Object Typeswith Self

Martin Abadi and Luca Cardelli

Digital Equipment Corporation, Systems Research Center

CONTENTS

Introduction 3
Object Types with Self 4
An Untyped Object CalCulus............coccueruriunicincrnceniane 5
Operationa Semantics 6
Second-Order Typing 8
Variance Annotations 9
Some Encodings 10

(Note) Encodings of Variant Function Types11
The Structural Subtyping ASSUMPLIONcccvevreeenne
Type Rules
Soundness

(Note) Obj vs. m
Memory Cells
Pre-Methods
Classes as Collections of Pre-Methods...............cc.......
Inheritance as Pre-Method Reuse
Subclasses and Inheritability of Pre-Methods .. .
Interlude: Explicitly-Typed Termsccccovvevinnuncen
Something like TOOPLE
Comparisons with TOOPLE/TOIL
Inheritable Binary Methods............
Comparisons with Pierce-Turner

Conclusions
References
INTRODUCTION OBJECT TYPESWITH SELF

« We describe a primitive second-order theory of object types with Self.

« Asamain novelty, the type rules are based on structural subtyping assump-
tions within a second-order system. These assumptions fail in common deno-
tational interpretations, but are sound with respect to any natural operational
semantics, and lead to great expressiveness.

« Asexamples of that expressiveness, we can write natural-looking code and
types for “moving points’, we can override methods that return Self, and we
can define classes and inheritance effectively.

« Asan application, we provide a close emulation of TOOPLE' s type rules.

July 16,1994 8:20AM

FOOL'94, Paris 3

Qly 16,1994 8:20AM FOOL' 94, Paris

An Untyped Object Calculus

Operational Semantics

ab:= term v o=
X variable [li=¢(x;)b; i€t-n] object result (I; distinct)
[li=¢(x)b; iet-n] object (I; distinct) AQb type abstraction result
al method invocation
al=ce)b method override ; Favsv term reduction judgment
AQOb type abstraction (type-erased A(X<:A)b) | (with afixed evaluation order)
b() type application (type-erased b(A))
Field Notation: I=b standsfor I=¢(x)b with x¢b
al:=b sandsfor al=¢(x)b withx¢b
Functions: A(X)b, b(a) can be encoded.
Ay 16,1994 8:20AM FOOL' 94, Paris Quly 16,1994 8:20AM FOOL' 94, Paris 6
(Red Object)

=60y <] = [li=g(x)b 1]

(Red Select)
Fav[l=g(x) -] F b{x; < [k=¢(x)b <} v> v jel.n
Fal v>v
(Red Override)

Fav =g 1 jeln
F alj=)b > [I;=(b, | =gy <143

(Red Fun2)

F AQa~> AQa

(Red Appl2)
FbvA)a Favsv
Fb() v

Second-Order Typing

AB:= type
X type variable
Top maximum type
Obj (X)[l;v;:Bi{ X} et-n] object type (v; € {-,9,*}, |; distinct)
V(X<:A)B bounded universal type

Ay 16,1994 8:20AM FOOL' 94, Paris

Ex: Point £ Obj(Self)[x%:Nat, yo:Nat, mvo:NatxNat — Self]

Note: x and — can be encoded from Obj. Then Nat, +, and 3 can be encoded
fromVand - .

Note: with p and 3 we can define {(X)B{X} £ u(Y)3(X<:Y)B{X}. The main
operative differences between ¢ and Obj are;

- Cis sound denotationally, in parametric models. But we need to resort to a
“recoup” technique to achieve complete expressiveness.

- Obj is sound only operationaly (for now) but, unlike ¢, it can “move points”,
override self-returning methods, and encode classes.

