
Where membranes meet complexes.

Luca Cardelli, Sylvain Pradalier

June 15, 2005

Abstract

We introduce a calculus handling complexation of molecules and
membranes. The approach is based on adding dynamic interfaces to
processes, which induce bonds between molecules. The calculus is then
extended with a notion of hierarchy to handle membranes.

Introduction In biochemistry, proteins and other molecules have a com-
mon way of interacting among themselves by forming “complexes”. A com-
plex is a combinations of two or more molecules attached together along
complementary surfaces. Complexation is the formation of a complex and
decomplexation is the breaking up of a complex, both of which may be
actively triggered, e.g., by another complexation and decomplexation inter-
actions.

When modeling even the simplest biological systems, the issue immedi-
ately comes up of how to model complexation. Shapiro and Regev [8, 4]
proposed to use a fresh private channel in π-calculus to represent complex-
ation, and a synchronization on that channel followed by discarding the
channel represents decomplexation. This technique is flexible and allows
many interesting variations, and is available within a well understood calcu-
lus. However, this technique uses some high-power features (private scopes,
name passing) to represent what is essentially a combinatorial operation
that, like parallel composition, ought to be expressible as a binary operator.

In this paper we explore using complexation as an operator, which turns
out not to be so trivial to implement. We base our approach on attaching
dynamic “interfaces” to processes to more easily track the “surfaces” along
which processes interact to form complexes. Our notion of dynamic inter-
faces is similar to the mechanisms explored in beta-binders[6, 7]; however,
we preserve binary complementary interactions as the fundamental mode of
interactions between processes.

Membranes are another fundamental features in biology. They permit
organisms to divide the space into compartments, thus enabling different
living conditions for their contents. Brane Calculi[1] and Projective Brane
Calculus[3] are languages specifically dealing with membranes. They pro-
vided a strong framework for describing or modeling membranes systems

1

but they lack an elegant way of representing molecules and even more so,
complexation. This paper proposes a first language that handles molecules
and membranes. Because membranes can stick to each other like molecules,
we represent membranes as molecules with a content. This is the same step
that leads from π-calculus[5] to ambient-calculus[2].

Outline First we present the formalism for complexation. Then we show
examples that illustrate the different operators. Next we extend the calcu-
lus with a notion of hierarchy that represents nesting membranes and we
give an example of a biological case where both complexes and membranes
are needed. We finally discuss possible enhancements to the syntax, and
perspectives.

Acknowledgments A discussion with Tony Hoare provided the initial
direction for this work. Vincent Danos pointed out some mistakes and helped
to explain intuitions behind the calculus.

1 Complexation

In biochemistry complementary sites of molecules can be linked to form
bonds. So the possibilities of interactions of a molecule are determined by
its sites. The set of the sites of a molecule is called its interface.

This remark leads us to design processes with an interface, which controls
the behavior of a process. We call our processes, molecules. We want an
interface to be dynamic, thus processes are able to offer or retract a site on
their interface.

As it is shown by examples (part 2), other operators are needed to model
biological systems. Not surprisingly we obtain something close to π-calculus:
for instance, we need synchronizations and restrictions on the scope of a site.

Before presenting formally the syntax we recall some basic notions about
multisets.

1.1 Some notations for multisets

We write⊆+,
⋂+, + and− for the inclusion, intersection, sum and difference

of multisets. We consider multisets on Σ− ⋃
Σ+ and on those we define

the multisets: S = {a+|a− ∈ S} and S∗ = S
⋃

S. The “complementary
intersection” is: S2T = (S

⋂+ T)∗. We also note SqT for S+T−S2T . As
(a+ ∈ S2T) ⇔ (a− ∈ S2T), we write a ∈ S2T for (a+ ∈ S2T∧a− ∈ S2T).

