Equational Properties of Mobile Ambients

Andrew D. Gordon Luca Cardelli
Microsoft Research Microsoft Research
April 1999

Technical Report
MSR-TR~99-11

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

A shortened version of this paper appears in the proceedings of the conference
on Foundations of Software Science and Computation Structures, Amsterdam,
the Netherlands, 22-26 March 1999. The proceedings is published by Springer
Verlag as a volume of the series Lecture Notes in Computer Science.

Equational Properties of Mobile Ambients

Andrew D. Gordon Luca Cardelli
Microsoft Research Microsoft Research
April 1999
Abstract

The ambient calculus is a process calculus for describing mobile com-
putation. We develop a theory of Morris-style contextual equivalence for
proving properties of mobile ambients. We prove a context lemma that
allows derivation of contextual equivalences by considering contexts of a
particular limited form, rather than all arbitrary contexts. We give an
activity lemma that characterizes the possible interactions between a pro-
cess and a context. We prove several examples of contextual equivalence.
The proofs depend on characterizing reductions in the ambient calculus
in terms of a labelled transition system.

Contents

6

Motivation
The Ambient Calculus (Review)
Contextual Equivalence

Tools for Proving Contextual Equivalence

4.1 A Hardening Relation
4.2 A Labelled Transition System
4.3 A Context Lemma
44 An Activity Lemmao

Examples of Contextual Equivalence

5.1 Opening an Ambient
5.2 The Perfect Firewall Equation
5.3 CrossingaFirewall

Conclusions

References

A Proofs

A.1 Proof Omitted From Section 3
A.2 Proofs Omitted From Section 4.1
A.3 Proofs Omitted From Section 4.2
A.4 Proofs Omitted From Section 4.4
A5 Proofs About Replication
A.6 Proofs Omitted From Section 4.3

13
13
14
16

18

18

1 Motivation

This paper develops tools for proving equations in the ambient calculus.

In earlier work [7], we introduced the ambient calculus by adding ambi-
ents—mobile, hierarchical protection domains—to a framework for concurrency
extracted from the 7-calculus [13]. The ambient calculus is an abstract model of
mobile computation, including both mobile software agents and mobile hardware
devices. The calculus models access control as well as mobility. For example,
a process may move into or out of a particular ambient only if it possesses the
appropriate capability.

This paper focuses on behavioural equivalence of mobile ambients. In par-
ticular, we study a form of Morris’ contextual equivalence [15] for ambients and
develop some proof techniques. Our motivation is to prove a variety of equations.
Some of these equations express and confirm some of the informal principles we
had in mind when designing the calculus. As in other recent work [1, 2], some
of the equations establish security properties of systems modelled within the
calculus.

The inclusion of primitives for mobility makes the theory of the ambient
calculus more complex than that of its ancestor, the m-calculus. The main con-
tribution of this paper is to demonstrate that some standard tools—a labelled
transition system, a context lemma, and an activity lemma—may be recast
in the setting of the ambient calculus. Moreover, the paper introduces a new
technique—based on what we call the hardening relation—for factoring the def-
inition of the labelled transition system into a set of rules that identify the
individual processes participating in a transition, and a set of rules that express
how the participant processes interact.

We begin, in Section 2, by reviewing the syntax and reduction semantics
of the ambient calculus. The semantics consists of a structural congruence
relation P = @) (which says that P may be structurally rearranged to yield @)
and a reduction relation P — @ (which says that P may evolve in one step of
computation to yield Q).

We introduce contextual equivalence P ~ (Q in Section 3. We define a
predicate, P | n, which means intuitively that an observer may eventually
detect an ambient named n at the top-level of the process P. Then we define
P ~ () to mean that, whenever P and () are placed within an arbitrary context
constructed from the syntax of the calculus, any observation made of P may
also be made of @, and vice versa. We give examples of pairs of processes that
are equivalent and examples of pairs that are inequivalent.

In Section 4, we describe some techniques for proving contextual equivalence.
We introduce a second operational semantics for the ambient calculus based on
a hardening relation and a labelled transition system. The hardening relation
identifies the subprocesses of a process that may participate in a computation
step. We use the hardening relation both for defining the labelled transition
system and for characterizing whether an ambient of a particular name is present
at the top-level of a process. Our first result, Theorem 9, asserts that the
T-labelled transition relation and the reduction relation are the same, up to

structural congruence. So our two operational semantics are equivalent. The
labelled transition system is useful for analyzing the possible evolution of a
process, since we may read off the possible labelled transitions of a process by
inspecting its syntactic structure. Our second result, Theorem 12 is a context
lemma that allows us to prove contextual equivalence by considering a limited
set of contexts, known as harnesses, rather than all arbitrary contexts. A harness
is a context with a single hole that is enclosed only within parallel compositions,
restrictions, and ambients. The third result of this section, Theorem 15, is an
activity lemma that elaborates the ways in which a reduction may be derived
when a process is inserted into a harness: either the process reduces by itself,
or the harness reduces by itself, or there is an interaction between the harness
and the process.

We exercise these proof techniques on examples in Section 5, and conclude
in Section 6. Appendix A contains proofs omitted from the main body of the

paper.

2 The Ambient Calculus (Review)

We briefly describe the syntax and semantics of the calculus. We assume there
are infinite sets of names and wvariables, ranged over by m, n, p, q, and =z, vy,
z, respectively. The syntax of the ambient calculus is based on categories of
expressions and processes, ranged over by M, N, and P, @), R, respectively.
The calculus inherits a core of concurrency primitives from the w-calculus: a
restriction (vn)P creates a fresh name n whose scope is P; a composition P | Q
behaves as P and) running in parallel; a replication ! P behaves as unboundedly
many replicas of P running in parallel; and the inactive process 0 does nothing.
We augment these w-calculus processes with primitives for mobility—ambients,
n[P], and the exercise of capabilities, M.P—and primitives for communication—
input, (z).P, and output, (M).

Here is an example process that illustrates the new primitives for mobility
and communication:

m[p[out m.in n.(M)]] | n[open p.(z).Q)]

The effect of the mobility primitives in this example is to move the ambient
p out of m and into n, and then to open it up. The input (z).QQ may then
consume the output (M) to leave the residue m]| | n[Q{z+M}]. We may
regard the ambients m and n in this example as modelling two machines on a
network, and the ambient p as modelling a packet sent from m to n. Next, we
describe the semantics of the new primitives in more detail.

An ambient n[P] is a boundary, named n, around the process P. The bound-
ary prevents direct interactions between P and any processes running in parallel
with n[P], but it does not prevent interactions within P. Ambients may be
nested, so they induce a hierarchy. For example, in the process displayed above,
the ambient named m is a parent of the ambient named p, and the ambients
named m and n are siblings.

An action M.P exercises the capabilities represented by M, and then behaves
as P. The action either affects an enclosing ambient or one running in parallel.
A capability is an expression derived from the name of an ambient. The three
basic capabilities are in n, out n, and open n. An action in n.P moves its
enclosing ambient into a sibling ambient named n. An action out n.P moves
its enclosing ambient out of its parent ambient, named n, to become a sibling
of the former parent. An action open n.P dissolves the boundary of an ambient
n[@] running in parallel; the outcome is that the residue P of the action and
the residue @) of the opened ambient run in parallel. In general, the expression
M in M.P may stand for a finite sequence of the basic capabilities, which are
exercised one by one. Finite sequences are built up using concatenation, written
M.M'. The empty sequence is written e.

The final two process primitives allow communication of expressions. Ex-
pressions include names, variables, and capabilities. An output (M) outputs the
expression M. An input (z).P blocks until it may consume an output running
in parallel. Then it binds the expression being output to the variable z, and
runs P. In (z).P, the variable x is bound; its scope is P. Inputs and outputs
are local to the enclosing ambient. Inputs and outputs may not interact directly
through an ambient boundary. Hence we may think of there being an implicit
input/output channel associated with each ambient.

We formally specify the syntax of the calculus as follows:

Expressions and Processes:

I
M,N ::= expressions P,Q,R ::= processes

x variable (vn)P restriction
n name 0 inactivity
mn M can enter M P|Q composition
out M can exit M P replication
open M can open M M|[P] ambient
€ null M.P action
M.M' path (z).P input

(M) output

In situations where a process is expected, we often write just M as a short-
hand for the process M.0. We often write just M| as a shorthand for the process
M10]. We write (vp)P as a shorthand for (vp;)--- (vpg)P where = p1,...,pg.

We let fn(M) and fu(M) be the sets of free names and free variables, re-
spectively, of an expression M. Similarly, fn(P) and fu(P) are the sets of free
names and free variables of a process P. If a phrase ¢ is an expression or a
process, we write ¢p{x+ M} and ¢p{n<M} for the outcomes of capture-avoiding
substitutions of the expression M for each free occurrence of the variable x and
the name n, respectively, in ¢. We identify processes up to consistent renaming
of bound names and variables.

We formally define the operational semantics of ambient calculus in the
chemical style, using structural congruence and reduction relations:

Structural Congruence: P = (@

IP|QEQ|P P=P
(P|Q)IR=P[(Q|R) Q=P=P=Q
!P—P|'P P=Q,Q=R=P=R
(vn)(vm)P = (vm)(vn)P

n ¢ fn(P) = (VTL)(PlQ)Epl (vn)Q P=Q= (vn)P = (vn)Q
n #m = (vn)m[P] = m[(vn)P] P=Q=P|R=Q|R
rPlo=r P=Q='P=1Q

(vn)0 =0 P=Q = M[P] = M[Q]
10=0 P=Q=MP=MQ
eP=P P=Q = (z).P=(x).0Q

(M.M").P = M.M'.P

Reduction: P — @

nlinm.P| Q]| mR] = mn[P|Q]|R] P—-Q=P|R—>Q|R
m[nlout m.P | Q] | R] = n[P| Q]| m[R] P — Q= (vn)P = (vn)Q
openn.P | n[@Q] = P|Q P = Q = n[P] = n[Q)]

(M) | (z).P - P{z+M} P=PP—-QQ=Q"=>P —-Q

For example, the process displayed earlier has the following reductions:

m[p[out m.in n.(M)]] | n[open p.(z).P] — | p[in n.(M)] | n[open p.(x).P]

m]
= m[] | n[p[(M)] | open p.(z).P]
= m[] | n[(M) | (z).P]

= m[] | n[P{zM}]

The syntax allows the formation of certain processes that may not participate
in any reductions, such as the action n.P and the ambient (in n)[P]. The
presence of these nonsensical processes is harmless as far as the purposes of this
paper are concerned. They may be ruled out by a simple type system [8].

This concludes our brief review of the calculus. Earlier papers [6, 7] explain
in detail the motivation for our calculus, and give programming examples.

3 Contextual Equivalence

Morris-style contextual equivalence [15] (otherwise known as may-testing equiv-
alence [9]) is a standard way of saying that two processes have the same be-
haviour: two processes are contextually equivalent if and only if they admit the
same elementary observations whenever they are inserted inside any arbitrary
enclosing process. In the setting of the ambient calculus, we shall define contex-
tual equivalence in terms of observing the presence, at the top-level of a process,
of an ambient whose name is not restricted.

Let us say that a process P exhibits a name n just if P is a process with a
top-level ambient named n, that is not restricted:

Exhibition of a Name: P | n

I

P|ln = there are m, P', P" with n ¢ {im} and P = (vii)(n[P'] | P")
L

Let us say that a process P converges to a name n just if after some number
of reductions, P exhibits n:

Convergence to a Name: P | n
I 1

(Conv Exh) (Conv Red)
Pln P—Q QUn
Pin Pin

Next, let a context, C(), be a process containing zero or more holes. We
write a hole as (). We write C(P) for the outcome of filling each of the holes in
the context C with the process P. Variables and names free in P may become
bound in C(P). For example, if P = n[(z)] and C() = (vn)(z).(), the variable
z and the name n have become bound in C(P) = (vn)(z).n[(z)]. Hence, we do
not identify contexts up to renaming of bound variables and names.

Now, we can formally define contextual equivalence of processes:

Contextual Equivalence: P ~ @)

IP ~@Q = foralln, C() with C(P), C(Q) closed, C(P) | n < C(Q) I n

The following two propositions state some basic properties enjoyed by con-
textual equivalence. Let a relation R be a precongruence if and only if, for all
P, @, and C(), if P R @ then C(P) R C(Q). I, in addition, R is reflexive,
symmetric, and transitive, we say it is a congruence. For example, the structural
congruence relation has these properties. Moreover, by a standard argument,
so has contextual equivalence:

Proposition 1 Contextual equivalence is a congruence.

Structural congruence preserves exhibition of or convergence to a name, and
hence is included in contextual equivalence:

Lemma 2 Suppose P = Q. If P | n then @ | n. Moreover, if P | n then
Q U n with the same depth of inference.

Proof For part (1), P | n, by definition, means that there are m, P', P with
n ¢ {m} and P = (vm)(n[P'] | P"). Since P = @, we have Q = (vm)(n[P'] |
P"), and hence @) | n. Part (2) follows by a case analysis of the derivation of
Pln. O

Proposition 3 If P =Q then P ~ Q.

Proof Consider any context C() and any name n, such that C(P) | n.
Since = is a congruence, P =) implies C(P) = C(Q). By Lemma 2, this and
C(P) | n imply C(Q) U n. Similarly, we can show that for all C and n, C(Q) | n
implies C(P) § n. Hence P ~ Q. O

The following two examples illustrate that to show that two processes are
contextually inequivalent, it suffices to find a context that distinguishes them.

Example 1 If m # n then m[| # nf].

Proof Consider the context C() = (). Since C(m][]) = m]], we have C(m[]) |
m. By (Conv Exh), C(m[]) § m. On the other hand, the process n[] has no
reductions, and does not exhibit m. Hence, we cannot derive C(n[]) § m. O

Example 2 If m # n then open m.0 % open n.0.
Proof LetC() =m[p[]] | (). Then C(openm.0) | p but not C(openn.0) | p.O

On the other hand, it is harder to show that two processes are contextually
equivalent, since one must consider their behaviour when placed in an arbitrary
context. For example, consider the following contextual equivalence:

Example 3 (vn)(n[] | open n.P) ~ P if n ¢ fn(P).

The restriction of the name n in the process (vn)(n[] | openn.P) implies that
no context may interact with this process until it has reduced to P. Therefore,
we would expect the equation to hold. But to prove this and other equations
formally we need some further techniques, which we develop in the next section.
We return to Example 3 in Section 5.

4 Tools for Proving Contextual Equivalence

The tools we introduce are relations and theorems that help prove contextual
equivalence.

4.1 A Hardening Relation

In this section, we define a relation that explicitly identifies the top-level sub-
processes of a process that may be involved in a reduction. This relation, the
hardening relation, takes the form, P > (vpy,...,pr)(P")P", where the phrase
(vp1,...,pr){(P"YP" is called a concretion. We say that P’ is the prime of the
concretion, and that P is the residue of concretion. Both P’ and P lie in the
scope of the restricted names pq, ..., pr. The intuition is that the process P,
which may have many top-level subprocesses, may harden to a concretion that
singles out a prime subprocess P’, leaving behind the residue P”. By saying
that P’ has a top-level occurrence in P, we mean that P’ is a subprocess of P
not enclosed within any ambient boundaries. In the next section, we use the

hardening relation to define an operational semantics for the ambient calculus
in terms of interactions between top-level occurrences of processes.