Qly 16,1994 8:20AM FOOL' 94, Paris 8

Variance Annotations

There are three field variances (v): invariant (°), covariant (*), contravariant ().
Ignoring the Obj(X) part for now, we have:

[..1oB.]<[..1%B" ..] ifB=B’ invariant
[..I"B.]<[..1*:B .] if B<:B’ covariant (read-only)
[...I=B..]<[..1=B ..] ifB'<:B contravariant (write-only)
[..IoB.]<[..1":B"..] if B<: B’ invariant <: covariant
[..IB.]<[..1=B"..] ifB'<:B invariant <: contravariant

A “fourth variance” completes the rules:

[...lu:B.]<].. ..] existent <: non existent
Notation: I:B standsfor 1°:B.
Ay 16,1994 8:20AM FOOL' 94, Paris 9

Some Encodings

[:B i€tn] & Obj(X)[l&B; et X¢B; ieln Simple objects
(B ietny & OBj(X)[I;*B; i€t X¢B; el Records
A_B 2 [arg-A,va*:B] Functions

(> [arg%A, vaeB])

1>

Nat Obj(X)[succe:X, O-O Naturals

caseoV(Z<:Top)Z - (X - 2Z) - Z]

ChurchNat, x, +, variants, 3, etc. asin F.. (for example).

July 16,1994 8:20AM FOOL' 94, Paris 10

(Note) Encodings of Variant Function Types

We first define invariant function types, then subsume:

Ac_ B 2 Jarg®A, va©B]

AX)b{x} £ [arg=g(x)x.arg, val=¢(x)b{x.arg}]
b(a) 2 (b.arg:=a).va

A-B 2 Jarg=A,va*B] > [argA, valB]

Alternatively, using quantifiersinstead of contravariant fields:

A_B £ V(X<:A)arge:X, val *:B]
A(X)b{x} £ AQlarg=c(x)x.arg, val=¢(x)b{x.arg}]
b(a) 2 (b().arg:=a).va

Ay 16,1994 8:20AM FOOL' 94, Paris 11

The Structural Subtyping Assumption

“Every subtype of an object typeis an object type.”

(A special case of the override rule)
EFa:A EFA<[liB<* EFDb:B; jel.n
Etal:=b:A

Intuitively, any object type A<:[l;:B; i¢1-n] must have the form [I;:B; i<1-mm], This
can be proven syntactically easily.

Ay 16,1994 8:20AM FOOL' 94, Paris 12

Consider, though, the specia case with A=X:

TypeRules

(Specializing for type variables)

EFa: X EFX<[l;:B; it EFDb:B; jel.n EFo well-formed environment judgment

Etal:=b: X EFA type judgment

EFA<B subtyping judgment

The rule is operationally sound because X, in the course of a computation, isal - EFa:A value tvpina iudament

ways instantiated to a closed object type A <: (aclosure of) [I;:B; i€l-n]. § Yping |t

;;?wev?, tt)he rtutl eis ?ot sound in the usual interpretations of F_., for any interpre- Env g) Envx) EvX)

on of Object types EFA x¢dom(E) EFA X¢dom(E)
AQ) A(x) x.I:=3 not an identity. gFo ExAF ¢ EX<AFo
o V(X< [l:Na])X - X a“type of identitiesonly” [Bruce, Longo 1990]
(Type X) (Type Top)
EX<AE Fo ElFo
E X<AE FX EFTop
(Type V) (TypeObject) (I; distinct) (B{X*} £ B covariantin X)
EX<AFB EX<Toptk Bi{X*} Viel.n

EF V(X<A)B E F Obj(X)[l;u;:Bi{ X} et-n]

Ay 16,1994 8:20AM FOOL'94, Paris 13 Quly 16,1994 8:20AM FOOL' 94, Paris 14

(Sub Refl) (Sub Trans) (Val Subsumption) (va x)

EFA EFA<B EFRB<C ErFa:A EFA<B E'xAE Fo
EFA<A EFA<C Ea:B E xXAE FxA
(Sub X) (Sub Top) (Sub) (va Object) (I; distinct) (where A=0bj(X)[l;u;:B;{X} ieLn])
EX<AE ko EFA EFA'<<A EX<A'FB<B E xi:A Fb;:Bi{A} Viel.n

EX<AE FX<A EFA< Top EF V(X<:A)B <: V(X<:A")B’
(Sub Object) (I; distinct)
E,Y<:Obj(X)[l;u;:B;{ X} iet-mm] |y, B{Y} <:v; By{Y} Yiel.n

E F Obj(X)[l;u;:Bi{ X} Tel-mm] <: Obj(X)[l;u;":B;’{ X} iel-n]

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
Er-B EFB<B uve{o*} EFB <B ve{o}
EF°B<:°B EFuB<*B EFuB<:-B