1.2 Syntax

• a, b, c, . . . ∈ Σ− ⋃
Σ+ and S, T, . . . ∈ Multisets(Σ− ⋃

Σ+)

2

• P,Q,R, . . . ::= AS | P&P | (νa)P | X | recX .P

• A,B, C, . . . ::= 0 | A + B | A|B | α.A

• α ::= a±〈S〉 | a±(S) | offer(a) | retract(a) | fork(P)

Σ− ⋃
Σ+ is the set of sites. The second line defines syntax for molecules:

it is either a sets of actions A with some interface S, or two molecules put
in parallel with the parallel operator & (or complexation operator), or a
restriction on the name of a site, or a recursion variable or a recursion
on another molecule. Actions sets are defined in the third line: there is
choice, parallel or shuffle, and prefix. Finally we have basic actions: polyadic
output, polyadic input, offer of a site, retract of a site, fork of a molecule.
Further explanation will be given with the operational semantics (1.5).

The main difference with π-calculus is the complexation operator & that
behaves like a parallel except for interfaces. It is this operator that makes
bonds between molecules. Other differences are restrictions that can only
occur at the top-level (they cannot be prefixed, for instance), and the duality
± of sites that represents complementarity of sites.

Then we define the interface I(P) of a sets of molecules:

I(AS) = S, I((νa)P) = I(P)− {a+, a−}, I(P&Q) = I(P)q I(Q)
I(X) = ∅, I(recX .P) = I(P)

For instance if I(P) = {a+, a+, b−} and I(Q) = {a−, c+} then I(P&Q) =
{a+, a+, b−} + {a−, c+} − {a+, a−} = {a+, b−, c+}. The interesting case is
I(P&Q) = I(P)q I(Q). It is here that complexation occurs. Intuitively the
q operator hides a a+ on the left for each a− on the right and vice versa.
Each such hidden pair corresponds to a bond on the site “a”: if there is
a bond on a, then the two corresponding sites do not appear anymore in
the interface. When we want to insist on hidden sites we index & with the
names of theses sites.

We have to distinguish between a+ and a− that is the two end of a bond,
or the sites of the two molecules, because bonds on molecules correspond to
complementary shapes. Thus if molecule X can links with molecules Y and
Z on a site a we do not want Y and Z to be able to link on a.

1.3 Free names

The definition of free names is quite obvious. We just detail cases that are
not in the classical π-calculus:

• fn(AS) = fn(A)
⋃

Set(S) where Set(S) is the set-projection of the
multiset S.

3

• fn(a〈S〉.A) = {a}
⋃

fn(A)
⋃

S

• fn(a(X).A) = {a}
⋃

(fn(A) \X)

• fn(offer(a).A) = fn(retract(a).A) = fn(fork(P).A) = fn(A)
⋃
{a}

1.4 Structural Congruence

The structural congruence is derived from the one of the π-calculus.

P≡αQ
P≡Q

P&Q ≡ Q&P, P&(Q&R) ≡ (P&Q)&R,

P&0 ≡ P,
P ≡ P ′

P&Q ≡ P ′&Q

(νx).(νy).P ≡ (νy).(νx).P, (νx).0 ≡ 0
(νx).P&Q ≡ (νx).(P&Q) if x /∈ fn(Q)

P≡Q
recX .P≡recX .Q ,

A ≡ B

AS ≡ BS

A + B ≡ B + A, A + (B + C) ≡ (A + B) + C,

A + 0 ≡ A,
A ≡ A′

A + B ≡ A′ + B
A|B ≡ B|A, A|(B|C) ≡ (A|B)|C,

A|0 ≡ A,
A ≡ A′

A|B ≡ A′|B
A≡A′

α.A≡α.A′

1.5 Operational Semantics

Operational semantics of the π-calculus is often presented in a labeled ver-
sion. We do not need it here and thus prefer the simpler unlabeled version.

