinsically unstable

oscillator, but a very simple one to experiment with, requiring only 3 join gates. To build this circuit,

we just reuse the previous definition of the buffered join gate, B2x2, and provide an initial sets of sig-

nals to start an oscillation:

(BJ2x2(Buff,S, tp,p, tq,q, tq,q, tq,q)

| BJ2x2(Buff,S, tq,q, tr,r, tr,r, tr,r)

| BJ2x2(Buff,S, tr,r, tp,p, tp,p, tp,p)

| 3*S * <hp tp^ p>

| 2*S * <hq tq^ q>

| 2*S * <hr tr^ r>)

The system without unproductive reactions consists of 186 species and 129 reactions; we show its exe-

cution in Fig. 11. The higher amplitude oscillations are three of the signal species (there are two such

curves for each signal, because of different history segments). The lower amplitude oscillations are

three of the gate structures, which start at 1.0 but are then cyclically depleted by interactions with the

signals and replenished from the buffers (here we are intentionally stressing the system: bigger buffers

would result in a more even level of active gates). Fig. 12 shows all the species in the system, high-

lighting the depletion of the buffers and the accumulation of waste products, with the oscillations of

Fig. 11 near the bottom. The system with all unproductive reactions consists of 303 species and 246

reactions (Fig. 13), exhibiting a lower amplitude and

a slower oscillation.

3.3 Ultrasensitive System

A phosphate-transfer system [9] consists of a set of

layers where the first layer detects a signal and the

last layer enacts a response. The layers are connected

by a cascade of phosphate transfers; the last layer

typically has a linear response up to saturation, while

the middle layers have an ultrasensitive (‘switching’)

response. We look at a 3-layer system, which initially

 Fig. 14: Ultrasensitivity

 Fig. 15: Ultrasensitivity

2010-02-19 19:48:24 9

contains three reservoirs for species l1, l2, l3, and has reactions:

(1) l1 → l1p

(2) l1p + l2 → l1 + l2p

(3) l2p + l3 → l3p + l2

(4) l3p → l3

Reaction (1) represents (implicitly) the first layer species l1 being phosphorylated by an external

stimulus. Reaction (2) represents the transfer of the phosphate from the first to the second layer, and

similarly reaction (3) from the second to the third layer. Reaction (4) represents (implicitly) the work

performed by the third layer, transferring the phosphate to some other external system and being reset

to l3. We study the response of this system by varying the amount of l1 and looking at the correspond-

ing steady-state amounts of l1p, l2p, l3p. The initial amount of l1 here represents the strength of a sus-

tained stimulation, since this determines the amount of l1p being generated. The initial amount of l3

represents the maximum response. Under certain ranges of reaction rates, the second layer exhibits an

ultrasensitive response [10].

Our corresponding strand displacement system consists of four gates for the four reactions: two

transducers and two 2x2 joins. The rate of each reaction is controlled by setting the (buffered) amount

of each gate species. We use equal amounts (10*S) for reactions (1), (2) and (3), and a smaller amount

(1*S) for reaction (4), which needs to be slower to allow the accumulation of l3p but non-zero to obtain

a proper ultrasensitive response. To study the steady-state response to varying amounts of l1, we then

add a fifth gate (also in quantity 10*S) that slowly and linearly increases the amount of l1 starting from

zero: the increase is slow enough to keep the system near steady state. The horizontal axis of the simu-

lation therefore does not represent the time of the reaction: it represents the amount of l1+l1p in the

system, which is growing linearly in time. The fifth gate implements the reaction:

(5) stim → stim + l1

adding l1 at a constant rate.

The initial conditions of the system include reservoirs for l2, l3 (each 1000*S) and stim (10*S). The

initial level of l3 determines the point at which the ultrasensitive switch happens, which is the point at

which l1+l1p exceeds l3+l3p. The initial level of l2 determines the maximum strength of the l2p re-

sponse: this level is set equal to l3 here, but could be set much higher than l3 to obtain an ultrasensi-

tive amplification that could be used as an input for some other system, including another ultrasensi-

tive amplifier. Chaining ultrasensitive amplifiers can produce an extremely sharp switch of a high-

quantity species from a weak stimulus. The initial level of stim determines the speed at which l1 is

added to the system, and again this should be slow enough when studying the steady-state response.