Concretions were introduced by Milner in the context of the m-calculus [11].
For the ambient calculus, we specify them as follows, where the prime of the
concretion must be an action, an ambient, an input, or an output:

Concretions:
C,D := concretions
(vp)(M.P)Q action, M € {in n, out n, open n}
(vp)(n[P])Q ambient
(vp){(z).P)Q input
() ((M)Q output

The order of the bound names py, ..., pr in a concretion (vpy,...,pr)(P")P"
does not matter and they may be renamed consistently. When k£ = 0, we may
write the concretion as (v)(P')P".

We now introduce the basic ideas of the hardening relation informally. If P
is an action in n.Q, out n.Q), open n.Q), an ambient n[Q], an input (z).Q, or an
output (M), then P hardens to (v)(P)0. Consider two processes P and Q. If
either of these hardens to a concretion, then their composition P | () may harden
to the same concretion, but with the other process included in the residue of
the concretion. For example, if P > (v)(P1)P2 then P | Q > (v)(P1)(P> | Q).
If a process P hardens to a concretion, then the replication !P may harden to
the same concretion, but with !P included in the residue of the concretion—a
replication is not consumed by hardening. Finally, if a process P hardens to a
concretion C, then the restriction (vn)P hardens to a concretion written (vn)C,
which is the same as C' but with the restriction (vn) included either in the list
of bound names, the prime, or the residue of C. We define (vn)C by:

Restricting a Concretion: (vn)C where C = (vp)(P1)P> and n ¢ {p}
I(1) If n € fn(Py) then:
(a) If P, = m[P}], m # n, n ¢ fa(P), let (vn)C = (vp)(m[(vn)P!])P,.
(b) Otherwise, let (vn)C = (vn, p)(P,)Ps.
I(2) If n ¢ fn(P)) let (vn)C = (vF)(P1)(vn)Ps.

Next, we define the hardening relation by the following:
Hardening: P > C

(Harden Action) (Harden ¢) (Harden .)
M € {inn, out n, open n} P>C M.(N.P)>C
M.P > (v)(M.P)0 eP>C (M.N).P>C
(Harden Amb) (Harden Input) (Harden Output)
n[P] > (v){n[P])0 (z).P > (v){(x).P)0 (M) > (v)((M))0

(Harden Par 1) (for {§} N fn(Q) = @) (Harden Par 2) (for {¢} N fn(P) = &)

P> (wp)(P")P" Q> (v9)(Q)Q"
PlQ> wp)(P)P"[Q) PlQ> @)@ P[Q")
(Harden Repl) (Harden Res)
P > (vp)(P")P" pP>C
P > (vp)(P')(P" | |P) (vn)P > (vn)C

For example, the process P = (vp)(vq)(n[p[]] | ¢[]) may harden in two ways:

P> ()(n[(wvp)pll])(»q)(0 | ql])
P> (vg){gll)(wp)(n[pll] | 0)

The following is a basic property of hardening;:

Lemma 4 If P > (vp)(P')P" then {p} C fn(P') and the names p are pairwise
distinct.

Proof By induction on the derivation of P > (vp)(P')P". m|

The next two results relate hardening and structural congruence.
Lemma 5 If P > (vp){P')P" then P = (vp)(P' | P").

Proposition 6 If P = Q and Q > (vi){Q"YQ" then there are P' and P" with
P> wi)(P)YP", P'=Q', and P" = Q"

These results follow from inductions on the derivations of P > (vp)(P')P"
and P = @, respectively. Using them, we may characterize exhibition of a name
independently of structural congruence:

Proposition 7 P | n if and only if there are p, P', P", such that P >
(vp)(n[P'])P" and n ¢ {p}.

Now, we can show that the hardening relation is image-finite:

Lemma 8 For all P, {C : P > C} is finite.
Proof By induction on the structure of P. |

The proof suggests a procedure for the enumerating the set {C : P > C}. Given
Proposition 7, it follows that the predicate P | n is decidable.

4.2 A Labelled Transition System

The labelled transition system presented in this section allows for an analysis
of the possible reductions from a process P in terms of the syntactic structure
of P. The definition of the reduction relation does not directly support such an
analysis, because of the rule P = P,P - Q,Q = Q' = P’ — ', which allows
for arbitrary structural rearrangements of a process during the derivation of a
reduction.

We define a family of transition relations P —— @, indexed by a set of labels,
ranged over by «, which is given in the following table:

Labels:
I 1
o= label

T internal step

mn enter ambient n

out n exit ambient n

open n dissolve ambient n

An M-transition P % () means that the process P has a top-level process
exercising the capability M; these transitions are defined by the rule (Trans
Cap) below. A 7-transition P — @ means that P evolves in one step to Q;
these transitions are defined by the other rules below.

Labelled Transitions: P -2 P!
I

(Trans Cap)
P> (wp)(M.PYP" fa(M)N{p} =@
P25 (vp)(P' | P")

(Trans Amb)
P> (vp) Q)P Q — Q'
P — (vp)(n[Q']| P')

(Trans In) (where {7} ﬂfn(n[Q]) =@ and {7} N {p} = 2)
P> wp)mQDR Q=2 Q" R > (vi)(m[R])R"
P — (vp,M(mn[Q'] | R | R")

(Trans Out) (where n ¢ {q})
P> @p@@)P Q> wd(m[R)Q R™S R
P = (wp)((v@)(m[R'] | n[Q"]) | P")
(Trans Open)
P> (vp)(n[Q)P' P "L pr
P — (vp)(@Q| P")

(Trans I/O) (where {¢} N fn((M)) = @)
P> wp)((M)P' P' > (vq){(z).P")P"
P 5 (vp,)(P"{x<M} | P")

The rules (Trans In), (Trans Out), and (Trans Open) derive a T-transition
from an M-transition. We introduced the M-transitions to simplify the state-
ment of these three rules. (Trans I/0) allows for exchange of messages. (Trans
Amb) is a congruence rule for 7-transitions within ambients.

Given its definition in terms of the hardening relation, we may analyze the
transitions derivable from any process by inspection of its syntactic structure.
This allows a structural analysis of the possible reductions from a process, since
the 7-transition relation corresponds to the reduction relation as in the following
theorem, where P —»= () means there is R with P — R and R = Q.

Theorem 9 P — Q if and only if P 5= Q.

As corollaries of Theorem 9 and Lemma, 10, we get that the transition system
is image-finite, and that the reduction relation is image-finite up to structural
congruence:

Lemma 10 For all P and a, the set {R: P -5 R} is finite.
Proof By induction on the structure of P. |
Lemma 11 For all P, the set {{R:Q = R} : P — Q} is finite.

Proof By Lemma 10, the set {Q : P - Q} is finite. Therefore, the set
{{R:Q = R} : P -5 Q} is finite. But, by Theorem 9 and the transitivity of
structural congruence this set is the same as {{R: Q = R} : P — Q}. O

4.3 A Context Lemma

The context lemma presented in this section is a tool for proving contextual

equivalence by considering only a limited set of contexts, rather than all con-

texts. Many context lemmas have been proved for a wide range of calculi, start-

ing with Milner’s context lemma for the combinatory logic form of PCF [10].
Our context lemma is stated in terms of a notion of a harness:

Harnesses:
I 1
H ::= harnesses

— process variable

(vn)H restriction

P|H left composition

H|Q right composition

n[H] ambient

10

Harnesses are analogous to the evaluation contexts found in context lemmas
for some other calculi. Unlike the contexts of Section 3, harnesses are identified
up to consistent renaming of bound names. We let fn(H) and fu(H) be the
sets of names and variables, respectively, occurring free in a harness H. There
is exactly one occurrence of the process variable — in any harness. If H is an
harness, we write H{P?} for the outcome of substituting the process P for the
single occurrence of the process variable —. Names restricted in H are renamed
to avoid capture of free names of P. For example, if H = (vn)(— | openn) then
H{n[]} = (vn')(n]] | open n') for some n' # n.

Let a substitution, o, be a list ©1< My, ..., xp< My, where the variables x1,

.., Ty, are pairwise distinct, and fo(M;) = @ for each i € 1..k. Let dom(o) =
{z1,...,21}. Let Po be the process P{z1+M;}---{zp+M;}. Let a process
or a harness be closed if and only if it has no free variables (though it may have
free names).

Here is our context lemma:

Theorem 12 (Context) For all processes P and Q), P ~ Q if and only if for
all substitutions o with dom(o) = fo(P)U fu(Q), and for all closed harnesses H
and names n, that H{Po} | n < H{Qo} | n.

A corollary is that for all closed processes P and @), P ~ @ if and only if for
all closed harnesses H and names n, that H{P} { n & H{Q} | n.

In general, however, we need to consider the arbitrary closing substitution o
when using Theorem 12. This is because a variable free in a process may become
bound to an expression once the process is placed in a context. For example, let
P = z[n]]] | open y.0 and @ = 0. Consider the context C() = (m,m) | (z,y).().
We have C(P) | n but not C(Q) § n. So P and @ are not contextually
equivalent but they do satisfy H{P} || n & H{Q} | n for all closed H and n.

Some process calculi enjoy stronger context lemmas. Let processes P and @
be parallel testing equivalent if and only if for all processes R and names n, that
P|Ryn< Q| R n Wemight like to show that any two closed processes are
contextually equivalent if and only if they are parallel testing equivalent. This
would be a stronger result than Theorem 12 because it would avoid considering
contexts that include ambients. Such a result is true for CCS [9], for example,
but it is false for the ambient calculus. To see this, let P = out p.0 and @ = 0.
We may show that P | Ry n < Q| R | n for all n and R. Now, consider the
context C() = p[m[()]]. We have C(P) |} m but not C(0) J m. So P and Q are
parallel testing equivalent but not contextually equivalent.

4.4 An Activity Lemma

When we come to apply Theorem 12 we need to analyze judgments of the form
H{P} | nor H{P} — Q. In this section we formalize these analyses.

We begin by extending the structural congruence, hardening, and reduction
relations to harnesses as follows:

e Let H = H' hold if and only if H{P} = H'{P} for all P.

11

e Let H > (vp)(n[H'])Q hold if and only if H{P} > (vp)(n[H'{P}])Q for
all P such that {p} N fn(P) = o.

e Let H > (vp)(Q)H' hold if and only if H{P} > (vp)(Q)(H'{P}) for all
P such that {p} N fn(P) = @.

e Let H — H' hold if and only if, for all P, H{P} — H'{P}.
We need the following lemma about hardening:
Lemma 13 If H{P} > (vp)(P1)P» then either:
(1) H > (vp)(n[H')Py and P, = n[H'{P}], or
(2) H > (vp)(PL)H' and P, = H'{P}, or
(3) P> (vp){(P\)P', H=—-| R, P,=P'|R, and {p} N fn(R) = 2.

Intuitively, there are two ways in which H{P} | n can arise: either the
process P exhibits the name by itself, or the harness H exhibits the name n by
itself. Proposition 14 formalizes this analysis. Similarly, there are three ways
in which a reduction H{P} —) may arise: either (1) the process P reduces
by itself, or (2) the harness H reduces by itself, or (3) there is an interaction
between the process and the harness. Theorem 15 formalizes this analysis. Such
a result is sometimes known as an activity lemma [16].

Proposition 14 If H{P} | n then either (1) H{Q} | n for all Q, or (2) both
P | n and also for all Q, Q | n implies that H{Q} | n.

Proof By Proposition 7, H{P} | n means there are p, P', P" such that
H{P} > (vp)(n[P'])P" with n ¢ {p}. Hence, the proposition follows from
Lemma 13. |
Theorem 15 (Activity) H{P} — R if and only if:

(Act Proc) there is a reduction P — P' with R = H{P'}, or

(Act Har) there is a reduction H — H' with R = H'{P}, or

(Act Inter) there are H' and 7 with {F} N fn(P) = @, and one of the following
holds:

(Inter In) H = (vi)H'{m[— | R'] | n|R"]}, P 23 P',
and R = (v?)H'{n[m[P' | R'] | R"]}

(Inter Out) H = (v@)H'{n[m[- | R'] | R"]}, P 24 P',
and R = (v@)H'{m[P'" | R'] | n[R"]}

(Inter Open) H = (vF)H'{— | n[R']}, P
and R = (vi)H'{P' | R'}

(Inter Input) H = (v@)H'{— | (M)}, P > (vp){(x).P")P",
and R = (vi)H'{(vp)(P'{z<M} | P")}, with {p} N fn(M) = &

open n
—

PI

12

(Inter Output) H = (wA)H'{— | (z).R'}, P > (vp){{(M))P’',
and R = (vi)H'{(vp)(P" | R'"{z<M})}, with {p} Nfn(R) = @
(Inter Amb) P > (vp)(n[Q])P' and one of the following holds:
(1) @ == Q', H = (v H'{~ | m[R']}, {§} N fn(m[R]) = &,
and R = (vi)H'{(vp)(P" | m[n[Q'] | R'])}
(2) Q ™' Q', H = (wi)H'{m[~ | R}, m ¢ {i},
and R = (vi)H'{(vp)(n[Q'] | m[P" | R'])}
(3) H= (wA)H'{m[R' | inn.R"] | =}, {F}Nfn(m[R' | inn.R"]) = @,
and R = (vi)H'{(vp)(n[Q | m[R" | R"]] | P")}
() H = A H'{~ | openn.R}, n ¢ {7},
and R = (vi)H'{(vp)(Q | P') | R}

5 Examples of Contextual Equivalence

In this section, three examples demonstrate how we can apply Theorem 12 and
Theorem 15 to establish contextual equivalence.

5.1 Opening an Ambient

First, we return to and prove Example 3 from Section 3.
Lemma 16 If H{(vn)(n[] | open n.P)} I} m and n ¢ fn(P) then H{P} | m.

Proof By induction on the derivation of H{(vn)(n[] | open n.P)} § m:

(Conv Exh) Here H{(vn)(n[] | openn.P)} | m. By Proposition 14, either (1),
for all @, H{Q} | m, or (2), (vn)(n[] | open n.P) | m. In case (1), we
have, in particular, that H{P} | m. Hence, H{P} | m, by (Conv Exh).
Case (2) cannot arise, since, by Proposition 7, (vn)(n[] | open n.P) | m
implies that (vn)(n[] | openn.P) > (vp)(m|[P'])P" with m ¢ {p}. But the
only hardenings of the process (vn)(n[] | open n.P) are:

(vn)(n[] | openn.P) > (vn)(n[])(0 | open n.P)
(vn)(n[] | openn.P) > (vn)(open n.P)(n[]|0)

So case (2) is impossible.

(Conv Red) Here H{(vn)(n[] | openn.P)} — R and R | m. By Theorem 15,
one of three cases pertains:

(Act Proc) Then (vn)(n[] | open n.P) — P' with R = H{P'}. By
inspection of the rules of the labelled transition system, it must be
that (Trans Open) derives this transition, with P’ = P. Therefore
R || m implies that H{P} | m.

13

(Act Har) Then H — H' with R = H'{(vn)(n[] | open n.P)}. By
Lemma 2, we may derive H'{(vn)(n[] | open n.P)} | m by the same
depth of inference as R || m. By induction hypothesis, H'{P} | m.
From H — H' we obtain H{P} — H'{P} in particular. By (Act
Har), we get H{P} | m.

(Act Inter) Then there is an interaction between the process (vn)(n[] |
open n.P) and the harness H. Given the possible hardenings of
(vn)(n[] | open n.P) stated above, none of the possibilities stated
in clause (Act Inter) of Theorem 15 pertains. So this case is impos-
sible. a

Proof of Example 3 (vn)(n[] | open n.P) ~ P if n ¢ fn(P).

Proof By Theorem 12, it suffices to prove H{((vn)(n[] | openn.P))o} | m <
H{Po} | m for all closed harnesses H and names m and for all substitutions
o with dom(o) = fu(P). Since the name n is bound, we may assume that
n ¢ fn(o(x)) for all x € dom(o). Therefore, we are to prove that: H{(vn)(n[] |
openn.Po} |y m & H{Po} | m where n ¢ fn(Po).