Ay 16,1994 8:20AM FOOL' 94, Paris 15

EF (170 7 A

(Val Select) (where A’=0bj(X)[l;0;:Bi{ X} €t-n])
EFa:A EFA<A’ ue{%'} jeln

EFal;: Bi{A}
(va Override) (where A’ =0bj(X)[l;0;:B;{ X} iel-n])

EFa:A EFA<A E, Y<A, XY Fb:B{Y} wue{o} jeln
EFal=c¢(x)b: A

(Ve Fun2) (va Appl2)
EX<AFDb:B EFa:V(X<AB{X} EFA < A
EFAQb: V(X<:A)B Ela): B{A’}
Qly 16,1994 8:20AM FOOL' 94, Paris 16

Soundness

Our type system (including the rules based on structural assumptions!) is sound
for the operational semantics:

Theorem (Subject reduction)
If gka:C OFavv
thengtv:C.
(By induction on the derivation of Fav>v.)

Note: In the (Val Override) case, for example, the proof shows that at the point
where an override is reduced, the “intermediate” type A of the rule is a closed
type that is bound between two concrete object types. Hence A always turns out
to be a closed object type during evaluation, satisfying the structural subtyping
assumption.

Note: It is sufficient to consider empty environments. a“program” always starts
execution from an empty environment. In a “more operational” formulation of
the operational semantics, using stacks and closures instead of formal substitu-
tion, there is a corresponding theorem with an initial environment E and an as-
sociated initial stack S that matchesit.

Ay 16,1994 8:20AM FOOL'94, Paris 17

(Note) Obj vs. 1

Consider primitive object types with Self, Obj(X)[l;:Bi{X} i€-n], versus
HX)A{X}, where A{X}=[l;:B;{ X} i<1-n] are simple primitive object types.
Better at subtyping

HOOTBAX) tmm] <l p()l1 B {X} i)

Obj(X)[1;:Bi{ X} *et-mm] < Obj(X)[1;:Bi{ X} '<t-1]

Worse at isomorphism

C = Obj(X)[1;:B;{ X} iet-n] % Obj(X)[l;:B;{{ C} '<-"] (can't extract methods)
C = pIB{X} 4] = [1iB{C) 1]

Same for type unfolding on invocation

aC implies al; :Bj{C}

a:C implies al;:Bj{C}

Morerestrictive on override

Obj requires an overriding method to be “ parametric in Self”.

K has no such requirement.

July 16,1994 8:20AM FOOL' 94, Paris 18

Memory Ceélls

(A Compact “Movable Points’ Example)

1>

Mem Obj(X)[geto:Nat, seto:Nat — X]

>

m [get =0, set = ¢(x) A(n) x.get:=n]

In an explicitly typed version of the calculus, thislooks like:

m £ obj(Self=Mem)
[get=0,
set = ¢(self:Self) A(n:Nat) self.get:=n]
N.B. the code and typing is “natural”. In particular, there are not extensible
records, no coercions, no folding/unfolding, no higher-order operators, no special
subtyping relations, etc.
N.B. Obj(X)[get:Nat, set%:Nat — X] <: Obj(X)[get*:Nat, set*:Nat - X]
So, amemory cell can be “ protected”.

Ay 16,1994 8:20AM FOOL' 94, Paris 19

1>

Mem Obj(X)[geto:Nat, seto:Nat - X]

1>

[get = ¢(x)0, set = ¢(x) A(n) x.get:=n]

Show: m:Mem

[]g,xMemF 0: Nat Nat intro
[[T] ¢ xMem, nNatt x: Mem (Val x)
[T1] @ xMem,n:Nat+ Mem<: Mem (Sub Refl)
[TT] & x:Mem, n:Nat, Y<:Mem, zY F n: Nat (Val x)

‘D:l @, x:Mem, n:Nat - x.get=¢(z)n : Mem (Va Override)
[], xMem F A(n)x.get=q(z)n : Nat » Mem ~ intro

¢ F [get=¢(X)0, set=¢(X)A(n)x.get=¢(2)n] : Mem (Val Object)

Ay 16,1994 8:20AM FOOL' 94, Paris 20

Mem £ Obj(X)[geto:Nat, seto:Nat — X]
Show: A(m)m.get:=3 : Mem-Mem Easy.

Show: A() A(m) m.get:=3 : V(X<:Mem)X X Remarkable!

