
Types for the Ambient Cal
ulusLu
a Cardelliy and Giorgio Ghelliz and Andrew D. GordonyyMi
rosoft Resear
h, 1 Guildhall Street, Cambridge, UKz Universit�a di Pisa, Dipartimento di Informati
a, Corso Italia 40, Pisa, ItalyThe ambient 
al
ulus is a 
on
urrent 
al
ulus where the unifying notionof `ambient' is used to model many di�erent 
onstru
ts for distributedand mobile 
omputation. We study a type system that des
ribes severalproperties of ambient behavior. The type system allows ambients to bepartitioned in disjoint sets (groups), a

ording to the intended design ofa system, in order to spe
ify both the 
ommuni
ation and the mobilitybehavior of ambients. CONTENTS1. Introdu
tion.2. The Polyadi
 Ambient Cal
ulus (Review).3. Introdu
tion to Ex
hange Types.4. Typed Ambient Cal
ulus.5. Opening Control.6. Crossing Control.7. E�e
t Safety.8. En
oding a Distributed Language.9. Con
lusions. 1. INTRODUCTIONThe ambient 
al
ulus [13℄ is a pro
ess 
al
ulus whose basi
 abstra
tion, the am-bient, represents mobile, nested, 
omputational environments, with lo
al 
ommuni-
ations. Ambients 
an represent the standard 
omponents of distributed systems,su
h as nodes, 
hannels, messages, and mobile 
ode. They 
an also represent situa-tions where entire a
tive 
omputational environments are moved, as happens withmobile 
omputing devi
es, and with multithreaded mobile agents.We de�ne here a set of type systems for the ambient 
al
ulus, whi
h are basedon the idea of partitioning ambients in progammer de�ned groups, and tra
king
ommuni
ation and mobility properties.Type systems are, today, a widely applied te
hnique allowing programmers todes
ribe the key properties of their 
ode, and to have these properties me
hani
allyand eÆ
iently 
he
ked. Mobile 
ode makes types, and ma
hine-
he
kable propertiesin general, useful for se
urity reasons too, as has been demonstrated by the 
he
kingperformed on Java applets [26℄.



In standard languages, the key invariants that are maintained by type systemshave mainly to do with the 
ontents of variables and with the interfa
es of fun
tions,pro
edures, or methods. In the ambient 
al
ulus, the basi
 properties of a pie
eof 
ode are those related to its mobility, to the possibility of opening an ambientand exposing its 
ontent, and to the type of data whi
h may be ex
hanged insidean ambient. To understand how groups arise in this 
ontext, 
onsider a typi
alstati
 property we may want to express in a type system for the ambient 
al
ulus;informally: The ambient named n 
an enter the ambient named m.This 
ould be expressed as a typing n : CanEnter(m) stating that n is a mem-ber of the 
olle
tion CanEnter(m) of names that 
an enter m. However, thiswould bring us straight into the domain of dependent types [14℄, sin
e the typeCanEnter(m) depends on the name m. Instead, we introdu
e type-level groups ofnames, G, H , and restate our property as:The name m belongs to group G.The ambient named n 
an enter any ambient of group G.This idea leads to typings of the form: m : G, n : CanEnter(G) whi
h are akinto standard typings su
h as x : Int , y : Channel(Int).To appre
iate the relevan
e of groups in the des
ription of distributed systems,
onsider a programmer 
oding a typi
al distributed system 
omposed of nodes andmobile threads moving from one node to another, and where threads 
ommuni
ateby sending input and output pa
kets through typed 
hannels. In this paper wede�ne a type system where a programmer 
an:� de�ne groups su
h as Node, Thread, Channel, and Pa
ket, whi
h mat
h thesystem stru
ture;� de
lare properties su
h as: this ambient is a Thread and it may only 
rossambients whi
h are Nodes ; this ambient is a Pa
ket and 
an enter Channels ; thisambient is a Channel of type T , and it 
annot move or be opened, and it may openPa
kets 
ontaining data of type T ; this ambient is a Node and it 
annot move orbe opened;� have the system stati
ally verify all these properties.Our groups are similar to sorts used in typed versions of the �-
al
ulus [27℄, butwe introdu
e an operation, (�G)P , for 
reating a new group G, whi
h 
an be usedwithin the pro
ess P .The binders for new groups, (�G), 
an 
oat outward during redu
tion as longas this adjustment (
alled extrusion in the �-
al
ulus) does not introdu
e name
lashes. Be
ause of extrusion, group binders do not impede the mobility of ambientsthat are en
losed in the initial s
ope of fresh groups but later move away. On theother hand, even though extrusion enlarges s
opes, simple s
oping restri
tions inthe typing rules prevent names belonging to a fresh group from ever being re
eivedby a pro
ess whi
h has been de�ned outside the initial s
ope of the group.Therefore, we obtain a 
exible way of prote
ting the propagation of names. Thisis to be 
ontrasted with the situation in the untyped �-
al
ulus and ambient 
al-
ulus, where names 
an (intentionally, a

identally, or mali
iously) be extruded2



arbitrarily far, by the automati
 and unrestri
ted appli
ation of extrusion rules,and 
ommuni
ated to other parties.This paper reports the results of a resear
h e�ort some parts of whi
h are de-s
ribed in 
onferen
e papers. In [12℄ we investigate ex
hange types, whi
h subsumestandard type systems for pro
esses and fun
tions, but do not impose restri
tionson mobility; no groups were present in that system. In [9℄ we report on immobilityand lo
king annotations, whi
h are basi
 predi
ates about mobility, still with nonotion of groups. In [10℄ we introdu
e the notion of groups; that paper is essentiallyan extended abstra
t of the present one.We organise the paper as follows. In Se
tion 2 we review the basi
 untypedambient 
al
ulus. In Se
tion 3 we informally introdu
e a group-based ex
hangetype system whi
h only tra
ks 
ommuni
ations. In Se
tion 4 we give a pre
isede�nition of the same system, and a subje
t redu
tion result. Se
tion 5 enri
hesthe system of Se
tion 4 to 
ontrol ambient opening. In Se
tion 6, we de�ne thefull system in whi
h both ambient opening and ambient movement are tra
ked.Se
tion 7 formalizes safety properties guaranteed by typing. In Se
tion 8 we revisita typed en
oding of a distributed programming language from our earlier work onlo
king and mobility annotations [9℄, in order to illustrate the expressiveness ofthe type system. In parti
ular, we show how groups help des
ribing the di�erent
lasses of ambients and their properties. Se
tion 9 
on
ludes and dis
usses relatedwork. Finally, appendixes 
ontain proofs of the subje
t redu
tion and e�e
t safetyproperties for the full type system.2. THE POLYADIC AMBIENT CALCULUS (REVIEW)We begin by reviewing and slightly extending the ambient 
al
ulus of [13℄. Inthat 
al
ulus, 
ommuni
ation is based on the ex
hange of single values. Here weextend the 
al
ulus with 
ommuni
ation based on tuples of values (polyadi
 
om-muni
ation), sin
e this simple extension greatly fa
ilitates the task of providing anexpressive type system. We also add obje
tive moves, as in [9℄, and we annotatebound variables with type information.Four of our pro
ess 
onstru
tions (restri
tion, ina
tivity, 
omposition, and repli-
ation) are 
ommonly found in pro
ess 
al
uli. To these we add ambients, 
apabil-ities, and a simple form of 
ommuni
ation. We brie
y dis
uss these 
onstru
tions;see [13℄ for a more detailed introdu
tion.The restri
tion operator, (�n:W )P , 
reates a new (unique) name n of type Wwithin a s
ope P . The new name 
an be used to name ambients and to operate onambients by name. The ina
tive pro
ess, 0, does nothing. Parallel 
omposition isdenoted by a binary operator, P j Q, that is 
ommutative and asso
iative. Repli-
ation is a te
hni
ally 
onvenient way of representing iteration and re
ursion: thepro
ess !P denotes the unbounded repli
ation of the pro
ess P and is equivalent toP j!P .An ambient is written M [P ℄, where M is the name of the ambient, and P is thepro
ess running inside the ambient.The pro
ess M:P exe
utes an a
tion regulated by the 
apability M , and then
ontinues as the pro
ess P . We 
onsider three kinds of 
apabilities: one for enteringan ambient, one for exiting an ambient, and one for opening up an ambient. (Thelatter requires spe
ial 
are in the type system.) Capabilities are obtained from3



names; given a name n, the 
apability in n allows entry into n, the 
apability out nallows exit out of n and the 
apability open n allows the opening of n. Impli
itly, thepossession of one or all of these 
apabilities is insuÆ
ient to re
onstru
t the originalname n from whi
h they were extra
ted. Capabilities 
an also be 
omposed intopaths, M:M 0, with � for the empty path.Communi
ation is asyn
hronous and lo
al to an ambient. It is similar to 
hannel
ommuni
ation in the asyn
hronous �-
al
ulus [7, 21℄, ex
ept that the 
hannel hasno name: the surrounding ambient provides the 
ontext where the 
ommuni
ationhappens. The pro
ess hM1; : : : ;Mki represents the output of a tuple of values, withno 
ontinuation. The pro
ess (x1:W1; : : : ; xk:Wk):P represents the input of a tupleof values, whose 
omponents are bound to x1; : : : ; xk, with 
ontinuation P .Communi
ation is used to ex
hange both names and 
apabilities, whi
h sharethe same synta
ti
 
lass M of messages. The �rst task of our type system is todistinguish theMs that are names from theMs that are 
apabilities, so that ea
h isguaranteed to be used in an appropriate 
ontext. In general, the type system mightdistinguish other kinds of expressions, su
h as integer and boolean expressions, butwe do not in
lude those in our basi
 
al
ulus.The pro
ess goN:M [P ℄ moves the ambientM [P ℄ as spe
i�ed by the N 
apability,and has M [P ℄ as its 
ontinuation. It is 
alled an obje
tive move sin
e the ambientM [P ℄ is moved from the outside, while a movement 
aused by a pro
ess N:P whi
hruns inside an ambient is 
alled a subje
tive move. There are more powerful forms ofobje
tive move, beyond what is expressible in the untyped 
al
ulus, that may haveundesirable properties [13℄. We adopt the form go N:M [P ℄ as primitive be
ause itusefully allows more re�ned typings than are possible with only subje
tive moves|as we show in Se
tion 6.2|and be
ause it does not a�e
t the untyped operationalsemanti
s, sin
e it is derivable in the untyped 
al
ulus. We 
an de�ne an obje
tivemove go N:M [P ℄ to be short for (�k)k[N:M [out k:P ℄℄ where k is not free in P .Messages and Pro
esses:M;N ::= messagen namein M 
an enter into Mout M 
an exit out of Mopen M 
an open M� nullM:M 0 pathP;Q;R ::= pro
ess(�n:W )P restri
tion0 ina
tivityP j Q 
omposition!P repli
ationM [P ℄ ambientM:P a
tion(x1:W1; : : : ; xk:Wk):P input a
tionhM1; : : : ;Mki output a
tion4



go N:M [P ℄ obje
tive moveThe following table displays the main redu
tion rules of the 
al
ulus (the full setis presented in Se
tion 4). The notation Pfx1 M1; : : : ; xk Mkg in rule (Red I/O)denotes the out
ome of a 
apture-avoiding simultaneous substitution of messageMifor ea
h free o

urren
e of the 
orresponding name xi in the pro
ess P , for i 2 1::k.Redu
tion:n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)open n:P j n[Q℄! P j Q (Red Open)hM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P !Pfx1 M1; : : : ; xk Mkg (Red I/O)go(in m:N):n[P ℄ j m[Q℄! m[go N:n[P ℄ j Q℄ (Red Go In)m[go(out m:N):n[P ℄ j Q℄! go N:n[P ℄ j m[Q℄ (Red Go Out)We use the following synta
ti
 
onventions:� parentheses may be used for pre
eden
e� (�n:W )P j Q is read ((�n:W )P ) j Q� !P j Q is read (!P ) j Q� M:P j Q is read (M:P ) j Q� M:M 0:P is read M:(M 0:P )� (n1:W1; : : : ; nk:Wk):P j Q is read ((n1:W1; : : : ; nk:Wk):P ) j Q� n[℄ �= n[0℄� M �=M:0 (where appropriate)As an example, 
onsider the following pro
ess:a[p[out a:in b:h
i℄℄ j b[open p:(x):x[℄℄Intuitively, this example represents a pa
ket named p moving from a ma
hine ato a ma
hine b. The pro
ess p[out a:in b:h
i℄ represents the pa
ket, as a subambientof ambient a. The name of the pa
ket ambient is p, and its interior is the pro
essout a:in b:h
i. This pro
ess 
onsists of three sequential a
tions: exer
ise the 
apa-bility out a, exer
ise the 
apability in b, and then output the name 
. The e�e
tof the two 
apabilities on the en
losing ambient p is to move p out of a and into b(rules (Red Out), (Red In)), to rea
h the state:a[℄ j b[p[h
i℄ j open p:(x):x[℄℄In this state, the interior of a is empty but the interior of b 
onsists of tworunning pro
esses, the subambient p[h
i℄ and the pro
ess openp:(x):x[℄. This pro
essis attempting to exer
ise the open p 
apability. This 
apability was previouslyblo
ked, but now that the p ambient is present, the 
apability's e�e
t is to dissolvethe ambient's boundary; hen
e, the interior of b be
omes the pro
ess h
i j (x):x[℄5



(Red Open). This is a 
omposition of an output h
i with an input (x):x[℄. Theinput 
onsumes the output, leaving 
[℄ as the interior of b (Red I/O). Hen
e, the�nal state of the whole example is a[℄ j b[
[℄℄.As an example for the obje
tive moves, 
onsider the following variation of theprevious one: a[go(out a:in b):p[h
i℄℄ j b[open p:(x):x[℄℄In this 
ase, the ambient p[h
i℄ is moved from the outside, out of a and into b(rules (Red Go Out), (Red Go In)), to rea
h the same state that was rea
hed inthe previous version after the (Red Out), (Red In) subje
tive moves:a[℄ j b[go �:p[h
i℄ j open p:(x):x[℄℄3. INTRODUCTION TO EXCHANGE TYPESAn ambient is a pla
e where pro
esses 
an ex
hange messages and where otherambients 
an enter and exit. We introdu
e here a type system whi
h regulates
ommuni
ation, while mobility will be ta
kled in the following se
tions. This systemgeneralizes the one presented in [12℄ by allowing the partitioning of ambients intogroups. 3.1. Topi
s of ConversationWithin an ambient, multiple pro
esses 
an freely exe
ute input and output a
-tions. Sin
e the messages are undire
ted, it is easily possible for a pro
ess to uttera message that is not appropriate for some re
eiver. The main idea of the ex
hangetype system is to keep tra
k of the topi
 of 
onversation that is permitted within agiven ambient, so that talkers and listeners 
an be 
ertain of ex
hanging appropriatemessages.The range of topi
s is des
ribed in the following table by message types, W , andex
hange types, T . The message types are G[T ℄, the type of names of ambientswhi
h belong to the group G and that allow ex
hanges of type T , and Cap [T ℄, thetype of 
apabilities that when used may 
ause the unleashing of T ex
hanges (as a
onsequen
e of opening ambients that ex
hange T ). The ex
hange types are Shh ,the absen
e of ex
hanges, andW1�: : :�Wk, the ex
hange of tuples of messages withelements of the respe
tive message types. For k = 0, the empty tuple type is 
alled1; it allows the ex
hange of empty tuples, that is, it allows pure syn
hronization.The 
ase k = 1 allows any message type to be an ex
hange type.Types:W ::= message typeG[T ℄ name in group G for ambients allowing T ex
hangesCap[T ℄ 
apability unleashing T ex
hangesS; T ::= ex
hange typeShh no ex
hangeW1 � � � � �Wk tuple ex
hange (1 is the null produ
t)6