• P≡P ′ , P ′→Q′ , Q′≡Q
P→Q (Cong)

• (a±〈R〉.A)S & (a∓(X).B)T → AS & B{R/X}T if a ∈
S2T : (Com)

• P → P ′

P&Q → P ′&Q(&) , P → P ′

(νa)P → (νa)P ′ (ν) and P{recx.P/X} → Q
recX .P → Q (Rec)

• AS&P → A′
S′&P ′

(A+B)S&P → A′
S′&P ′ (Sum): if A 6= A′ and

AS&P → A′
S′&P ′

(A|B)S&P → (A′|B)S′&P ′ (Par)

• (offer(a).A)S → AS+a : (Offer)

• (retract(a).A)S → AS−a if a ∈ S : (Retract)

• (fork(P).A)S → AS & P : (Fork)

4

Rules Cong, &, ν and Rec are classical rules. Sum and Par are structural
rules to handle choice and parallel operator on actions. Note that & and
Par rules are similar : both operators are parallel operators. The difference
is that & permits communication and is at the level of molecules while | is
in a molecule and just permits shuffle of actions.

Offer and Retract rules are basic modifications of interfaces. Fork is the
synthesis of a new molecule.

The rules Com is remarkable. We ask that a ∈ S2T because we want
to restrict communication to linked molecules. Only these molecules should
be able to exchange information. This implies that communication occurs
between an a+ and a−. So a second duality is added to input/output.

One can think to fuse the two dualities into one but then one has to
symmetrize the communication with bounded output, for instance. But
such output aren’t as well understood as simple ones, thus we prefer to keep
simple outputs.

2 Use of different connectors and examples

2.1 The graph structure of the complex isn’t forgotten

Here is a basic example illustrating how communications permit to synchro-
nize molecules, and showing that we do not loose the graph-structure of a
complex. Let:

• P = (offer(1+).1+〈〉.offer(2+).2+〈〉.2+〈〉.retract(1+)){}

• Q = (offer(1−).1−〈〉.offer(3+).3+〈〉){}

• R = ((offer(2−)|offer(3−)).(2−〈〉|3−〈〉).2−〈〉.ret3−){}

(P|Q).(P’|Q’) is an abbreviation for P.Q.(P’|Q’) + Q.P.(P’|Q’)).
First P and Q offer and link on 1, then they synchronized so that they know
they can try to link R. Then R offers 2 and 3 and synchronized with P
and Q. Now all the three molecules know that they are linked. P and R
synchronize once again to agree on the release of Q.

2.2 Associativity and NaCl

Let:

• Na = (offer(e+).Na′){}

• Cl = (offer(e−).Cl′){}

• S = Na1 & Na2 & Cl1 & Cl2

5

We indexed molecules because we want to see the variations permitted by
the associativity of the &.
S can evolve by linking Na and Cl molecules. This models the ionization:
Na + Cl → Na+ + Cl−:

S →∗ [(Na1)e+ |(Na′2)e+] &e+2,e−2 [(Cl′1)e− |(Cl′2)e−]
≡ [(Na′1)e+&e,e−(Cl′1)e−] | [(Na′2)e+&e,e−(Cl′2)e−]
≡ [(Na′1)e+&e,e−(Cl′2)e−] | [(Na′2)e+&e,e−(Cl′1)e−]

The difference between the last two lines is the pairs of linked molecules.
In the last one we have (Na1, Cl2) and (Na2, Cl1) while in the other one
we have (Na1, Cl1) and (Na2, Cl2). This is permitted by the rule of as-
sociativity in the structural congruence. In the first line we do not detail
which Na+ is linked with which Cl−. This is convenient for such links as
Na+ − Cl− that are always shifting from a molecule to another one. The
intuition is that all different configurations coexist. The system is always
shifting from one to the other.

2.3 Communication and strong links: Use of νa

Now we want to model stable bonds. When such a link is made, no rear-
rangement with other molecule is possible. The only way to remove such a
link is to retract one of the linked site. This corresponds to covalent bonds
for instance. Let:

• P = (νc)(offer(p−).p−〈c+〉.retract(p−).offer(c−).
Work.retract(c−).offer(p−)){}

• Q = (offer(p+).p+(x).retract(p+).offer(x).
Work′.retract(x).offer(p+)){}

• S = P&Q

Work and Work’ are some actions to do when the strong link is established.
They begin and end by synchronization on the site c for P and x for Q (
which are the same actually).