[T1] @ X<Mem,m:XFm:X (Ve x)

[TT] ¢ X<Mem, mXF X <:Mem (Sub X)
[TT] & X<Mem, m:X,Y<:X,x:Y F 3:Nat Nat intro
‘|:|:| @, X<:Mem, m:X F m.get=¢(x)3 : X (val Override)
[[]g, X<:Mem + A(m) m.get=¢(X)3: X - X - intro

¢ EAQ) A(m) m.get=¢(x)3: V(X<:Mem)X - X (va Fun2)

The overrideis “parametric in self” because it updates the current self, and hence
preserves whatever additional components self may have (including unknown
ones).

Mem £ Obj(X)[geto:Nat, seto:Nat - X]

Show: A(m) m.set = ¢(X)A(n)x.get:=0 : Mem - Mem
Not typable with ¢, even though there are no quantifiers!

Show: A() A(m) m.set = ¢(x)A(n)x.get:=0 : V(X<:Mem)X - X Remarkable!

Let Ey; =g, X<:Mem, m:X

EokFm: X (va x)

E, F X < Mem (Sub X)
(TT] [1] Eo, Y<IX, XY, mNat -x:Y (va x)

By Y<:X,xY,n:Nat Y <: Mem (Sub X, Trans)

LITTT] B, Y<X,xY,nNa,z<:¥,zZ F0:Na Naintro
‘ (LIT] Ey Y<:X, X:Y, n:Nat - x.get=¢(2)0: Y (Va Override)
[T1] Ey Y<X, XY FA(n)Xx.get=¢(2)0: Nat - Y — intro param.in !
‘ L[] E, F m.set=¢(x)A(n)x.get=¢(2)0 : X (Va Override)

[g, X<:Mem F A(m) m.set=c(x)A(Nx.get=c(2)0: X~ X - intro
¢ EAQ) A(m) m.set=¢(X)A(n)X.get=¢(2)0: V(X<:Mem)X - X (Va Fun2)

Ay 16,1994 8:20AM FOOL'94, Paris 21 July 16,1994 8:20AM FOOL' 94, Paris 22
Pre-Methods Classes as Collections of Pre-Methods
Types of the form We associate a class type Class(A) to each object type A. (We make the compo-
nents of Class(A) invariant, for smplicity.)
V(X<:A)X - B{X} (with B{X} covariant in X)
for A = Obj(X)[;u;:B;{ X} iet-n]
are useful for:

« overriding self-returning methods.
« more practicaly, for defining classes as collections of pre-methods.

A pre-method is a function that is later used to construct a method. E.g. for ob-
jectsof type A = Obj(X)[l;u;:Bi{ X} ¢, a pre-method for |; has type:
fIV(X<A)X - B{X}
With it, we can create objects as follows:
[..l;=c(fO() ...]1 A since sA Ff(a)(s) : B{A}

Pre-methods support specialization. A pre-method must work for a collection of
possible subtypes, parametrically in Self, so that it can be inherited and special -
ized to any of these subtypes. This is precisely what a type of the form
V(X<:A)X - B{X} expresses.

Ay 16,1994 8:20AM FOOL' 94, Paris 23

let Class(A) £ [new:A, |;:V(X<:A)X - B{ X} ieln|

The implementation of new is uniform for all classes: it produces an object of
type A by collecting all the pre-methods of the class and applying them to the
self of the new object.

c: Class(A) 2 [new = (Caasu) [1=0(sa) Clia)® "+,

;= ... ieLn]

Thel; are filled with pre-methods.
Classes arefirst-class values; x.new islegal for any x:Class(A).
Note: the pre-methods |; do not normally use the self of the class, but new does.

Ay 16,1994 8:20AM FOOL' 94, Paris 24

Inheritance as Pre-M ethod Reuse

We can now consider the inheritance relation between classes. Suppose we have
another type A’ <: A, with a corresponding class type Class(A’):

A = OBl B (X} <41
Class(A) £ [new:A, |;:V(X<:A)X - B{X} ieln]
A’ = Obj(X)[lu":B {X} et < A
Class(A’) = [new:A’, |;:.V(X<:A")X - B'[{ X} iet.n+m]

Inheritance works as follows.

(1) If cClass(A) thencl;: V(X<:A)X - B{{ X} isapre-method for Class(A).