For example, in a s
ope where the Agent and Pla
e groups have been de�ned,we 
an express the following types:� An ambient of the Agent group where no ex
hange is allowed (a quiet Agent):Agent [Shh ℄� A harmless 
apability: Cap [Shh ℄� A Pla
e where names of quiet Agents may be ex
hanged:Pla
e [Agent [Shh ℄℄� A Pla
e where harmless 
apabilities may be ex
hanged:Pla
e [Cap[Shh ℄℄� A 
apability that may unleash the ex
hange of names of quiet Agents:Cap[Agent [Shh ℄℄3.2. IntuitionsBefore presenting the formal type rules (in Se
tion 4), we dis
uss the intuitionsthat lead to them.3.2.1. Typing of Pro
essesIf a message M has message type W , then hMi is a pro
ess that outputs (ex-
hanges) W messages. Therefore, we have a rule stating that:M : W implies hMi :WIf P is a pro
ess that may ex
hange W messages, then (x:W ):P is also a pro
essthat may ex
hange W messages. Therefore:P :W implies (x:W ):P :WThe pro
ess 0 ex
hanges nothing, so it naturally has ex
hange type Shh . How-ever, we may also 
onsider 0 as a pro
ess that may ex
hange any type. This isuseful when we need to pla
e 0 in a 
ontext that is already expe
ted to ex
hangesome type: 0 : T for any TAlternatively, we may add a subtype relation among types, give 0 a minimal type,and add a rule whi
h allows pro
esses with a type to appear where pro
esses witha supertype are required [36℄. We reje
t this approa
h here only be
ause we wantto explore the ideas of group-based ex
hange and mobility types in the simplestpossible setting.If P and Q are pro
esses that may ex
hange T , then P j Q is also su
h a pro
ess.Similarly for !P : 7



P : T;Q : T implies P j Q : TP : T implies !P : TTherefore, by keeping tra
k of the ex
hange type of a pro
ess, T -inputs andT -outputs are tra
ked so that they mat
h 
orre
tly when pla
ed in parallel.3.2.2. Typing of AmbientsAn ambient n[P ℄ is a pro
ess that ex
hanges nothing at the 
urrent level, so,like 0, it 
an be pla
ed in parallel with any pro
ess, hen
e we allow it to have anyex
hange type: n[P ℄ : T for any TThere needs to be, however, a 
onne
tion between the type of n and the typeof P . We give to ea
h ambient name n a type G[T ℄, meaning that n belongs tothe group G and that only T ex
hanges are allowed in any ambient of that name.Hen
e, a pro
ess P 
an be pla
ed inside an ambient with that name n only if thetype of P is T :n : G[T ℄; P : T implies n[P ℄ is well-formed (and 
an have any type)By tagging the name of an ambient with the type of ex
hanges, we know whatkind of ex
hanges to expe
t in any ambient we enter. Moreover, we 
an tell whathappens when we open an ambient of a given name.3.2.3. Typing of OpenTra
king the type of I/O ex
hanges is not enough by itself. We also need toworry about open , whi
h might open an ambient and unleash its ex
hanges insidethe surrounding ambient.If ambients named n permit T ex
hanges, then the 
apability openn may unleashthose T ex
hanges. We then say that open n has a 
apability type Cap [T ℄, meaningthat it may unleash T ex
hanges when used:n : G[T ℄ implies open n : Cap [T ℄As a 
onsequen
e, any pro
ess that uses a Cap [T ℄ must be a pro
ess that isalready willing to parti
ipate in ex
hanges of type T , be
ause further T ex
hangesmay be unleashed: M : Cap[T ℄; P : T implies M:P : T3.2.4. Typing of In and OutThe exer
ise of an in or out 
apability 
annot 
ause any ex
hange, hen
e su
h
apabilities 
an be prepended to any pro
ess. Following the same pattern we usedwith 0 and ambients, the silent nature of these 
apabilities is formalized by allowingthem to a
quire any 
apability type: 8



in n : Cap[T ℄ for any Tout n : Cap[T ℄ for any T3.2.5. GroupsGroups are used in the ex
hange system to spe
ify whi
h kinds of messages 
anbe ex
hanged inside an ambient. We add a pro
ess 
onstru
t to 
reate a new groupG with s
ope P : (�G)PThe type rule of this 
onstru
t spe
i�es that the pro
ess P should have an ex-
hange type T that does not 
ontain G. Then, (�G)P 
an be given type T as well.That is, G is never allowed to \es
ape" out of the s
ope of (�G) into the type of(�G)P : P : T; G does not o

ur in T implies (�G)P : T4. TYPED AMBIENT CALCULUSWe are now ready for a formal presentation of the typed 
al
ulus whi
h has beeninformally introdu
ed in the previous se
tion. We �rst present its syntax, then itstyping rules, and �nally a subje
t redu
tion theorem, whi
h states that types arepreserved during 
omputation.4.1. Types and Pro
essesTypes are de�ned as in Se
tion 3.1; messages and pro
esses are de�ned as inSe
tion 2, but we add the operator (�G)P of Se
tion 3.2.5.Messages and Pro
esses:P;Q;R ::= pro
ess(�G)P group 
reation: : : as in Se
tion 2We identify pro
esses up to 
onsistent renaming of bound names and groups. Inthe pro
esses (�G)P and (�n:W )P , the group G and the name n, respe
tively, arebound, with s
ope P . In the pro
ess (x1:W1; : : : ; xk:Wk):P , the names x1, . . . , xkare bound, with s
ope P .The following table de�nes the free names of pro
esses and messages, and thefree groups of pro
esses and types.Free Names and Free Groups:fn((�G)P ) �= fn(P ) fn(n) �= fngfn((�n:W )P ) �= fn(P )� fng fn(inM) �= fn(M)fn(0) �= ? fn(outM) �= fn(M)fn(P j Q) �= fn(P ) [ fn(Q) fn(openM) �= fn(M)fn(!P ) �= fn(P ) fn(�) �= ?fn(M [P ℄) �= fn(M) [ fn(P ) fn(M:N) �= fn(M) [ fn(N)9



fn(M:P ) �= fn(M) [ fn(P )fn((x1:W1; : : : ; xk:Wk):P ) �= fn(P )� fx1; : : : ; xkgfn(hM1; : : : ;Mki) �= fn(M1) [ � � � [ fn(Mk)fn(go N:M [P ℄) �= fn(N) [ fn(M) [ fn(P )fg((�G)P ) �= fg(P )� fGg fg(G[T ℄) �= fGg [ fg(T )fg((�n:W )P ) �= fg(W ) [ fg(P ) fg(Cap [T ℄) �= fg(T )fg(0) �= ? fg(Shh) �= ?fg(P j Q) �= fg(P ) [ fg(Q) fg(W1 � � � � �Wk) �=fg(!P ) �= fg(P ) fg(W1) [ � � � [ fg(Wk)fg(M [P ℄) �= fg(P )fg(M:P ) �= fg(P )fg((x1:W1; : : : ; xk:Wk):P ) �= fg(W1) [ � � � [ fg(Wk) [ fg(P )fg(hM1; : : : ;Mki) �= ?fg(go N:M [P ℄) �= fg(P )The following tables des
ribe the operational semanti
s of the 
al
ulus. The typeannotations present in the syntax do not play a role in redu
tion; they are simply
arried along by the redu
tions.Terms are identi�ed up to an equivalen
e relation, �, 
alled stru
tural 
ongru-en
e. This relation provides a way of rearranging pro
esses so that intera
ting parts
an be brought together. Then, a redu
tion relation, !, a
ts on the intera
tingparts to produ
e 
omputation steps. The 
ore of the 
al
ulus is given by the re-du
tion rules (Red In), (Red Out), (Red Go In), (Red Go Out), and (Red Open),for mobility, and (Red I/O), for 
ommuni
ation.The rules of stru
tural 
ongruen
e are the same as for the untyped ambient
al
ulus [13℄, ex
ept for the addition of type annotations, and new rules for obje
tivemoves and group restri
tion. The rules (Stru
t GRes . . . ) des
ribe the extrusionbehavior of the (�G) binders. Note that (�G) extrudes exa
tly as (�n) does, hen
eit does not pose any dynami
 restri
tion on the movement of ambients or messages.The rule (Stru
t Go �) allows empty obje
tive moves to be erased. The rules (Stru
tGo � :), (Stru
t Go : �), and (Stru
t Go : Asso
) allow the 
apability expressionin an obje
tive move to be re-arranged to allow appli
ation of the redu
tion rules(Red Go In) and (Red Go Out). (These three rules of stru
tural 
ongruen
e weremissing in an earlier version of this system [10℄.)Redu
tion:n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)open n:P j n[Q℄! P j Q (Red Open)hM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P !Pfx1 M1; : : : ; xk Mkg (Red I/O)go(in m:N):n[P ℄ j m[Q℄! m[go N:n[P ℄ j Q℄ (Red Go In)m[go(out m:N):n[P ℄ j Q℄! go N:n[P ℄ j m[Q℄ (Red Go Out)P ! Q) P j R! Q j R (Red Par)10



P ! Q) (�n:W )P ! (�n:W )Q (Red Res)P ! Q) (�G)P ! (�G)Q (Red GRes)P ! Q) n[P ℄! n[Q℄ (Red Amb)P 0 � P; P ! Q;Q � Q0 ) P 0 ! Q0 (Red �)Stru
tural Congruen
e:P � P (Stru
t Re
)Q � P ) P � Q (Stru
t Symm)P � Q;Q � R) P � R (Stru
t Trans)P � Q) (�n:W )P � (�n:W )Q (Stru
t Res)P � Q) (�G)P � (�G)Q (Stru
t GRes)P � Q) P j R � Q j R (Stru
t Par)P � Q) !P � !Q (Stru
t Repl)P � Q)M [P ℄ �M [Q℄ (Stru
t Amb)P � Q)M:P �M:Q (Stru
t A
tion)P � Q)(x1:W1; : : : ; xk :Wk):P � (x1:W1; : : : ; xk:Wk):Q (Stru
t Input)P � Q) go N:M [P ℄ � go N:M [Q℄ (Stru
t Go)P j Q � Q j P (Stru
t Par Comm)(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)!P � P j !P (Stru
t Repl Par)n1 6= n2 )(�n1:W1)(�n2:W2)P � (�n2:W2)(�n1:W1)P (Stru
t Res Res)n =2 fn(P )) (�n:W )(P j Q) � P j (�n:W )Q (Stru
t Res Par)n 6= m) (�n:W )m[P ℄ � m[(�n:W )P ℄ (Stru
t Res Amb)(�G1)(�G2)P � (�G2)(�G1)P (Stru
t GRes GRes)G =2 fg(W )) (�G)(�n:W )P � (�n:W )(�G)P (Stru
t GRes Res)G =2 fg(P )) (�G)(P j Q) � P j (�G)Q (Stru
t GRes Par)(�G)m[P ℄ � m[(�G)P ℄ (Stru
t GRes Amb)P j 0 � P (Stru
t Zero Par)(�n:W )0 � 0 (Stru
t Zero Res)(�G)0 � 0 (Stru
t Zero GRes)!0 � 0 (Stru
t Zero Repl)�:P � P (Stru
t �)(M:M 0):P �M:M 0:P (Stru
t :)go �:N [P ℄ � N [P ℄ (Stru
t Go �)go (�:M):N [P ℄ � go M:N [P ℄ (Stru
t Go � :)go (M:�):N [P ℄ � go M:N [P ℄ (Stru
t Go : �)go ((M:M 0):M 00):N [P ℄ � go (M:(M 0:M 00)):N [P ℄ (Stru
t Go : Asso
)11



4.2. The Ex
hange TypesIn the tables below, we introdu
e typing environments, E, the �ve basi
 judg-ments, and the typing rules. By 
onvention, any ante
edent of the form E ` J1,. . . , E ` Jn means E ` � when n = 0.Environments, E, and the Domain, dom(E), of an Environment:E ::= ? j E;G j E; n:W environmentdom(?) �= ?dom(E;G) �= dom(E) [ fGgdom(E; n:W ) �= dom(E) [ fngJudgments:E ` � good environmentE `W good message type WE ` T good ex
hange type TE `M :W good message M of message type WE ` P : T good pro
ess P with ex
hange type TGood Environments:(Env ?)? ` � (Env n)E `W n =2 dom(E)E; n:W ` � (Env G)E ` � G =2 dom(E)E;G ` �Good Types:(Type Amb)G 2 dom(E) E ` TE ` G[T ℄ (Type Cap)E ` TE ` Cap[T ℄(Type Shh)E ` �E ` Shh (Type Prod)E `W1 � � � E `WkE `W1 � � � � �WkGood Messages:(Exp n)E0; n:W;E00 ` �E0; n:W;E00 ` n :W (Exp :)E `M : Cap [T ℄ E `M 0 : Cap [T ℄E `M:M 0 : Cap [T ℄ (Exp �)E ` Cap[T ℄E ` � : Cap [T ℄(Exp In)E ` n : G[S℄ E ` TE ` in n : Cap [T ℄ (Exp Out)E ` n : G[S℄ E ` TE ` out n : Cap [T ℄ (Exp Open)E ` n : G[T ℄E ` open n : Cap [T ℄12



Good Pro
esses:(Pro
 A
tion)E `M : Cap[T ℄ E ` P : TE `M:P : T (Pro
 Amb)E `M : G[S℄ E ` P : S E ` TE `M [P ℄ : T(Pro
 Res)E; n:G[S℄ ` P : TE ` (�n:G[S℄)P : T (Pro
 GRes)E;G ` P : T G =2 fg(T )E ` (�G)P : T(Pro
 Zero)E ` TE ` 0 : T (Pro
 Par)E ` P : T E ` Q : TE ` P j Q : T (Pro
 Repl)E ` P : TE ` !P : T(Pro
 Input)E; n1:W1; : : : ; nk:Wk ` P :W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P :W1 � � � � �Wk(Pro
 Output)E `M1 :W1 � � � E `Mk :WkE ` hM1; : : : ;Mki :W1 � � � � �Wk(Pro
 Go)E ` N : Cap[Shh ℄ E `M : G[S℄ E ` P : S E ` TE ` go N:M [P ℄ : T4.3. Subje
t Redu
tionWe obtain a standard subje
t redu
tion result. A subtle point, though, is theneed to a

ount for the appearan
e of new groups (G1, . . . , Gk, below) duringredu
tion. This is be
ause redu
tion is de�ned up to stru
tural 
ongruen
e, andstru
tural 
ongruen
e does not preserve the set of free groups of a pro
ess. The
ulprit is the rule (�n:W )0 � 0, in whi
h groups free in W are not free in 0.Theorem 4.1 (Subje
t Congruen
e). If E ` P : T and P � Q then there areG1, . . . , Gk su
h that G1; : : : ; Gk; E ` Q : T .Proof. See Appendix A.Theorem 4.2 (Subje
t Redu
tion). If E ` P : T and P ! Q then there areG1, . . . , Gk su
h that G1; : : : ; Gk; E ` Q : T .Proof. See Appendix A.Subje
t redu
tion spe
i�es that, if P is well-typed, it will only redu
e to well-typed terms. This fa
t has some pra
ti
al 
onsequen
es:13