The system being simulated is therefore the following, where we use Buff = 10000 and S = 1.

(BF2(Buff,10*S, tstim,stim, tl1,l1, tstim,stim) (* reaction (5) *)

| BTr(Buff,10*S, tl1,l1, tl1p,l1p) (* reaction (1) *)

| BJ2x2(Buff,10*S, tl1p,l1p, tl2,l2, tl1,l1, tl2p,l2p) (* reaction (2) *)

| BJ2x2(Buff,10*S, tl2p,l2p, tl3,l3, tl2,l2, tl3p,l3p) (* reaction (3) *)

| BTr(Buff,1*S, tl3p,l3p, tl3,l3) (* reaction (4) *)

| 1000*S * <hl2 tl2^ l2> (* initial l2 *)

| 1000*S * <hl3 tl3^ l3> (* initial l3 *)

| 10*S * <hstim tstim^ stim>) (* initial stim *)

2010-02-19 19:48:24 10

Fig. 14 shows that this system produces a typical ultrasensitive response in l2p, and a linear response

in l3p (with a slight initial delay due to lag in the gates); this simulation does not include nonproduc-

tive reactions. Fig. 15 shows the same system but with all the nonproductive reactions: the behavior is

in fact very similar, except that it is stretched on the horizontal axis (at least in part because the stimu-

lus gets diluted by nonproductive reactions), and that each of l1p, l2p, l3p is in equilibrium with a sep-

arate buffer species, so the effective total of each available signal is the sum of two curves of similar

color.

4 Conclusions

We have shown that automatic tools for compiling higher-level languages to (large sets of) chemical

reactions can be useful for investigating DNA gate designs. Even when the set of reactions is finite, it

can grow combinatorially with the size of the system, and it is unfeasible to generate it by hand. This is

particularly important when including unproductive reversible reactions, which have a sometimes mild

but usually noticeable effect on the kinetics, and other kinds of reactions like leaks and secondary

structure interactions that we have not included in this work.

Simple finite sets of components can interact so intricately that it is not feasible to generate the

full set of reactions; other systems (those that can produce polymers) have an infinite set of reactions.

Still, all those systems can be described in high-level languages, because a language can represent a

huge or even infinite state space (a set of species and reactions) finitely and compactly. Even when the

state space cannot be precomputed, it is possible to inspect it by generating the required states incre-

mentally from the high-level description [2]. All this points to a useful role for high-level languages

and tools for investigating DNA systems, which are by nature highly combinatorial.

References

[1] A. Phillips, L. Cardelli. A Programming Language for Composable DNA Circuits. Journal of the

Royal Society Interface, August 6 2009, 6:S419-S436.

[2] A. Phillips, L. Cardelli. Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-

calculus. In Computational Methods in Systems Biology, LNBI 4695, pp 184-199, Springer, 2007.

[3] D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal Substrate for Chemical Kinetics. In

Proc. DNA Computing and Molecular Programming, 14th International Conference, 2008.

[4] L. Cardelli. Strand Algebras for DNA Computing. In DNA Computing and Molecular Pro-

gramming, Revised Selected Papers. LNCS 5877, pp 12-24, Springer, 2009.

[5] A. Marathe, A.E. Condon, R.M. Corn. On Combinatorial DNA Word Design. J. Comp. Biology

8(3) 201–219, 2001.

[6] CellDesigner: A modeling tool of biochemical networks. http://www.celldesigner.org.

[7] Winfree Lab: personal communication.

[8] L. Cardelli: Artificial Biochemistry. In: A. Condon, D. Harel, J.N. Kok, A. Salomaa, E.Winfree

(Eds.). Algorithmic Bioprocesses. Springer, 2009.

[9] P. Thomason, R. Kay. Eukaryotic signal transduction via histidine-aspartate phosphorelay. J

Cell Sci 113 (Pt 18), 3141-3150, 2000.

[10] C. Gomez-Uribe, G.C. Verghese, L.A. Mirny. Operating Regimes of Signaling Cycles: Statics,

Dynamics, and Noise Filtering. PLoS Computational Biology, 3(12) 2007.

[11] D.Y. Zhang, A.J. Turberfield, B. Yurke, E. Winfree. Engineering Entropy-Driven Reactions and

Networks Catalyzed by DNA. Science Vol. 318. no. 5853, pp 1121 – 1125, 2007.