(2) Further, if we happen to have V (X<:A)X - B{X} <: V(X<:A’)X - B;'{X}
thencl; : YV(X<:A")X - B;'{X} by subsumption.

(3) Thencl; isalegal pre-method for Class(A’). Hence c.l; can be reused to
build classes of type Class(A’): it can be inherited.

Theinclusionin (2) holdsin virtually all cases of interest. In particular, it holds if
A’ is an extension of A (i.e. B{{X}=B';{ X} Viel..n), asis normally the case
when building subclasses by extension of superclasses. However, in general in-
heritability, must be considered carefully.

Subclasses and Inheritability of Pre-M ethods
We define (under the previous AA’, with A’<:A):

Class(A’) subclass of Class(A) iff Viel..n. inheritablea a-(l;)
inheritables o (l;) iff X<A' O Bi{X}<:B/{X}

When |; isinheritable, then the inclusion in (2) holds easily. Now, when does in-

heritability hold? Lets us consider just the cases with v;=v;’:

« For invariant components, the inheritability of I; is guaranteed since in this
case B{X}=B’;{X}.

« For contravariant components, by a lemma we have that X<:A’ always im-
plies B{ X} <:B’{ X}; inheritability is guaranteed.

« For covariant components that are properly included, we do not have inheri-
tability. (We do, of course, if Bi{{ X}=B;’{ X}, which is often the case.)
Counterexample: if A’ = [I*:Nat] and A = [I*:Int], and ¢ : [new:A,
[:V(X<:A)X - Int], then c.| cannot be inherited into Class(A’) = [new:A’,
[:V (X<:A’)X - Nat], because it would produce a bad result.

In conclusion, covariant subtyping induces mild (but essential) restrictions in
subclassing. Invariant and contravariant subtyping induce no restrictions.

Ay 16,1994 8:20AM FOOL'94, Paris 25 July 16,1994 8:20AM FOOL' 94, Paris 26
Interlude: Explicitly-Typed Terms ab:= term
For simplicity, we have so far worked with untyped terms. However, there is a X _ varigble
version of the object calculus where terms have type annotations. obj (X=A)[l;=¢(x;:X)b; '<1-n] object (I; distinct)
al method invocation
al=¢(Y<:AX:Y)b method override
|ab:= term
X variable
obj (X=A)[l;=¢(x;:X)by 121 object (|; distinct) (val Object) (I; distinct) (where A=0bj(X)[l;0;:B,{X} L)
al method invocation E x:A Fb{A} :B{{A} Viel.n
al=¢(Y<Ax:Y)b method override E F obj(X=A)[l;=¢(X;:X)b{ X} L] : A
A(X<:A)b type abstraction (Val Slect) (where A’ =Obj(X)[l;0;:B,{X} i)
b(A) type application EFa:A EFA<A’ ue{°*} jeln
The rules for type formation and subtyping are identical. The typing rules for (Val Override) (where A’ =Obj(X)[1:0:B,{X} L))

terms and the operational semantics are adapted in a straightforward way. The
soundness theorem is correspondingly adapted.

Ay 16,1994 8:20AM FOOL' 94, Paris 27

EFa:A EFA<A E, Y<A, XY FDb{YX}:B{Y} ve{°%} jel.n|
EFali=¢(Y<A, xY)b{Y X} : A

Ay 16,1994 8:20AM FOOL' 94, Paris 28

Something like TOOPLE

We use the idea of classes as collection of pre-methods to “emulate” the syntax
and type rules of TOOPLE. Plus polymorphism and prototypes.

AB = Bonus
X, A-B V(X<:A)B
Object(X)[l;u;:B;{ X*} €] variance annotations
Class(X)[l;v;:Bi{ X*} ']

ab:= Bonus
X, A(x:A)b, b(a) A(X<:A)B, b(A)
class (x:X<:A) I;=b; i< end
extend awith (x:X<:A) I;=b; i< end
overrideaby (x:X<:A) |;=b; i€ end

Object Types

Object(X)[l;u;:B;{ X} iel-n] u

2 Obj(X)[lju;:Bi{ X} fetn] (Identically, for now)

Self must occur only covariantly (i.e., no binary methods, but see |ater).

For a“normal” o0-o language, we may use v=° for value fields (updatable, non-
specializable) and v=* for method fields (invoke-only, specializable).