We prove each direction separately. First, suppose that H{Poc} |} m. Since
(vn)(n[] | open n.Po) — Po, we get H{(vn)(n[] | open n.Po)} — H{Poc}.
By (Conv Red), we get H{(vn)(n[] | open n.Po)} | m. Second, suppose that
H{(vn)(n[] | open n.Po)} | m. By Lemma 16, we get H{Po} | m. i

5.2 The Perfect Firewall Equation

Counsider a process (vn)n[P], where n is not free in P. Since the name n is
known neither inside the ambient n[P], nor outside it, the ambient n[P] is a
“perfect firewall” that neither allows another ambient to enter nor to exit. The
following two lemmas allow us to prove that (vn)n[P] is contextually equivalent
to 0, when n ¢ fn(P), which is to say that no context can detect the presence
of (vn)n[P].

Lemma 17 If H{(vn)n[P]} 4 m and n ¢ fn(P) then H{0} || m.
Proof By induction on the derivation of H{(vn)n[P]} | m.

(Conv Exh) Here H{(vn)n[P]} | m. By Proposition 14, either (1), for all
Q, H{Q} | m, or (2), (vn)n[P] | m. In case (1), we have, in particular,
that H{0} | m. Hence, H{0} | m, by (Conv Exh). Case (2) cannot
arise, since, by Proposition 7, (vn)n[P] | m implies that (vn)n[P] >
(vp)(m[P')P" with m ¢ {p?}, which is impossible.

(Conv Red) Here H{(vn)n[P]} — R and R | m. By Theorem 15, one of
three cases pertains:

(Act Proc) Then (vn)n[P] — P" with R = H{P"}. By Theorem 9,
there is @ with (vn)n[P] - @ and Q = P". Since (vn)n[P] >

14

(vn)(n[P])0 is the only hardening derivable from (vn)n[P], the tran-
sition (vn)n[P] — Q can only be derived using (Trans Amb), with
P = P and Q = (vn)(n[P'] | 0). Therefore, there is a reduction
P — P and P" = (vn)n[P']. By Lemma 21 stated in the Ap-
pendix, P — P’ implies fn(P') C fn(P) and so n ¢ fn(P'). We have
R = H{(vn)n[P']} with n ¢ fn(P'). By Lemma 2, we may derive
H{(vn)n[P']} § m by the same depth of inference as R || m. By
induction hypothesis, H{0} | m.

(Act Har) Then H — H' with R = H'{(vn)n[P]}. By Lemma 2, we
may derive H'{(vn)n[P]} | m by the same depth of inference as
R | m. By induction hypothesis, H'{0} | m. From H — H'
we obtain H{0} — H'{0} in particular. By (Conv Red), we get
H{0} | m.

(Act Inter) Then there are H' and 7 with {7} N fn(P) = @ and one of
several conditions must hold. Since the only hardening or transition
from (vn)n[P] is (vn)n[P] > (vn)(n[P])0, only the rule (Inter Amb)
applies. According to Theorem 15, there are four possibilities to
consider.

(1) Here, P ™% P', H = (vi)H'{~ | m[R']}, {n} N fa(m[R]) = 2,
and R = (vP)H'{(vn)(0 | m[n[P'] | R'])}. We have R =
(vi)H'{m[R' | (vn)n[P']]}. By Lemma 23 (stated in the Ap-
pendix), n ¢ fn(P) and P 2% P’ imply n ¢ fn(P'). By
Lemma 2, we get (vF)H'{m[R' | (vn)n[P']]} 4 m with the
same depth of inference as R || m. By induction hypothesis,
(vA)H'{m[R' | 0]} J m. Moreover, H{0} = (v#)H'{m[R' | 0]},
and therefore H{0} | m.

(2) Here, P wy pH = (wA)H'{m[—- | R']}, m ¢ {n}, and
also R = (vfA)H'{(vn)(n[P'] | m[0 | R'])}. We have R =
(vP)H'{m[R'] | (vn)n[P']}. By Lemma 23, n ¢ fn(P) and
P "8 pimply n ¢ fn(P'). Lemma 2 implies (vF)H'{m[R'] |
(vn)n[P'l} § m with the same depth of inference as R | m.
By induction hypothesis, (vi)H'{m[R'] | 0} { m. Moreover,
H{0} = (v*)H'{m[R'] | 0} and therefore H{0} | m.

The other possibilities, (3) and (4), are ruled out because the name
n is restricted in the concretion (vn)(n[P])0. O

Lemma 18 If H{0} || m then H{P} | m.
Proof By induction on the derivation of H{0} | m.
(Conv Exh) Here H{0} | m. By Proposition 14, either (1), for all @, H{Q} |

m, or (2), 0 | m. Case (2) is impossible. In case (1), we get, in particular,
that H{P} | m. Hence, H{P} | m.

15

(Conv Red) Here H{0} — @ and @ | m. By Theorem 15, and the fact
that 0 has no reductions and no hardenings, it must be that H — H'
with @ = H'{0}. By Lemma 2, we get that H'{0} | m is derivable
with the same depth of inference as @ | m. By induction hypothesis,
H'{P} J m. From H — H' we get that H{P} — H'{P}. By (Conv
Red), H{P} — H'{P} and H'{P} | m imply H{P} | m. O

Using these two lemmas we get:
Example 4 If n ¢ fn(P) then (vn)n[P] ~ 0.
Proof By Theorem 12, it suffices to prove that
H{((vm)n[P))o} b m & H{0a} 4 m

for all closed harnesses H and names m and for all substitutions o such that
dom(c) = fo((vn)n[P]). Since the name n is bound, we may assume that
n ¢ fn(o(x)) for any x € dom (o). Therefore, we are to prove that:

H{(vn)n[Po]} I m & H{0} § m
where n ¢ fn(Po). This follows from Lemma 17 and Lemma, 18. m|

Our first proof of this equation (which was stated in an earlier paper [7]) was
by a direct quantification over all contexts. The proof above using the context
lemma is simpler.

5.3 Crossing a Firewall

This example concerns an agent that crosses a firewall using previously arranged
passwords. We explained this example, but did not state a proof, in an earlier

paper [7].

Lemma 19 Suppose that (fn(P) U fn(Q)) N {k, k", k"} = @ and w ¢ fn(Q).
Consider the processes defined by:

Ry = (vkk'K")(K'[open k.k"[Q]] |
(vw)wlk[out w.in k'.in w] | open k'.open k" .P])
Ry = (vkE K" w)(k'[open k.k"[Q]] | k[in k' .in w] | w[open k'.open k" .P))
Ry = (vkE K" w)(k'[k[in w] | open k.k"[Q]] | w[open k'.open k".P])
Ry = (kK K" w)(k'[inw | k"[Q]] | w[open k'.open k" .P))
Rs = (vkKE K" w)w[k'[E"[Q]] | open k'.open k".P]
Rs = (vkE K" w)w[k"[Q]| open k".P]
Fe 2 GwulQ| P

For eachi € 1..6, R; ~ R;41.

16

Proof Suppose that i € 1..6. Without loss of generality, we may assume
that the processes P and @) are closed, and hence that all the R; are closed. By
Theorem 12, we need to show for all H and m that H{R;} | m & H{R;11} | m.
We may calculate that R; — R;11, for each i. It follows that H{R;;1} | m
implies H{R;} | m.

We now prove that H{R;} | m implies H{R;;1} | m by induction on the
derivation of H{R;} | m.

(Conv Exh) Here H{R;} | m. By Proposition 14, either (1), for all @,
H{Q} | m, or (2), R; | m. In case (1), we have, in particular, that
H{R;+1} | m. Hence, H{R;11} | m, by (Conv Exh). Case (2) cannot
arise, because of the outermost restrictions on each R;.

(Conv Red) Here H{R;} — R and R | m. By Theorem 9 and Theorem 15,
one of three cases pertains:

(Act Proc) Then R, — R' with R = H{R'}. By inspection of the
definitions of R; and the labelled transition system, it must be that
R' = R; ;. Therefore R || m implies that H{R; 1} { m.

(Act Har) Then H — H' with R = H'{R;}. By Lemma 2, we may
derive H'{R;} | m by the same depth of inference as R | m.
By induction hypothesis, H'{R;+1} § m. From H — H' we ob-
tain H{R;+1} — H'{R;+1} in particular. By (Conv Red), we get
H{Riy1} § m.

(Act Inter) Then there is an interaction between the process R; and the
harness H'. Given that fn(Q) N {k', k", w} = &, none of the condi-
tions stated in the rule (Act Inter) of Theorem 15 applies. Therefore
this case is impossible.

This completes the proof by induction. O
Example 5 Let us define:

(vw)wlk[out w.in k'.in w] | open k'.open k" .P]
k'[open k.E"[Q]]

Firewall =
A

Agent
If (fn(P)Um(Q)) N{k, k" "} =& and w ¢ fn(Q) then:
(vk k' k") (Agent | Firewall) ~ (vw)w[Q | P]
Proof Recall the processes R; and R; from Lemma 19. By that lemma,

R; ~ R;. This is exactly the desired equation, since Ry = (vk k' k'")(Agent |
Firewall) and R; = (vw)w|Q | P]. O

17

6 Conclusions

We developed a theory of Morris-style contextual equivalence for the ambient
calculus. We showed that standard tools such as a labelled transition system, a
context lemma, and an activity lemma, may be adapted to the ambient calculus.
We introduced a new technique, based on a hardening relation, for defining
the labelled transition system. We employed these tools to prove equational
properties of mobile ambients.

Our use of concretions to highlight those subprocesses of a process that may
participate in a computation follows Milner [11, 12], and is an alternative to the
use of membranes and airlocks in the chemical abstract machine of Berry and
Boudol [5]. Unlike these authors, in the definition of our transition relation we
use the hardening relation, rather than the full structural congruence relation,
to choose subprocesses to participate in a transition. In applications of the ac-
tivity lemma, Theorem 15, and in other situations, our proof techniques depend
on analyzing the possible hardenings and the possible transitions of processes
by examining their structure. This is possible because, unlike structural congru-
ence, the hardening relation is not transitive. Therefore, the use of hardening
rather than structural congruence in the definition of the transition relation is
essential for the techniques we advocate here.

Our use of the hardening relation to define the transition relation for the
ambient calculus is similar to the use by Vitek and Castagna [19] of a heating
relation to define reduction in their Seal calculus. A difference in style is that
Vitek and Castagna use structural congruence as well as the heating relation to
define their reduction relation.

In the future, it would be of interest to study bisimulation of ambients.
Various techniques adopted for higher-order [14, 18] and distributed [3, 4, 17]
variants of the m-calculus may be applicable to the ambient calculus.

Acknowledgement Comments by Cédric Fournet, Georges Gonthier, and
Tony Hoare were helpful.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel
abstractions. In Proceedings LICS 98, pages 105-116, 1998.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148:1-70, 1999.

[3] R. M. Amadio. An asynchronous model of locality, failure, and process
mobility. In Proceedings COORDINATION 97, volume 1282 of Lecture
Notes in Computer Science. Springer-Verlag, 1997.

[4] R. M. Amadio and S. Prasad. Localities and failures. In Proceedings
FSTE&TCS’9, volume 880 of Lecture Notes in Computer Science, pages
205-216. Springer-Verlag, 1994.

18

[5]

[6]

[12]

[13]

[14]

G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217-248, April 1992.

L. Cardelli. Abstractions for mobile computation. In C. Jensen and
J. Vitek, editors, Secure Internet Programming: Issues in Distributed and
Mobile Object Systems, volume 1603 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computation Structures, volume 1378 of Lecture Notes
in Computer Science, pages 140-155. Springer-Verlag, 1998.

L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings
POPL’99, pages 79-92, January 1999.

R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.

R. Milner. Fully abstract models of typed lambda-calculi. Theoretical
Computer Science, 4:1-23, 1977.

R. Milner. The polyadic m-calculus: A tutorial. Technical Report ECS—
LFCS-91-180, Laboratory for Foundations of Computer Science, Depart-
ment, of Computer Science, University of Edinburgh, October 1991.

R. Milner. The w-calculus. Undergraduate lecture notes, Cambridge Uni-
versity, 1995.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts
I and II. Information and Computation, 100:1-40 and 41-77, 1992.

R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings ICALP
’92, volume 623 of Lecture Notes in Computer Science. Springer-Verlag,
1992.

J. H. Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, MIT, December 1968.

G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

J. Riely and M. Hennessy. A typed language for distributed mobile pro-
cesses. In Proceedings POPL’98, pages 378-390, 1998.

D. Sangiorgi. Fxpressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1992.

J. Vitek and G. Castagna. Seal: A framework for secure mobile compu-
tations. In Internet Programming Languages, Lecture Notes in Computer
Science. Springer-Verlag, 1999. To appear.

19

A Proofs

In this appendix, we prove all the propositions stated without proof in the main
body of the paper. To do so, we need several auxiliary results.
The appendix consists of several sections.

(1) In Section A.1 we prove that contextual equivalence is a congruence, which
was stated in Section 3.

(2) In Section A.2, we prove three important facts about the hardening re-
lation, Lemma 5, Proposition 6, and Proposition 7, which were stated in
Section 4.1.

(3) Section A.3 contains some auxiliary results and a proof of Theorem 9 from
Section 4.2, the result which states that the reduction and 7-transition
relations are the same up to structural congruence.

(4) In Section A.4 we prove the activity lemma, Theorem 15, stated in Sec-
tion 4.4.

(5) In Section A.5, we prove some auxiliary results about replication.

(6) Section A.6 is devoted to proving our context lemma, Theorem 12, which
was stated in Section 4.3.

In the main text, we stated Theorem 12 ahead of Theorem 15, but in fact
we use Theorem 15 in the proof of Theorem 12. Therefore, we give the proof of
Theorem 15 before the proof of Theorem 12.

Throughout this appendix, we shall refer to the rules of structural congruence
and reduction using the names in the following tables:

Structural Congruence: P =@

I
P=P

(Struct Refl)

Q=P=P=Q (Struct Symm)
P=Q,Q=R=P=R (Struct Trans)

P=@Q = (vn)P = (vn)Q (Struct Res)
PEQ:>P|R—Q|R (Struct Par)
P=Q=1P=1Q (Struct Repl)
P=Q= M[P] MIQ] (Struct Amb)
P=Q=>MP=MQ (Struct Action)
P=Q = (z).P=(z).0Q (Struct Input)
PlQ=Q|P (Struct Par Comm)
PIQ)|R=P|(Q]|R) (Struct Par Assoc)
\IP=P|'!P (Struct Repl Par)
(vn)(vm)P = (vm)(vn)P (Struct Res Res)
n¢ fm(P)= (vn)(P|Q)=P| (vn)Q (Struct Res Par)
n #m = (vn)m[P] = m[(vn)P] (Struct Res Amb)

P|o
(vn)0
10=0

eP=P
(M.M").P=M.M'.P
L

P
0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)
(Struct €)

(Struct .)

Reduction: P — @)

nlin m.P | Q] | m{B] - m[n[P | Q] | B]
m[nlout m.P | Q] | R] = n[P | Q] | m[R]

openn.P | n[@Q] — P | Q
(M) | (z).P - P{z<M}

P-Q=P|R—-Q|R

P—- Q= (vn)P = (vn)Q

P — @ = n[P] — n[Q)]
P=PP—QQ=Q"=>P —Q

Red In)
Red Out)
Red Open)
Red I/0)

Red Par)
Red Res)
Red Amb)
Red =)

NN S S NN S S

Many of the proofs in the rest of the appendix depend on the following
basic facts about structural congruence, reduction, hardening, and the transition
relation:

Lemma 20 If P = Q then fn(P) = fn(Q) and fo(P) = fu(Q).
Lemma 21 If P — Q then fn(Q) C fn(P) and fu(Q) C fu(P).
Lemma 22 If P > C then fn(P) = fn(C) and fu(P) = fv(Q).