2010-02-19 19:48:24 11

5 Auxiliary Material

These are the Visuals DSD scripts used to generate the figures: they can be used to produce stochastic

simulations within the Visual DSD tool. For the figures, however, the SBML output of the Visuals DSD

scripts is passed to Cell Designer for ODE simulation and plotting: the correspondence between ODE

abbreviated legends and Visual DSD structures is noted below. The scaling factor S is useful for sto-

chastic simulations: it allows one to change the (integer) number of molecules while automatically

compensating the rate of the binary reactions, therefore preserving the kinetics. The scripts below in-

clude adequate values of S for stochastic simulations, but in the ODE simulations, where we can use

fractional concentration values, we just use S=1. The binary toehold binding rate is in /nM/s, and hence

with S=1 the vertical axis is in nM and the horizontal axis in seconds. In the ultrasensitive system we

need a wider range of concentrations, and to keep the highest concentration within reasonable range

we convert the toehold binding rate to /0.1 nM/s: the vertical axis is then in 0.1 nM, with the buffer

species at 1 µM.

5.1 Transducer

directive sample 5000.0 1000

directive plot <_ tx^ x>; <_ ty^ y>

def S = 1000

def bind = 0.0003/(float_of_int S) (* /nM/s *) (* =3*10^5 /M/s *)

def unbind = 0.1126 (* /s *)

new tx@bind,unbind

new ty@bind,unbind

def Tr(N, tx,x, ty,y) =

 new a new ta@bind,unbind

 (N * tx^:[x ta^]:[a ty^]<y>

 | N * <ta^ a ty^>

 | N * [x]:ta^

)

(Tr(10*S, tx,x, ty,y)
| S * <h tx^ x>
)

5.2 Transducer Composition

directive sample 5000.0 1000
directive plot <_ tx^ x>; <_ ty^ y>; <_ tz ̂z>
def S = 1000
def bind = 0.0003/(float_of_int S) (* /nM/s *) (* =3*10^5 /M/s *)
def unbind = 0.1126 (* /s *)
new tx@bind,unbind
new ty@bind,unbind
new tz@bind,unbind

def Tr(N, tx,x, ty,y) =
 new a new ta@bind,unbind

2010-02-19 19:48:24 12

 (N * tx^:[x ta^]:[a ty^]<y>
 | N * <ta^ a ty^>
 | N * [x]:ta^
)

(Tr(10*S, tx,x, ty,y)
| Tr(10*S, ty,y, tz,z)
| S * <h tx^ x>
)

Figure 5: Cell Designer simulation of Visual DSD SBML output with S=1. Legend:

x = <h tx^ x>, y = <a ty^ y>, z = <a.1 tz^ z>.

5.3 Buffered Transducer

directive sample 30000.0 1000
directive plot sum(<_ tx^ x>); [B]:<h>[tx^]<x>; sum(<_ ty ̂y>); [tB^ B]:tx^:[x ta^]:[a ty^]<y>:[b tB^]
def S = 100
def Buff = 100*S
def bind = 0.0003/(float_of_int S) (* /nM/s *) (* =3*10^5 /M/s *)
def unbind = 0.1126 (* /s *)
new tx@bind,unbind
new ty@bind,unbind

def BTr(M,N, tx,x, ty,y) =
new ta@bind,unbind new a new b new tB@bind,unbind new B
(M * tB^:[B tx^]:[x ta^]:[a ty^]<y>:[b tB^]
| M * <ta^ a ty^ b tB^>
| M * [x]:ta^
| M * [B]:tx^
| N * <b tB ̂B>
)

(BTr(Buff,S, tx,x, ty,y)
| S * <h tx^ x>
)

Figure 7: Cell Designer simulation of Visual DSD SBML output with S=1. Legend:

x = <h tx^ x>, y = <a ty^ y>, x.y = [tB^ B]:tx^:[x ta^]:[a ty^]<y>:[b tB^], GB+x = [B]:<h>[tx^]<x>.