� P will never redu
e to meaningless pro
esses allowed by the syntax like (in n)[P ℄;� no pro
ess deriving from P will 
ontain an ambient where a pro
ess attemptsan input or output operation whi
h does not mat
h the ambient type.Subje
t redu
tion has also interesting and subtle 
onne
tions with se
re
y ofnames.Consider a well-typed pro
ess ((�G)P ) j O, where O is a type-
he
ked \oppo-nent", and a name n is de
lared inside P with a type G[T ℄. Although (�G) 
anbe extruded arbitrarily far, a

ording to the extrusion rules, no pro
ess whi
h de-rives from the opponent O will ever be able to read n through an input (x:W ):Q.Any pro
ess hni j (x:W ):Q whi
h derives from ((�G)P ) j O is well-typed, hen
eW = G[T ℄, but the opponent was not, by assumption, in the initial s
ope of G,and therefore 
annot even mention the type G[T ℄. Therefore, we 
an guaranteethat names of group G 
an never be 
ommuni
ated to pro
esses outside the initials
ope of G, simply be
ause those pro
esses 
annot name G to re
eive the message.(Elsewhere [11℄ we extend this argument to the 
ase of untyped opponents.)This situation is in sharp 
ontrast with ordinary name restri
tion, where a namethat is initially held se
ret (e.g. a key) may a

identally be given away and misused(e.g. to de
rypt 
urrent or old messages). This is be
ause s
oping of names 
an beextruded too far, inadvertently. S
oping of groups 
an be extruded as well, but stillo�ers prote
tion against a

idental or even mali
ious leakage.Of 
ourse, we would have even stronger prote
tion if we did not allow (�G)binders to extrude at all. But this would be too rigid. Sin
e (�G) binders 
an beextruded, they do not impede the mobility of ambients that 
arry se
rets. Theyonly prevent those ambients from giving the se
rets away. Consider the followingexample of traveling agents sharing se
rets.a[(�G)(�k0 : G[Shh ℄)(�k00 : G[Shh ℄)(k0[out a:in b:out b:in 
℄ jk00[out a:in 
:in k0℄)℄ j b[℄ j 
[℄Within an ambient a, two agents share a se
ret group G and two names k0 andk00 belonging to that group. The two agents adopt the names k0 and k00 as theirrespe
tive names, knowing that those names 
annot be leaked even by themselves.This way, as they travel, nobody else 
an interfere with them. If somebody interfereswith them, or demonstrates knowledge of the names k0 or k00, the agents know thatthe other party must be (a des
endant of) the other agent. In this example, the�rst agent travels to ambient b and then to 
, and the se
ond agent goes to ambient
 dire
tly. The s
ope extrusion rules for groups and names allow this to happen.Inside 
, out of the intial s
ope of (�G), the se
ond agent then intera
ts with the�rst by entering it. It 
an do so be
ause it still holds the shared se
ret k0.The proof that group extrusion preserves types 
an be found in the appendix, butwe 
omment here on the 
ru
ial 
ase: the preservation of typing by the extrusionrule (Stru
t GRes Amb).For a well-typed P , (�G)P is well-typed if and only if P does not 
ommuni
ate atuple whi
h names G in its type (rule (Pro
 GRes)): (�G) must not \see" G-typednames 
ommuni
ated at its own level. This intuition suggests that, referring to the14



following table, P 0 should be typeable ((�G) 
annot \see" the output hni) whileP 00 should be not (hni is at the same level as (�G)). However, the two pro
essesare equivalent, modulo extrusion of (�G) (rule (Stru
t GRes Amb)):P 0 = (�G)m[(�n:G[Shh ℄)hni℄P 00 = m[(�G)(�n:G[Shh ℄)hni℄We go through the example step by step, to solve the apparent paradox. First
onsider the term (�G)(�n:G[Shh ℄)hniThis term 
annot be typed, be
ause G attempts to es
ape the s
ope of (�G) asthe type of the message n. An attempted typing derivation fails at the last stepbelow : : :) G;n:G[Shh ℄ ` n : G[Shh ℄) G;n:G[Shh ℄ ` hni : G[Shh ℄) G ` (�n:G[Shh ℄)hni : G[Shh ℄6) ` (�G)(�n:G[Shh ℄)hni : G[Shh ℄ (be
ause G 2 fg(G[Shh ℄))Similarly, the term (�m:W )m[(�G)(�n:G[Shh ℄)hni℄
annot be typed, be
ause it 
ontains the previous untypeable term. But now 
on-sider the following term, whi
h is equivalent to the one above up to stru
tural
ongruen
e, by extrusion of (�G) a
ross an ambient boundary:(�m:W )(�G)m[(�n:G[Shh ℄)hni℄This term might appear typeable (
ontradi
ting the subje
t 
ongruen
e property)be
ause the message hni:G[Shh ℄ is 
on�ned to the ambient m, and m[: : :℄ 
an begiven an arbitrary type, e.g. Shh, whi
h does not 
ontain G. Therefore (�G) wouldnot \see" any o

urren
e of G es
aping from its s
ope. However, 
onsider the typeof m in this term. It must have the form H [T ℄, where H is some group, and T isthe type of messages ex
hanged inside m. But that's G[Shh ℄. So we would have(�m:H [G[Shh ℄℄)(�G)m[(�n:G[Shh ℄)hni℄whi
h is not typeable be
ause the �rst o

urren
e of G is out of s
ope.This example tells us why (�G) intrusion (
oating inwards) into ambients is notgoing to break good typing: (�G) 
annot enter the s
ope of the (�m:W ) restri
tionwhi
h 
reates the name m of an ambient where messages with a G-named type areex
hanged. This prevents (�G) from entering su
h ambients.Indeed, the following variation (not equivalent to the previous one) is typeable,but (�G) 
annot intrude any more:(�G)(�m:H [G[Shh ℄℄)m[(�n:G[Shh ℄)hni℄15



5. OPENING CONTROLAmbient opening is a prerequisite for any 
ommuni
ation to happen between pro-
esses whi
h did not originate in the same ambient, as exempli�ed by any 
hannelen
oding.On the other hand, opening is one of the most deli
ate operations in the ambient
al
ulus, sin
e the 
ontents of the guest spill inside the host, with two di�erent
lasses of possible 
onsequen
es:� the 
ontent of the guest a
quires the possibility of performing 
ommuni
ationsinside the hosts, and of moving the host around;� the host is now able to examine the 
ontent of the guest, mainly in termsof re
eiving messages sent by the pro
esses inside the guest, and of opening itssub-ambients.For these reasons, a type system for ambients should support a 
areful 
ontrol ofthe usage of the open 
apability.5.1. The SystemIn this se
tion, we enri
h the ambient types, G[T ℄, and the 
apability types,Cap [T ℄, of the previous type system to 
ontrol usage of the open 
apability.To 
ontrol the opening of ambients, we formalize the 
onstraint that the nameof any ambient opened by a pro
ess is in one of the groups G1, . . . , Gk, but inno others. To do so, we add an attribute ÆfG1; : : : ; Gkg to ambient types, whi
hnow take the form G[ÆfG1; : : : ; Gkg; T ℄. A name of this type is in group G, andnames ambients within whi
h pro
esses may ex
hange messages of type T and mayonly open ambients in the groups G1, . . . , Gk . We need to add the same attributeto 
apability types, whi
h now take the form Cap[ÆfG1; : : : ; Gkg; T ℄. Exer
ising a
apability of this type may unleash ex
hanges of type T and openings of ambients ingroups G1, . . . , Gk. The typing judgment for pro
esses a
quires the form E ` P :ÆfG1; : : : ; Gkg; T . The pair ÆfG1; : : : ; Gkg; T 
onstrains both the opening e�e
ts(what ambients the pro
ess opens) and the ex
hange e�e
ts (what messages thepro
ess ex
hanges). We 
all su
h a pair an e�e
t, and introdu
e the metavariableF to range over e�e
ts. It is also 
onvenient to introdu
e metavariables G, H torange over �nite sets of groups. The following tables summarize these metavariable
onventions and our enhan
ed syntax for types:Group Sets:G;H ::= fG1; : : : ; Gkg �nite set of groupsTypes:W ::= message typeG[F ℄ name in group G for ambients whi
h 
ontain pro-
esses with F e�e
tsCap[F ℄ 
apability (unleashes F e�e
ts)F ::= e�e
tÆH; T may open H, may ex
hange TS; T ::= ex
hange type16



Shh no ex
hangeW1 � � � � �Wk tuple ex
hangeThe de�nition of free groups is the same as in Se
tion 4 ex
ept that we rede�nefg(W ) by the equations fg(G[F ℄) = fGg [ fg(F ) and fg(Cap [F ℄) = fg(F ), and wede�ne fg(F ) = H [ fg(T ) where F = ÆH; T .The following tables de�ne the type system in detail. There are �ve basi
 judg-ments as before. They have the same format ex
ept that the judgment E ` F ,meaning that the e�e
t F is good given environment E, repla
es the previous judg-ment E ` T . We omit the three rules for deriving good environments; they areexa
tly as in the previous se
tion. There are two main di�eren
es between theother rules below and the rules of the previous se
tion. First, e�e
ts, F , repla
eex
hange types, T , throughout. Se
ond, in the rule (Exp Open), the 
onditionG 2 H 
onstrains the opening e�e
t H of a 
apability open n to in
lude the groupG, the group of the name n.Judgments:E ` � good environmentE `W good message type WE ` F good e�e
t FE `M :W good message M of message type WE ` P : F good pro
ess P with F e�e
tsGood Types:(Type Amb)G 2 dom(E) E ` FE ` G[F ℄ (Type Cap)E ` FE ` Cap[F ℄(E�e
t Shh)H � dom(E) E ` �E ` ÆH;Shh (E�e
t Prod)H � dom(E) E `W1 � � � E `WkE ` ÆH;W1 � � � � �WkGood Messages:(Exp n)E0; n:W;E00 ` �E0; n:W;E00 ` n :W (Exp �)E ` Cap [F ℄E ` � : Cap[F ℄(Exp :)E `M : Cap[F ℄ E `M 0 : Cap [F ℄E `M:M 0 : Cap[F ℄ (Exp In)E ` n : G[F ℄ E ` ÆH; TE ` in n : Cap[ÆH; T ℄17



(Exp Out)E ` n : G[F ℄ E ` ÆH; TE ` out n : Cap[ÆH; T ℄ (Exp Open)E ` n : G[ÆH; T ℄ G 2 HE ` open n : Cap [ÆH; T ℄Good Pro
esses:(Pro
 A
tion)E `M : Cap[F ℄ E ` P : FE `M:P : F (Pro
 Amb)E `M : G[F ℄ E ` P : F E ` F 0E `M [P ℄ : F 0(Pro
 Res)E; n:G[F ℄ ` P : F 0E ` (�n:G[F ℄)P : F 0 (Pro
 GRes)E;G ` P : F G =2 fg(F )E ` (�G)P : F(Pro
 Zero)E ` FE ` 0 : F (Pro
 Par)E ` P : F E ` Q : FE ` P j Q : F (Pro
 Repl)E ` P : FE ` !P : F(Pro
 Input)E; n1:W1; : : : ; nk:Wk ` P : ÆH;W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : ÆH;W1 � � � � �Wk(Pro
 Output)E `M1 :W1 � � � E `Mk : Wk H � dom(E)E ` hM1; : : : ;Mki : ÆH;W1 � � � � �Wk(Pro
 Go)E ` N : Cap[Æfg;Shh℄ E `M : G[F ℄ E ` P : F E ` F 0E ` go N:M [P ℄ : F 05.2. Subje
t Redu
tionWe obtain a subje
t redu
tion result.Theorem 5.1. If E ` P : F and P ! Q then there are G1, . . . , Gk su
h thatG1; : : : ; Gk; E ` Q : F .Proof. See the appendix.Here is a simple example of a typing derivable in this system:G;n:G[ÆfGg;Shh℄ ` n[0℄ j open n:0 : ÆfGg;ShhThis asserts that the whole pro
ess n[0℄ j open n:0 is well-typed and opens onlyambients in the group G. 18



On the other hand, one might expe
t the following variant to be derivable, butit is not: G;n:G[Æfg;Shh℄ ` n[0℄ j open n:0 : ÆfGg;ShhThis is be
ause the typing rule (Exp Open) requires the e�e
t unleashed by theopen n 
apability to be the same as the e�e
t 
ontained within the ambient n. Butthe opening e�e
t Æfg spe
i�ed by the type G[Æfg;Shh℄ of n 
annot be the same asthe e�e
t unleashed by open n, be
ause (Exp Open) also requires the latter to atleast in
lude the group G of n.This feature of (Exp Open) has a positive side-e�e
t: the type G[ÆG; T ℄ of anambient name n not only tells whi
h opening e�e
ts may happen inside the ambient,but also tells whether n may be opened from outside: it is openable only if G 2 G,sin
e this is the only 
ase when open n:0 j n[P ℄ may be well-typed. Hen
e, thepresen
e of G in the set G may either mean that n is meant to be an ambientwithin whi
h other ambients in group G may be opened, or that it is meant to bean openable ambient.More generally, be
ause of the shape of the open rule, the opening e�e
ts in theambient type of n not only re
ord the openings that may take pla
e inside theambient, but also the opening e�e
ts of any ambient m whi
h is going to openn, and, re
ursively, of any ambient whi
h is going to open m as well. A similarphenomenon o

urs with ex
hange types and with the subje
tive-
rossing e�e
ts ofthe next se
tion.While this turns out to be unproblemati
 for the examples we 
onsider in thispaper, one may prefer to avoid this \inward propagation" of e�e
ts by repla
ing(Exp Open) with the following rule:E ` n : G[ÆH; T ℄E ` open n : Cap [Æ(fGg [H); T ℄With this rule, we 
ould derive that the example pro
ess above, n[0℄ j open n:0,has e�e
t ÆfGg;Shh , with no need of attributing this e�e
t to pro
esses runninginside n itself, but unfortunately, subje
t redu
tion fails. To see this, 
onsider thepro
ess open n j n[open m℄, whi
h 
an be assigned the e�e
t ÆfG;Hg;Shh:G;H;m:G[Æfg;Shh℄; n:H [ÆfGg;Shh ℄ ` open n jn[open m℄ : ÆfG;Hg;ShhThe pro
ess redu
es in one step to open m, but we 
annot derive the following:G;H;m:G[Æfg;Shh℄; n:H [ÆfGg;Shh℄ ` open m : ÆfG;Hg;ShhTo obtain a subje
t redu
tion property in the presen
e of the rule displayed above,we should introdu
e a notion of subtyping, su
h that if G � H and a pro
ess hastype ÆG; T , then the pro
ess has type ÆH; T too. This would 
ompli
ate the typesystem, as shown in [36℄. Moreover, we would lose the indire
t way of de
laringambient openability, so we prefer to sti
k to the basi
 approa
h.19