Lemma 23 If P - P' then fn(a)Ufn(P') C fn(P), fu(a) = @, and fo(P') C
fu(P).

Lemma 24 Ifn ¢ fn(P) then (vn)P = P.

Proof Using the axioms (Struct Zero Par), (Struct Res Par), and (Struct
Zero Res), we get: (vn)P = (vn)(P|0)=P | (vn)0=P|0=P. O
A.1 Proof Omitted From Section 3

Apart from proving transitivity, the proof that contextual equivalence is a con-
gruence is easy:

Proof of Proposition 1 Conteztual equivalence is a congruence.

Proof Reflexivity and symmetry are trivial.

For transitivity, suppose that P ~ P’ and P' ~ P". To show that P ~ P",
consider any context C() and any name n such that C(P) and C(P'") are closed.
It need not be that C(P') is closed. Suppose that {z1,...,zr} = fo(C(P')), and
suppose that m1, ..., my are fresh names. We define a new family of contexts

21

Do, D1, ..., Dy by induction: Dy = C and Djt1 = (mit1) | (®iy1).Di. The
context Dy, has two useful properties. First, for all () and g,

Dr(Q) Vg & C(Q){r1m1}---{zpemp} U g

Second, Dy, (P') is closed. Now, suppose that C{P} | n. Since C{P} is closed,
C{P} = C{P}{z1¢m1}---{zp+<my}. Hence, by the first property of Dy,
Dr{P} | n. By the second property of Dy, and P ~ P', Dy{P'} || n. Since
C(P") is closed, it follows that Dy (P") is closed too. Therefore, P’ ~ P" implies
Dp{P"} J n. Since C{P"} is closed, C{P"} = C{P"}{z1¢m1} - {zpmy}.
Hence, by the first property of Dy, C{P"} | n. A symmetric argument estab-
lishes that C(P") | n implies C(P) | n. Hence P ~ P".

For precongruence, consider any P, @, and C(), with P ~ Q. To show that
C(P) =~ C(Q), consider any context D() and any name n with D(C(P)) | n.
Since D(C()) is a context, P ~ @ implies D(C(Q)) Y n. Similarly, D(C(Q)) I n
implies D(C(P)) J n. It follows that C(P) ~ C(Q). i

A.2 Proofs Omitted From Section 4.1

This section provides proofs of Lemma 5, Proposition 6, and Proposition 7.
The main lemma of the section, Lemma 31, asserts that the hardening relation
preserves structural congruence. To state and prove it, we need three auxiliary
definitions.

The first auxiliary definition is a relation P = @) on primes, where a prime
is an ambient m[P], an action M.P where M € {in n, out n, open n}, an input
(z).P, or an output (M). The relation P = (@ is the least to satisfy the following
rules:

Structural Congruence of Primes: P = (@)

n[P] = n[Q]if P = Q

M.P=M.Q if M € {inn, out n,openn} and P = Q
().P=(2)Qif P=Q

(M) = (N)if M =N

This relation is clearly reflexive, symmetric, and transitive, and implies struc-
tural congruence:

Lemma 25 For all primes P, Q, R:
(1) P=P.
(2)
(3) If P=Q and Q = R then P = R.
(4) If P=(Q then P = Q.

We prove the converse of part (4) at the end of this section.
The second auxiliary definition is a relation C' = D on concretions:

IfP=Q then Q = P.

22

Structural Congruence of Concretions: C' = D

C=D 2 C=@A(PYP,D=@wAHQ)Q, P=Q,and P = (.

Lemma 26 If C = D then (vn)C = (vn)D.

Proof From C = D, it follows that C = (v¥)(P)P', D = (v7)(Q)Q', P = Q,
and P’ = @'. Now, either n € fn(P) or not. First, suppose n € fn(P).

o If P =m[P"], m # n, and n ¢ fn(P'), then (vn)C = (v@)(m[(vn)P"])P'.
Since P = @, it follows that @ = m[Q"] with P" = @". By Lemma 20,
n ¢ fn(P') implies n ¢ fn(Q"). Therefore, (vn)D = (vi){m[(vn)Q"])Q’,
and so (vn)C = (vn)D.

e Otherwise, (vn)C = (vn,7)(P)P', and (vn)D = (vn,7)(Q)Q’.

Second, if n ¢ fn(P), we have n ¢ fn(Q) by Lemma 20. Therefore, (vn)C =
(v7)(P)(vm)P' and om)D = (v7)(@) () @'

O

By a similar analysis, we can prove the following:

Lemma 27 (vm)(vn)C = (vn)(vm)C.

The third auxiliary definition is a relation M > N on expressions, defined
by the following rules:

Auxiliary Relation on Expressions: M > N
I

M > M.e if M € {inn, out n, open n}
€>¢€
M.N > M,.(Ms.N) if M > M. M,

M.N > N' if M >eand N > N’
L

Lemma 28 If M.P > C then either:

(1) M > M;.M,, C = (v){M1.R)0, and R = M>.P, or

(2) M >eand P> C.
Proof By induction on the derivation of M.P > C. a
Lemma 29 If M > € and P > C then M.P > C.
Proof By induction on the derivation of M > e. a
Lemma 30 If M > M,.M, then M.P > (v){(M;.P')0 with P' = M,.P.
Proof By induction on the derivation of M > M;.Ms. O

Next, we prove the main lemma, of the section.

23

Lemma 31 If P = Q and Q > D then there is C with P > C and C = D.

Proof We show by induction on the derivation of P = @, that P = () implies:
(1) Whenever P > C there is D with @ > D and C = D;
(2) Whenever Q > D there is C' with P > C and C = D.

We proceed by a case analysis of the rule that derives P = Q.

(Struct Refl) In this case, P = Q). So parts (1) and (2) are trivial.

(Struct Symm) In this case, Q = P. Part (1) follows from part (2) of the
induction hypothesis, and part (2) follows from part (1) of the induction
hypothesis.

(Struct Trans) In this case, P = R and R = . For (1), suppose P >
(yF)(Pl)P2. By induction hypothesis, R > (v7)(R1)Rs with P; = Ry and
= R». By induction hypothesis again, @ > (v7){(Q"YQ" with Ry = Q1
and R> = Q2. By transitivity, P, = @1 and P» = @». Part (2) follows by
a symmetric argument.

(Struct Res) In this case, P = (vn)P’, Q = (vn)Q' and P’ = Q'. For (1),
suppose (vn)P' > C. This can only be derived using (Harden Res), so
P’ > (' with C = (vn)C'. By induction hypothesis, Q' > D' with
C' = D'. By (Harden Res), Q@ = (vn)Q" > (vn)D'. By Lemma 26,
(vn)C'" = (vn)D'. Part (2) follows by a symmetric argument.

(Struct Par) In this case, P =P | R, Q = Q' | R, and P' = Q'. For (1),
suppose P' | R > (vF){P;)P>. This judgment must be derived from one
of the following rules:

(Harden Par 1) Here P' > (vi)(P1)P; with P, = P} | R and {7} N
fn(R) = @. By induction hypothesis, Q" > (v)(Q1)Q) with P, = Q4
and Py = Q5. Let Q2 = Q5 | R. By (Harden Par 1), Q = Q' | R >
(v#)(Q1)Q2. Moreover, Py | R = Q) | R, that is, P» = @».

(Harden Par 2) Here R > (vi)(P1)Pj with P, = P' | Pj and {7} N
fn(P") = @. By Lemma 20, fn(P') = fn(Q'), so {F}Nfn(Q') = @. Let
Q2 = Q' | Py. By (Harden Par 2), Q' | R > (vF)(P1)Q2. Moreover,
P'| Py=Q"| P}, that is, Py = Qo.

Part (2) follows by a symmetric argument.

(Struct Repl) In this case, P =P, Q@ =1Q’', and P' = Q'. For (1), suppose
IP" > (v7)(Py)P,. This judgment must have been derived using (Harden
Repl), using P’ > (vi){P1)Pj, with P, = Pj | |P'. By induction hypoth-
esis, Q' > (v7)(Q1)Q% with P, = @1 and P} = Q). Let Q2 = Q) | 1Q".
By (Harden Repl), 1Q' > (v)(Q1)(Q} | 1Q"), that is, @ > (17)(Q1)Q».
Moreover, we have Pj | |P' = Q) | 1Q’, that is, P, = Q2. Part (2) follows
by a symmetric argument.

24

(Struct Amb) In this case, P = M[P'], Q@ = M[Q'], and P' = @Q'. For (1),
suppose M[P'] > (vF)(P1)P,. This judgment must have been derived
using (Harden Amb), with ¥ = @, P, = M[P'], P, = 0, and M = m for
some name m. By (Harden Amb), we have Q@ = m[Q'] > (m[Q'])0. From
P' = Q' we get P, =m[Q']. Part (2) follows by a symmetric argument.

(Struct Action) In this case, P = M.P', Q = M.Q', and P’ = Q'. For (1),
suppose M.P" > C where C = (vF)(P1)P,. By Lemma 28, there are two
cases to consider:

e M > M;.M,, C = (M;.P")0, and P" = M,.P'. By Lemma 30,
M > M;.M, implies Q = M.Q" > (M;.Q")0 where Q" = M,.Q'".
From P’ = @' it follows that P = Q" and M;.P" = M,.Q".

e M >¢and P' > C = (v7){(P1)P,. By induction hypothesis, P' = Q'
and P’ > C imply there are 1, Q2 with Q' > (v7)(Q1)Q2, P = Q1,
and P» = @Q>. By Lemma 29, M > ¢ and Q' > (v){(Q1)Q2> imply
Q=MQ > wr){Q1)Q>.

Part (2) follows by a symmetric argument.

(Struct Input) In this case, P = (z).P', Q@ = (2).Q', and P' = Q'. For
(1), suppose P = (z).P' > C. This can only be derived using (Harden
Input), so C = ((z).P')0. By (Harden Input), @ > ((z).Q')0. We have
(z).P' = (z).Q'. Part (2) follows by a symmetric argument.

(Struct Par Comm) In this case, P = Ry | Ry and Q = Ry | R;. For (1),
suppose P = Ry | Ry > C. This can only be derived using one of two
rules:

(Harden Par 1) Here, Ry > (vp)(R})R{ and C = (vp)(R})(R] | R2)
with {p} N fn(R2) = @. By (Harden Par 2), @ = Ry | Ry >
(vp)(R})(Rz | RY). By (Struct Par Comm), R | Ry = R» | RY.

(Harden Par 2) This is symmetrical to the case for (Harden Par 1).
Part (2) follows by a symmetric argument.

(Struct Par Assoc) In this case, P = (R; | R2) | R3 and @ = Ry | (R2 | R3).
For (1), suppose P = (R; | R2) | R3 > C. This can only be derived using
one of two rules:

(Harden Par 1) Here, Rl | R2 > (V@(RI>R12, C = (V@(RI>(R12 | R3),
with {p} N fn(Rs) = @. The judgment R; | Ry > (vP)(R')R12 can
itself only be derived using one of two rules:

(Harden Par 1) Here, Ry > (vp)(R')R}, and Ri» = R} | R2, with
{P} N fn(R2) = @. We have {p} N fn(R2 | R3) = @. Hence, by
(Harden Par 1), Ry > (vp)(R')R} implies @ = Ry | (Ry | R3) >
(vp)(R')(Ry | (R2 | R3)). Moreover, Ri» | Ry = (Ry | Ra) | R3 =
Ry | (Ry | Rs).

25

(Harden Par 2) Here Ry > (vp)(R')R}, Ri2 = Ry | RS, with {p} N
fn(Ry) = @. By (Harden Par 1), Ry > (vp)(R')R, and {p} N
fn(R3) = @ imply Ry | R3 > (vp)(R')(Ry | Rs). By (Harden
Par 1), this and {p} N fn(R;) = @ imply Q = Ry | (R2 | R3) >
(vp)(R')(Ry | (RS | R3)). Moreover, Ri»> | R3 = (R1 | R}) | Rs
Ry | (R | Rs).

(Harden Par 2) This is symmetrical to the case for (Harden Par 1).

Part (2) follows by a symmetric argument.

(Struct Repl Par) In this case, P =!P' and Q = P’ | IP’.

For (1), suppose P = !P' > (vF)(Py)P,. This can only have been derived
using (Harden Repl), from P’ > (vi)(P;)Py with P, = Py | !P'. By
Lemma 22, fn(!P") = fn((vi)(P1)P2). Therefore, {F} N fn(P') = @&. Let
Q2 = P' | P,. By (Harden Par 1), |P" > (vF){P1)P, implies P' | |P' >
(vi)(PL)(P' | Py), that is, Q > (vF)(P1)Q2. We have P, = Py | |[P' = P’ |
(Py | IP") = P'| P, = Q2. For (2), suppose Q = P’ | IP" > (vi){Q1)Q>.
This must have been derived using one of the following two rules:

(Harden Par 1) Here, P’ > (v7){(Q1)Q% with Q2 = Q4 | !P' and {7} N
fn(!P") = @. By (Harden Repl), P =P’ > (v7){(Q1)Q>.

(Harden Par 2) Here, |P' > (v7)(Q1)Q% with Q2 = P' | Q5 and {7} N
fn(P') = @. The judgment !P' > (v7)(Q1)Q45 can only have been
derived with (Harden Repl). Therefore, P > (vi){Q1)Q45 with Q) =
Q% |'P'. Hence, Q, = QY |!P' | P'=P' | Q) = Q.

(Struct Res Res) In this case, P = (vn)(vm)R and @ = (vm)(vn)R. We
assume that m # n; if m = n the case is trivial. For (1), suppose P > C.
This can only be derived using (Harden Res), twice, with R > C’ and
C = (vn)(vm)C'. By (Harden Res), twice, we get @ > (vm)(vn)C'. By
Lemma 27, C = (vm)(vn)C'. Part (2) follows by a symmetric argument.

(Struct Res Par) In this case, P = (vn)(Ry | R2), @ = Ry | (vn)R2, and n ¢
fn(Ry). For (1), suppose P > C. This can only have been derived using
(Harden Res), with C = (vn)C' and Ry | Rz > C' with C'" = (vF)(R')R12.
Since the names 7 are bound, we may assume that n ¢ {7}. We examine

the ways in which the restricted concretion (vn)C’ may be defined.

e Here n € fn(R'). The judgment Ry | Ry > (v7)(R')R12 may be
derived in one of two ways:

(Harden Par 1) Then R; > (vF)(R')R} and Ri2 = R} | Ry with
{F} N fn(R2) = @. By Lemma 22, Ry > (vF)(R')R! implies
fn(Ry) = fo((vi)(R')Ry), that is, fa(R1) = (fn(R') U fa(Ry)) —
{7}. From this we obtain a contradiction, since we have that
n ¢ fn(R1) yet also that n € fn(R'), with n ¢ {7}. So this case
cannot arise.