6

S = (νc)[(offer(p−).p−〈c+〉.retract(p−).offer(c−).
Work.retract(c−).offer(p−)){}]

& (offer(p+).p+(x).retract(p+).offer(x).
Work′.retract(x).offer(p+)){}

τ,τ−−→ (νc)[(p−〈c+〉.retract(p−).offer(c−).
Work.retract(c−).offer(p−)){p−}]

&p+,p− (p+(x).retract(p+).offer(x).
Work′.retract(x).offer(p+)){p+}

τ−→ (νc)[(retract(p−).offer(c−).
Work.retract(c−).offer(p−)){p−}

&p+,p− (retract(p+).offer(x).
Work′.retract(x).offer(p+)){p+}]

τ,...−−→ (νc)[(Work.retract(c−).offer(p−)){c−}
&c+,c− (Work′.retract(x).offer(p+)){c+}]

First step is achieved by basics offer of p+ and p−. The bond on site p
is automatically made. Second one is due to a communication on p. The
molecules exchange the new site c. Then they retract sites p+ and p− and
offers c+ and c−. Even if there is some associativity rearrangement between
the second and the third step, that is some P or Q link on site p with these
molecules, the privacy of c permit that these two molecules will eventually
link. Indeed they will eventually retract p+ and p− and offer c+ and c−. As
c is private no other molecule can make a bond on c. Thus this bond on
site c is strong and won’t be broken unless one of them retracts.

2.4 Synthesis of Transcription factors: fork(P) and recX .P

A very basic model of transcription factors synthesis shows how fork(P)
models synthesis of a new molecule and how recX .P models infinite behavior
of molecule. Let:

• dna1 = recX [(tf+
2 ().fork(TF1&X))tf+

2
]

• TFi = recY [(tf−i 〈〉.Y + 0)tf−i
] for i = 1,2.

• and S = dna1&TF2

After dna1 has synchronized with TF2 on the site tf2, the fork action releases
a TF1 molecule which is product of the reaction and another dna1 molecule
as dna isn’t destroyed in the process.

7

When adding interfaces to processes to support complexation, we end
up with processes “inside” interfaces. How can then an inner process trigger
the creation of a new entity at the outer level ? This cannot be done by
simple parallel composition, as usual, because now we are at the wrong level.
Therefore we use a fork primitive to allow an “inner” process to create an
“outer” entity.

3 Complexation of Membranes

We want now to represent membranes. This can be easily done by adding a
content to molecules. We have to design an oriented version of the calculus
as in [3] because we do not want the shifting effects of the associativity
congruence rule (see part2.2) to occur between two sides of a membrane.
Such a case would correspond to a receptor that keeps changing sides of its
membrane and this is not relevant for biology. Moreover [3] has shown how
oriented actions are better from both biological and mathematical points of
view.

3.1 Syntax

We take the notation of [3] for action of membranes: f comes from fuse, w
from wrap and b from bubble.

• a, b, c, . . . ∈ Σ− ⋃
Σ+ and S, T, . . . ∈ Multisets(Σ− ⋃

Σ+)

• P,Q,R, . . . ::= A[[P]]S | P&P | (νa)P | X | recX .P

• A,B, C, . . . ::= 0 | A + B | A|B | α↑.A | α↓.A

• α ::= a〈S〉 | a(S) | offer(a) | retract(a) | [S]
| f | f⊥ | w | w(A[[]]S,T) | b(A[[]]S,T)

Arrows on actions give orientation to actions. [S] is the action corre-
sponding to Bind&Release of [1]: it permits molecules to cross membranes.
Here we do not match on names of molecules but on interfaces. Actions f,
w and b are for membranes reactions. They are precisely described in [1, 3].
We do not need anymore the fork action because of the pino action that
plays its role. Interfaces are now defined by:

I(A[[P]]S,T) = S, I((νa)P) = I(P)− a, I(P&Q) = I(P)q I(Q)
I(X) = ∅, I(recX .P) = I(P)

One may want to define the notion of inner and outer interface as we
are speaking of two sets of interfaces for a molecule. Actually the inner
interface notion will occur if we allow holes in our molecule. When we
speak of interface we are concerned with what the molecule is showing to
its environment and not with the sites inside.

