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Introduction
Many statically and dynamically typed languages

attempt to achieve flexibility in their type discipline by

some notion of sub typ ing. Subtyping relaxes the

requirement that functions take arguments of a given type,

by allowing arguments of any subtype of that type to be

given. Such functions can accept arguments of types which

will only be defined in the future; the open-ended character

of this situation is important in large systems where it is

essential to be able to extend existing facilities without

modifying them.

Some languages attempt to use subtyping as a uniform

structuring principle, noticeably pure object-oriented

languages such as Smalltalk. Other languages are fairly

consistent in their treatment of subtyping for some specific

data types; this is the case, for example, for Simula67

subclasses and Pascal subranges. More commonly, ad-hoc

notions of subtyping are introduced to relax type rules that

seem too restrictive; this is the case for inclusions of basic

types and notions such as sub-modules and sub-interfaces.

The purpose of this paper is to present a type system

where subtyping is an orthogonal concept that applies to all

type constructions, including function types, abstract types,

and interfaces. Expressive power and feasibility of

typechecking are our major concerns. Expressive power

alone might point us to viewing subtypes as arbitrary

subsets, but the desire to perform typechecking leads us to a

more restricted, structural, notion of subtyping.

A type can be intuitively regarded as defining a set of

values: the set of values having that type. It is then natural

to consider the notion of subtype as analogous to the notion

of subset: a type A is a subtype of a type B if all the values

of type A are also values of type B.

Types are not intended as arbitrary sets of values, but as

sets whose elements share a common structure (or

behavior), with the property that the structure of a value (or

the structure of a description of it) can help determine its

type. For example, a pair is obviously related, because of its

structure, to a cartesian product type, while a prime number

is not so obviously related to the hypothetical type of prime

numbers. Typechecking is often easier (e.g., it does not

require theorem proving) if the types are structural, in this

sense.

Similarly, subtypes should not be intended as arbitrary

subsets. An arbitrary subset of a type corresponds to an

arbitrary predicate, which for typechecking purposes may

be very hard to test. As candidates for subtypes, we should

look for structural subsets, i.e., for subsets that are

determined by the structure of values (or their descriptions).

As an example, a simple notion of structural subtyping

can be defined on record types: two record types are in a

subtyping relation if one of them has more fields than the

other, while the common fields have compatible types.

Given a record value, it is possible to infer its most general

record type, and to verify that that record is a member of

any given subtype of that type.

In the type system presented in the next sections, typing

and subtyping are determined strictly by structure, hence we

diverge from the common programming language practice

of matching types by name according to the name given to

them in type declarations. Since pure name matching is

never used in languages, it may be useful to study structural

matching just to understand situations where a mixture of

name and structural matching is used. It is also conceivable

to add name matching rules to type systems based on

structural matching, but many complex issues arise and we

do not explore these here. The main advantage of pure

structural matching is that types (including abstract types)

have meaning independently of "when" they are generated;
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for example, their values can be stored and retrieved in

distinct programming sessions.

We shall show how to extend the basic subtyping

relations, such as the one among records, to all type

constructors in certain languages. This program can be

carried out in many type systems, for example [Cardelli 84]
applied it to first-order λ-calculus, [Cardelli Wegner 85] to

second-order λ-calculus, and [Wand 87] to polymorphic λ-

calculus with implicit typing. Here we apply it to a more

general type system derived from intuitionistic type theory

[Martin-Löf 73] [Cardelli 86].

A novel notion of power types, analogous to powersets,

is introduced to model subtyping in such a system.

Combined with type quantifiers, power types can express

bounded  type quantification, leading to parametric

inheritance and partially-abstract data types.

One of our types will be the type Type. We adopt here

the property Type:Type (Type has itself type Type). There

are both theoretical and practical reasons for not wanting

this property (while still admitting Type as a type), and we

discuss this later. For now, we simply remark that the

Type:Type property simplifies the exposition of the the

kind of type systems we are interested in, and provides a

starting point for studying various systems which do not

admit this property.