6. CROSSING CONTROLThis se
tion presents the third and �nal type system of the paper. We obtain itby enri
hing the type system of Se
tion 5 with attributes to 
ontrol the mobility ofambients. 6.1. The SystemMovement operators enable an ambient n to 
ross the boundary of another am-bient m either by entering it via an in m 
apability or by exiting it via an out m
apability. In the type system of this se
tion, the type of n lists those groups thatmay be 
rossed; the ambient n may only 
ross the boundary of another ambientm if the group of m is in
luded in this list. In our typed 
al
ulus, there are twokinds of movement, subje
tive moves and obje
tive moves, for reasons explainedin Se
tion 6.2. Therefore, we separately list those groups that may be 
rossed byobje
tive moves and those groups that may be 
rossed by subje
tive moves.We add new attributes to the syntax of ambient types, e�e
ts, and 
apabilitytypes. An ambient type a
quires the form GyG0[yG;ÆH; T ℄. An ambient of thistype is in group G, may 
ross ambients in groups G0 by obje
tive moves, may
ross ambients in groups G by subje
tive moves, may open ambients in groups H,and may 
ontain ex
hanges of type T . An e�e
t, F , of a pro
ess is now of theform yG;ÆH; T . It asserts that the pro
ess may exer
ise in and out 
apabilitiesto a

omplish subje
tive moves a
ross ambients in groups G, that the pro
ess mayopen ambients in groupsH, and that the pro
ess may ex
hange messages of type T .Finally, a 
apability type retains the form Cap [F ℄, but with the new interpretationof F . Exer
ising a 
apability of this type may unleash F e�e
ts.Types:W ::= message typeGyG[F ℄ name in group G for ambients whi
h 
ross Gobje
tively and 
ontain pro
esses with F e�e
tsCap[F ℄ 
apability (unleashes F e�e
ts)F ::= e�e
tyG;ÆH; T 
rosses G, opens H, ex
hanges TS; T ::= ex
hange typeShh no ex
hangeW1 � � � � �Wk tuple ex
hangeThe de�nition of free groups is the same as in Se
tion 4 ex
ept that we rede�nefg(W ) by the equations fg(GyG[F ℄) = fGg [G [ fg(F ) and fg(Cap [F ℄) = fg(F ),and we de�ne fg(F ) = G [H [ fg(T ) where F = yG;ÆH; T .The format of the �ve judgments making up the system is the same as in Se
tion 5.We omit the three rules de�ning good environments; they are as in Se
tion 4. Thereare two main 
hanges to the previous system to 
ontrol mobility. First, (Exp In)and (Exp Out) 
hange to assign a type Cap [yG;ÆH; T ℄ to 
apabilities in n andout n only if G 2 G where G is the group of n. Se
ond, (Pro
 Go) 
hanges toallow an obje
tive move of an ambient of type GyG0[F ℄ by a 
apability of typeCap [yG;ÆH; T ℄ only if G = G0. 20



Good Types:(Type Amb)G 2 dom(E) G � dom(E) E ` FE ` GyG[F ℄ (Type Cap)E ` FE ` Cap [F ℄(E�e
t Shh)G � dom(E) H � dom(E) E ` �E ` yG;ÆH;Shh(E�e
t Prod)G � dom(E) H � dom(E) E `W1 � � � E `WkE ` yG;ÆH;W1 � � � � �WkGood Messages:(Exp n)E0; n:W;E00 ` �E0; n:W;E00 ` n :W (Exp �)E ` Cap [F ℄E ` � : Cap[F ℄ (Exp :)E `M : Cap [F ℄ E `M 0 : Cap[F ℄E `M:M 0 : Cap [F ℄(Exp In)E ` n : GyG0[F ℄ E ` yG;ÆH; T G 2 GE ` in n : Cap[yG;ÆH; T ℄(Exp Out)E ` n : GyG0[F ℄ E ` yG;ÆH; T G 2 GE ` out n : Cap[yG;ÆH; T ℄(Exp Open)E ` n : GyG0[yG;ÆH; T ℄ G 2 HE ` open n : Cap[yG;ÆH; T ℄Good Pro
esses:(Pro
 A
tion)E `M : Cap[F ℄ E ` P : FE `M:P : F (Pro
 Amb)E `M : GyG[F ℄ E ` P : F E ` F 0E `M [P ℄ : F 0(Pro
 Res)E; n:GyG[F ℄ ` P : F 0E ` (�n:GyG[F ℄)P : F 0 (Pro
 GRes)E;G ` P : F G =2 fg(F )E ` (�G)P : F21



(Pro
 Zero)E ` FE ` 0 : F (Pro
 Par)E ` P : F E ` Q : FE ` P j Q : F (Pro
 Repl)E ` P : FE ` !P : F(Pro
 Input)E; n1:W1; : : : ; nk:Wk ` P : yG;ÆH;W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : yG;ÆH;W1 � � � � �Wk(Pro
 Output)E `M1 :W1 � � � E `Mk : Wk G � dom(E) H � dom(E)E ` hM1; : : : ;Mki : yG;ÆH;W1 � � � � �Wk(Pro
 Go)E ` N : Cap[yG;Æfg;Shh ℄ E `M : GyG[F ℄ E ` P : F E ` F 0E ` go N:M [P ℄ : F 0Theorem 6.1. If E ` P : F and P ! Q then there are G1, . . . , Gk su
h thatG1; : : : ; Gk; E ` Q : F .Proof. See the appendix.6.2. The Need for Obje
tive MovesWe 
an now show how primitive typing rules for obje
tive moves allow us toassign better types in some 
ru
ial situations. Re
all the untyped example fromSe
tion 2. Suppose we have two groups Ch and Pk (for 
hannels and pa
kets). LetW be any well-formed type (where Ch and Pk may appear), and set P to be theexample pro
ess: P = a[p[out a:in b:h
i℄℄ j b[open p:(x:W ):x[℄℄Let E = Ch ;Pk ;a:Ch yfg[yfg;Æfg;Shh ℄;b:Ch yfg[yfChg;ÆfPkg;W ℄;
:W;p:Pk yfg[yfChg;ÆfPkg;W ℄and we 
an derive the typings:E ` out a:in b:h
i : yfChg;ÆfPkg;WE ` open p:(x:W ):x[℄ : yfChg;ÆfPkg;WE ` P : yfg;Æfg;ShhFrom the typing a : Ch yfg[yfg;Æfg;Shh ℄, we 
an tell that a is an immobileambient in whi
h nothing is ex
hanged and that 
annot be opened. From the typ-ings p:Pk yfg[yfChg;ÆfPkg;W ℄; b:Ch yfg[yfChg;ÆfPkg;W ℄, we 
an tell that the22



ambients b and p 
ross only Ch ambients, open only Pk ambients, and 
ontain Wex
hanges; the typing of p also tells us it 
an be opened. This is not fully satisfa
-tory, sin
e, if b were meant to be immobile, we would like to express this immobilityinvariant in its type. However, sin
e b opens a subje
tively mobile ambient, then bmust be typed as if it were subje
tively mobile itself. The problem is quite general,as it applies to any immobile ambient wishing to open a subje
tively mobile one.This problem 
an be solved by repla
ing the subje
tive moves by obje
tive moves,sin
e obje
tive moves are less expressive than subje
tive moves, but they 
annot beinherited by opening another ambient. Let Q be the example pro
ess with obje
tiveinstead of subje
tive moves:Q = a[go(out a:in b):p[h
i℄℄ j b[open p:(x:W ):x[℄℄Let E = Ch ;Pk ;a:Ch yfg[yfg;Æfg;Shh ℄;b:Ch yfg[yfg;ÆfPkg;W ℄;
:W;p:Pk yfChg[yfg;ÆfPkg;W ℄and we 
an derive: E ` out a:in b : Cap[yfChg;Æfg;Shh℄E ` go(out a:in b):p[h
i℄ : yfg;Æfg;ShhE ` open p:(x:W ):x[℄ : yfg;ÆfPkg;WE ` Q : yfg;Æfg;ShhThe typings of a and 
 are un
hanged, but the new typings of p and b aremore informative. We 
an tell from the typing p:Pk yfChg[yfg;ÆfPkg;W ℄ thatmovement of p is due to obje
tive rather than subje
tive moves. Moreover, asdesired, we 
an tell from the typing b:Ch yfg[yfg;ÆfPkg;W ℄ that the ambient b isimmobile.This example suggests that in some situations obje
tive moves lead to moreinformative typings than subje
tive moves. Still, subje
tive moves are essential formoving ambients 
ontaining running pro
esses. An extended example in Se
tion 8illustrates the type system of this se
tion; the treatment of thread mobility makesessential use of subje
tive moves.6.3. Relationship to Binary AnnotationsThe system of this se
tion generalizes our previous system of binary lo
kingand mobility annotations [9℄. In that system, the type of a name takes the formAmbY Zo [ZsT ℄, where the lo
king annotation, Y , is either lo
ked, �, or unlo
ked, Æ,and the mobility annotations, Zo and Zs, are ea
h either mobile, y, or immobile,Y. An ambient of this type may be opened if and only if Y = Æ, it may be movedobje
tively if and only if Zo =y, and it may be moved subje
tively if and only ifZs =y.That system 
an be understood as a degenerate form of the 
urrent one, where weonly use two groups, L (for Lo
ked) and U (for Unlo
ked), so that any ambient name23



will belong to one of these two groups. Then we understand a type AmbY Zo [ZsT ℄as a type GyGo[yGs;ÆH; T 0℄ as follows:� If the obje
tive mobility annotation Zo is y (mobile), let Go = yfL;Ug (may
ross any ambient). If the obje
tive mobility annotation Zo is Y (immobile), letGo = yfg (may 
ross nothing).� We translate the subje
tive mobility annotation Zs to the e�e
tGs in the sameway.� If the lo
king annotation Y is � (lo
ked), let G = L and H = fUg (lo
ked, mayopen any unlo
ked ambient). If the lo
king annotation Y is Æ (unlo
ked), let G = Uand H = fUg (unlo
ked, may be opened and may open any unlo
ked ambient).It is then straightforward to show that ` P : T holds in the system of [9℄ i�L; U ` translate(P ) : translate(T ) holds in the system of this se
tion, wheretranslate translates T and the types in P as spe
i�ed above.7. EFFECT SAFETYLike most other type systems for 
on
urrent 
al
uli, ours does not guaranteeliveness properties, for example, the absen
e of deadlo
ks. Still, we may regard thee�e
t assigned to a pro
ess as a safety property: an upper bound on the 
apabilitiesthat may be exer
ised by the pro
ess, and hen
e on its behavior. We formalize thisidea in the setting of our third type system, and explain some 
onsequen
es.We say that a pro
ess P exer
ises a 
apability M , one of in n or out n or open n,just if P #M may be derived by the following rules:Exer
ising a Capability: P #M where M 2 fin n; out n; open ng(Ex Cap)P �M:QP #M (Ex Par 1)P #MP j Q #M (Ex Par 2)Q #MP j Q #M (Ex Res)P #M n =2 fn(M)(�n:W )P #M (Ex ResG)P #M(�G)P #MThe following asserts that the group of the name 
ontained in any 
apabilityexer
ised by a well-typed pro
ess is bounded by the e�e
t assigned to the pro
ess.We give the proof in Appendix B.Proposition 7.1 (E�e
t Safety). Suppose that E ` P : yG;ÆH; T .(1)If P # in n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(2)If P # out n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(3)If P # open n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 H.To explain the intuitive signi�
an
e of this proposition, 
onsider a name m :H yH0[yG;ÆH; T ℄ and a well-typed ambient m[P ℄. Suppose that m[P ℄ is a sub-pro
ess of some well-typed pro
ess Q. We 
an make two 
onne
tions between the
apabilities exhibited by the pro
ess P and the redu
tions immediately derivablefrom the whole pro
ess Q. First, within Q, the ambientm[P ℄ 
an immediately 
ross(via subje
tive moves) the boundary of another ambient named n of some group24



G only if either P # in n or P # out n. The typing rule for ambients implies thatP must have e�e
t yG;ÆH; T . Part (1) or (2) of the proposition implies that theset G 
ontains G. Se
ond, suppose that P in
ludes a top-level ambient named n.The boundary of n 
an be immediately dissolved only if P # open n. Sin
e P hase�e
t yG;ÆH; T , part (3) of the proposition implies that the set H 
ontains G. Sothe set G in
ludes the groups of all ambients that 
an be immediately 
rossed bym[P ℄, and the set H in
ludes the groups of all ambients that 
an be immediatelyopened within m[P ℄.A 
orollary of Theorem 6.1 is that these bounds on ambient behavior apply notjust to ambients 
ontained within Q, but to ambients 
ontained in any pro
essrea
hable by a series of redu
tions from Q.For the sake of simpli
ity and brevity, our dis
ussion in this se
tion is fairlyinformal. In their re
ent work on a derivative of the ambient 
al
ulus, Bugliesi andCastagna [8℄ state a formal safety property indu
ed by a type system for ambients.To do so, they introdu
e a pre
ise notion of pro
ess residuals.8. ENCODING A DISTRIBUTED LANGUAGESeveral typed and untyped distributed languages have been proposed [35, 22℄.They 
ome with notions of lo
ations, agents, threads, mobility, and so on. Typedtranslations of pro
edural and obje
t-oriented programming languages into formaltype systems have been studied for several reasons in
luding type soundness [2℄ and
ompilation optimisations [28℄. In the same way, we aim to redu
e the 
onstru
tsof agent languages to appropriate type systems that 
apture their fundamental
hara
teristi
s.In this se
tion, we 
onsider a parti
ular example, a fragment of a typed, dis-tributed language in whi
h mobile threads 
an migrate between immobile networknodes. We obtain a semanti
s for this form of thread mobility via a translation intothe ambient 
al
ulus. In the translation, ambients model both threads and nodes.The en
oding 
an be typed in all three of the systems presented in this paper; forthe sake of brevity we des
ribe the en
oding only for the full system of Se
tion 6.The en
oding illustrates how groups 
an be used to partition the set of ambientnames a

ording to their intended usage, and how opening and 
rossing 
ontrol al-lows the programmer to state interesting invariants. In parti
ular, the typing of thetranslation guarantees that an ambient modeling a node moves neither subje
tivelynor obje
tively. On the other hand, an ambient modeling a thread is free to movesubje
tively, but is guaranteed not to move obje
tively.8.1. The Distributed LanguageThe 
omputational model is that there is an unstru
tured 
olle
tion of namednetwork nodes, ea
h of whi
h hosts a 
olle
tion of named 
ommuni
ation 
hannelsand anonymous threads. This is similar to the 
omputational models underlyingvarious distributed variants of the �-
al
ulus, su
h as those proposed by Amadioand Prasad [4℄, Riely and Hennessy [32℄, and Sewell [33℄. In an earlier paper [12℄,we showed how to mimi
 Teles
ript's 
omputational model by translation into theambient 
al
ulus. In the language fragment we des
ribe here, 
ommuni
ation isbased on named 
ommuni
ation 
hannels (as in the �-
al
ulus) rather than by dire
tagent-to-agent 
ommuni
ation (as in our stripped down version of Teles
ript). As in25