Still, read-only (but specializable) value fields, and overridable (but non-special -
izable) method fields are supported just as well.

Not much use for v=-, except for theoretical encodings.

Derived Rule for Object Types (trivially)

(Type Object) (I; distinct)
EX<Topt B;{X*}
E F Object(X)[l;u;:B;{ X} fel-n]

new(a) object (x:X=A) |;=b; il end

al

agets[li=b; '] modify aby (x:X<:A) I;=b; i< end

Class-based ~ BOTH - Prototype-based
it s FOOL"94, Paris 2 sy 16,1904 80AM FooL o4, paris .
Class Types Classes

Let A = Object(X)[l,u;:B,{X*} i,

" Class(X)[I;0;:B;{ X*} iel-n] "

2 [new*A, 1%V (X<:A)X - B{X} ieln]

No subtyping relation on class types: A occurs co- and contravariantly.
Both new and |; are covariant (invoke-only), for simplicity.

To make some methods non-inheritable, hide them by subsumption in the class
type, but keep them visible in the object type. Classes with no inheritable meth-
ods (of the form [new*:A]) enjoy covariant subtyping.

Derived Rulefor Class Types (almost trivially)

(TypeClasy) (I; distinct)
EX<:Topt B;{{X*}
E+ C|&(X)[|IUIBI{X} iel..n]

Ay 16,1994 8:20AM FOOL' 94, Paris 31

Let A = Object(X)[l;v;:Bi{ X} <11,
C = Class(X)[lju;:Bi{ X} 'L,
create, (€) = obj(X=A)[l;=¢(s:X) c.li(X)(s) ‘<L

class(x:X<:A) |;=b;{ X ,x} iel-nend H

£ obj(Y=C) [new = g(c:Y) create(c),
[= AX<:A) A(x:X) b{X,x} i€t-n]

A classisarepository of pre-methods, I;, with a method to generate objects, new.

The code for new is uniform; create,(c) fetches all the pre-methods of ¢ and
packages them into an object by applying them to the object’s self.

Derived Rulefor Classes

E, X<A,xX Fb{Xx} :B{X} Viel.n
E class(x:X<:A) [;=b{Xx} end : C

Ay 16,1994 8:20AM FOOL' 94, Paris 32

Derivation of the Rulefor Classes

[[] E cC,sA Fcli(A)S : B{A} Easy
[]E cC F obj(X=A)[l;=¢(s:X) cl;(X)(9) i< : A (Val Object)
[1] E cC, X<A, x:X F b{Xx} : B{{X} (Hyp., Weaken)
[]E, c.CF AX<A) A(X:X)bi{ XX} : V(X<:A)X - B{{X} Easy
E I obj(Y=C)[new=¢(c:Y)create,(c), li=A(X<:A)ACX)bi{ X x} iel-n]
D [newt A, IFV(X<A)X - B{ X} iet.n] =C (Va Object)

Ay 16,1994 8:20AM FOOL'94, Paris

Subclasses by Class Extension
Let A = Object(X)[l;u;:B;{ X} iel.n],
A’ = Object(X)[l;u;:B;{ X} iel-mm] <: A
C = Class(X)[l;u;:B;{ X} iet-n],
C' = Class(X)[l;u;:B;{ X} iel-nm] subclassing from C.

| extend awith(x:X<:A") I,=b,{ X x} iemL.nm end |
A

£ [new = ¢(c:C) create, (C),
li=al; €0, =N (X<AAX)b{ X x} Temmm]

Derived Rulefor Class Extension
EF a:C E X<A, xXFb{Xx}:Bi{X} Vientl.n+tm
E I extend awith(x:X<:A") |;=b{ X x} ieml.nmend ; C'

Quly 16,1994 8:20AM FOOL' 94, Paris 34

Derivation of the Rule for Class Extension

[T] EcC,sA Fcli(A’)9):B{A’} Viel.n+tm Easy
[JE c:C F obj(X’=A")[l;=¢(sX’) cli(X’)(9) iet-mm] : A’ (Val Object)
[T] EcC F al: VX<A)X-B{X} Viel.n (val Select)