It is not feasible to illustrate all the different situations

that can be modeled in our type system; we just remark that

most of the examples in [Burstall Lampson 84]  and

[Cardelli Wegner 85] can be directly translated. In this

paper we concentrate on examples involving dependent

types and power types.

Notation and basic rules
Our type system is defined by type inference rules,

describing how the type of an expression can be inferred

from the types of its subexpressions. These rules do not

define a typechecking algorithm, but are sufficient to

specify (a superset of) what a typechecker should do; they

are much easier to understand and less technology-

dependent than any given algorithm.

The type inference rules are introduced in groups, one

group for each type operator. The rules which are not

connected to any specific type operator are described in this

section.

Following the notation in [Harper Honsell Plotkin 87],

S denotes signatures associating types to constants, E

denotes environments associating types to variables, and the

judgement E ∫ S a:A  is read "we can deduce that the

expression a has type A, in a signature S and an

environment E".
The judgement E ∫S A↔B is read "expressions A and

B are definitionally (syntactically) equivalent". The exact

rules for definitional equivalence depend on the language,
but they should always guarantee that ↔ is an equivalence

relation which is also a congruence over the terms of the

language.

The notation E,x:A stands for the environment E

extended with the assumption that the variable x has type A.

The notation S,k:A stands for the signature S extended with
a constant k of type A. Finally, B{x←a} stands for the

result of substituting the term a for the free occurrences of

the variable x in the term B.

We need some well-formedness rules for signatures and

environments: the judgement ∫ S sig asserts that S is well
formed, and the judgement ∫S E env asserts that E is well

formed in the signature S. Hence we have four basic

judgements, to be defined by inference rules:

∫ S sig S is a well-formed signature
 ∫S E env E is a well-formed environment

E ∫S a:A a has type A

E ∫S A↔B A and B are equivalent

We do not need a subtyping judgement, since it is obtained

as a special case of the typing judgement.

We briefly describe how the first two judgements are
defined. The empty signature ∅ is well-formed; if S is well-

formed and A is a type (i.e., ∅  ∫S A:Type) then S,k:A is

well-formed, provided k is not already defined in S. The
empty environment ∅ is well-formed in any well-formed

signature; if E is a well-formed environment in the
signature S, and A is a type (i.e., E ∫S A:Type), then E,x:A

is well-formed in S, provided x is not already defined in E.

We always identify terms up to renaming of bound

variables.

Our first typing rule is also the only one which applies

to all terms, regardless of their syntactic shape. It asserts

that if a value has a type A, and A can be shown to be

equivalent to a type B, then that value also has type B (the

horizontal line is read "implies").
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Conversion
E ∫S a:A    E ∫S A↔B
—————————

E ∫S a:B

This rule says that equivalent types may replace each other

as the type of a term. The precise definition of equivalence

shall be discussed as we introduce type constructors. For

the kind of type systems we are considering, equivalence

normally includes equality up to typed lambda-conversion;

hence the Conversion rule may imply that arbitrary

computations can be carried out at the type level.

Each syntactic construct has its type rules. Here are the

rule for the simplest constructs: constants and variables.

The other constructs are treated in the next sections.

Given
∫S E env       k:A ∈ S

—————————

E ∫S k:A

Assumption
∫S E env       x:A ∈ E

—————————

E ∫S x:A

That is, if a constant (resp., variable) has a type in an

signature (environment) then we can trivially deduce that

that constant (variable) has that type.

Power types
Subtypes are intuitively analogous to subsets; power

types can then be intuitively understood as powersets. If A

is a type, then Power(A) is the type whose elements are all

the subtypes of A; if B has type Power(A) then B is a
subtype of A (written B⊆ A, as an abbreviation of

B:Power(A)). Our first task is to give formation,

introduction, elimination and subtyping rules for Power (a

similar task has to be carried out for all  type constructors).

Power Formation
E ∫S A:Type

—————————

E ∫S Power(A) : Type

Power Introduction
E ∫S A:Type

——————

E ∫S A ⊆  A

Power Elimination
E ∫S a:A    E ∫S A

 ⊆  B
——————————

E ∫S a:B

Power Subtyping
E ∫S A ⊆  B

———————————

E ∫S Power(A) ⊆  Power(B)

The formation rule asserts that if A is a type then

Power(A) is also a type. (In general, formation rules

prescribe how to construct a legal type.)