5.4 Buffered Fork

directive sample 30000.0 1000

directive plot sum(<_ tx^ x>); [B]:<h>[tx^]<x>; sum(<_ ty^ y>); sum(<_ tz^ z>); <c>[tB^ B]:tx^:[x
ta^]:[a ty]<y>:[b tz^]<z>:[c tB^]

def S = 100

def Buff = 100*S

def bind = 0.0003/(float_of_int S) (* /nM/s *) (* =3*10^5 /M/s *)

def unbind = 0.1126 (* /s *)

new tx@bind,unbind

new ty@bind,unbind

new tz@bind,unbind

def BF2(M,N, tx,x, ty,y, tz,z) =

2010-02-19 19:48:24 13

new ta@bind,unbind new a new b new c new tB@bind,unbind new B
(M * tB^:[B tx^]:[x ta^]:[a ty^]<y>:[b tz^]<z>:[c tB^]
| M * <ta^ a ty^ b tz^ c tB^>
| M * [x]:ta^
| M * [B]:tx^
| N * <c tB^ B>
)

(BF2(Buff,S, tx,x, ty,y, tz,z)
| S * <h tx^ x>

)

5.5 Buffered Join

directive sample 100000.0 1000

directive plot sum(<_ tx^ x>); sum(<_ ty^ y>); sum(<_ tz^ z>); sum(<_ tw^ w>); <c tB^ B>; <c>[tB^
B]:tx^:[x ty^]:[y ta^]:[a tz^]<z>:[b tw^]<w>:[c tB^]

def S = 100

def Buff = 100*S

def bind = 0.0003/(float_of_int S) (* /nM/s *) (* =3*10^5 /M/s *)

def unbind = 0.1126 (* /s *)

new tx@bind,unbind

new ty@bind,unbind

new tz@bind,unbind

new tw@bind,unbind

def BJ2x2(M,N, tx,x, ty,y, tz,z, tw,w) =

new ta@bind,unbind new a new b new c

new td@bind,unbind new d new tB@bind,unbind new B

(M * tB^:[B tx^]:[x ty^]:[y ta^]:[a tz^]<z>:[b tw^]<w>:[c tB^]

| M * <ta^ a tz^ b tw^ c tB^>

| M * [B]:tx^

| M * [x]:[ty^ d]:[td^ y]:ta^

| M * <d td^>

| M * td^:[y]

| M * ty^:[d]

| N * <c tB^ B>

)

(BJ2x2(Buff,S, tx,x, ty,y, tz,z, tw,w)

| S * <hx tx^ x>

| S * <hy ty^ y>

)

Figure 10: Cell Designer simulation of Visual DSD SBML output with S=1. Legend:

x = <h tx^ x>, y = <h ty^ y>, z = <a tz^ z>, w = <b tw^ w>,

xw.zw = <c>[tB^ B]:tx^:[x ty^]:[y ta^]:[a tz^]<z>:[b tw^]<w>:[c tB^].

5.6 Oscillating System

directive sample 500000.0 1000

2010-02-19 19:48:24 14

directive plot sum(<_ tp^ p>); sum(<_ tq^ q>); sum(<_ tr^ r>);

sum(<c tB^ B>); <c>[tB^ B]:tp^:[p tq^]:[q ta^]:[a tq^]<q>:[b tq^]<q>:[c tB^]

def S = 100

def Buff = 100*S

def bind = 0.0003/(float_of_int S) (* /nM/s *) (* =3*10^5 /M/s *)

def unbind = 0.1126 (* /s *)

new tp@bind,unbind

new tq@bind,unbind

new tr@bind,unbind

def BJ2x2(M,N, tx,x, ty,y, tz,z, tw,w) =

new ta@bind,unbind new a new b new c

new td@bind,unbind new d new tB@bind,unbind new B

(M * tB^:[B tx^]:[x ty^]:[y ta^]:[a tz^]<z>:[b tw^]<w>:[c tB^]

| M * <ta^ a tz^ b tw^ c tB^>

| M * [B]:tx^

| M * [x]:[ty^ d]:[td^ y]:ta^

| M * <d td^>

| M * td^:[y]

| M * ty^:[d]

| N * <c tB^ B>)

(BJ2x2(Buff,S, tp,p, tq,q, tq,q, tq,q)

| BJ2x2(Buff,S, tq,q, tr,r, tr,r, tr,r)

| BJ2x2(Buff,S, tr,r, tp,p, tp,p, tp,p)

| 3*S * <hp tp^ p>

| 2*S * <hq tq^ q>

| 2*S * <hr tr^ r>

)