26

(Harden Par 2) Then R, > (vF)(R')R} and Ri2 = Ry | R} with
{F}nfn(Ry) = 2.
In subcase (a), R = m[R"], m # n, n ¢ fn(Ri2), that is,
n ¢ fu(Ry) U fu(RY), and C = (w)(ml(vn) R'))(Ry | BY). By
(Harden Res), (vn)Rs > (v7)(m[(vn)R"])R}. By (Harden Par
2), we have R; | (vn)Ry > (vP)(m[(vn)R"])(R:1 | R}).
Otherwise, subcase (b), C' = (vn,7)(R')R12. By (Harden Res),
we have (vn)Ry > (vn,7)(R')R). By (Harden Par 2),n ¢ fn(R;)
implies Ry | (vn)Ry > (vn,7)(R')(Ry | R}). Moreover, Ri5 =
Ri | Rb.

e Here n ¢ fn(R'). The judgment R; | R2 > (v#)(R'YRy2 may be
derived in one of two ways:

(Harden Par 1) Then R; > (vF)(R')R} and Ri2 = R} | Ry with
{F} N fn(Ry) = @. From {7} N fn(R:) = @ it follows that {} N
fn((vn)Ry) = @. Hence, by (Harden Par 1), Q@ = Ry | (vn)R2 >
(vP)(R')(R} | (vn)R2). By Lemma 22, R; > (v7)(R')R] implies
fa(Br) = () (R)RY), that is, fn(Rr) = (fn(R) U f(R)) —
{7}. Since n ¢ {F} and n ¢ fn(R,), it follows that n ¢ fn(R}).
Hence, we have (vn)R12 = (vn)(R} | R2) = R} | (vn)Rs.

(Harden Par 2) Then R, > (vF)(R')R} and Ri2 = Ry | R} with
{f} N fn(Ry) = @. By (Harden Res), n ¢ {F} U fn(R') im-
plies (vn)Ry > (vi)(R')(vn)R,. By (Harden Par 2), Q = Ry |
(vn)Ry > (vP)(R')(Ry | (vn)R}). Since n ¢ fn(Ry), we have
(vn)Ry2 = (vn)(Ry | Ry) = Ry | (vn)R),.

Part (2) follows by a similar, though not precisely symmetrical, argument.

(Struct Res Amb) In this case, P = (vn)m[R], @ = m[(vn)R], and n # m.
For (1), suppose P > C. This can only have been derived using (Harden
Res), with m[R] > D and C = (vn)D. The judgment m[R] > D may
only be derived using (Harden Amb), so D = (v)(m[R])0. Since C =
(vn)(v)(m[R])0, there are two cases to consider, depending on whether
n € fn(R):

. Then C = (v)(m[(vn)R])0. By (Harden Amb),
0.

e Suppose n € fn(R
Q > (v){m[(vn)R]

e Suppose n ¢ fn(R). Then C = (v)(m[R])(vn)0. By (Harden Amb),
Q@ > (v){(m[(vn)R])0. By Lemma 24, we have m[R] = m[(vn)R], and
by (Struct Zero Res), we have (vn)0 = 0.

= =

For (2), suppose Q > C. This can only have been derived using (Harden
Amb), so C = (v){(m[(vn)R])0. We proceed by cases depending on
whether n € fn(R).

e Suppose n € fn(R). Then P = (vn)m[R] > (v)(m[(vn)R])O0.

27

e Suppose n ¢ fn(R). Then P = (vn)m[R] > (v){(m[R])(vn)0. By
Lemma 24, we have m[R] = m[(vn)R], and by (Struct Zero Res), we
have (vn)0 = 0.

(Struct Zero Par) In this case, P = @ | 0. For (1), suppose P > C. This
can only have been derived using one of two rules:

(Harden Par 1) Here, @ > (vq)(Q"YQ" and C = (¥@)(Q")Y(Q" | 0).

Since Q" | 0 = @Q"', we are done.

(Harden Par 2) For this rule to be applicable, we would need a hard-
ening 0 > C, but no rule can derive 0 > C for any C.

For (2), suppose @ > (vq)(Q")Q". By (Harden Par 2), P = @ | 0 >
(v@)(Q"YQ" | 0). Moreover, @" | 0 = Q".

(Struct Zero Res) In this case, P = (vn)0 and ¢ = 0. Parts (1) and (2)
hold vacuously, since no hardening P > C or) > C are derivable.

(Struct Zero Repl) In this case, P =10 and @) = 0. Again, parts (1) and (2)
hold vacuously, since no hardening P > C or) > C are derivable.

(Struct €) Here, P = €.QQ. For (1), suppose P = €.Q) > C. Only (Harden ¢)
can derive this, with @ > C. For (2), suppose > C. By (Harden ¢),
P=¢c@Q>C.

(Struct .) Here, P = (M.M').R and Q = M.(M'.R).
For (1), suppose P = (M.M').R > C. Only (Harden .) can derive this,
with M.(M'.R) > C, that is, Q@ > C.
For (2), suppose Q@ = M.(M'.R) > C. By Lemma 28, one of two cases
holds:

o M > M,.M,, C = (M;.R")0, and R’ = My.(M'.R). By Lemma 30,
M > M;.M, implies that @ = M.(M'.R) > (M;.R")0 with R" =
M,.(M'.R). By (Harden .), this implies P = (M.M').R > (M;.R’')O0.
Moreover, My.R' = M;.(M>.(M'.R)) = M;.R".

e M >e¢and M'.R > C. By Lemma 29, M > ¢ implies M.M'.R > C.
By (Harden .), this implies P = (M.M').R > C. m|

We can now prove three facts stated in Section 4.1.
Proof of Lemma 5 If P > (vp)(P')P" then P = (vp)(P' | P").

Proof By induction on the derivation of P > (vp)(P')P". We consider just
one case in detail. The other cases are no harder.

(Harden Repl) Here, P > (vp)(P')(P" | |P) follows from P > (vp)(P")P".
By induction hypothesis, P = (vp)(P' | P"). By Lemma 20, fn(P) =
fn((wp)(P' | P")), and therefore, {p} N fn(P) = @. Hence, we get: |P =
P|'P=(wp)(P'|P")|'\P=wp)(P |P"|!P). O

28

Proof of Proposition 6 If P =Q and Q > (v7)(Q')Q" then there are P’
and P" with P > (vi)(P')P", P' = @', and P" = Q".

Proof Combine Lemma 25 and Lemma 31. O

Proof of Proposition 7 P | n if and only if there exist p, P', P" such that
P > (vp)(n[P')P" and n ¢ {p}.

Proof First, suppose P | n, that is, there are §, R', R" with n ¢ {p} and
P = R where R = (vp)(n[R'] | R"). Given (Struct Res Amb) and (Struct Res
Par), we may assume that {§} C fn(R') N fn(R"). Therefore, we may derive
R > (vi)(n[R'])(0 | R"). By Lemma 31, P = R implies there are P', P" such
that P > (v7)(n[P'))P", P' = R, and P" = R".

Second, suppose P > (vp)(n[P'])P" and n ¢ {p}. By Lemma 5, P =
(vp)(n[P'] | P"). Therefore, P | n. |

We end this section by exploring another consequence of Lemma 31.

Proposition 32 For all primes P and Q, if P = Q, then P = Q.

Proof Since P and @ are primes, their only hardenings are P > (v)(P)0 and
Q@ > (»)(Q)0. By Lemma 31, P = (. m|

A corollary of Lemma 25 and Proposition 32 is that for all primes P and @,
P = @ if and only if P = Q). For example, it follows that m[P] = n[Q)] if and
only if m =n and P = Q.

A.3 Proofs Omitted From Section 4.2

This section provides a proof of Theorem 9, that P — @ if and only if there is
R with P 5 R and R = Q. We prove each direction separately, starting with
the right-to-left implication.

First, we need the following lemma:

Lemma 33 If P 2 P! then P = (wp)(Py | M.Py) with P' = (vp)(Py | P»)
and fn(M) N {p} = @.

Proof Only (Trans Cap) may derive the judgment P M, P'. So we have
P > (vp)(M.P\)Py, P' = (vp)(P1 | P»), M € {inn, outn,openn}, and n ¢ {p}.
By Proposition 5, P = (vp)(M.P; | Py). Moreover, fn(M) = {n}, so the result
follows. i

We use the following to establish the right-to-left direction of Theorem 9.

Proposition 34 If P —— P’ then P — P'.

Proof By induction on the derivation of P —— P’. We examine one case:

29

(Trans In) We have P > (vp)(n[Q)R, @ =5 Q', R > (v#)(m[R'])R", and
P = (v, P(min[@] | R} | R") with {7} fa(n[Q]) = 2. By Lemma 5,
P = (vp)(n[Q] | R). By Lemma 33, Q@ = (vq)(Q1 | in n.Q2), with Q' =
(vq)(Q1 | Q2) and n ¢ {q}. Since the names ¢ are bound, we may assume
that {¢} N fa(m[R']) = @. By Lemma 5, R = (vi)(m[R'] | R"). Hence,

we have:
P = @p)(n[))(@ | innQ)] | (v7)(m[R]|R"))
= (B, M) (v (n[Q1 | in n.Qz] | m[R']) | R")
= (i, M) (mn[Q1 | Q2] | R]) | RY)
= (vp,7)(mn[Q]| R | R")
= p!
The other cases follow similarly. |

Next, we prove a couple of lemmas needed for proving the left-to-right di-
rection of Theorem 9.

Lemma 35 If P = Q and Q = Q' then there is P’ such that P -~ P' and
P =qQ'.

Proof By induction on the derivation of Q — Q'.

(Trans Cap) We have Q > (vi)(M.Q1)Q with Q' = (WA)(Q: | Q2), M €
{in n, out n,open n}, and n ¢ {F}. By Lemma 31, there are P; and
P, with P > (Vﬁ(M.P1>P2, P = Ql; and P, = QQ. By (Trans Cap),

P X (ui)(Py | Py), and we have that (v7)(P; | P5) = Q'

(Trans In) We have Q > (vq)(n[Q1])Q2, Q1 nn Qf, Q2 > (vP)(m[QL])QY,
and Q" = (vq,7)(m[n[Q1] | Q5] | Q) with {F} N fn(n[Q1]) = 2. By
Lemma 31, P > (vq){n[P,]) P, with P, =); and P, = Q2. By induction
hypothesis, P, ™% P} with P{ = Q!. By Lemma 31, P, > (v7#)(m[P3]) Py,
with Py = @} and Py = Q5. By Lemma 20, fn(n[P1]) = fn(n[Q1]), and
therefore {7} N fn(n[P1]) = @. Let P' = (vq,7)(m[n[P]] | P;] | Py). By
(Trans In), we have P —— P’. Moreover, P’ = (vq,7)(m[n[Q}] | Q4] | QY),
that is, P' = Q.

(Trans Out) We have @ > (vp)(n[Q1])Q2, @1 > (¥§)(m[Q3])Q4, and Q3 utp
Q}, with Q' = (vA)(Qa | (W@)(n[Q4] | mIQ4)) and n ¢ {q}. By Lemma 31,
P > (vp)(n[P]) P, with P, = @, and P, = 2. By Lemma 31, P, >
(vq)(m[Ps]) Py, with P3 = @3 and Py = Q4. By induction hypothesis,
Py 2ty P} with P; = Q4. Let P' = (vp)(P2 | (vq)(n[Ps] | m[P3])). By
(Trans Out), we have P - P'. Moreover, P' = (vp)(Q2 | (vq)(n[Q4] |
m[Q%])), that is, P' = Q'.

30

(Trans Amb) We have Q > (vi")(n[Q1])Q2, Q1 — @}, Q' = (v7)(n[Q}])Q>.
By Lemma 31, P > (vi)(n[P])P, with P, = @; and P» = 2. By
induction hypothesis, P, — P] with P| = Q}. Let P' = (vi){(n[P]])P>.
By (Trans Amb), P - P’. Moreover, P' = (v#)(n[Q}])Q2, that is,
P =qQ'.

The other cases, (Trans Open) and (Trans I/0O), follow similarly. i
Lemma 36
(1) If P2 P' and n ¢ fn(a) there is Q with (vn)P = Q and Q = (vn)P'.
(2) If (vn)P - Q thenn ¢ fn(a) there is P' with P -5 P' and Q = (vn)P'.

Proof By inductions on the derivations of P % P’ and (vn)P - Q
respectively. We omit the details. |

The following establishes the left-to-right direction of Theorem 9.
Proposition 37 If P — Q then P —5= Q.
Proof By induction on the derivation of P — Q.

(Red In) P = n[in m.P, | P;] | m[Ps] and Q@ = m[n[Py | Ps] | Ps]. We can
easily calculate that P ——= Q.

(Red Out) P = m[nlout m.Py | P2] | Ps] and Q = n[P; | P2] | m[Ps]. We can
easily calculate that P ——= Q.

(Red Open) P = openn.P; | n[P:] and Q = P, | P,. We can easily calculate
that P = Q.

(Red I/O) P = (M) | (z).P, and Q@ = Pi{z+M}. We can easily calculate
that P 5= Q.

(Red Par) P = P, | P, and Q = P/ | P» with P, - P{. By induction
hypothesis, there is R with P, — R and R = P|. By a case analysis of
the derivation of P, — R, we can show that P; | P2 S5=R | P>. Hence,
P, | P, =P | P,.

(Red Res) P = (vn)P; and Q = (vn)P| with P, — P/. By induction hypoth-
esis, there is R with P, — R and R = P/. By Lemma 36, P, —— R,
implies that (vn)P; —+= (vn)R. Hence, (vn)P, —+= (vn)P}.

(Red Amb) P = n[P'], @ = n[P/] with P, — P|. By induction hypothesis,
there is R with P, —— R and R = P;. By (Trans Amb), we get that
n[P'] = n[R] | 0. Hence, n[P'] —== n[P]].

31

(Red =) Here, P = P', P —» @', and Q" =). By induction hypothesis,

P'" 5= Q'. By (Struct Trans), this and Q' = Q imply P’ 5= Q. By
Lemma 35, P = P’ and P' —»= Q imply that P ——= Q. |

Proof of Theorem 9 P — Q if and only if P —5= Q.

Proof Combine Proposition 34, Proposition 37, and rule (Red =). O

A.4 Proofs Omitted From Section 4.4

We provide proofs for Lemma 13 and Theorem 15.

Proof of Lemma 13 If H{P} > (vp)(P\)P, then either:

(1) H > (vp)(n[H'])Py and P, = n[H'{P}], or

(2) H > (vp)(P1)H' and P, = H'{P}, or

(3) P> wp{P)P',H=—|R, P,=P'|R, and {p} N fn(R) = 2.
Proof By induction on the derivation of H{P} > (vp)(P;)Ps.

(Harden Action) Then H{P} = M.Q and (vp){(P1)P> = (v)(M.Q)0 with
M € {in n,out n,open n}. Since M.Q cannot be a harness, it must be
that H = —. So P = M.Q > (v)(M.Q)0. Case (3) of the lemma pertains,
with R = 0.

(Harden €) Then H{P} = e.Q) and @ > (vp)(P1)P». Since e.Q) cannot be a
harness, it must be that H = —, and P = e€.Q) > (vp)(P1)P,. Case (3) of
the lemma pertains, with R = 0.

(Harden .) Then H{P} = (M.N).Q and M.(N.Q) > (vp)(P1)P.. Since
(M.N).Q) cannot be a harness, we must have H = — and P = (M.N).Q >
(vp)(Py)P». Case (3) of the lemma pertains, with R = 0.

(Harden Amb) Then H{P} =n[Q] and (vp)(P1)P> = (v){(n[Q])0. There are
two cases to consider: either H = — and P = n[Q], or H = n[H'] and
@ = H'{P}. In the first case, we have that P > (vp)(P1)P,. So case
(3) of the lemma pertains, with R = 0. In the second case, we have that
H > (v){(n[H'])0 = (vp)(n[H']) P2, and P, = n[Q] = n[H'{P}]. So case
(1) of the lemma pertains.