The introduction rule asserts that if A is a type, then A

is a subtype of itself (i.e., A has type Power(A)). (In

general, introduction rules prescribe how to create an object

whose type is given by a type constructor.)

The elimination rule asserts that if a has type A and A

is a subtype of B, then a has also type B. (In general,

elimination rules prescribe how to use an object whose type

is given by a type constructor.)

Finally, the subtyping rule asserts that if A is a subtype

of B, then Power(A) is a subtype of Power(B), i.e.,

Power(A) has type Power(Power(B)). (In general,

subtyping rules determine the subtypes of a given type

constructor.)

The Power operator can be understood simply as a way

of introducing subtyping into the system, but we shall see

that new and interesting types can be expressed when

combining Power with type quantifiers.

Variant types
Variant types are unordered, n-ary disjoint unions of

types; the component types are indexed by distinct tags (or

labels). An element of a variant type is a pair of a tag and a

value of the type determined by that tag.

Variant Formation
E ∫S A1

: Type   ...   E ∫S An
: Type

——————————————

E ∫S [t1:A1
 ... t

n
:A

n
]: Type

Variant Introduction
E ∫S ai

: A
i
           i∈ 1..n

——————————————————

E ∫S [ti=a
i
] as [t

1
:A

1
 ... t

n
:A

n
]: [t

1
:A

1
 ... t

n
:A

n
]

Variant Elimination (where  C = [t
1
:A

1
 ... t

n
:A

n
])

E ∫S c:C      E,z:C ∫S B : Type
E,x

i
:A

i
∫S bi

:B{z←[t
i
=x

i
] as C}      i ∈ 1..n

——————————————————————

E ∫S case(z:C=c)B | [t
1
=x

1
] b

1
 ... | [t

n
=x

n
] b

n
 : B{z←c}
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Variant Subtyping
E ∫S A1

 ⊆  B
1
   ...   E ∫S An

 ⊆  B
n
   ...   E ∫S Bm

: Type
—————————————————————

E ∫S [t1:A1
 ... t

n
:A

n
] ⊆  [t

1
:B

1
 ... t

n
:B

n
 ... t

m
:B

m
]

The formation rule constructs a variant type out of n
(distinct) tags t

1
 ... t

n
 and n types A

1
 ... A

n
. We identify

variant types up to permutation of the tagged type

components.
The introduction rule constructs a variant object [t

i
=a

i
]

as [t
1
:A

1
 ... t

n
:A

n
] by labeling a term a

i
 with a tag t

i
 and

specifying its full disjoint union type [t
1
:A

1
 ... t

n
:A

n
] so that

there is no ambiguity (the latter would normally be omitted

if it can be inferred).

The elimination rule describes the typing of the case

expression, which is used to inspect variant objects. If c has
the form [ti=ai] as C, then the branch bi is executed with xi

bound to ai. The type B is the result type of the case

statement; it may have a free variable z which is bound to c.

Normally the result type does not depend on the value being

discriminated on, so case(z:C=c)B can be abbreviated as

case c. We identify case expressions up to permutation of

their  branches.

The subtyping rule says that a variant of n components

is also a variant of n+k components, if the corresponding

components are in the subtyping relation.
The ↔  relation is extended with the typed computation

rules for variant and case expressions.

Examples
It is a simple excercise to derive booleans and

conditionals from variants.

Many examples will use enumeration types, which are

a special case of variant types. If we assume a trivial type

Ok, with a single constant ok:Ok, then we can take the

enumeration type "[A, B, C]" as an abbreviation for "[A:

Ok, B: Ok, C: Ok]", and "[A] as [A, B, C]" as an

abbreviation for "[A = ok] as [A, B, C]".