our previous paper, we fo
us on language 
onstru
ts for mobility, syn
hronization,and 
ommuni
ation. We omit standard 
onstru
ts for data pro
essing and 
ontrol
ow. They 
ould easily be added.To introdu
e the syntax of our language fragment, here is a simple example:node a [
hannel a
 j thread [a
hb; b
i℄℄ j node b [
hannel b
℄ jnode 
 [thread [go a:a
(x:Node; y:Ch [Node ℄):go x:yhai℄This program des
ribes a network 
onsisting of three network nodes, named a,b, and 
. Node a hosts a 
hannel a
 and a thread running the 
ode a
hb; b
i, whi
hsimply sends the pair hb; b
i on the 
hannel a
. Node b hosts a 
hannel b
. Finally,node 
 hosts a single thread, running the 
ode:go a:a
(x:Node ; y:Ch [Node ℄):go x:yhaiThe e�e
t of this is to move the thread from node 
 to node a. There it awaits amessage sent on the 
ommuni
ation 
hannel a
. We may assume that it re
eives themessage hb; b
i being sent by the thread already at a. (If there were another threadat node a sending another message, the re
eiver thread would end up re
eiving oneor other of the messages.) The thread then migrates to node b, where it transmitsa message a on the 
hannel b
.Messages on 
ommuni
ation 
hannels are assigned types, ranged over by Ty . Thetype Node is the type of names of network nodes. The type Ch [Ty1; : : : ;Tyk℄ is thetype of a polyadi
 
ommuni
ation 
hannel. The messages 
ommuni
ated on su
ha 
hannel are k-tuples whose 
omponents have types Ty1, . . . , Tyk. In the settingof the example above, 
hannel a
 has type Ch [Node ;Ch [Node ℄℄, and 
hannel b
 hastype Ch [Node ℄.Next, we des
ribe the formal grammar of our language fragment. A network,Net , is a 
olle
tion of nodes, built up using 
omposition Net j Net and restri
-tions (�n:Ty)Net . A 
rowd, Cro, is the group of threads and 
hannels hosted bya node. Like networks, 
rowds are built up using 
omposition Cro j Cro and re-stri
tion (�n:Ty)Cro. A thread, Th , is a mobile thread of 
ontrol. As well as the
onstru
ts illustrated above, a thread may in
lude the 
ontru
ts fork (Cro):Th andspawn n [Cro℄:Th . The �rst forks a new 
rowd Cro inside the 
urrent node, and
ontinues with Th . The se
ond spawns a new node node n [Cro℄ outside the 
urrentnode, at the network level, and 
ontinues with Th .A Fragment of a Typed, Distributed Programming Language:Ty ::= typeNode name of a nodeCh [Ty1; : : : ;Tyk℄ name of a 
hannelNet ::= network(�n:Ty)Net restri
tionNet j Net network 
ompositionnode n [Cro℄ nodeCro ::= 
rowd of 
hannels and threads(�n:Ty)Cro restri
tionCro j Cro 
rowd 
omposition26




hannel 
 
hannelthread [Th ℄ threadTh ::= threadgo n:Th migration
hn1; : : : ; nki output to a 
hannel
(x1:Ty1; : : : ; xk:Tyk):Th input from a 
hannelfork (Cro):Th fork a 
rowdspawn n [Cro℄:Th spawn a new nodeIn the phrases (�n:Ty)Net and (�n:Ty)Cro, the name n is bound; its s
ope isNet and Cro, respe
tively. In the phrase 
(x1:Ty1; : : : ; xk :Tyk):Th , the names x1,. . . , xk are bound; their s
ope is the phrase Th .The type system of our language 
ontrols the typing of messages on 
ommuni-
ation 
hannels, mu
h as in previous s
hemes for the �-
al
ulus [27℄. We formalizethe type system as �ve judgments de�ned by the following rules.Judgments:E ` � good environmentE ` n : Ty name n has type TyE ` Net good networkE ` Cro good 
rowdE ` Th good threadGood Environment:? ` � E ` � n =2 dom(E)E; n:Ty ` �Name has Type:E; n:Ty ; E0 ` �E; n:Ty ; E0 ` n : TyGood Network:E; n:Ty ` NetE ` (�n:Ty)Net E ` Net E ` Net 0E ` Net j Net 0 E ` n : Node E ` CroE ` node n [Cro℄Good Crowd:E; n:Ty ` CroE ` (�n:Ty)Cro E ` Cro E ` Cro 0E ` Cro j Cro 0E ` 
 : Ch [Ty1; : : : ;Tyk℄E ` 
hannel 
 E ` ThE ` thread [Th ℄27



Good Thread:E ` n : Node E ` ThE ` go n:ThE ` 
 : Ch [Ty1; : : : ;Tyk℄ E ` ni : Ty i 8i 2 1::kE ` 
hn1; : : : ; nkiE ` 
 : Ch [Ty1; : : : ;Tyk℄ E; x1:Ty1; : : : ; xk:Tyk ` ThE ` 
(x1:Ty1; : : : ; xk:Tyk):ThE ` Cro E ` ThE ` fork (Cro):Th E ` n : Node E ` Cro E ` ThE ` spawn n [Cro℄:Th8.2. Typed Translation to the Ambient Cal
ulusIn this se
tion, we translate our distributed language to the typed ambient 
al-
ulus of Se
tion 6.The basi
 idea of the translation is that ambients model nodes, 
hannels, andthreads. For ea
h 
hannel, there is a name for a bu�er ambient, of group Chb, andthere is a se
ond name, of group Chp, for pa
kets ex
hanged within the 
hannelbu�er. Similarly, for ea
h node, there is a name, of group Nodeb, for the node itself,and a se
ond name, of group Nodep, for short-lived ambients that help fork 
rowdswithin the node, or to spawn other nodes. Finally, there is a group Thr to 
lassifythe names of ambients that model threads. The following table summarizes these�ve groups:Global Groups Used in the Translation:Nodeb ambients that model nodesNodep ambients to help fork 
rowds or spawn nodesChb ambients that model 
hannel bu�ersChp ambients that model pa
kets on a 
hannelThr ambients that model threadsWe begin the translation by giving types in the ambient 
al
ulus 
orrespondingto types in the distributed language. Ea
h type Ty gets translated to a pair [[Ty ℄℄b,[[Ty ℄℄p of ambient 
al
ulus types. Throughout this se
tion, we omit the 
urly bra
eswhen writing singleton group sets; for example, we write yNodeb as a shorthandfor yfNodebg.First, if Ty is a node type, [[Ty ℄℄b is the type of an ambient (of group Nodeb)modeling a node, and [[Ty ℄℄p is the type of helper ambients (of groupNodep). Se
ond,if Ty is a 
hannel type, [[Ty ℄℄b is the type of an ambient (of group Chb) modeling a
hannel bu�er, and [[Ty ℄℄p is the type of a pa
ket ambient (of group Chp).28



Translations [[Ty ℄℄b, [[Ty ℄℄p of a Type Ty:[[Node ℄℄b �= NodebyNodeb[yfg;ÆNodep;Shh℄[[Node ℄℄p �= NodepyThr [yfg;ÆNodep;Shh ℄[[Ch [Ty1; : : : ;Tyk℄℄℄b �=Chbyfg[yfg;ÆChp; [[Ty1℄℄b � [[Ty1℄℄p � � � � � [[Tyk℄℄b � [[Tyk℄℄p℄[[Ch [Ty1; : : : ;Tyk℄℄℄p �=ChpyfThr ;Chbg[yfg;ÆChp; [[Ty1℄℄b � [[Ty1℄℄p � � � � � [[Tyk℄℄b � [[Tyk℄℄p℄These typings say a lot about the rest of the translation, be
ause of the presen
eof �ve di�erent groups. Nodes and helpers are silent ambients, whereas tuples ofambient names are ex
hanged within both 
hannel bu�ers and pa
kets. None ofthese ambients is subje
tively mobile. On the other hand, nodes may obje
tively
ross nodes, helpers may obje
tively 
ross threads, bu�ers are obje
tively immobile,and pa
kets obje
tively 
ross both threads and bu�ers. Finally, both nodes andhelpers may open only helpers, and both bu�ers and pa
kets may open only pa
kets.(A
tually, as dis
ussed in Se
tion 5.2, the ÆChp annotation inside the type of apa
ket 
p of group Chp means that 
p 
an be opened, and similarly for helpers.)Next, we translate networks to typed pro
esses. A restri
tion of a single name ismapped to restri
tions of a 
ouple of names: either names for a node and helpers, ifthe name is a node, or names for a bu�er and pa
kets, if the name is a 
hannel. A
omposition is simply translated to a 
omposition. A network node n is translatedto an ambient named nb representing the node, 
ontaining a repli
ated open np,where np is the name of helper ambients for that node.Translation [[Net ℄℄ of a Network Net:[[(�n:Ty)Net ℄℄ �= (�nb:[[Ty ℄℄b)(�np:[[Ty ℄℄p)[[Net ℄℄[[Net j Net ℄℄ �= [[Net ℄℄ j [[Net ℄℄[[node n [Cro℄℄℄ �= nb[!open np j [[Cro℄℄n℄The translation [[Cro℄℄n of a 
rowd is indexed by the name n of the node in whi
hthe 
rowd is lo
ated. Restri
tions and 
ompositions in 
rowds are translated liketheir 
ounterparts at the network level. A 
hannel 
 is represented by a bu�erambient 
b of group Chb. It is initially empty but for a repli
ated open 
p, where 
pis the name, of group Chp, of pa
kets on the 
hannel. The repli
ation allows inputsand outputs on the 
hannel to meet and ex
hange messages.An ambient of the following type models ea
h thread:Thr yfg[yNodeb;ÆSyn
;Shh℄From the type, we know that a thread ambient is silent, that it 
rosses node bound-aries by subje
tive moves but 
rosses nothing by obje
tive moves, and that it mayonly open ambients in the Syn
 group. Su
h ambients help syn
hronize paral-lel pro
esses in thread 
onstru
ts su
h as re
eiving on a 
hannel. A fresh groupnamed Syn
 is 
reated by a (�Syn
) in the translation of ea
h thread. The exis-ten
e of a separate lexi
al s
ope for Syn
 in ea
h thread implies there 
an be no29



a

idental transmission between threads of the names of private syn
hronizationambients.Translation [[Cro℄℄n of a Crowd Cro Lo
ated at Node n:[[(�m:Ty)Cro℄℄n �= (�mb:[[Ty ℄℄b)(�mp:[[Ty ℄℄p)[[Cro ℄℄n[[Cro j Cro℄℄n �= [[Cro℄℄n j [[Cro℄℄n[[
hannel 
℄℄n �= 
b[!open 
p℄[[thread Th ℄℄n �= (�Syn
)(�t:Thr yfg[yNodeb;ÆSyn
;Shh℄)t[[[Th ℄℄tn℄for t =2 fng [ fmp;mb j m free in ThgThe translation [[Th ℄℄tn of a thread is indexed by the name t of the thread and bythe name n of the node in whi
h the thread is en
losed. Ea
h thread t is given adi�erent name (this 
onstraint 
an be formalized in many di�erent ways).A migration go m:Th is translated to subje
tive moves taking the thread t outof the 
urrent node n and into the target node m.An output 
hn1; : : : ; nki is translated to a pa
ket ambient 
p that travels to the
hannel bu�er 
b, where it is opened, and outputs a tuple of names.An input 
(x1:Ty1; : : : ; xk:Tyk):Th is translated to a pa
ket ambient 
p thattravels to the 
hannel bu�er 
b, where it is opened, and inputs a tuple of names;the tuple is returned to the host thread t by way of a syn
hronization ambient s,that exits the bu�er and then returns to the thread.A fork fork (Cro):Th is translated to a helper ambient np that exits the threadt and gets opened within the en
losing node n. This unleashes the 
rowd Cro andallows a syn
hronization ambient s to return to the thread t, where it triggers the
ontinuation Th .A spawn spawn m [Cro℄:Th is translated to a helper ambient np that exits thethread t and gets opened within the en
losing node nb. This unleashes an obje
-tive move go(out nb):mb[!open mp j [[Cro ℄℄m℄℄ that travels out of the node to thetop, network level, where it starts the fresh node mb[!open mp j [[Cro℄℄m℄℄. Con
ur-rently, a syn
hronization ambient s returns to the thread t, where it triggers the
ontinuation Th .Translation [[Th ℄℄tn of a Thread Th Named t Lo
ated at Node n:[[go m:Th ℄℄tn �= out nb:in mb:[[Th ℄℄tm[[
hn1; : : : ; nki℄℄tn �= go(out t:in 
b):
p[hnb1; np1; : : : ; nbk; npki℄[[
(x1:Ty1; : : : ; xk:Tyk):Th ℄℄tn �=(�s:Syn
yfThr ;Chbg[yNodeb;ÆSyn
;Shh ℄)(go(out t:in 
b):
p[(xb1:[[Ty1℄℄b; xp1:[[Ty1℄℄p; : : : ; xbk:[[Tyk℄℄b; xpk:[[Tyk℄℄p):go(out 
b:in t):s[open s:[[Th ℄℄tn℄℄ jopen s:s[℄)for s =2 ft; 
b; 
pg [ fn([[Th ℄℄tn)[[fork (Cro):Th ℄℄tn �=(�s:Syn
yThr [yNodeb;ÆSyn
;Shh ℄)(go out t:np[go in t:s[℄ j [[Cro ℄℄n℄ jopen s:[[Th ℄℄tn)for s =2 ft; npg [ [[Cro℄℄n [ [[Th ℄℄tn 30



[[spawn m [Cro℄:Th ℄℄tn �=(�s:Syn
yThr [yNodeb;ÆSyn
;Shh ℄)(go out t:np[go in t:s[℄ j go out nb:mb[!open mp j [[Cro℄℄m℄℄ jopen s:[[Th ℄℄tn)for s =2 ft; nb; np;mb;mpg [ fn([[Cro℄℄m) [ fn([[Th ℄℄tn)Finally, we translate typing environments as follows.Translation [[E℄℄ of an Environment E:[[?℄℄ �= Nodeb;Nodep;Chb;Chp;Thr[[E; 
:Ty ℄℄ �= [[E℄℄; 
b:[[Ty ℄℄b; 
p:[[Ty ℄℄pOur translation preserves typing judgments:Proposition 8.1.(1)If E ` Net then [[E℄℄ ` [[Net ℄℄ : yfg;Æfg;Shh.(2)If E ` Cro and E ` n : Node then [[E℄℄ ` [[Cro℄℄n : yfg;Æfg;Shh.(3)If E ` Th, E ` n : Node, t =2 dom(E) then[[E℄℄;Syn
; t:Thr yfg[yNodeb;ÆSyn
;Shh ℄ ` [[Th ℄℄tn : yNodeb;ÆSyn
;Shh :Proof. By indu
tions on derivations.Apart from having more re�ned types, this translation is the same as a translationto the type system with binary annotations of [9℄. (We dis
ussed the same binarysystem in Se
tion 6.3.) The translation shows that ambients 
an model a varietyof 
on
epts arising in mobile 
omputation: nodes, threads, 
ommuni
ation pa
ketsand bu�ers. Groups admit more pre
ise typings for this translation than werepossible in the system with binary annotations. For example, here we 
an tell thata thread ambient subje
tively 
rosses only node ambients, but never 
rosses helpers,bu�ers, or pa
kets, and that it is obje
tively immobile; in the binary system, all we
an say is that a thread ambient was subje
tively mobile and obje
tively immobile.9. CONCLUSIONSOur 
ontribution is a type system for tra
king the behavior of mobile 
ompu-tations. The system tra
ks the 
ommuni
ation, mobility, and opening behavior ofambients, whi
h are 
lassi�ed by groups. A group represents a 
olle
tion of ambientnames; ambient names belong to groups in the same sense that values belong totypes. We studied the properties of a new pro
ess operator (�G)P that lexi
allys
opes groups. Using groups, our type system 
an impose behavioral 
onstraintslike \this ambient 
rosses only ambients in one set of groups, and only dissolvesambients in another set of groups". Although we have not implemented our typesystem, we assessed its expressiveness by en
oding a distributed language featuringmobility of threads between network nodes. The en
oding shows the usefulness ofthe type system in expressing properties of simple proto
ols for thread mobility.31