8

3.2 Free names

We have to define free names for the new operators:

• fn(A[[P]]S,T) = fn(A)
⋃

fn(P)
⋃

Set(S)
⋃

Set(S)

• fn(fl.A) = fn(f⊥l.A) = fn(wl.A) = fn(A)

• fn(wl(B[[]]S).A) = fn(bl(B[[]]S).A) = fn(A)
⋃

fn(B)
⋃

Set(S)

• fn([S〉l.A) = fn(A)
⋃

Set(S)

3.3 Structural Congruence

Some rules need to be added to or changed in the structural congruence:

• A≡B P≡Q
A[[P]]S≡B[[Q]]S

• A≡B α≡β
αl.A≡βl.B

• α ≡ α , A≡B
w(A[[]]S)≡w(B[[]]S) and A≡B

b(A[[]]S)≡b(B[[]]S)

3.4 Operational Semantics

The list is a bit long. This is because orientation doubles reactions.

• (a±↑[[R]].A)[[P]]S,S′ & (a∓↑(X).B)[[Q]]T,T ′ → A[[P]]S,S′ & B{R/X}[[Q]]T,T ′

if a ∈ S2T

• (a±↓〈R〉.A)[[(a∓↑(U).B)[[Q]]T,T ′ , Q′]]S,S′ → A[[B{R/U}[[Q]]T,T ′ , Q′]]S,S′

if a ∈ S′2T

These are the two rules for communication. The first one is just the exten-
sion to the oriented case of the rule (Com). The second one is the case of
communication between nested membranes. Of course for the second rule
there is also the version where input and output are exchanged.

• (offer(a)↑.A)[[P]]S,T → AS+a,T

• (offer(a)↓.A)[[P]]S,T → AS,T+a

• (retract(a)↑.A)[[P]]S,T → AS−a,T if a ∈ S

• (retract(a)↓.A)[[P]]S,T → AS,T−a if a ∈ T

Theses rules are just extensions to the oriented case of Offer and Retract
rules.

• A[[]]U,U ′&([S〉↑.B)[[R]]T,T ′ → (B)[[A[[]]U,U ′&R]]T,T ′ if S = U

9

• ([S〉↓.B)[[A[[]]U,U ′&R]]T,T ′ → A[[]]U,U ′&(B)[[R]]T,T ′ if S = U

These rules just look for a molecule with the proper interface and make it
cross the membrane. The content of A is empty because we want it to be a
molecule.

• (b↑(A[[]]S,S′).B)[[P]]T,T ′ → B[[P]]T,T ′ & A[[]]S,S′

• (b↓(A[[]]S,S′).B)[[P]]T,T ′ → B[[P & A[[]]S,S′]]T,T ′

Emission of a new membrane inside or outside. These are Drip and Pino
reactions.

• (w↑.A)[[P]]S,S′ & (w↑(C[[]]T,T ′).B)[[Q]]U,U ′ → B[[C[[A[[P]]S,S′]]T,T ′ & Q]]U,U ′

• (w↓(C[[]]T,T ′).B)[[(w↑.A)[[P]]S,S′ & Q]]U,U ′ → B[[Q]]U,U ′ & C[[A[[P]]S,S′]]T,T ′

• (w↓.A)[[R & (w↑(C[[]]U,U ′).B)[[Q]]T,T ′]]S,S′ → A[[C[[B[[R]]T,T ′ & Q]]U,U ′]]S,S′

Reactions Phago, Bud and Swap. In each of them a membrane engulfs itself
in another membrane, wrapping itself in a piece of new membrane. Swap
reaction reaction could seem very strange. Actually Swap is Phago or Bud
reaction seen from the point of view of P. See [3] for more details.

• (f⊥↓.A)[[(f↑.B)[[P]]T,T ′&Q]]S,S′ → P & (A|B)[[Q]]S+T ′,S′+T where
B just reverses orientations of actions in B.

• (f⊥↑.A)[[P]]S,S′&(f↑.B)[[Q]]T,T ′ → (A|B)[[P&Q]]S+T,S′+T ′

These are Exo and Mate reactions. They are both fusions of membranes ei-
ther vertical (Exo) or horizontal (Mate). Note that Exo reverses orientations
of actions in B and add T’ to S and T to S’.