Throughout the paper, we use electronic video

components as sources of examples. The main parameters

of a video component are the kind of signal it can receive

and, in the case of a video cassette recorder, the tape format

it can accept. These parameters are expressed as

enumeration types. (All definitions have the form "def x:A

= a" where x is a variable, A is a term of type Type and a is

a term of type A; the type A may be omitted.)

def Signal: Type = [Ntsc, Pal, Secam]

def Format: Type = [Vhs, Beta, EightMm]

As a simple example of subtyping, we can define the

type of European video signals:

def EuropeanSignal: Type = [Pal, Secam]

According to the variant subtyping rule, we have
EuropeanSignal ⊆ Signal.

Record types
Record types have a natural subtyping relation, coming

from object-oriented programming. Given a record type A,

a subtype B of A can be formed by adding fields to A.

Normally (e.g., in Simula67) this is done by specifying

only the additional fields of B and its dependency on A.

This only provides for single inheritance (when the

subtyping hierarchy on record types forms a tree) and has

name-matching instead of structure matching at the base of

type compatibility.

To achieve structural subtyping we assume that the

fields of records and record types are unordered (and

uniquely identified by their tags), and that type matching is

performed field-wise by matching type components indexed

by the same tag. This gives us a form of multiple

inheritance since a record type can be a subtype of many

(possibly incompatible) record types, namely all those types

which structurally have fewer fields. This is formalized in

the following rules.

Record Formation
E ∫S A1

: Type   ...   E ∫S An
: Type

——————————————

E ∫S {t
1
:A

1
 ... t

n
:A

n
}: Type

Record Introduction
E ∫S a1

: A
1
   ...   E ∫S an

: A
n

———————————————

E ∫S {t
1
=a

1
 ... t

n
=a

n
} : {t

1
:A

1
 ... t

n
:A

n
}

Record Elimination
E ∫S r: {t

1
:A

1
 ... t

n
:A

n
}  i ∈ 1..n

—————————

E ∫S r.ti
: A

i
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Record Subtyping
E ∫S A1 ⊆  B

1
   ...   E ∫S An

 ⊆  B
n
   ...   E ∫S Am

: Type
—————————————————————

E ∫S {t
1
:A

1
 ... t

n
:A

n
 ... t

m
:A

m
} ⊆  {t

1
:B

1
 ... t

n
:B

n
}

The formation rule says how to make a record type out
of n (distinct) tags t

1
 ... t

n
 and n types A

1
 ... A

n
. The

introduction rule determines the type of a record object. The

elimination rule describes how to extract a record field,

with the usual dot notation. The subtyping rule says that a

subtype of a record type can be obtained by adding fields,

or by weakening the existing component types. We identify

records and record types up to reordering of their tagged

components.

It may seem surprising that a record with three

components is a subtype (intuitively, subset) of a record

with two components, instead of vice-versa. To make sense

of this, one must think in terms of the set of values of a

type. Every record with three fields is (i.e., can be used as)

a record with two fields (and not vice-versa). Hence there

are more records with two fields than records with three

fields. Hence a set of records with three fields is a subset of

a corresponding set of records with two fields.
The ↔  relation is extended with the typed computation

rules for records and record selections.

Examples
We build a multiple inheritance hierarchy of video

components. A generic video component has a signal type

as its only attribute. A video camera has a signal type and a

zoom capability. A video recorder has a signal type and a

tape format. Finally, a cam-corder is both a camera and a

recorder, and has the attributes of both.

def VideoComponent: Type =

{signal: Signal}

def VideoCamera: Type =

{signal: Signal,

 zoom: Boolean}

def VideoRecorder: Type =

{signal: Signal,

 format: Format}

def CamCorder: Type =

{signal: Signal,

 format: Format,

 zoom: Boolean}

Now we define a particular video component (a 25-

inch tv set) that has Ntsc as its signal.

def myTv =

{signal = [Ntsc] as Signal,

 inches = 25}

By subtyping, myTv is a VideoComponent. Note that

no type of tv sets has been defined yet; this can be done

now, and we obtain myTv: TvSet  and
TvSet⊆ VideoComponent. Structural typing and subtyping

permits this kind of after-the-fact definitions.

def TvSet: Type =

{signal: Signal, inches: Integer}

Here is another video component which has type

CamCorder and (by subtyping) VideoCamera,

VideoRecorder, VideoComponent, and many others (but

not TvSet).