Our ambient 
al
ulus is related to earlier distributed variants of the �-
al
ulus,some of whi
h have been equipped with type systems. The type system of Ama-dio [3℄ prevents a 
hannel from being de�ned at more than one lo
ation. Sewell'ssystem [33℄ tra
ks whether 
ommuni
ations are lo
al or non-lo
al, so as to alloweÆ
ient implementation of lo
al 
ommuni
ation. In Riely and Hennessy's 
al
u-lus [32℄, pro
esses need appropriate permissions to perform a
tions su
h as migra-tion; a well-typed pro
ess is guaranteed to possess the appropriate permission forany a
tion it attempts. Other work on typing for mobile agents in
ludes a typesystem by De Ni
ola, Ferrari, and Pugliese [16℄ that tra
ks the a

ess rights anagent enjoys at di�erent lo
alities; type-
he
king ensures that an agent 
omplieswith its a

ess rights.Our groups are similar to the sorts used as stati
 
lassi�
ations of names in the�-
al
ulus [27℄. Our basi
 system of Se
tion 4 is 
omparable to Milner's sort systemfor �, ex
ept that sorts in the �-
al
ulus are mutually re
ursive; we would have toadd a re
ursion operator to a
hieve a similar e�e
t. Another di�eren
e is that anoperator for sort 
reation does not seem to have been 
onsidered in the �-
al
ulusliterature. Our operator for group 
reation 
an guarantee se
re
y properties, as weshow in the setting of a typed �-
al
ulus equipped with groups [11℄. Our systems ofSe
tions 5 and 6 depend on groups to 
onstrain the opening and 
rossing behaviorof pro
esses. We are not aware of any uses of Milner's sorts to 
ontrol pro
essbehavior beyond 
ontrolling the sorts of 
ommuni
ated names.Apart fromMilner's sorts, other stati
 
lassi�
ations of names o

ur in derivativesof the �-
al
ulus. We mention two examples. In the type system of Abadi [1℄ for thespi 
al
ulus, names are 
lassi�ed by three stati
 se
urity levels|Publi
, Se
ret, andAny|to prevent inse
ure information 
ows. In the 
ow analysis of Bodei, Degano,Nielson, and Nielson [6℄ for the �-
al
ulus, names are 
lassi�ed by stati
 
hannelsand binders, again with the purpose of establishing se
urity properties. Althoughthere is a similarity between these notions and groups, and indeed to sorts, nothingakin to our (�G) operator appears to have been studied.There is a 
onne
tion between groups and the region variables in the work of Tofteand Talpin [34℄ on region-based implementation of the �-
al
ulus. The store is splitinto a set of sta
k-allo
ated regions, and the type of ea
h stored value is labelledwith the region in whi
h the value is stored. The s
oping 
onstru
t letregion � in eallo
ates a fresh region, binds it to the region variable �, evaluates e, and on 
om-pletion, deallo
ates the region bound to �. The 
onstru
ts letregion � in e and(�G)P are similar in that they 
onfer stati
 s
opes on the region variable � and thegroup G, respe
tively. One di�eren
e is that in our operational semanti
s (�G)P issimply a s
oping 
onstru
t; it allo
ates no storage. Another is that s
ope extrusionlaws do not seem to have been expli
itly investigated for letregion . Still, we 
aninterpret letregion in terms of (�G), as is reported elsewhere [15℄.As noted in the introdu
tion, the type systems presented in this arti
le were�rst reported in 
onferen
e papers on ex
hange types [12℄, mobility types [9℄, andambient groups [10℄. We 
on
lude the arti
le with a survey of other stati
 analysesfor the ambient 
al
ulus.� Several papers examine the problem of 
omputing safe approximations to thehierar
hi
al stru
ture of ambients, that is, of determining an approximation to the32



sets of ambients that may o

ur as 
hildren of other ambients. Nielson, Nielson,Hansen, and Jensen [29℄ present the �rst 
ontrol 
ow analysis to address this prob-lem. They present an algorithm for validating �rewalls programmed in the ambient
al
ulus. In subsequent work, Nielson and Nielson [31℄ and Nielson, Nielson, andSagiv [30℄ present more a

urate but also more expensive algorithms based, respe
-tively, on regular tree grammars and on an interpretation in Kleene's three-valuedlogi
.� Abstra
t interpretation is a methodology for deriving program analyses system-ati
ally from the semanti
s of a programming language. Hansen, Jensen, Nielson,and Nielson [20℄ des
ribe a 
onstraint-based framework for abstra
t interpretationof mobile ambients; instan
es of the framework in
lude an analysis 
ounting o
-
urren
es of ambients, and also the original 
ontrol 
ow analysis for the ambient
al
ulus [29℄. Levi and Ma�eis [24℄ and Feret [19℄ present abstra
t interpretationsbased on alternative semanti
s of the ambient 
al
ulus.� Some analyses have been developed in the setting of Levi and Sangiorgi's 
al-
ulus of safe ambients [25℄, a generalization of the original ambient 
al
ulus thatgives pro
esses greater 
ontrol over syn
hronization, and hen
e avoids 
ertain kindsof nondeterminism. In their paper, Levi and Sangiorgi propose a type system toguarantee immobility and single-threadedness.� Se
urity properties are 
onsidered by several authors. Bugliesi and Castagna [8℄des
ribe a type system for safe ambients that 
he
ks se
urity properties, in
ludingse
urity in a distributed setting. They rely on a notion of ambient domain that issimilar to the notion of an ambient group, but have no 
ounterpart to the group
reation operator. Dezani-Cian
aglini and Salvo [18℄ present a type system for safeambients where ea
h ambient has a se
urity level, akin to a group. Unlike oursystem, se
urity levels are partially ordered, allowing the system to express trustrelationships. Degano, Levi, and Bodei [17, 23℄ re�ne Nielson and Nielson's original
ow analysis [29℄ for the 
al
ulus of safe ambients. The analysis allows the proofof simple se
re
y properties; they formally distinguish between trustworthy anduntrustworthy ambients, and show that no trustworthy ambient may be openedimmediately inside an untrustworthy ambient.� Finally, Amtoft, Kfoury, and Peri
as-Geertsen [5℄ propose a polymorphi
 am-bient 
al
ulus, a 
onservative extension of our system of ex
hange types [12℄.ACKNOWLEDGMENTSilvano Dal Zilio 
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t Redu
tionIn this appendix we prove Theorem 6.1, the subje
t redu
tion property for thetype system of Se
tion 6, the ri
hest of the three type systems presented in thispaper. Proofs of subje
t redu
tion for the other two systems 
an be obtained assimpli�
ations of this appendix. 33



We begin by stating some basi
 properties of the type system. The lemmas westate without proof 
an be proved by straightforward indu
tions on derivations.We use the notation E ` J to stand for an instan
e of any of the �ve di�erentjudgments of the system. We write fn(J ) and fg(J ) to stand for the names andgroups, respe
tively, that o

ur free in J . Moreover, if G = fG1; : : : ; Gkg we writethe notation G; E ` J as a shorthand for G1; : : : ; Gk; E ` J .Lemma A.1. If E;E0 ` J then E ` � and dom(E) \ dom(E0) = ?.Proof. The proof is by indu
tion on the depth of the derivation of E;E0 ` J .Lemma A.2. If E0; n:W;E00 ` J then E0 `W .Proof. By Lemma A.1 we have E0; n:W;E00 ` J ) E0; n:W ` �, whi
h musthave been derived from E0 `W .We have two weakening lemmas:Lemma A.3. If E0; E00 ` J and n =2 dom(E0; E00) and E0 `W then E0; n:W;E00 `J .Lemma A.4. If E0; E00 ` J and G =2 dom(E0; E00) then E0; G;E00 ` J .Lemma A.5. If E `M :W then E `W .Proof. By indu
tion on the derivation of E ` M : W , using Lemma A.2,Lemma A.3, and Lemma A.4 in 
ase (Exp n).We state a useful 
orollary:Lemma A.6. If E0; E00 ` J and E0;G; E00 ` J 0 then E0;G; E00 ` J .Proof. By Lemma A.1, E0;G; E00 ` J 0 implies that G \ dom(E0; E00) = ?. ByLemma A.4, this implies that E0;G; E00 ` J .Lemma A.7. If E ` n :W and E ` n :W 0 then W =W 0.Proof. Use Lemma A.1.Lemma A.8. If E ` J then fn(J ) � dom(E) and fg(J ) � dom(E).Proof. By indu
tion on the derivation of E ` J .Lemma A.9. If E ` � and fg(W ) � dom(E) then E ` W ; if E ` � andfg(F ) � dom(E) then E ` F . 34



Proof. By mutual indu
tion on the stru
ture of W and F .Hereafter, let fg(E00) be the set of all groups that o

ur either in the domain ofE00 or in types o

urring in E00.Lemma A.10. If E `M : GyG[F ℄ than M = n for some n.Proof. (Exp n) is the only rule that 
an derive E `M : GyG[F ℄.Lemma A.11. If E0; G;E00 ` n :W and G 2 fg(W ) then G 2 fg(E00).Proof. If n were de�ned in E0, then, by Lemmas A.2 and A.8, we would haveG 2dom(E0), whi
h 
ontradi
ts Lemma A.1. Hen
e n is de�ned in E00, and the thesisfollows by Lemma A.7.We have two strengthening lemmas.Lemma A.12. If E0; n:W;E00 ` J and n =2 fn(J ) then E0; E00 ` J .Lemma A.13. If E0; G;E00 ` J and G =2 fg(J ) [ fg(E00) then E0; E00 ` J .Proof. By indu
tion on the derivation of E0; G;E00 ` J . Needs Lemma A.11 in
ases (Exp In), (Exp Out), (Exp Open), and (Pro
 Amb). Lemma A.10 is also usedfor (Pro
 Amb) and (Pro
 Go).Lemma A.14. If E ` P : F then E ` F .Proof. By indu
tion on the derivation of E ` P : F . Needs Lemmas A.12 andA.13 in 
ases (Pro
 Res), (Pro
 GRes), and (Pro
 Input) and Lemma A.5 in 
ase(Pro
 Output).Next, we have four ex
hange lemmas. They are all proved by indu
tion on thederivation, exploiting the weakening and strengthening lemmas in the 
ru
ial 
ases(Env n) and (Env G).Lemma A.15. If E0; n:W 0;m:W 00; E00 ` J then E0;m:W 00; n:W 0; E00 ` J .Lemma A.16. If E0; n:W 0; G;E00 ` J then E0; G; n:W 0; E00 ` J .Lemma A.17. If E0; G; n:W 0; E00 ` J and G =2 fg(W 0) then E0; n:W 0; G;E00 ` J .Lemma A.18. If E0; G;H;E00 ` J then E0; H;G;E00 ` J .35



We have a substitution lemma:Lemma A.19. If E0; n:W;E00 ` J and E0 `M :W then E0; E00 ` J fn Mg.Proof. By indu
tion on the derivation of E0; n:W;E00 ` J . Most 
ases arestraightforward, with the ex
eption of (Exp n), (Exp In), (Exp Out), and (ExpOpen), when the name that appears in the rule is exa
tly n. For the 
ase (Exp n), weget the desired judgment E0; E00 `M :W from E0 `M :W by the weakening lem-mas, Lemmas A.3 and A.4. For the 
ases (Exp In), (Exp Out), and (Exp Open), weuse Lemma A.10 to show that M is a
tually a name m. By the weakening lemmas,we get E0; E00 ` m : W , and then may draw the desired 
on
lusion with (Exp In),(Exp Out), or (Exp Open), respe
tively.Next, we prove that stru
tural 
ongruen
e preserves typing judgments, possiblywith the in
lusion of fresh group names.Proposition A.1. If E ` P : F and P � Q then there are groups G1, . . . , Gksu
h that G1; : : : ; Gk; E ` Q : F .Proof. The proposition follows by showing that P � Q implies:(1) If E ` P : F then 9G su
h that G; E ` Q : F .(2) If E ` Q : F then 9G su
h that G; E ` P : F .We pro
eed by indu
tion on the derivation of P � Q.(Stru
t Re
) Trivial.(Stru
t Symm) Then Q � P . For (1), assume E ` P : F . By indu
tion hypoth-esis (2), Q � P implies that 9G su
h that G; E ` Q : F . Part (2) is symmetri
.(Stru
t Trans) Then P � R, R � Q for some R. For (1), assume E ` P : F . Byindu
tion hypothesis (1), 9G: G; E ` R : F . Again by indu
tion hypothesis (1),9H: H;G; E ` Q : F . Part (2) is symmetri
.(Stru
t Res) Then P = (�n:W )P 0 and Q = (�n:W )Q0, with P 0 � Q0. For(1), assume E ` P : F . This must have been derived from (Pro
 Res), withE; n:GyG0[F 0℄ ` P 0 : F , where W = GyG0[F 0℄. By indu
tion hypothesis (1),9G: G; E; n:GyG0[F 0℄ ` Q0 : F . By (Pro
 Res), G; E ` (�n:W )Q0 : F . Part (2) issymmetri
.(Stru
t GRes) Then P = (�G)P 0 and Q = (�G)Q0, with P 0 � Q0. For (1),assume E ` P : F . This must have been derived from (Pro
 GRes), with E;G `P 0 : F where G =2 fg(F ). By indu
tion hypothesis (1), 9G: G; E;G ` Q0 : F . By(Pro
 GRes), G; E ` (�G)Q0 : F . Part (2) is symmetri
.(Stru
t Par) Then P = P 0 j R, Q = Q0 j R, and P 0 � Q0. For (1), assumeE ` P 0 j R : F . This must have been derived from (Pro
 Par), with E ` P 0 : F ,E ` R : F . By indu
tion hypothesis (1), 9G: G; E ` Q0 : F . By Lemma A.6,G; E ` R : F . By (Pro
 Par), G; E ` Q0 j R : F . Part (2) is symmetri
.(Stru
t Repl) Then P = !P 0, Q = !Q0, and P 0 � Q0. For (1), assume E ` P : F .This must have been derived from (Pro
 Repl), with E ` P 0 : F . By indu
tion36