Figures 11,12,13: Cell Designer simulations of Visual DSD SBML output with S=1, and with ‘unpro-

ductive’ flag set for Figure 13. Legend for Figures 11,13:

p = <a.10 tp^ p>, q = <a tq^ q>, r = <a.2 tr^ r>, pq.qq = <c>[tB^ B]:tp^:[p tq^]:[q ta^]:[a tq^]<q>:[b tq^]<q>:[c

tB^], qr.rr = <c.4>[tB.7^ B.8]:tq^:[q tr^]:[r ta.1^]:[a.2 tr^]<r>:[b.3 tr^]<r>:[c.4 tB.7^]<B.8>, rp.pp =

<c.12>[tB.15 ̂B.16]:tr^:[r tp^]:[p ta.9^]:[a.10 tp^]<p>:[b.11 tp^]<p>:[c.12 tB.15^]<B.16>.

5.7 Ultrasensitive System

directive sample 500000.0 1000

directive plot sum(<_ tl1p^ l1p>); sum(<_ tl2p^ l2p>); sum(<_ tl3p^ l3p>)

def S = 1

def Buff = 10000*S

def bind = 0.00003/(float_of_int S) (* /.1 nM/s *) (* =3*10^5 /M/s *)

def unbind = 0.1126 (* /s *)

new tstim@bind,unbind

new tl1@bind,unbind new tl1p@bind,unbind

new tl2@bind,unbind new tl2p@bind,unbind

new tl3@bind,unbind new tl3p@bind,unbind

def BTr(M,N, tx,x, ty,y) =

new ta@bind,unbind new a new b new tB@bind,unbind new B
(M * tB^:[B tx^]:[x ta^]:[a ty^]<y>:[b tB^]

2010-02-19 19:48:24 15

| M * <ta^ a ty^ b tB^>

| M * [x]:ta^
| M * [B]:tx^
| N * <b tB^ B>
)

def BF2(M,N, tx,x, ty,y, tz,z) =
new ta@bind,unbind new a new b new c new tB@bind,unbind new B
(M * tB^:[B tx^]:[x ta^]:[a ty^]<y>:[b tz^]<z>:[c tB^]
| M * <ta^ a ty^ b tz^ c tB^>
| M * [x]:ta^
| M * [B]:tx^
| N * <c tB^ B>
)

def BJ2x2(M,N, tx,x, ty,y, tz,z, tw,w) =

new ta@bind,unbind new a new b new c

new td@bind,unbind new d new tB@bind,unbind new B

(M * tB^:[B tx^]:[x ty^]:[y ta^]:[a tz^]<z>:[b tw^]<w>:[c tB^]

| M * <ta^ a tz^ b tw^ c tB^>

| M * [B]:tx^

| M * [x]:[ty^ d]:[td^ y]:ta^

| M * <d td^>

| M * td^:[y]

| M * ty^:[d]

| N * <c tB^ B>

)

(BF2(Buff,10*S, tstim,stim, tl1,l1, tstim,stim)

| BTr(Buff,10*S, tl1,l1, tl1p,l1p)

| BJ2x2(Buff,10*S, tl1p,l1p, tl2,l2, tl1,l1, tl2p,l2p)

| BJ2x2(Buff,10*S, tl2p,l2p, tl3,l3, tl2,l2, tl3p,l3p)

| BTr(Buff,1*S, tl3p,l3p, tl3,l3)

| 1000*S * <hl2 tl2^ l2>

| 1000*S * <hl3 tl3^ l3>

| 10*S * <hstim tstim^ stim>

)

Figure 14: Cell Designer simulation of Visual DSD SBML output. Legend:
l1p = <a.2 tl1p^ l1p>, l2p = <b.8 tl2p^ l2p>, l3p = <b.14 tl3p^ l3p>.

Figure 15: Cell Designer simulation of Visual DSD SBML output with ‘unproductive’ flag set. Legend:

l1p = <a.2 tl1p^ l1p>, l2p = <b.8 tl2p^ l2p>, l3p = <b.14 tl3p^ l3p>,

l1p+B = [B.11]:<a.2>[tl1p^]<l1p>, l2p+B = [B.19]:<b.8>[tl2p^]<l2p>, l3p+B = [B.24]:<b.14>[tl3p^]<l3p>.