def myCamCorder: CamCorder =

{signal = [Ntsc] as Signal,

 format = [EightMm] as Format,

 zoom = True}

Dependent function types
The type All(x:A)B is the type of all functions mapping

an element x of type A into an element of type B, where B

may depend on (have free occurrences of) the variable x. In

the non-dependent case, when x does not occur in B, we

reduce to an ordinary function space which can be written
as A→B. In case that A=Type, the dependent function type

reduces to universal type quantification, written ∀ x. B,

which can model parametric polymorphism [Reynolds 85].

Full dependent types are strictly more powerful than these

two special cases, since we can have types depending on

values, as we shall see in the examples.

All Formation
E ∫S A:Type      E, x:A ∫S B:Type

——————————————

E ∫S All(x:A)B : Type



Page 6

All Introduction
E ∫S A:Type    E, x:A ∫S b:B

————————————

E ∫S fun(x:A)b : All(x:A)B

All Elimination
E ∫S a:A    E ∫S b: All(x:A)B

————————————

E ∫S b(a): B{x←a}

All Subtyping
E ∫S A0 ⊆  A      E,x:A0 ∫S B ⊆  B0

——————————————

E ∫S All(x:A)B ⊆  All(x:A0)B0

The introduction rule concerns functions, and the

elimination rule concerns applications; note that the type of

the result of an application depends on the value of the

parameter.

The subtyping rule is a generalization of the ordinary

contravariance rule for function spaces. A (dependent)

function space is a subtype of another one if the domains

are in the inverse inclusion relation, and the ranges are in

the direct inclusion relation with an assumption about the

free variable x.

The subtyping rule extends subtyping to higher-order

function spaces. This integrates at the type level functional

programming, which is based on higher-order functions,

with object-oriented programming, which is based on first-

order subtyping. This rule also defines subtyping for

parametric polymorphic types, since we have seen that

these are a special case of dependent types.

Combining dependent function types with the Power

operator, we can express interesting new types such as
All(A⊆ B)A→A (which is an abbreviation for

All(A:Power(B))A→A). This is the type of all functions

which given as first argument any subtype of B and as

second argument an object of that subtype, return a result of
that subtype. One such function is fun(A⊆ B) fun(a:A)a, the

polymorphic identity over subtypes of B. The prefix
All(A⊆ B) is called a bounded universal quantifier .

A reason for choosing Power as the subtyping
primitive, instead of ⊆ , is that it allows us to introduce

uniform abbreviations (such as the prefix fun(A⊆ B) for

fun(A:Power(B))) in all binding positions, without needing

special binders for subtyping. Note however that the
expressiveness of Power goes beyond ⊆  and bounded

quantification, for example when Power appears in the

result type of a function.

The ↔  relation is extended with typed β  and η
reductions.

Examples
A video tape has a format and a length. Instead of

defining the type of video tapes directly, we define a

function which given a format type returns the type of tapes

of that format:

def TapeOfFormat: All(F⊆ Format) Type =

fun(F⊆ Format) {format: F, length: Integer}

The type of all video tapes is simply
TapeOfFormat(Format) ↔  {format: Format, length:

Integer}, but we can be more specific and define the type of

eight-millimeter video tapes only:

def EightMmTape: Type =

TapeOfFormat([EightMm])

Then we can define a particular video tape:

def myTape: EightMmTape =

{format = [EightMm] as [EightMm],

  length = 120}

The following function produces a type (a subtype of

Format) out of a value (a VideoRecorder). Note that the

result type of this function could be Type, but

Power(Format) is more precise.

def FormatOfVcr:
All(Vcr⊆ VideoRecorder) Vcr → Power(Format) =

fun(Vcr⊆ VideoRecorder) fun(vcr: Vcr)

    case (f:Format=vcr.format) Power(Format)

    | [Vhs=x]  [Vhs]

    | [Beta=x]  [Beta]

    | [EightMm=x]  [EightMm]

We can now compose TapeOfFormat and FormatOfVcr

to obtain the type of tapes which are compatible with a

given vcr.

def TapeForVcr:
All(Vcr⊆ VideoRecorder) Vcr → Type =

fun(Vcr⊆ VideoRecorder) fun(vcr: Vcr)

    TapeOfFormat(FormatOfVcr(Vcr)(vcr))
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For example, myCamCorder requires eight-millimeter

tapes. Note the subtyping relations.