hypothesis (1), 9G: G; E ` Q0 : F . By (Pro
 Repl), G; E ` !Q0 : F . Part (2) issymmetri
.(Stru
t Amb) Then P = M [P 0℄, Q = M [Q0℄, and P 0 � Q0. For (1), assumeE ` P : F . This must have been derived from (Pro
 Amb), with E ` F , E `M : GyG0[F 0℄ and E ` P 0 : F 0, for some G;F 0;G0. By indu
tion hypothesis (1),9G: G; E ` Q0 : F 0. By Lemma A.6, G; E ` F and G; E ` M : GyG0[F 0℄. By(Pro
 Amb), G; E `M [Q0℄ : F . Part (2) is symmetri
.(Stru
t A
tion) Then P = M:P 0, Q = M:Q0, and P 0 � Q0. For (1), assumeE ` P : F . This must have been derived from (Pro
 A
tion), with E `M : Cap [F ℄and E ` P 0 : F . By indu
tion hypothesis (1), 9G: G; E ` Q0 : F . By Lemma A.6,G; E `M : Cap[F ℄. By (Pro
 A
tion), G; E `M:Q0 : F .Part (2) is symmetri
.(Stru
t Input) Then P = (n1:W1; : : : ; nk:Wk):P 0, Q = (n1:W1; : : : ; nk:Wk):Q0,and P 0 � Q0. For (1), assume E ` P : F . This must have been derived from (Pro
Input), with E; n1:W1; : : : ; nk:Wk ` P 0 : F , where F = yG0;ÆH;W1 � � � � �Wk .By indu
tion hypothesis, 9G: G; E; n1:W1; : : : ; nk:Wk ` Q0 : F . By (Pro
 Input),G; E ` (n1:W1; : : : ; nk:Wk):Q0 : F . Part (2) is symmetri
.(Stru
t Go) Then P = go N:M [P 0℄, Q = go N:M [Q0℄, and P 0 � Q0. For (1),assume E ` P : F . This must have been derived from (Pro
 Go), with E ` F ,E ` N : Cap[F 00℄, E `M : GyG0[F 0℄ and E ` P 0 : F 0, with F 00 =yG0;Æfg;Shh , forsome G, G0, F 0. By indu
tion hypothesis (1), 9G: G; E ` Q0 : F 0. By Lemma A.6,G; E ` F and G; E ` N : Cap [F 00℄ and G; E ` M : GyG0[F 0℄. By (Pro
 Go),G; E ` go N:M [Q0℄ : F . Part (2) is symmetri
.(Stru
t Par Comm) Then P = P 0 j P 00 and Q = P 00 j P 0.For (1), assume E ` P 0 j P 00 : F . This must have been derived from E ` P 0 : Fand E ` P 00 : F . By (Pro
 Par), E ` P 00 j P 0 : F . Hen
e, E ` Q : F .Part (2) is symmetri
.(Stru
t Par Asso
) Then P = (P 0 j P 00) j P 000 and Q = P 0 j (P 00 j P 000).For (1), assume E ` (P 0 j P 00) j P 000 : F . This must have been derived from (Pro
Par) twi
e, with E ` P 0 : F , E ` P 00 : F , and E ` P 000 : F . By (Pro
 Par) twi
e,E ` P 0 j (P 00 j P 000) : F . Hen
e E ` Q : F .Part (2) is symmetri
.(Stru
t Repl Par) Then P = !P 0 and Q = P 0 j !P 0.For (1), assume E ` !P 0 : F . This must have been derived from (Pro
 Repl), withE ` P 0 : F . By (Pro
 Par), E ` P 0 j !P 0 : F . Hen
e, E ` Q : F .For (2), assume E ` P 0 j !P 0 : F . This must have been derived from (Pro
 Par),with E ` P 0 : F and E ` !P 0 : F . Hen
e, E ` P : F .(Stru
t Res Res) Then P = (�n1:W1)(�n2:W2)P 0 and Q = (�n2:W2)(�n1:W1)P 0with n1 6= n2. For (1), assume E ` (�n1:W1)(�n2:W2)P 0 : F . This must havebeen derived from (Pro
 Res) twi
e, with E; n1:G1yG1[F1℄; n2:G2yG2[F2℄ ` P 0 :F , where W1 = G1yG1[F1℄ and W2 = G2yG2[F2℄. By Lemma A.15, we haveE; n2:G2yG2[F2℄; n1:G1yG1[F1℄ ` P 0 : F . By (Pro
 Res) twi
e we have E `(�n2:W2)(�n1:W1)P 0 : F . Part (2) is symmetri
.37



(Stru
t Res Par) Then P = (�n:W )(P 0 j P 00) and Q = P 0 j (�n:W )P 00, withn =2 fn(P 0).For (1), assume E ` P : F . This must have been derived from (Pro
 Res), withE; n:GyG[F 0℄ ` P 0 j P 00 : F and W = GyG[F 0℄, and from (Pro
 Par), withE; n:GyG[F 0℄ ` P 0 : F and E; n:GyG[F 0℄ ` P 00 : F . By Lemma A.12, sin
en =2 fn(P 0), we have E ` P 0 : F . By (Pro
 Res) we have E ` (�n:GyG[F 0℄)P 00 : F .By (Pro
 Par) we have E ` P 0 j (�n:GyG[F 0℄)P 00 : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro
 Par), with E `P 0 : F and E ` (�n:W )P 00 : F , and from (Pro
 Res), with E; n:GyG[F 0℄ ` P 00 : Fand W = GyG[F 0℄. By Lemma A.1, n =2 dom(E). By Lemma A.2, E ` GyG[F 0℄.By Lemma A.3, E; n:GyG[F 0℄ ` P 0 : F . By (Pro
 Par), E; n:GyG[F 0℄ ` P 0 j P 00 :F . By (Pro
 Res), E ` (�n:GyG[F 0℄)(P 0 j P 00) : F , that is, E ` P : F .(Stru
t Res Amb) Then P = (�n:W )m[P 0℄ and Q = m[(�n:W )P 0℄, with n 6= m.For (1), assume E ` P : F . This must have been derived from (Pro
 Res) withE; n:GyG[F 0℄ ` m[P 0℄ : F with W = GyG[F 0℄, and from (Pro
 Amb) withE; n:GyG[F 0℄ ` F and E; n:GyG[F 0℄ ` m : H yG0[F 00℄ and E; n:GyG[F 0℄ ` P 0 :F 00 for some H , F 00, G0. By (Pro
 Res) we have E ` (�n:GyG[F 0℄)P 0 : F 00. ByLemma A.12, E ` F , and E ` m : H yG0[F 00℄ (by n 6= m). By (Pro
 Amb),E ` m[(�n:GyG[F 0℄)P 0℄ : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro
 Amb)with E ` F , E ` m : H yG0[F 00℄ and E ` (�n:W )P 0 : F 00, and from (Pro
Res), with E; n:GyG[F 0℄ ` P 0 : F 00 and W = GyG[F 0℄. By Lemma A.1, n =2dom(E). By Lemma A.2, E; n:GyG[F 0℄ ` P 0 : F 00 implies E ` GyG[F 0℄. ByLemma A.3, E; n:GyG[F 0℄ ` F and E; n:GyG[F 0℄ ` m : H yG0[F 00℄. By (Pro
Amb), E; n:GyG[F 0℄ ` m[P 0℄ : F . By (Pro
 Res), E ` (�n:GyG[F 0℄)m[P 0℄ : F ,that is, E ` P : F .(Stru
t GRes Res) Then P = (�G)(�n:W )P 0 and Q = (�n:W )(�G)P 0 with G =2fg(W ).For (1), assume E ` (�G)(�n:W )P 0 : F . This must have been derived from (Pro
GRes), with E;G ` (�n:W )P 0 : F and G =2 fg(F ), and from (Pro
 Res), withE;G; n:G0yG[F 0℄ ` P 0 : F , where W = G0yG[F 0℄. Sin
e G =2 fg(W ) by hypothe-sis, by Lemma A.17 we have E; n:G0yG[F 0℄; G ` P 0 : F . We know that G =2 fg(F ),hen
e by (Pro
 GRes) we have E; n:G0yG[F 0℄ ` (�G)P 0 : F . Finally from (Pro
Res) we have E ` (�n:W )(�G)P 0 : F .For (2), assume E ` (�n:W )(�G)P 0 : F . This must have been derived from (Pro
Res), with E; n:G0yG[F 0℄ ` (�G)P 0 : F , where W = G0yG[F 0℄, and from (Pro
GRes), with E; n:G0yG[F 0℄; G ` P 0 : F , with G =2 fg(F ). By Lemma A.16,E;G; n:G0yG[F 0℄ ` P 0 : F . The thesis follows by applying (Pro
 Res) and (Pro
GRes).(Stru
t GRes GRes) Then P = (�G1)(�G2)P 0 and Q = (�G2)(�G1)P 0.For (1), assume E ` (�G1)(�G2)P 0 : F . This must have been derived from (Pro
GRes) twi
e, with E;G1; G2 ` P 0 : F andG2 =2 fg(F ), G1 =2 fg(F ). By Lemma A.18we have E;G2; G1 ` P 0 : F . By (Pro
 Res) twi
e we have E ` (�G2)(�G1)P 0 : F .Part (2) is symmetri
. 38



(Stru
t GRes Par) Then P = (�G)(P 0 j P 00) and Q = P 0 j (�G)P 00, with G =2fg(P 0).For (1), assume E ` P : F . This must have been derived from (Pro
 GRes), withE;G ` P 0 j P 00 : F and G =2 fg(F ), and from (Pro
 Par), with E;G ` P 0 : F andE;G ` P 00 : F . By Lemma A.13, sin
e G =2 fg(P 0)[ fg(F ), we have E ` P 0 : F . By(Pro
 GRes) we have E ` (�G)P 00 : F . By (Pro
 Par) we have E ` P 0 j (�G)P 00 : F ,that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro
 Par), withE ` P 0 : F and E ` (�G)P 00 : F , and from (Pro
 GRes), with E;G ` P 00 : F andG =2 fg(F ). By Lemma A.1, G =2 dom(E). By Lemma A.4, E;G ` P 0 : F . By (Pro
Par), E;G ` P 0 j P 00 : F . By (Pro
 GRes), sin
e G =2 fg(F ), E ` (�G)(P 0 j P 00),that is, E ` P : F .(Stru
t GRes Amb) Then P = (�G)m[P 0℄ and Q = m[(�G)P 0℄.For (1), assume E ` P : F . This must have been derived from (Pro
 GRes)with E;G ` m[P 0℄ : F with G =2 fg(F ), and from (Pro
 Amb) with E;G ` F ,E;G ` m : G0yG[F 0℄, and E;G ` P 0 : F 0 for some G0, G, F 0. By Lemma A.13,E;G ` F and G =2 fg(F ) imply E ` F . The judgment E;G ` m : G0yG[F 0℄must have been derived from (Exp n), hen
e m 2 dom(E). Hen
e, by (Exp n)and by Lemma A.7, E ` m : G0yG[F 0℄. By Lemma A.1, G =2 dom(E). Hen
e, byE ` m : G0yG[F 0℄ and Lemma A.8, G =2 fg(G0yG[F 0℄) and so G =2 fg(F 0). By(Pro
 GRes) we have E ` (�G)P 0 : F 0. By (Pro
 Amb), E ` m[(�G)P 0℄ : F , thatis, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro
 Amb)with E ` F , E ` m : G0yG[F 0℄, and E ` (�G)P 0 : F 0, for some G0, G, F 0,and from (Pro
 GRes), with E;G ` P 0 : F 0 and G =2 fg(F 0). By Lemma A.1,G =2 dom(E). By Lemma A.4, E;G ` m : G0yG[F 0℄ and E;G ` F . By (Pro
Amb), E;G ` m[P 0℄ : F . By Lemma A.8, E ` F and G =2 dom(E) implyG =2 fg(F ).By (Pro
 GRes), E ` (�G)m[P 0℄ : F , that is, E ` P : F .(Stru
t Zero Par) Then P = P 0 j 0 and Q = P 0.For (1), assume E ` P : F . This must have been derived from (Pro
 Par) withE ` P 0 : F and E ` 0 : F . Hen
e, E ` Q : F .For (2), assume E ` P 0 : F . By Lemma A.14, E ` F . By (Pro
 Zero), E ` 0 : F .By (Pro
 Par), E ` P 0 j 0 : F , that is, E ` P : F .(Stru
t Zero Res) Then P = (�n:GyG0[F 0℄)0 and Q = 0.For (1), assume E ` P : F . This must have been derived from (Pro
 Res) withE; n:GyG0[F 0℄ ` 0 : F . By Lemma A.12, E ` 0 : F , that is, E ` Q : F .For (2), assume E ` 0 : F . We identify pro
esses up to 
onsistent renaming ofbound names and groups, hen
e we may assume that the bound name n does noto

ur in dom(E). LetG be fg(GyG0[F 0℄)�dom(E). By Lemma A.4,G; E ` �. ByLemma A.9, G; E ` GyG0[F 0℄. By Lemma A.14, E ` F . By repeated appli
ationof Lemma A.4, G; E ` F . By Lemma A.3, G; E; n:GyG0[F 0℄ ` F . By (Pro
 Zero),G; E; n:GyG0[F 0℄ ` 0 : F . By (Pro
 Res), G; E ` (�n:GyG0[F 0℄)0 : F , that is,G; E ` P : F .(Stru
t Zero GRes) Then P = (�G)0 and Q = 0.39



For (1), assume E ` P : F . This must have been derived from (Pro
 GRes) withE;G ` 0 : F and G =2 fg(F ). By Lemma A.13, E ` 0 : F , that is, E ` Q : F .For (2), assume E ` 0 : F . We may assume that the bound name G does not o

urin dom(E). Hen
e, by Lemma A.8, G =2 fg(F ), and by Lemma A.4, E;G ` 0 : F .By (Pro
 GRes), E ` (�G)0 : F , that is, E ` P : F .(Stru
t Zero Repl) Then P = !0 and Q = 0.For (1), assume E ` P : F . This must have been derived from (Pro
 Repl) withE ` 0 : F , that is, E ` Q : F .For (2), assume E ` 0 : F . By (Pro
 Repl), E ` !0 : F , that is, E ` P : F .(Stru
t �) Then P = �:P 0 and Q = P 0.For (1), assume E ` P : F . This must have been derived from (Pro
 A
tion) withE ` � : Cap[F ℄ and E ` P 0 : F , that is, E ` Q : F .For (2), assume E ` P 0 : F . By Lemma A.14, E ` F . By (Type Cap), E ` Cap [F ℄.By (Exp �), E ` � : Cap [F ℄. By (Pro
 A
tion), E ` �:P 0 : F , that is, E ` P : F .(Stru
t :) Then P = (M:M 0):P 0 and Q =M:M 0:P 0.For (1), assume E ` P : F . This must have been derived from (Pro
 A
tion) withE ` P 0 : F and E `M:M 0 : Cap[F ℄. The latter must have 
ome from (Exp :) withE `M : Cap[F ℄ and E `M 0 : Cap[F ℄, By (Pro
 A
tion) twi
e, E `M:(M 0:P 0) : F ,that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro
 A
tion),twi
e, with E ` M : Cap [F ℄, E ` M 0 : Cap [F ℄, and E ` P 0 : F . By (Exp :),E `M:M 0 : Cap [F ℄. By (Pro
 A
tion), E ` (M:M 0):P 0 : F , that is, E ` P : F .(Stru
t Go �) Then P = go �:M [P 0℄ and Q =M [P 0℄.For (1), assume E ` P : F . This must have been derived using (Pro
 Go), withE ` F , E ` � : Cap[yG;Æfg;Shh ℄, E ` M : GyG[F 0℄, and E ` P 0 : F 0. By (Pro
Amb), E `M [P 0℄ : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived using (Pro
 Amb), withE ` F , E ` P 0 : F 0 and E ` M : GyG[F 0℄. By Lemma A.5, E ` GyG[F 0℄.This must have been derived using (Type Amb), with G � dom(E), and E `F 0. By (E�e
t Shh) and Lemma A.1, E ` yG;Æfg;Shh . By (Type Cap), E `Cap [yG;Æfg;Shh℄. By (Exp �), E ` � : Cap[yG;Æfg;Shh ℄. By (Pro
 Go), E `go �:M [P 0℄ : F , that is, E ` P : F .(Stru
t Go � :) Then P = go (�:M):N [P 0℄ and Q = goM:N [P 0℄. This 
ase followsby an argument very similar to the 
ase for (Stru
t Go �). We omit the details.(Stru
t Go : �) Then P = go (M:�):N [P 0℄ and Q = go M:N [P 0℄.For (1), assume E ` P : F . This must have been derived using (Pro
 Go), withE ` F , E ` M:� : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, with F 00 =yG;Æfg;Shh . The judgment E ` M:� : Cap[F 00℄ must have been derived using(Exp :) from E `M : Cap [F 00℄ and E ` � : Cap[F 00℄. By (Pro
 Go), we 
an deriveE ` go M:N [P 0℄ : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived using (Pro
 Go), with E `F , E `M : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, with F 00 = yG;Æfg;Shh .By (Exp �) and (Exp :), we get E ` M:� : Cap [F 00℄. By (Pro
 Go), we 
an deriveE ` go (M:�):N [P 0℄ : F , that is, E ` P : F .40