(Harden Input) Then H{P} = (x).Q and (vp){P1)P>» = (v){(z).Q)0. Since
().Q2 cannot be a harness, it must be that H = —. So P = (z).QQ >
(v){(z).Q)0. Case (3) of the lemma pertains, with R = 0.

(Harden Output) Then H{P} = (M) and (vp)(P1)P, = (v){({M))0. Since
(M) cannot be a harness, it must be that H = —. So P = (M) >
(v)((M})0. Case (3) of the lemma pertains, with R = 0.

32

(Harden Par 1) Then H{P} = Q1 | Q2, Q1 > (vp)(P1)Ps, and P» = P53 | Q2,
with {p}Nfn(Q2) = @. Given that H{P} = Q1 | Q2, there are three cases
to consider:

e Here H = — and P = @1 | Q2. Case (3) of the lemma pertains, with
R=0.

e Here H = 1 | Hy and Q2 = H»{P}. By (Harden Par 1) and
{p} N fn(Q2) = &, we may derive H{R} > (vp)(P1)(Ps | H2{R})
for all R with {§} N fn(R) = @. Let H = P; | Hy. We have H >
(vp)(P1)H', and moreover, P, = P; | Q2 = P; | Ho{P} = H'{P}.
So case (2) of the lemma pertains.

e Here H = H; | Q2 and @)y = H,{P}. By induction hypothesis,
H,{P} > (vp)(P1)Ps implies that one of three cases holds:

(1) Hy > (wp)(n[H'])Ps and P, = n[H'{P}]. We can derive H >
(wp)(n[H')(Ps | Q2) since {p} N fn(Q2) = @. Therefore, H >
(vP)(n[H']) Py, as required to establish case (1) of the lemma.

(2) Hy > (vp)(P1)H' and Ps = H'{P}. We have H > (vp)(P1)(H' |
@) since {p} N fn(Q2) = @. Moreover, P» = P3| Q2 = H'{P} |
()2- This establishes case (2) of the lemma.

(3) P> (vp)(P1)P',Hi=— | R, Ps=P' | R, and {p}Nfn(R) = .
We have H = — | R | Qa2, P = P' | R| Q2, and {p} N fn(R |
()2) = @. This establishes case (3) of the lemma.

(Harden Par 2) Similar to the case for (Harden Par 1).

(Harden Repl) Then H{P} =1Q > (vp)(P1)P2, Q > (vP)(P1)Q', and P, =
Q' |'Q. Given that a replication cannot be a harness, H{P} = Q) implies
that H = — and P = !Q. Let R = 0, and we have P > (vp)(P,)Ps,

=—| R, P, =P, | R, and {p} N fn(R) = @. Therefore, case (3) of the
lemma pertains.

(Harden Res) Then H{P} = (vm)Q, Q > (vq){Q1)Q2, and (vp)(P1)P> =
(vm)(vq)(Q1)Q2. From H{P} = (vm)Q, it follows that m ¢ fn(P) since
fn(P) C fn(H{P}). Since the name m is bound, we may assume that
m ¢ fn(P), and also that m ¢ {¢}. Given that H{P} = (vm)Q, there are
two cases to consider. In the first, H = — and P = (vm)Q, so case (3) of
the lemma pertains, with R = 0. In the second, H = (vm)H; and Q =
H,{P}. We examine the three cases in the definition of (vm)(v§)(Q1)Q2.

e Here ()1 = ¢[Q}] with m € fn(Q}) but m # ¢q, and m ¢ fn(Q2), so
that:

rm)v(R1)Q2 = (v§){q[(vm)Q1])Q2
= (vp)(P1) P>

Therefore, p= ¢, P, = q[(vm)Q1]], and P> = (). We have that:
Hi{P} = Q > (v{)(Q1)Q2 = (vp){q[Q1]) P>

33

By induction hypothesis, this implies that one of three cases holds:

(1) Hy > (vp){(n[H'])P> and ¢[Q}] = n[H'{P}]. Hence, ¢ = n and
Q1 = H'{P}. Since m € fn(Q}) but m ¢ fn(P), it follows that
m € fn(H'). Note also that m ¢ fn(P,) and that m # n. So we
get:

H = (vm)H, > om)(vp) (n[H')) P2 = (v) {n(vm) H')) P
Py = q[(vm)Q}] = nl(vm) H'{P}]

This establishes case (1) of the lemma.
(2) Hy > (vp)(qIQ\YH" and P, = H'{P}. From m ¢ fn(Q2) and
Q2 = P, = H'{P} it follows that m ¢ fn(H'). So we get:

H > (vm)(wp)(q[Q)H' = (vp){al(vm)Qi) H" = (vp)(P1)H'
P, = H'{P}

This establishes case (2) of the lemma.

(3) P> (vp){q[@)P', HH=—| R, P, =P | R,and {p}Nfn(R) =
. From P > (vp)(q[Q1])P’ it follows that fn((vp)(q[Q}])P’) C
fn(P). But we know that m € fn(Q}), m ¢ {p}, and m ¢ fn(P).
Therefore, this case cannot arise.

Here m € fn(Q1), and either (a) m € fn(Q2), or (b) @1 is not an
ambient, or (¢) @1 is an ambient named m, so that:

(vm)(vq)(Q1)Q2 = (vm,q)(Q1)Q->
= (vp)(P1) P2

Therefore, = m, §, Pi = Q1, and P> = Q2. We have that:

Hi{P} =Q > (v1)(Q1)Q2 = (vq)(P1) P>

By induction hypothesis, this implies that one of three cases holds:
(1) Hy > (vq){n[H'])P, and P; = n[H'{P}]. We have that:

H = (vm)H; > (vm)(vq)(n[H']) P
Note that @ = P = n[H'{P}]. Now, in case (a), m € fn(P»)
and m € fn(n[H']) (since m ¢ fn(P) but m € fn(n[H'{P}])).

Case (b) cannot arise, since ()1 is the ambient n[H'{P}]. In case
(c), it must be that m = n. Therefore, in all applicable cases:

(vm)(v@)(n[H']) Py = (vm, Q)(n[H')) Py = (vp)(n[H']) P>

Moreover, P, = n[H'{P}], which establishes case (1) of the

lemma.

34

(2) Hy > (vq)(P1)H' and P, = H'{P}. In this case, we have that
m € fn(Py), and either (a) m € fn(H') (since m € fn(H'{P} but
m ¢ fn(P)), (b) P; is not an ambient, or (¢) P; is an ambient
named m. Hence we have:

H = (vm)H, > (vm)(v@)(P1)H' = (vm, {){P1)H'
Moreover, P, = H'{ P}, which establishes case (2) of the lemma.
(3) P> (wq){P)P',H =—|R,P, =P |R,and {¢} Nnfn(R) = @.
This case cannot arise since m ¢ fn(P) and m ¢ {q}, so m ¢
fn(Py), and yet we have that m € fn(Q1) and P; = Q;.
e Here m ¢ fn(Q1), so that:

(rm)(v(Q1)Q2 = (¥@)(Q1)(vm)Q2
= (vp)(P1) P2

Therefore ¥ = ¢, P, = @1, and P, = (vm)Q>. We have that

H{P} = Q > (vp)(P1)Q=2. By induction hypothesis, this implies

that one of three cases hold:

(1) H; > (vp)(n[H'])Q2 and P, = n[H'{P}]. We have that m ¢
fn(n[H'{P}]), so

H >

Also, P, = n[H'{P}], so this establishes case (1) of the lemma.
(2) Hi > (vp)(Pi)H' and Q2 = H'{P}. Here, we have H >
(vm)(vp)(P1)H' = (vp)(P1)(vm)H', and P, = (vm)H'{P} =
((vm)H'){P}. This establishes case (2) of the lemma.
P> (vp)(P1)P', HHL = — | R, Q2 = P' | R, and {p} N fn(R) =
@. From m ¢ fn(P) U {p} and P > (vp)(P1)P' it follows that
m ¢ fn(P'). We have:

(3)

H=wm)H, = wm)(— | R)=—| (vm)R
and also:
Py = (vm)@s = (vm)(P' | R) = P' | (vm)R

Moreover, {p} N fn(R) = @ implies that {5} N fn((vm)R) = @.
This establishes case (3) of the lemma.

This completes the proof by induction. O

For the purposes of proving Theorem 15, we adopt the following notation.

35

Interaction between a harness and a process: H e P~ R

I
Let H o P~ R if and only if there are H' and 7 with {¥} N fn(P) = @,
and one of the following holds:

(Inter In) H = (v7)H'{m[— | R'] | n[R"]}, P ns pr
and R = (vF)H'{n[m[P" | R'] | R"]}

(Inter Out) H = (v@)H'{n[m[- | R | R"]}, P “4' P',
and R = (vF)H'{m[P' | R'] | n[R"]}

(Inter Open) H = (wi)H'{~ [n[RT}, P 5" P,
and R = (vi)H'{P' | R'}

(Inter Input) H = (v#)H'{— | (M)}, P > (vp){(x).P')P",
and R = (v)H'{(vp)(P'{z+M} | P")}, with {p} N fn(M) = @

(Inter Output) H = (vi)H'{— | (z).R'}, P > (vp){{M))P’,
and R = (vi)H'{(vp)(P" | R'{z+M})}, with {p} N fn(R') = &

(Inter Amb) P > (vp)(n[Q])P' and one of the following holds:

(1) Q28 Q', H = (v H'{~ | m[R]}, {f} N fu(m[R']) = 2,
and R = (vr)H'{(vp)(P" | m[n[Q'] | R'])}
(2) Q 8" ', H = (vi)H'{m[- | R']}, m ¢ {7},
and R = (vP)H'{(vp)(n[Q'] | m[P" | R'])}
(3) H = wr)H'{m[R' | inn.R"]| =}, {F} N fa(m[R' | inn.R"]) = @,
and R = (vi)H'{(vp)(n[Q | m[R' | R"]] | P")}
(4) H= i H'{— | openn. '}, n ¢ {7},
and R = (vr)H'{(vp)(Q | P') | R'}

The following lemmas about the H o P ~» R notation may easily be checked.
Lemma 38 If H e P~ R and R = R' then H e P~ R'.
Lemma 39 If H e P~ R then H'{H} o P~ H'{R}.
Lemma 40 If H ¢« P~ R and n ¢ fn(P) then (vn)H o P~ (vn)R.
The following lemma is a simple specializations of Lemma 13:
Lemma 41 If H{P} > (vp){(n[P.]) P, then either:
(1) H = (vp)(n[H'] | P,) and P, = H'{P}, or
(2) H = (vp)(n[P1] | H") and P, = H'{P}, or
(3) P> (vp)(n[P])P', H=— | R, P = P' | R, and {p} N fn(R) = @.

36

The next two lemmas follow from the definition of the M-transitions in terms
of hardening.

Lemma 42 If H{P} MR for M € {inn, out n, open n} then either:
(1) H= (v?)(M.R' | H'), R= (vi)(R' | H'{P}), {F}n({n}Ufn(P)) = @, or
2 H=-|R, P P,and R=P' | R
Lemma 43 If P | Q -5 R then either:
1) PP and R=P'|Q, or
2 QL Q andR=P|Q'.

The following proposition is the main fact we need to prove in order to
establish Theorem 15.

Proposition 44 If H{P} - R then one of the following holds:
(1) there is a reduction P — P’ with R = H{P'}, or
(2) there is a reduction H — H' with R = H'{P}, or
(3) He P~ R.

Proof By induction on the derivation of H{P} — R.

open n

(Trans Open) Here, H{P} > (vq)(n[Q1])@2, and Q2 — @b, and R =
(vq)(Q1 | @%). We may assume that {¢} N fn(P) = &. By Lemma 41,
H{P} > (vq)(n[Q1])Q= implies there are three cases to consider:

1) H = (vq)(n[H'] | Q2) and @y = H'{P}. Let H" = (vq)(H' | Q).

In this case, we can see, for all @, that H{Q} — H"{Q}, which is

to say that H — H". Moreover, R = (vq)(H'{P} | Q}) = H"{P}.

Hence, case (2) pertains.

(2) H = (vq)(n[Q1] | H1) and Q2 = H,{P}. By Lemma 42, the transi-
tion Hy{P} “*%" Q) implies either:

(a) Hy = (vi)(open n.R' | Hs), Q% = (vF)(R' | Hy{P}) and {F} N
{n}Ufn(P)) =o. Let H' = (vq)(Q1 | (vF)(R' | Hz)). We have
that H{Q} — H'{Q} for all Q, that is, H — H'. Moreover,
R = (vd)(Q1 | (wPA)(R' | H{P})) = H'{P}. Hence, case (2)
pertains.

(b) Hy=—|R,P ™" P and Q, = P' | R'. From H = (v{)(R' |
— | n[Qi]), P 75" P!, and R = (v@)(Q1 | P' | R') = (v)(R' |
P’ | Q1) we may derive H e P ~ R using (Inter Open). Hence,
case (3) pertains.

37

(3) P> (wq)(n[Q:)P', H=—| R, Q2= P | R, and {d} N fn(R') =
@. From P > (vq)(n[@Q1])P we get P = (vq)(n[@1] | P'). By
Lemma 35, Q> = P' | R and Q, %" Q) imply there is Q4 such
that P’ | R "*%" QY and Q) = Q). By Lemma 43 there are two
cases to consider:

(a) P 5" P" and QY = P" | R'. We have P — (v§)(Q:1 | P"),
H=—|R and R= @)@ |Qy) = @)@ | P'|R)=
(vq)(Q1 | P") | R'. Hence, case (1) pertains.

(b) R %" R" and Q) = P' | R". From R’ ““%" R" it follows
that R' = (v7)(Ry | open n.Ry) with R" = (vF)(R; | R2) and
n ¢ {r}. We have:

H =
R

vi)(Ry | — | open n.Ry)
v)(Q1 | Q)
(
(

v (Q:| P'| R")
v)(Q1 | P'| (vP)(Ry | Ry))
= () (R | (v (Q1 | P')| Ry)

since we may assume that {g}Nfn(Ry | R2) = @ and {F}Nfn(Q; |
P') = @ and {¢}N{7} = @. From {}Nfn(R') = @ and R' "*"
R" it follows that n ¢ {¢}. From P > (vQ){n[Q1])P’', n ¢ {7},
and the two displayed equations, we may derive H ¢ P ~» R
using clause (4) of (Inter Amb). Hence, case (3) pertains.

(Trans Amb) Here, H{P} > (vq)(n[Q1])Q2, @1 — Q] and R = (vq)(n[Q1] |
Q2). From H{P} > (vq){n[Q1])Q2 it follows that {q} N fn(P) = @, since
fn(P) C fn(H{P}). By Lemma 13, H{P} > (vq)(n[Q1])Q2 implies there
are three cases to consider:

~ T~~~

(1) H > (vq)(n[H'])Q2 and Q1 = H'{P}. By induction hypothesis,

Q1 = H'{P} -5 Q) implies one of the following:

(a) Here P — P' with Q] = H'{P'}. We have R = (vq)(n[H'{P'}] |
Q2), and H = (vq)(n[H'] | Q=) so case (1) pertains.

(b) Here H' — H" with Q] = H"{P}. From H > (v§)(n[H'])Q2
and H' — H'" we can derive H — (vq)(n[H"] | Q2). We have
R = (vq)(n[H"{P}] | Q2), so case (2) pertains.

(c) Here H' @« P~ Q). From H > (v§)(n[H'])Q2 we get that H =
(vq)(n[H'] | Q2). Also, R = (vq)(n[Q}] | @2). By Lemma 39,
H' ¢ P ~ Q] implies that n[H'] | Q2 ¢ P ~ n[Q!] | Q2. By
Lemma 40, {¢}Nfn(P) = @ implies that (vq)(n[H'] | Q=2) e P ~
(vq)(n[Q}] | Q2). By Lemma 38, H o P ~» R. Hence case (3)
pertains.