TapeForVcr(CamCorder)(myCamCorder)
 ↔ {format: [EightMm], length: Integer}

Finally, we can write a procedure which given a vcr

and a tape of the correct format, "inserts" the tape in the vcr,

by returning the pair of them:

def insertTape:
All(Vcr⊆ VideoRecorder) All(vcr: Vcr)

  All(tape: TapeForVcr(Vcr)(vcr))

    {vcr: Vcr, tape: TapeForVcr(Vcr)(vcr)} =
fun(Vcr⊆ VideoRecorder) fun(vcr: Vcr)

  fun(tape: TapeForVcr(Vcr)(vcr))

    {vcr = vcr, tape = tape};

For example, it is legal to use myTape in

myCamCorder (but typechecking would fail when trying to

insert the wrong kind of tape):

insertTape(CamCorder)(myCamCorder)(myTape)
↔ {vcr = myCamCorder, tape = myTape}

In these examples, some apparently dynamic relations

which depend on object values (like "being a tape of the

correct format"), are statically captured by the type system.

A word of caution is due here. Dependent types can capture

"more" situations statically, but not arbitrary situations.

More complex semantic relations may be inexpressible and

typechecking may fail. The point here is to show something

which is not normally typecheckable, but one should not

infer that everything is typecheckable. In particular, types in

this system are still not first-class values, since there are no

operations for inspecting their structure.

Dependent pair types
The type Some(x:A)B is the type of all pairs consisting

of a left component x of type A and a right component of

type B, where B may depend on the value of the left

component (since it may have free occurrences of x). In the

non-dependent case, when x does not occur in B, we have a
simple cartesian product, written A×B. In case that

A=Type, we have existential type quantification [Mitchell
Plotkin 85], written ∃ x. B, and which can model abstract

t y p e s  a n d  i n t e r f a c e s .  F o r  e x a m p l e ,
Some(A:Type)A×(A→Int) is the type of a package

providing a constant of type A and an operation of type
A→Int over a hidden representation type A. Combining

dependent function and dependent pair types, one can give

account of various parametric module mechanisms

[MacQueen 86].

Some Formation
E ∫S A:Type     E, x:A ∫S B:Type

——————————————

E ∫S Some(x:A)B : Type

Some Introduction
E ∫S a:A     E ∫S b{x←a}:B{x←a}

———————————————

E ∫S pair(x:A=a)b:B :  Some(x:A)B

Some Elimination
E ∫S c : Some(x:A)B     E, z:Some(x:A)B ∫S C:Type

E,x:A,y:B ∫S d:C{z←pair(x:A=x)y:B}
—————————————————————

E ∫S bind x,y=c in d  :  C{z←c}

Some Subtyping
E ∫S A ⊆  A0      E,x:A ∫S B ⊆  B0

———————————————

E ∫S Some(x:A)B ⊆  Some(x:A0)B0

The introduction rule concerns pairs: pair(x:A=a)b:B is

the pair with left component a of type A and right

component b of type B (written <a,b> in simple non-

dependent situations), where the variable x of type A is

bound to a and may appear in b and B.

The elimination rule concerns splitting pairs into their

components: bind x,y=c in d splits the pair c and binds the

components to the variables x,y which can be used in the

scope d. The left and right projections of a pair can be

easily defined.