(Stru
t Go : Asso
) In this 
ase, we have P = go ((M:M 0):M 00):N [P 0℄ and Q =go (M:(M 0:M 00)):N [P 0℄.For (1), assume E ` P : F . This must have been derived using (Pro
 Go), withE ` F , E ` (M:M 0):M 00 : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, withF 00 = yG;Æfg;Shh. The judgment E ` (M:M 0):M 00 : Cap [F 00℄ must have beenderived using (Exp :), twi
e from E ` M : Cap[F 00℄ and E ` M 0 : Cap [F 00℄ andE ` M 00 : Cap [F 00℄. By (Exp :), we 
an derive E ` M:(M 0:M 00) : Cap[F 00℄,and then, by (Pro
 Go), we 
an derive E ` go (M:(M 0:M 00)):N [P 0℄ : F , that is,E ` Q : F .For (2), assume E ` Q : F . This must have been derived using (Pro
 Go), withE ` F , E ` M:(M 0:M 00) : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, withF 00 = yG;Æfg;Shh. The judgment E ` M:(M 0:M 00) : Cap [F 00℄ must have beenderived using (Exp :), twi
e from E ` M : Cap[F 00℄ and E ` M 0 : Cap [F 00℄ andE ` M 00 : Cap [F 00℄. By (Exp :), we 
an derive E ` (M:M 0):M 00 : Cap[F 00℄,and then, by (Pro
 Go), we 
an derive E ` go ((M:M 0):M 00):N [P 0℄ : F , that is,E ` P : F .Proof of Theorem 6.1 If E ` P : F and P ! Q then there are G1, . . . , Gksu
h that G1; : : : ; Gk; E ` Q : F .Proof. For the sake of 
on
iseness, throughout this proof the fa
t that E ` P : Fimplies E ` F (Lemma A.14) will be used several times, without any further expli
ita
knowledgement. We pro
eed by indu
tion on the derivation of P ! Q.(Red In) Then P = n[in m:P 0 j P 00℄ j m[P 000℄ and Q = m[n[P 0 j P 00℄ j P 000℄.Assume E ` P : F . This must have been derived from (Pro
 Par), with E `n[in m:P 0 j P 00℄ : F and E ` m[P 000℄ : F . The former must have been derived from(Pro
 Amb), with E ` F , E ` n : GnyGn[Fn℄ and E ` in m:P 0 j P 00 : Fn, forsome Gn, Gn, Fn, while the latter must have been derived from (Pro
 Amb) withE ` F , E ` m : GmyGm[Fm℄ and E ` P 000 : Fm, for some Gm,Gm, Fm. Moreover,E ` in m:P 0 j P 00 : Fn must 
ome from (Pro
 Par) with E ` in m:P 0 : Fn andE ` P 00 : Fn. Finally, E ` in m:P 0 : Fn must 
ome from E ` in m : Cap [Fn℄ andE ` P 0 : Fn. By (Pro
 Par), we have E ` P 0 j P 00 : Fn, and by (Pro
 Amb) we 
anderiveE ` n[P 0 j P 00℄ : Fm. Then, by (Pro
 Par), we haveE ` n[P 0 j P 00℄ j P 000 : Fm.By (Pro
 Amb) we 
an derive E ` m[n[P 0 j P 00℄ j P 000℄ : F , that is, E ` Q : F .(Red Out) Then P = m[n[out m:P 0 j P 00℄ j P 000℄ and Q = n[P 0 j P 00℄ j m[P 000℄.Assume E ` P : F . This must have been derived using (Pro
 Amb) from E ` F ,E ` m : GmyGm[Fm℄ and E ` n[outm:P 0 j P 00℄ j P 000 : Fm for some Gm, Gm, Fm,and from (Pro
 Par) using E ` n[outm:P 0 j P 00℄ : Fm and E ` P 000 : Fm. The formermust have been derived using (Pro
 Amb) from E ` Fm, E ` n : GnyGn[Fn℄and E ` out m:P 0 j P 00 : Fn for some Gn, Gn, Fn, and using (Pro
 Par) fromE ` out m:P 0 : Fn and E ` P 00 : Fn. The former must have been derived using(Pro
 A
tion) from E ` out m : Cap [Fn℄ and E ` P 0 : Fn. By (Pro
 Par),E ` P 0 j P 00 : Fn. By (Pro
 Amb), E ` n[P 0 j P 00℄ : F . By (Pro
 Amb),E ` m[P 000℄ : F . By (Pro
 Par), E ` n[P 0 j P 00℄ j m[P 000℄ : F , that is, E ` Q : F .(Red Open) Then P = open n:P 0 j n[P 00℄ and Q = P 0 j P 00. Assume E ` P :F . This must have been derived using (Pro
 Par) from E ` open n:P 0 : F and41



E ` n[P 00℄ : F . The former must have been derived using (Pro
 A
tion) withE ` open n : Cap [F ℄ and E ` P 0 : F , while the latter must have been derived using(Pro
 Amb) with E ` F , E ` n : G0yG0[F 0℄ and E ` P 00 : F 0 for some G0, G0, F 0.The judgment E ` open n : Cap [F ℄ must have been derived using (Exp Open) fromE ` n : GyG[F ℄ for some G, G. By Lemma A.7, G0yG0[F 0℄ = GyG[F ℄, and so,in parti
ular, F 0 = F . Hen
e, by (Pro
 Par), E ` P 0 j P 00 : F , that is, E ` Q : F .(Red I/O) In this 
ase we have P = (n1:W1; : : : ; nk:Wk):P 0 j hM1; : : : ;Mki andQ = P 0fn1 M1; : : : ; nk Mkg. Assume E ` P : F . This must have been derivedfrom (Pro
 Par) with E ` (n1:W1; : : : ; nk:Wk):P 0 : F and E ` hM1; : : : ;Mki : F .The former 
an only have been derived from (Pro
 Input) with E; n1:W1; : : : ; nk:Wk `P 0 : F and F = yG;ÆH;W1 � � � � �Wk for some G, H. The latter judgment E `hM1; : : : ;Mki : F must have been derived from (Pro
 Output) with E `Mi :W 0i forea
h i 2 1::k, and F = yG;ÆH;W 01 � � � � �W 0k. Hen
e W 0i = Wi for ea
h i 2 1::k.By k appli
ations of Lemma A.19, we get E ` P 0fn1 M1; : : : ; nk Mkg : F .(Red Go In) Here P = go(in m:N):n[Pn℄ j m[Pm℄ and Q = m[go N:n[Pn℄ j Pm℄.Assume E ` P : F . This must have been derived using (Pro
 Par) from E `go(inm:N):n[Pn℄ : F and E ` m[Pm℄ : F . The former must have been derived using(Pro
 Go) with E ` F , E ` in m:N : Cap[yGn;Æfg;Shh ℄, E ` n : GnyGn[Fn℄,and E ` Pn : Fn for some Gn, Gn, Fn,, and the latter must have been derivedusing (Pro
 Amb) with E ` F , E ` m : GmyGm[Fm℄ and E ` Pm : Fm for someGm, Gm, Fm. Moreover, the judgment E ` in m:N : Cap [yGn;Æfg;Shh℄ musthave been derived using (Exp .) from E ` in m : Cap [yGn;Æfg;Shh℄ and E ` N :Cap [yGn;Æfg;Shh ℄. By (Pro
 Go) and (Pro
 Par), E ` go N:n[Pn℄ j Pm : Fm. By(Pro
 Amb), we get E ` m[go N:n[Pn℄ j Pm℄ : F , that is, E ` Q : F .(Red Go Out) Here P = m[go(out m:N):n[Pn℄ j Pm℄ and Q = go N:n[Pn℄ jm[Pm℄. Assume E ` P : F . This must have been derived using (Pro
 Amb) fromE ` F , E ` m : GmyGm[Fm℄ and E ` go(out m:N):n[Pn℄ j Pm : Fm for some Gm,Gm, Fm, and from (Pro
 Par) with E ` go(outm:N):n[Pn℄ : Fm and E ` Pm : Fm.The former must have been derived using (Pro
 Go) from E ` Fm, E ` out m:N :Cap [yGn;Æfg;Shh℄, E ` n : GnyGn[Fn℄, and E ` Pn : Fn for some Gn, Gn, Fn.The judgment E ` out m:N : Cap[yGn;Æfg;Shh ℄ must have been derived using(Pro
 :) from E ` out m : Cap[yGn;Æfg;Shh ℄ and E ` N : Cap [yGn;Æfg;Shh ℄. By(Pro
 Go), E ` go N:n[Pn℄ : F . By (Pro
 Amb), E ` m[Pm℄ : F . By (Pro
 Par),E ` go N:n[Pn℄ j m[Pm℄ : F , that is, E ` Q : F .(Red Res) Here P = (�n:W )P 0 and Q = (�n:W )Q0 with P 0 ! Q0. Assume E `P : F . This must have been derived using (Pro
 Res) from E; n:GyG0[F 0℄ ` P 0 : Fwith W = GyG0[F 0℄. By indu
tion hypothesis, 9G su
h that G; E; n:GyG0[F 0℄ `Q0 : F . By (Pro
 Res), G; E ` (�n:GyG0[F 0℄)Q0 : F , that is, G; E ` Q : F .(Red GRes) Here P = (�G)P 0 and Q = (�G)Q0 with P 0 ! Q0. Assume E `P : F . This must have been derived using (Pro
 GRes) from E;G ` P 0 : F withG =2 fg(F ). By indu
tion hypothesis, 9G su
h that G; E;G ` Q0 : F . By (Pro
GRes), G; E ` (�G)Q0 : F , that is, G; E ` Q : F .(Red Amb) Here P = n[P 0℄ and Q = n[Q0℄ with P 0 ! Q0. Assume E ` P : F .This must have been derived using (Pro
 Amb) from E ` F , E ` n : GyG0[F 0℄,and E ` P 0 : F 0. By indu
tion hypothesis, 9G su
h that G; E ` Q0 : F 0. ByLemma A.6, G; E ` F and G; E ` n : GyG0[F 0℄. By (Pro
 Amb), G; E ` n[Q0℄ :F , that is, G; E ` Q : F . 42



(Red Par) Here P = P 0 j R and Q = Q0 j R with P 0 ! Q0. Assume E ` P : F .This must have been derived using (Pro
 Par) from E ` P 0 : F and E ` R : F . Byindu
tion hypothesis, 9G su
h that G; E ` Q0 : F . By Lemma A.6, G; E ` R : F .By (Pro
 Par), G; E ` Q0 j R : F , that is, G; E ` Q : F .(Red �) Here P � P 0, P 0 ! Q0, and Q0 � Q. Assume E ` P : F . By Proposi-tion A.1, 9G1 su
h that G1; E ` P 0 : F . By indu
tion hypothesis, 9G2 su
h thatG2;G1; E ` Q0 : F . By Proposition A.1, 9G3 su
h that G3;G2;G1; E ` Q : F .APPENDIX BProof of E�e
t SafetyIn this appendix we prove the e�e
t safety property stated in Se
tion 7.Proof of Proposition 7.1 Suppose that E ` P : yG;ÆH; T .(1) If P # in n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(2) If P # out n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(3) If P # open n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 H.Proof. We prove part (1) in detail; the other parts follow by similar arguments.We pro
eed by indu
tion on the derivation of P # in n.(Ex Cap) We have P # in n derived from P � in n:Q. By Proposition A.1,E ` P : yG;ÆH; T and P � in n:Q imply there are groups G1, . . . , Gk su
h thatG1; : : : ; Gk; E ` in n:Q : yG;ÆH; T . This must have been derived using (Pro
A
tion) from G1; : : : ; Gk; E ` in n : Cap [yG;ÆH; T ℄, whi
h itself must have beenderived using (Exp In) from G1; : : : ; Gk; E ` n : GyG0[F ℄ for some type GyG0[F ℄with G 2 G. The latter judgment must have been derived using (Exp n), andtherefore E = E0; n:GyG0[F ℄; E00. By Lemma A.1, E ` P : yG;ÆH; T impliesE ` �, and therefore E ` n : GyG0[F ℄, by (Exp n).(Ex Par 1) We have P j Q # in n derived from P # in n. The judgment E ` P jQ : yG;ÆH; T must have been derived using (Pro
 Par) from E ` P : yG;ÆH; T .By indu
tion hypothesis, this and P # in n imply the required result.(Ex Par 2) We have P j Q # in n derived from Q # in n. The judgment E ` P jQ : yG;ÆH; T must have been derived using (Pro
 Par) from E ` Q : yG;ÆH; T .By indu
tion hypothesis, this and Q # in n imply the required result.(Ex Res) We have (�m:W )P # in n derived from P # in n and m =2 fn(in n). Thejudgment E ` (�m:W )P :yG;ÆH; T must have been derived using (Pro
 Res) fromE;m:W ` P : yG;ÆH; T . By indu
tion hypothesis, this and P # in n imply thatE;m:W ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G. By Lemma A.12,m 6= n and E;m:W ` n : GyG0[F ℄ imply E ` n : GyG0[F ℄.(Ex ResG) We have (�H)P # in n derived from P # in n. The judgment E `(�H)P : yG;ÆH; T must have been derived using (Pro
 GRes) from E;H ` P :yG;ÆH; T with H =2 fg(yG;ÆH; T ). By indu
tion hypothesis, the latter and P #in n imply that E;H ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G. ByLemma A.13, H =2 fg(yG;ÆH; T ) and E;H ` n : GyG0[F ℄ imply E ` n : GyG0[F ℄.43
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