(2) H > (vq){(n[Q1))H; and Q2 = H1{P}. Let H' = (vq)(n[Q}] | H1).
Since H = (vq)(n[Q1] | H1) and Q1 - @', we get that H —

38

H'. Moreover, R = (vq)(n[Q}] | Hi1{P}) = H'{P}. Hence case (2)
pertains.

(3) P> wq)(n[Q1)P',H=-|R',Q2 =P | R',and {g}Nfn(R') = 2.
Let P' = (vq@)(n[@}] | P'). From Q; — Q' and P = (vp)(n[Q1]
P'), we get that P — P'. Moreover, R = (vq)(n[Q}] | P' | R') =
H{P'}. Hence case (1) pertains.

The cases for the rules (Trans In), (Trans Out), and (Trans I/O) are proved by
arguments similar to that for (Trans Open). Since the rule (Trans Cap) cannot
derive a 7-transition, this completes the analysis of all the rules that may derive
H{P} - R. i

We now prove Theorem 15, which we restate in terms of the interaction
predicate, H ¢ P ~ R.

Proof of Theorem 15 H{P} — R if and only if:
(Act Proc) P — P' with R= H{P'}, or

(Act Har) H — H' with R= H'{P}, or

(Act Inter) H e P~ R.

Proof The right-to-left direction is a routine calculation. For the left-to-
right direction, suppose that H{P} — R. By Theorem 9, there is @ with
H{P} - Q and Q = R. By Proposition 44, there are three cases to consider:

(1) There is a reduction P — P’ with @ = H{P'}. From @) = R we get
R = H{P'}, so (Act Proc) applies.

(2) There is a reduction H — H' with @ = H'{P}. From @ = R we get
R = H{P'}, so (Act Har) applies.

(3) We have H o P ~ (). By Lemma 38, @ = R implies that H ¢ P ~ R.
Therefore, (Act Inter) applies. a

A.5 Proofs About Replication

In this section, we prove a series of lemmas about replicated processes. These
lemmas are needed in the next section, in the proof of Proposition 61, that
the equivalence implicit in the context lemma is a congruence with respect to
replication.

We use the notation P* as an abbreviation for k copies of P running in
parallel: we inductively define P® = 0, and P¥+! = P | P*.

Lemma 45 If!P > (vp)(Q)R then there is P' such that P > (vp)(Q)P' with
R=P'|!P and {p} Nfn(P) = 2.

39

Proof The judgment !P > (vp)(Q)R can only be derived using the rule
(Harden Repl), from a judgment !P > (vp)(Q)P' such that R = P' | |P. By
Lemma 22, |P > (vp)(Q)P' implies that fn(!P) = fn((vp)(Q)P’), and therefore
that {§} N fn(P) = 2. O

Lemma 46 If!P M, Q then there is R such that P MR and Q=R|!P.

Proof The judgment !P 2, Q can only be derived using (Trans Cap) from
a judgment P > (vp)(M.P')P" with fn(M)N{p} = @ and Q = (vp)(P' | P").
By Lemma 45, there is P with P > (vp)(M.P")P"', P" = P" | IP, and
{7} N fn(P) = @. Let R = (vp)(P' | P"). By (Trans Cap), we have P - R.
Moreover, @ = (vp)(P' | P"' |'P) =R | !P. O

Lemma 47 If!P - Q then there is R with P| P - R and Q = R | !P.

Proof By a case analysis of the derivation of |P - Q.

(Trans Amb) Here, !P - (vp)(n[Q'] | P') derives from !P > (vp){n[Q])P’
and @ — Q'. By Lemma 45, P > (vp)(n[Q])P’ implies there is R’
such that P > (vp)(n[Q))R', P' = R' | P, and fn(P) N {p} = @. By
(Harden Par 1), P > (vp)(n[@Q])R' and {p} N fn(P) = @ imply that
P | P> (vp)(n]Q])(R' | P). By (Trans Amb), this and Q@ - Q' imply
that P | P - R, where R = (vp)(n[Q'] | R’ | P). Finally, we may
?;I)CUIa;%ei 'S;/@("[Q'] | P') = (wp)(n[QT | R | 'P) = (vp)(n[Q'] | R" | P |

(Trans In) Here, !P — (vp,7)(m[n[Q'] | Ri] | Ry) derives from the judg-
ments P > (vp)(n[Q)R, Q “% Q', and R > (vF)(m[Ri])Rz, with
{F} N fn(n[Q]) = @ and {7} N {p} = @. By Lemma 45, |P > (vp)(n[Q))R
implies there is R’ such that P > (vp)(n[@Q])R' and R = R' | |P with
{p} N fn(P) = o.
By Lemma 31 and (Struct Symm), R > (vF){m[R1])R2 and R = R' | IP
imply there are R} and R} such that R' | |P > (v7)(m[R|])RS, R1 =
1, and Ry = R}. Only two rules may derive the judgment R’ | |P >
(v)(m[R1]) Ry:

(Harden Par 1) In this case, R' > (v){(m[R}])R" with R, = R" | IP
and {7} N fn(!P) = @. By (Harden Par 1), P > (vp)(n[Q])R’ and
{p}Nfn(P) = @ imply that P | P > (vp)(n[Q])(R' | P). By (Harden
Par 1), R' > (v7)(m[R]])R" and {F}Nfn(P) = @ imply that R’ | P >
(vP)(m[Ri])(R" | P). By (Trans In), P | P > (vp)(n[Q])(R' | P),
Q2% Q' and R' | P > (vi)(m[R}])(R" | P) imply that P | P
(vp, 7)(m[n[Q'] | R}] | R" | P). We know that fn(P) N {p,7} = @,
and hence we may calculate:

(v, M) (m[n[Q'] | Ri] | Ry)

—_~ T~ N ~—

(g,) (mn[Q'] | RY] | Ry)
vp,) (m[n[QT| Bl | R" | 'P)
(v, 7)(m[n[Q] | R1] | B | P) | P

—~

40

(Harden Par 2) In this case, |P > (v#)(m[R}])R" with R, = R' | R"
and {7} N fn(!IP) = @. By Lemma 45, |P > (v7)(m[R]{])R" implies
there is R" such that P > (v7)(m[R,)R" with R" = R" | |P and
{F} N fn(P) = @. By (Harden Par 1), P > (vp)(n[Q])R' and {p} N
fn(P) = @ imply that P | P > (vp)(n[Q])(R' | P). By Lemma 20
and Lemma 22, R > (vi){(m[R1])R; and R = R’ | !P imply that
(R N {F} = @. By (Harden Par 2), this and P > (v¥){(m[R}])R"
imply that R' | P > (vF)(m[R}])(R' | R""). By (Trans In), P | P >
A (n[Q)(R' | P), @ == Q', and R’ | P > (vi)(m[R}])(R' | R")
imply P | P = (vp,7)(m[n[Q'] | R}] | R' | R™). We know that
fn(P)N{p,7} = &, and hence we may calculate:

(v, ™) (m[n[Q"] | R1] | Rz)
(g, ™) (mn[Q]| B | R' | R")
(g, 7)(m[n[Q] | B1] | B | (R™ | !P))
(vp,7)(m[n[Q]| R1] | B' | R™) [P

I =
3 3
=03

S

The other cases—(Trans Out), (Trans Open), and (Trans I/O)—follow by sim-
ilar arguments. a

Lemma 48 If H{!P} — R then there is H' such that R = H'{!P} and for all
k, H{P*2} 5 H'{P*}.

Proof By Theorem 15, H{!P} — R implies that one of three cases holds:

(Act Proc) Here, !|P — P’ with R = H{P'}. By Lemma 47 and Theorem 9,
!P — P’ implies there is @ with P | P - @ and P' = Q | !P. Let
H' = H{Q|—-}. We have R = H{Q | P} = H'{!P}. For any k, we have
P | P|P* — Q| P*. This implies that H{P**?} — H{Q | P*}, which
itself implies that H{P**+2} — H'{P*}.

(Act Har) Here, H - H" with R = H"{!P}. Let H' = H"{P | P | —}. Then
R=H"{P|P||P}=H'{IP}, and, for all k, H{Pk+2} - H"{Pk+2} =
H'{P*}.

(Act Inter) Here, there are Hy and 7 with {7} N fn(P) = @, and one of the
following holds:

(Inter In) In this case, H = (v#)Ho{m[— | R'] | n[R"]}, 'P 23 P,
R = (vF)Ho{n[m[P' | R'] | R"]}. By Lemma 46, there is Q) such that
P23 Qand P'=Q |'P. Let H' = (vi)Ho{n[m[- | P | Q| R'] |
R}, and we have, for all k:

R (v Ho{n[m[Q | 'P | R | R"]}
(vr)Ho{n[m['P | P| Q | R']| R"]}

H'{1P}

41

H{P***} (v Ho{m[P* | P | P | R | n[R"]}
(vP) Ho{n[m[P" | P | Q | R'] | R"]}

!

mn 4 m

(Inter Out) In this case, H = (vi)Ho{n[m[— | R'] | R"]}, P iy pr
and R = (vi)Ho{m[P' | R'] | n[R"]}. By Lemma 46, there is) such
that P ™% @ and P' = Q | \P. Let H' = (v@)Ho{m[— | P | Q |
R'] | n[R"]}, and we have, for all k:

(v Ho{m[P* | P| Q | R'] | n[R"]}
H'{P*}

R = wr)Ho{m['P|Q|R']|n[R"]}
= (v Ho{m['P | P|Q|R']|n[R"]}
— H{P}
H{P***} = (vi)Ho{n[m[P* |P|P|R|R"]}
%

(Inter Open) In this case, H = (v@)Ho{— | n[R']}, P *5" P', and
R = (vi)Ho{P' | R'}. By Lemma 46, there is Q such that P “**%" Q
and P'=Q |!P. Let H' = (v)Ho{— | P | Q | R'}, and we have, for

all k:

R = w)H{Q|'P|R)
= wAH{P|P|Q|R}
= H'{IP)
H{P*?} = wAHy{P*|P|P|n[R])
~ (WH{P*| P|Q| R}

H'{P*}

(Inter Input) In thiscase, H = (v#¥)Ho{— | (M)}, P > (vp){(z).P")P",
and R = (vi)Ho{(vp)(P'{z<M} | P")}, with {p} N fn(M) = &. By
Lemma 45, there is @ such that P > (vp){(z).P')Q with P" = Q | IP
and {p} Nfn(P) = @. Let H = (viF)Ho{— | P | (vp)(P'{z+M} |
@)}, and we have, for all &:

R = (iHo{(vp)(P{zM}|Q[!P)}
= (NH{'P | P| (wp)(P{z<M} | Q)}
= H'{!P}
H{P*?} = (vi)Ho{P" | P| P | (M)}
= (A Ho{P* | P | (vp)(P'{z+M} | Q)}

H'{P"}

(Inter Output) Here, H = (vF)Ho{— | (z).R'}, P > (vp){(M))P',
and R = (vi)Ho{(vp)(P' | R'{z«M})}, with {p} N fn(R") = @.

42

By Lemma 45, there is @ such that P > (vp)((M))Q with P' =
Q| 'P and {p} N fn(P) = @. Let H' = (vi)Ho{— | P | (vD)(Q |
R'{z+M})}, and we have, for all k:

R = H{wHQ|'P|R{zM})
= (H{'P| P| (vP)(Q | R'{wM}))
= H'{IP)

H{P*?} = (uiHo{P*|P|P|(2).R'}

— (WAH{P* | P| (vp)(Q | R'{weM})}

H'{P"}

(Inter Amb) In this case, one of the following four cases holds, and we
have |P > (vp)(n|Q])P' and n ¢ {p}, which by Lemma 45 implies
that there is P" such that P > (vp)(n[Q])P" with P' = P" | IP and

{P} N fn(P) =2.

(1) Here, Q "R OLH= (vi)Ho{— | m[R']}, {P} N fn(m[R']) = &,
and R = (vP)Ho{(vD)(P' | m[n[Q'] | R'])}. Let H' = (vF)Ho{— |
P | (vp)(P" | m[n[Q'] | R'])} and we get, for all k:

R = (i)Ho{(wp)(P" P |m[n[Q]| R'])}
= (W) Ho{!P | P | (wp)(P" | mn[Q]| R}
= H'{'P}
H{P*"?} = (v Ho{P"|P|P|m[R}
— (v Ho{P" | P | (vp)(P" | m[n[Q"] | R'))}

H'{P*}

(2) In this case, Q ¥ @', H = (vP)Ho{m[— | R}, and R =
(v Hol (v) (n[@') | m[P' | R}, with m ¢ {5} Let H' =
(vi)Ho{(vD)(n[Q'] | m[P" | P | — | R'])} and we get, for all k:

R = (vr)Ho{(vp)(n[Q] | m[P" | 'P | R])}
= (v Ho{(vp)(n[Q] | m[P" | P |!P | R])}
= H'{!P}
H{P***} = (vHo{m[P|P|P"|R']}
= (A Ho{(wp)(n[Q'] | m[P" | P | P* | R'])}

H'{P"}

(3) H = (viA)Ho{m[R' | inn.R"] | =}, {p}nfn(m[R' | inn.R"]) = 2,
and R = (wi)Ho{(vp)(n[Q | m[R' | R"]] | P')}. Let H' =
IgVﬁHo{(up)(n[Q | m[R' | R"]]| P")| P |-} and we get, for all

R = (i)Ho{(vp)(n[Q | m[R"| R"]] | P" | !P)}

43

= (") Ho{(vp)(n[Q | m[R" | R"]] | P") | P | P}
H'{!P}
H{P"?}

= (wA)Ho{m[R'|inn.R"]| P|P|P*}

— WA HA{PHOIQ | mIR | inn.R"] | P") | P| P}

= H'{P"}
(4) H = (vF)Ho{— | openn.R'}, and R = (vi)Ho{(vp)(Q | P') | R'}
Let H' = (v)Ho{(vp)(Q | P") | R' | P | —} and we get, for all

k:
R = (vi)Ho{(vp)(@|P"|!P)|R'}
= (vi)Ho{(wp)(Q|P")| R | P|!P}
= H'{!P}
H{P**2} = (Wwi)Ho{P* | P| P | openn.R'}
— (i) Ho{P" | P | (vP)(Q | P") | R'}
= H'{P"}
In any case, then, the result holds. O

Lemma 49 If H{!P} |} n then there is k such that H{P*} || n.

Proof By induction on the derivation of H{!P} | n.

(Conv Exh) Here, H{!P} | n. By Proposition 14, this implies that either
(1) H{Q} | n for all @, or (2) !P | n, and for all @, @ | n implies
that H{Q} | n. In case (1), let k = 1 and we have H{P} | n. In
case (2), Proposition 7 implies that [P > (vp)(n[P'])P" with n ¢ {p},
for some names p and processes P’ and P"”. By Lemma 45, it follows
that there is P’ such that P > (vp)(n[P'])P"" with P" = P"" | IP and
{P} N fn(P) = @. Proposition 7 now yields that P | n. Let k¥ = 1 and we
get that H{P} | n.