The subtyping rule defines subtyping for cartesian

products and abstract types as special cases. Combining

dependent pair types with Power we can express partially
abstract types: for example the interface Some(A⊆ B )

A×(A→Int) is the type of a package in which the

representation type A is unknown, except that A is known

to be a subtype of B.
The ↔  relation is extended with (the typed versions of)

the reductions:
bind x,y = pair(z=a) b in d   ↔   d{x←a, y←b{z←a}}

pair(z=bind x,y = c in x) bind x,y = c in y   ↔   c

where z does not occur free in c.
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Examples
A vcr gift is a package consisting of three items: the

type of vcr contained in the package, a vcr of that type, and

a tape of the correct format.

def VcrGift: Type =
Some(Vcr⊆ VideoRecorder) Some(vcr: Vcr)

    TapeForVcr(Vcr)(vcr)

For example, here is how to wrap myCamCorder and

myTape as a gift:

def gift: VcrGift =
pair(Vcr⊆ VideoRecorder = CamCorder)

  pair(vcr: Vcr = myCamCorder)

    myTape

Recursive types
Recursion can be introduced by an operator rec(x:A)a

(the variable x occurring in a is recursively identified with
a) with a reduction rule rec(x:A)a ↔  a{x←rec(x:A)a}

(given the appropriate type assumptions). Note that this

operator can be used for building recursive values, and also

recursive types when A=Type, taking advantage of

Type:Type.

Rec
E ∫S A:Type    E, x:A ∫S a:A

————————————

E ∫S rec(x:A)a : A

This rule says how to build a recursive value or type.

We do not need any other rules, since we can fold or unfold

the recursion whenever needed, according to the reduction

rule.

Type universe

Finally, we have to provide the rules for Type. We only

need formation and subtyping:

Type Formation
∫S E env

———————

E ∫S Type : Type

Type Subtyping
E ∫S A:Type

——————————

E ∫S Power(A) ⊆  Type

The formation rule says that Type is a member of itself.

The subtyping rules says that if A is a type, then Power(A)

is a subtype of Type (intuitively, the collection of subtypes

of A is a subset of the collection of all types). In particular
Power(Type) ⊆  Type, and we already had rules implying

Power(Type) : Type and Type : Power(Type). The
transitivity of ⊆ can be derived.

Discussion
We now discuss some of the troublesome aspects of our

type system.

Undecidable typechecking
Our system is striving for expressiveness, which is

achieved by providing a rich set of constructions at the type

level. In fact, arbitrary computations, and in particular non-

terminating computations, can be carried out at the type

level because of the presence of a general recursion

operator. (Even without general recursion, the Type:Type

property is sufficient to express non-terminating

computations [Girard 71].)

Recursion is necessary  to express recursive types in the

familiar ways. (Most such types can be expressed without

recursion, but this leads to an unacceptably awkward

programming style.) Hence one must choose between

limiting the expressive power of the system, or living with

possibly non-terminating typechecking. Without ruling out

the viability of the former solution, we have chosen the

latter, since virtually all common programming situations,

and many uncommon ones, can be typechecked, using

reasonably simple and efficient techniques [Cardelli 87].

The basic reason typechecking works in practice is that

it is still fundamentally based on type structure. The

situations in which typechecking diverges turn out to be

either degenerate, or the result of using the full power of the

system, beyond what is possible to typecheck in ordinary

languages.

Kind and phase distinctions
The system presented here makes use of the

controversial Type:Type property. This property presents

theoretical problems [Meyer Reinhold 86] and practical

implementation problems [Cardelli 87], sketched below.
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The Type:Type property is perfectly acceptable in

purely-applicative interpretive languages, such as languages

for describing modular structure [Burstall 84]. None of the

theoretical objections seem to apply to this class of

applications, and the implementation problems are avoided

by using interpretive techniques.

The basic problem of Type:Type is that it eliminates

the distinctions between types and kinds (the types of

types), hence introducing confusion into the system.

Distinguishing between types and kinds is however not

trivial; several interesting design decisions come up. For
example, one has to decide whether All(A:Type) A→A is a

type or a kind. In the former case we obtain proper

polymorphic functions as values, in the latter case

polymorphic functions must be fully instantiated before

they can be used as values. Similarly, if Some(A:Type)
A×(A→Int) is a type, we obtain proper abstract data types;

if it is a kind, the instances of abstract types are second-

class values, as it happens in most module systems.