[JE cC F alj: V(X<A)X-B{X} Vieln (Val Subsum.)
[[] EcC,X<A, xXFB{Xx}:B{X} Vien+l.n+m (Hyp., Weaken)
[]E cC F AX<ANNXX)b{X X} : V(X<A)X 5 B{X} Easy

EF obj(Y'=C")[new = ¢(c:Y") [li=¢(s:A") c.li(A")(s) 'et-mm],

li=al i€ln, LEAX<AAGCX)b X X} i)
[new:A’, [V(X<A)X - B{X} ieLnm] = C (Val Object)
Ay 16,1994 8:20AM FOOL' 94, Paris

Subclasses by Class Overriding
Let JJ1..n, K=(1..n)-J, where Jare the overridden indices,
A=Object(X)[l;v;:Bi{ X} <t
A’ =0bject(X)[1;u;:Bi{{ X} €K, ;B { X} 1€¢9] <t A
C = Class(X)[l;u;:B;{ X} iel.n],
C' = Class(X)[l;u;:Bi{ X} K ,u;":B;’{ X} eJ] subclassing from C

override aby(x:X<:A’) I;=b,{ X x} 1<) end |

A

£ [new = ¢(c:C) create,. (C),
li=al; 1, =N (X<AT) Ax:X) bi{ XX} 1]

Derived Rule for Class Overriding

EFa:C EF A <A EX<A,xXFb{Xx}:B'{X} Vie

EF overrideaby(x:X<:A') l;=b;{{X x} i< end: C

Note: we can specialize method types on overriding, since:
A’'<A alows v/'B;’ <:u;B; ¥ E.g.y’'=v;=* dlowsB;'<:B; (proper).

But we cannot inherit methods with a specialized type: the B; i<k do not change.
C.f. theinheritability condition.

Qly 16,1994 8:20AM FOOL' 94, Paris 36

Derivation of the Rule for Class Overriding

[]] EcC,sA Fcli(A’)9:B{A’} VieK Easy

[[] EcC,sA Fcli(A')9:B'{A"} VieJd Easy

[]E cC Fobj(X'=A")[li=g(sX") cli(X*)(s) i€l : A’ (Va Object)
[[] EcC F al: VX<A)X - B{X} VieK (Val Select)
[]E cC F al;: VX<A)X - B{X} VieK (val Subsum.)
[T] E cC,X<A", xXFB{Xx} :B{X} VieJ (Hyp., Weaken)

[]E c:C F AX<ANAXX)b{X X} : V(X<A)X - B{X} Easy
EFobj(Y'=C")[new = ¢(c:Y") [li=¢(s:A") C.li(A")(s) "<+,
li=al; i, =EAX<ADAXX)b{ X X} €]
C[new*: A’ IFV(X<A)X 5 Bi{ X} fetmm] =C (Val Object)

For override, we have to check that al; : V(X<:A")X - B{{ X} for ieK. We can
obtain this by subsumption with V(X<:A)X - B{X} <: V(X<:A")X - B{{X}. The
bounds are included, since A’<:A. The bodies are identical. So the assumption
A’<:A is needed to make sure that the non-overridden methods still work.

Moreover, A’<A enforces, for ieJ, B;'<:B; for overridden covariant fields, etc.
This constrains the result types of the new methods.

Note that there is no subtyping relation between the original class type and the
overridden class type.

Ay 16,1994 8:20AM FOOL'94, Paris 37

Object from Classes

new(a) "

£ anew

Note that ¢ can be a variable: classes can be passed around as values as long as
we know their class type.

Subsumption can be applied to classes (to hide pre-methods so that they cannot
be inherited) and to objects (so they can be reused in less demanding contexts).

Derived Rule for Object Creation

E a: Class(X)[l;v;:B; i€L-n]
EF new(a) : Object(X)[l;u;:B; LN

Object Subsumption (of course)

Erra: A EFA < B
Era: B

July 16,1994 8:20AM FOOL' 94, Paris 38

Objects (not in TOOPLE, but used in its operational semantics)
Let A = Object(X)[l;u;:Bi{ X} iel-n]

Method | nvocation

al 2 H

| object(x:X=A) ,=b{X x} inend 2

al

obj(X=A) [I; = ¢(x:X) b{ X ,x} ieLn]

Derived Rule for Objects (TOOPLE-style)

Derived Rule for Method | nvocation

E, X<A,xX Fb{Xx}:B{X} Viel.n
E I object(x:X=A) l;=b{X,x} end : A

EFa:A EF A < Object(X)[l;u;:B,{X} i€t-n]
E|_a.|i . Bl{A}

A Stronger Derived Rulefor Objects

E,xA Fb{AX} :B{A} Viel.n
E I object(x:X=A) [;=b{X,x} end : A

Building objectsis easier than building classes!