(Conv Red) Here, H{!IP} — @ and @ | n. By Lemma 48, H{!P} — @
implies there is H' such that Q = H'{!P} and, for all j, H{P/*?} —
H'{P7}. By Lemma 2, there is a derivation of H'{!P} || n with the same
depth of inference as the derivation of) |} n. By induction hypothesis,
there is k such that H'{P*} |} n. Now, we have that H{P*+?} — H'{P*}.
By (Conv Red), this and H'{P*} || n imply that H{P**2} || n. o

A.6 Proofs Omitted From Section 4.3

The purpose of this section is to prove our context lemma, Theorem 12. Roughly
speaking, the context lemma asserts that the distinctions made by all contexts
are the same as the distinctions made by harnesses. To prove the context lemma,

44

it is convenient to introduce the following auxiliary equivalence, defined in terms
of harnesses. Recall that a substitution, o, be a list 1M, ..., x< M}, where
the variables x1, ..., x are pairwise distinct, and fv(M;) = @ for each i € 1..k.

The Equivalence Implicit in the Context Lemma: P ~)

I
Let P ~ @ if and only if for all substitutions o with dom(c) = fu(P) U fu(Q),
and for all closed harnesses H and names n, that H{Po} | n & H{Qo} | n.
L

Next, we prove a series of lemmas, which taken together imply Proposi-
tion 64, that the auxiliary equivalence P ~ @ is a congrence. The context
lemma then follows easily.

Proposition 50 The relation P ~ @) is an equivalence, that is, reflexive, tran-
sitive, and symmetric. Moreover, if P = @ then P ~ Q).

Proof That P ~ @ is an equivalence follows easily from its definition. Sup-
pose that P =). Consider any substitution o such that fu(P) U fv(Q) =
dom(o). Structural congruence is preserved by substitutions, so Po = Qo.
Moreover, structural congruence is a congruence, so H{Poc} = H{Qo}. By
Lemma 2, it follows that for all n, H{Po} | n & H{Qo} | n. Therefore,
P~ Q. |

Proposition 51 If P~ P' then P | Q ~ P' | Q.

Proof Consider any substitution o with dom (o) = fu(P | Q) U fu(P' | Q),
and any closed harness H and any name n. Let H' = H{— | Qo}. Since
fu(Q) C dom(c), the harness H' is closed. Let o' be the restriction of ¢ to the
domain fu(P) U fu(P'). We have that:

H{(P|Q)o} = H'{Po'}

H{(P'|Q)o} = H'{P'o'}
Now, suppose H{(P | Q)o} | n, that is, H'{Pc'} |} n. This and P ~ P’ imply
that H'{P'c'} | n, which is to say, H{(P' | Q)o} { n. A symmetric argument

establishes that H{(P' | Q)o} | n implies H{(P | @)o} | n. Therefore,
PlQ~P|Q. 0

Lemma 52 If m # n, then (vn)P |y m < P | m.

Proof An induction on the derivation of P || m establishes that (vn)P |
m, using (Red Res) and Proposition 6. On the other hand, an induction on
the derivation of (vn)P | m establishes that P || m, using Theorem 9 and
Lemma 36. |

Proposition 53 If P ~ P' then (vn)P ~ (vn)P'.

45

Proof Consider any substitution o with dom(c) = fo((vn)P) U fo((vn)P'),
that is, dom(o) = fu(P) U fu(P'). Consider any closed harness H and any
name m. Since the name n is bound, we may assume that n ¢ fn(o(z)) for all
x € dom(o), that n ¢ fn(H) and that m # n. We have that:

H{((vn)P)o} = (vn)(H{Pao})
H{((wn)P")o} = (vn)(H{P'c})

By definition of P ~ P', it follows that H{Po} || m & H{P's} | m. By
Lemma 52, it follows that (vn)(H{Pc}) 4 m & (vn)(H{P'c}) J m, which is
to say that H{((vn)P)o} 4 m & H{((vn)P')o} | m. It follows that (vn)P ~
(vn)P'. O

Lemma 54 If M is not a name and H{M[P]} | m then H{0} | m.

Proof By induction on the derivation of H{M[P]} || m, with appeal to the
activity lemma, Theorem 15. An ambient M[P], where M is not a name, cannot
participate in any transitions. a

Proposition 55 If P ~ P’ then M[P] ~ M[P'].

Proof Consider any substitution o with dom(o) = fu(M[P]) U fo(M[P']),
that is, dom (o) = fu(M) U fu(P) U fu(P'). Consider any closed harness H and
any name m. Either Mo is a name n, or not. If not, we get that H{(M[P])o} |
m < H{0} y m & H{(M[P'])o} || m from Lemma 18 and Lemma 54. On the
other hand, suppose that Mo is the name n. Let H' = H{n[—]}. Given that
H is closed, so is H'. We have that:

H{(M[P))s} = H'{Po}
H{(M[P)o} = H'{P's}

Now, suppose H{(M[P])o} |} m, that is, H'{Pc} | m. This and P ~ P’ imply
that H'{P'c} || m, which is to say, H{(M[P'])c} | m. A symmetric argument
establishes that H{(n[P'])o} | m implies H{(n[P])o} | m. Therefore, whether
or not M is a name, M[P] ~ M[P']. O

The relation M > € in the following lemma is as defined in Appendix A.2.
Lemma 56 M.P — Q if and only if M > € and P — Q.

Proof The right-to-left direction follows from the fact that M > e implies
that M.P = P. For the other direction, M.P — @ implies, by Theorem 9 that
there is R with M.P = R and R = . An inspection of the rules for deriving
T-transitions reveals that the first step in deriving M.P - R is a hardening
M.P > C, where the prime of the concretion C' is either an ambient or an
output. Therefore, the second case of Lemma 28 must hold, and we have that
M > eand P > C. Tt follows that P — R, and therefore that P — Q. |

46

Lemma 57 If M.P Ny P then either:
(1) M > N.N'" and P' = N'.P, or
(2) M >eand P P,

Proof By definition, M.P Nopr implies that M.P > (vp)(N.P,)P, with
P' = (vp)(Py | P») and fn(N)N{p} = @. By Lemma 28, one of two cases arises.
In the first case, M > N.N', (vp)(N.P;)P> = (v)(N.R)0, and R = N'.P. So
p=@, P =R, and P, = 0. Therefore, P = R | 0 = N'.P. In the second case,

M > e and P > (vp)(N.P,)P,. By (Trans Cap), P - (vp)(Py | P;) = P'. O

Lemma 58 Consider any closed P and P' such that P ~ P'. If H{M.P} | n
then H{M.P'} | n.

Proof By induction on the derivation of H{M.P} | n.

(Conv Exh) Here H{M.P} | n, and we are to show that H{M.P'} || n. By
Proposition 14, either (1) H{Q} | n for all @, or (2) M.P | n, and for
all @, @ | n implies that H{Q} | n. In case (1), we immediately get
that H{M.P'} | n, and therefore obtain H{M.P'} | n by (Conv Exh).
In case (2), M.P | n implies that M.P > (v7)(n[R1])R2 with n ¢ {7} by
Proposition 7. By Lemma 28, M.P > (vF)(n[R1])R> implies that M > €
and P > (vP){n[R1])R2. (The first clause of Lemma 28 cannot apply
since the prime of the concretion (v7)(n[R;])R2 is an ambient and not an
action.) By Proposition 7 and (Conv Exh), we get that P | n. Since
P ~ P’ it follows that P’ |} n. So there is P" such that P’ —* P" and
P" | n. We have H{P'} —* H{P"}, and H{P"} | n, by the property
of H obtained from Proposition 14 above. These two facts imply that
H{P'} | n.

(Conv Red) Here H{M.P} — R and R | n. By Theorem 15, one of the
following cases must hold:

(Act Proc) Then M.P — R’ with R = H{R'}. By Lemma 56, we have
that M > e and P — R'. If M > ¢, then H{M.P} = H{P}, so
H{P} | n. Since P ~ P', H{P} | n implies that H{P'} | n.
From M > ¢, we get that H{M.P'} = H{P'}, and therefore that
H{M.P'} | n.

(Act Har) Then H — H' with R = H'{M.P}. By Lemma 2, R =
H'{M.P} implies that H'{M.P} | n with the same depth of infer-
ence as R || n. By induction hypothesis, we get H'{M.P'} | n too.
From H — H' we get that H{M.P'} — H'{M.P'}, and hence that
H{M.P'} | n.

(Act Inter) Then there are H' and # with {7} N fn(M.P) = @, and one
of several cases holds. We consider just one; the others follow by
similar arguments.

47

(Inter In) Here H = (v#)H'{m[— | R'] | n[R"]}, M.P 2% Pl and
and R = (v)H'{n[m[P" | R'] | R"]}. By Lemma 57, M.P %
P’ implies that one of two cases must hold.

In the first case, M > in n.N' and P' = N'.P. Here, M.P' %
N'.P’, and therefore we have:

H{M.P'} T (vi)H'{n[m[N".P'| R'|| R"]}
R = (vA)H'{n[m[N".P|R'T| R"]}

By induction hypothesis, R |} n and Lemma 2 implies that
(vF)H'{n[mIN".P' | R] | R"]} 4 n

and therefore that H{M.P'} || n.

In the second case, M > € and P 23 P'. We have H{M.P} =
H{P}, and H{M. P’} = H{P'}. Therefore H{M.P} | n and
P ~ P’ imply that H{M.P'} | n.

Proposition 59 If P ~ P' then M.P ~ M.P'.

Proof Consider any substitution o with dom(o) = fo(M.P) U fu(M.P'),
and any closed harness H and any name m. By Lemma 58, we get that
H{Mo.Po)} | m if and only if H{Mo.P'c)} || m. Hence, M.P ~ M.P'. |

Lemma 60 If H{P} | n then H{P | Q} | n.

Proof Suppose H{P} | n. Let H' = H{P | —}. We have that H{P} =
H{P | 0} = H'{0}. Hence, by Lemma 2, H{P} | n implies H'{0} | n. By
Lemma 18, this implies H'{Q} | n, which is to say that H{P | Q} | n. |

Proposition 61 If P ~ P' then !P ~ |P'.

Proof Consider any substitution o with dom(c) = fu(!P) U fu(!P'), that is,
dom(o) = fu(P) U fu(P"). Consider any closed harness H and any name n.
Suppose that H{(!P)o} |} n. By Lemma 49, there is k such that H{(Po)*} |
n. By Proposition 51, (Po)* ~ (P'o)k. Therefore, H{(Po)*} | n implies
H{(P's)*} | n. By Lemma 60, this implies H{(P'o)* | {(P'o)} | n. Since
H{'P'c} = H{(P'o)* | |(P'o)}, it follows that H{!P'c} | n, which is to say,
H{(!P")o} | n. By symmetric reasoning, H{(!P")o} || n implies H{(!P)o} |
n. O

Lemma 62 Consider any P and P' such that P ~ P' and fu(P)Ufv(P") C {z}.
If H{(z).P} |} n then H{(z).P'} | n.

Proof By induction on the derivation of H{(z).P} | n.

(Conv Exh) Here H{(z).P} | n. By Proposition 14, either H{Q} | n for all
Q, or (z).P | n. In the first case, we get H{(z).P'} | n. In the second
case, Proposition 7 implies that (z).P hardens to a concretion whose prime
is an ambient. This is impossible, so the second case cannot arise.

48

(Conv Red) Here H{(z).P} — R and R | n. By Theorem 15, one of the
following cases must hold:

(Act Proc) Then (z).P — R' with R = H{R'}. This case cannot arise,
since (z).P has no 7-transitions.

(Act Har) Then H — H' with R = H'{(z).P}. By Lemma 2, R =
H'{(x).P} implies that H'{(z).P} | n with the same depth of infer-
ence as R |} n. By induction hypothesis, we get H'{(x).P'} | n too.
From H — H' we get that H{(z).P'} - H'{(x).P'}, and hence that
H{(z).P'} | n.

(Act Inter) Then H e (z).P ~ R. By analysing the rules of inter-
action, H e (z).P ~ R can only be derived using (Inter Input)
given that H = (vi)H'{— | (M)}, (z).P > (vp){(z).P1)P>, and
R = (wA)H'{(vp)(Pi{z+<M} | Py)}, with {p} N fm(M) = @ and
{F} N fn(P) = @. From (z).P > (vp){(z).P1)Ps, it follows that
p =@, PP = P, P, =0. Therefore, R = (vi)H'{P{z+M}}.
We have that (vi)H'{P{z<M}} | n. By assumption, this implies
that (v7)H'{P'{x+<M}} | n. Now, H{(z).P'} = (vF)H'{(z).P' |
(M)} —» (vP)H'{P'{z+M}}. Therefore, H{(z).P'} | n. O

Proposition 63 If P ~ P' then (z).P ~ (x).P'.

Proof Consider any substitution o with dom(c) = fu((z).P) U fu((z).P'),
that is, dom(o) = (fo(P)Ufv(P'))—{z}. From P ~ P’ it follows that Po ~ P'c
and that fu(Po)Ufu(P'o) C {z}. Consider any closed harness H and any name
n. By Lemma 62, we get H{(z).Po)} { n if and only if H{(z).P'o)} | n.
Hence, (z).P ~ (z).P'. m|

Proposition 64 If P ~ P’ then C(P) ~ C(Q).

Proof Combine Proposition 50, Proposition 51, Proposition 53, Proposi-
tion 55, Proposition 59, Proposition 61, and Proposition 63. O

We end by proving that the relations P ~ @ and P ~ () are one.
Proposition 65 If P ~ Q then P~ Q.

Proof We must show for all names n and contexts ¢ with C(P) and C(Q)
closed, that C(P) | n < C(P) | n, assuming that P ~ (). By Proposition 64,
P ~ @ implies that C(P) ~ C(Q). Therefore C(P) || n & C(P) | n follows
from the definition of C(P) ~ C(Q), given that C(P) and C(Q) are closed. O

To show the converse implication, we need the following combinator.

A substitution combinator: subst x M P
I 1

subst x M P = (vm)(vn)(open n | m[(M) | (z).n[out m.open m.P]])
for {m,n}Nfn(M.P) =&

49

Lemma 66 For all P and M, subst x M P ~ P{z+M}.

Proof Consider the processes defined as follows, with {m,n}Nfn(M.P) = @.

R, = (vm)(vn)(openn | m[(M) | (x).n[out m.open m.P]])
Ry = (vm)(vn)(open n | m[n[out m.open m.P{x+M}]])
Rs = (vm)(vn)(open n | n[open m.P{x<M}]|m])

Ry = (vm)(open m.P{x+M} | m[])

Rs = P{z+M}

We omit the details, but using the activity lemma we can show that R; ~ R; 1
for ¢« € 1..4, much as in the proof of Lemma 19. By transitivity, we obtain
R, ~ Rs, that is, subst x M P ~ P{x+M}. O

Lemma 67 If P ~ Q then P{z+ M} ~ Q{z+M}.

Proof From P ~ (Q it follows that substz M P ~ substx M (). By Lemma 66
and Proposition 65, we get that subst « M P ~ P{x+ M} and subst x M Q ~
Q{z+M?}. Combining these equations yields P{z+ M} ~ Q{z+M}. O

Proposition 68 If P ~ Q then P ~ Q.

Proof Suppose P ~ (). Consider any substitution o with dom(o) = fo(P)U
fv(Q), and any closed harness H and name n. By Lemma 67, P ~) implies
that Po ~ Qo. Since ~ is a congruence, Proposition 1, we get that H{Po} ~
H{Qo}. By definition of H{Po} ~ H{Qc}, the fact that H{Po} and H{Qo}
are closed implies that H{Pc} | n & H{Qo} || n. Therefore P ~ Q). |

Proof of Theorem 12 For all processes P and Q, P ~ Q if and only if for
all substitutions o with dom (o) = fu(P)U fu(Q), and for all closed harnesses H
and names n, that H{Po} | n < H{Qc} | n.

Proof By definition of P ~ @, this is equivalent to showing that P ~ @ if
and only if P ~ @, for all P and @, which follows from Proposition 65 and
Proposition 68. o

50