Eliminating the distinctions between types and kinds

through Type:Type, also indirectly confuses the distinctions

between values and types. For example consider the

program f = fun(A:Type) fun(x:A) x, and try and answer the

question "is x a value?", or "is the result of f a value?". This

cannot be determined, because the following applications

are both legal: f(Integer)(3) and f(Type)(Integer).

This mixing of value and type levels becomes a

considerable obstacle when considering compiled

languages, or languages extended with imperative features,

which must make a clear distinction between compile-time

and run-time phases. In such cases, one should at least

make a proper distinction between types and kinds, or

otherwise stratify the system in order to eliminate

Type:Type.

Unfortunately, the confusion between compile-time and

run-time phases can be caused by dependent types alone,

even without Type:Type. This is because of the All
Elimination rule, where B{x←a} requires an arbitrary term

(possibly a run-time value) to be substituted inside a

(compile-time) type. Hence, for compiled languages the

main question becomes one of being able to make phase

distinctions, rather than whether to abolish Type:Type.

Since we feel there is still much to be done in the way

of introducing kind and phase distinctions, we have chosen

to present a kind-free system, using the Type:Type

property, which is simpler to present, and can be used as a

paradigm for more refined systems.

 Accidental matching
Since types match purely by structure, it is possible that

some types match by accident. This may happen in a large

programs, since the labels associated with records and

variants have global scoping.

This is obviously a problem, but there are some natural

solutions. If the values are really determined by their

structure, then nothing bad can happen by accidental type

matching. The only case in which accidental matching may

lead to problems is when values maintain implicit

invariants, not reflected in the type structure, which are

violated by accidental type matching. But when values have

hidden invariants, one should always build abstract types;

then the accidental matching problem disappears (but see

the discussion below on abstract types).

It may also seem strange that to organize a concrete

inheritance hierarchy  one has to choose the syntactic name

of labels very carefully, so that the desired hierarchy will

follow. Most object-oriented languages have declarative

mechanisms for specifying hierarchy; these could be added

to our language as syntactic sugar.

A unique property of our system is that we can set up

abstract inheritance hierarchies, of the form Some(A:Type)
Some(B⊆ A) Some(C⊆ A) ... , which can be implemented in

different ways, using different labels in the implementation

types. (In the present system, abstract multiple inheritance

hierarchies cannot be expressed, because this would require
a quantifier of the form Some(D⊆ B∩C), using a general

type intersection operator).

Abstract types
We have used the term abstract type for types of the

form P = Some(A:Type) B, because this models the concept

of having an unknown type A which supports a set of

operations of signature B.

It should be pointed out that, unlike abstract types in

second-order lambda calculus [Mitchell Plotkin 85] this

notion of type abstraction does not prevent impersonation.

That is, given a particular implementation p = pair(A:Type

= C) b:B of P, the representation type C is visible, hence

one can build an object of type A without using the

operations in b.

This problems can be partially solved by scoping

techniques; e.g., a function which must operate on arbitrary

implementations of P cannot make assumptions about any

particular C. A complete solution to the impersonation
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problem requires introducing additional concepts

[MacQueen 86].

On the positive side, the fact that even abstract types

are matched by structure means that redefining an abstract

type does not create a "new" one. This is convenient in

interactive systems, which often reload definitions, and in

systems which store abstract type instances across

programming sessions.

Conclusions
We have presented a type system supporting a uniform

notion of subtyping in a very general framework based on

dependent types. In the present form, it can be used for

purely functional, interpreted languages. Adaptations to

compiled, imperative languages are being investigated.

We have worked in a very syntactic fashion, basing our

system on syntactic reductions and inferences. No semantic

models seem to be known, because of the difficulty of

mixing recursive types, contravariance of function types,

Type:Type, and Power. (Several models are known for

systems with various subsets of these features.) Stratified

versions of this type system may be easier to model.

However it is not quite trivial to stratify the type system

while preserving desirable programming properties, like

having first-class polymorphic functions, abstract type

instances, and modules.

Elsewhere we have investigated typechecking

techniques for this type system, and we have built a

prototype typechecker which performs quite satisfactorily

on a selection of interesting programming examples,

although in principle it may diverge.
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