The structural rules Sum and Par extend to:

• A[[P]]S,S′ & R → A′[[P ′]]T,T ′ & R′

(A|C)[[P]]S,S′ & R → (A′|C)[[P ′]]T,T ′ & R′

• A[[P]]S,S′ & R → A′[[P ′]]T,T ′ & R′

(A+C)[[P]]S,S′ & R → A′[[P ′]]T,T ′ & R′ if A 6= A′

3.5 Modeling of a molecule repaired in a Goldi apparatus

We next present a small example to illustrate interactions between mem-
branes and molecules. Let:

• M = (damaged+↑〈〉.retract(damaged+).offer(undamaged+))[[]]damaged+,

• G = (golgi|[damaged+]↑|[undamaged+]↓)[[(damaged−()↑)[[]]damaged−,]] ,

• S = M&G

10

M is a damaged molecule. G is a golgi apparatus containing a molecule,
which can repair M. So M has to go in G to be repaired. Since M has proper
interface: damaged+, G can use its action [damaged]↑ to capture M and put
it into its content. The content of G is then:

(damaged+↑〈〉.retract(damaged+).offer(undamaged+))[[]]damaged+,

& (damaged−()↑)[[]]damaged−,

The synchronization on the site damaged followed by the retracting of
damaged+ by M and the offering of undamaged+ represent the repairing of
M. The interface of M is now undamaged+ and it can be released outside
of G.

4 Possible extensions and Perspectives

4.1 Possible extensions

Different extensions are possible to enhance the syntax. A first interesting
feature consists of test actions ?(a) and ¬?(a) with theses rules:

• (?(a).A)[[P]]S,S′&Q → (A)[[P]]S,S′&Q : if a ∈ S2I(Q)

• (¬?(a).A)[[P]]S,S′&Q → (A)[[P]]S,S′&Q : if a 6∈ S2I(Q)

Tests can be useful because synchronization does not permit to check if
some site is not connected. It can also be a simpler way to check if a site is
connected without requiring to “program” both sides of the link.

Another extension would be to the possibility to have molecules on mem-
branes. Here a molecule can only be between membranes. So we loose the
possibility of representing transmembranal molecules. A simple solution is
to permit to have terms of the first calculus between membranes and on
membranes. To compute the interface of a membrane we then have to add
all interfaces of molecules sitting on this membrane.

4.2 Perspectives

An interesting perspective is to design a projective version of the calculus
as in [3]; it means to build a “projective” equivalence relation that identifies
molecules representing the same system under different points of view. This
equivalence should be compatible with reduction. This implies that each
reaction has a “symmetric” one with respect to the projective equivalence.
This is almost achieved in the calculus we present. For instance the two
communications rules are “symmetric” : they correspond to the same system
seen from two different points of view. The only problem is the ν operator.
Taking a point of view inside a ν requires to have some symmetric operator

11

to ν. If one think of ν as beginning of a scope, its symmetric would end a
scope.

Another perspective is to reduce the calculus to just what we need. For
instance, examples do not use the full power of name passing communica-
tions. Our conjecture is that bounded outputs are sufficient to express the
biological properties.

Finally a stochastic semantics is needed as a basis for simulations.

References

[1] Luca Cardelli. Brane calculi. April 2004.

[2] Luca Cardelli and Andrew Gordon. Mobile ambients. Theoritical Com-
puter Science, 240/1:177–213, 2000.

[3] Vincent Danos and Sylvain Pradalier. Projective Brane-calculus.
3082:134–148, April 2004.

[4] A.Regev W.Silverman E.Shapiro. Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. 2001.

[5] Robin Milner. Communicating and Mobile Systems.

[6] Corrado Priami and Paola Quaglia. Beta binders for biological interac-
tions. April 2004.

[7] Corrado Priami and Paola Quaglia. Operational patterns in beta binders.
2005.

[8] C.Priami A.Regev E.Shapiro W.Silverman. Application of a stochas-
tic name-passing calculus to representation and simulation of molecular
processes. 2001.

12