Ay 16,1994 8:20AM FOOL' 94, Paris 39

Ay 16,1994 8:20AM FOOL' 94, Paris 40

Object Modification (Update/Override) (Update only in TOOPLE)
Let JO1.n,

A’ =Object(X)[1;0;:Bi{ X} <1,

ve{°,} Vield

” modify aby(x:X<:A) I;=b;{ X x} e end H
£ alisqX<AXx:X)b{X X} i)

(asequence of overrides)

agets[l;=b; <]
2 modify aby(x:X<:A) l;=b; i< end x,X fresh

Derived Rule for Object Modification
EF a:A EFA<A EX<AxXEb{Xx}:B{X} Vield
E F modify aby(x:X<:A) I;=b{ X,x} i<end: A

Ay 16,1994 8:20AM FOOL'94, Paris 41

Comparisonswith TOOPLE/TOIL

o Our rules and TOOPLE's rules are rather different in presentation. TOOPLE
has the <: and <# subtyping relations. We have a single <: relation with
structural subtyping and unrestricted subsumption. Thus we need just asingle
quantifier for polymorphism. We have asingle rule per construct.

o Still, the TOOPLE primitive rules and our derived rules end up typing virtu-
aly the same set of programs. We feel that the differences are much more in
presentation than in intent or effect.

« We prove soundness of a small kernel language (only 5 cases in the proof!).
We can then obtain many TOOPLE-like variations as derived systems, with-
out much effort. E.g. we automatically get TOOPLE plus polymorphism and
delegation.

« We can adopt an imperative semantics, instead of a functional one, as shown
elsewhere. We have proven soundness of our typing rules (including poly-
morphism) for that semantics. By the same encoding of classes, we obtain
Something like PolyTOIL.

July 16,1994 8:20AM FOOL' 94, Paris 42

Inheritable Binary M ethods

The main, so far untreated, difference with TOOPLE is that it admits contravari-
ant occurrence of Self, allowing, e.g., for limited binary methods.

« The<# relation works for object types with binary methods, for which thereis
no useful <: relation.

« Once an object with binary methods is created, it can be used but cannot be
subsumed.

« However, the <# relation alows binary methods to be inherited in subclasses.

N.B. true multi-methods can be incorporated, e.g. as suggested by Castagna
[G.Castagna 1994], but must rely on some form of run-time typechecking.

Ay 16,1994 8:20AM FOOL' 94, Paris 43

Comparisonswith Pierce-Turner

« Pierce and Turner [Pierce, Turner 1994] propose an encoding of object types
of the form:

PiTu 2 3(X)X x (X »(I;:B{X} iel-n)

o Our rules for Obj(X)[l;:B;{ X} €1-n] were inspired by an encoding [Abadi,
Cardelli 1994a] based on first-order object types, of the form:

AbCa £ p(Y) I(X<Y) [I:B{X} i<t 1]

« A Dec 1988 email message by Luca Cardelli to John Mitchell “Methods have
bounded existential type” discusses a Quest program implementing the encod-
ing L(Y) By x (I;:A(X<:Y)X (X - Bi{ X} i€2-n)), which can be written as:

>

Ca H(Y) IX<Y) X x (X o (1B X} ietmy)

Elements of this type are constructed as:
a: Ca £ y(self:Ca) pack X<:Ca=Cawith (salf, A(x:X) (I;=b;{ X ,x} iel-n))

Are these three encodings (all supporting subtyping) at all related?

Ay 16,1994 8:20AM FOOL' 94, Paris 44

We may see the Catype as an analogue of the PiTu type where the “state” is the
entire object, including the methods. This explains the presence of pu(Y)3(X<:Y),
telling us that the representation is a subtype of the entire object (in fact, it isex-
actly the entire object in most cases).

How is the bounded quantifier used? In PiTu there is a difficulty with method in-
vocation: the result type obtained inside the abstraction is B;{ X}; we must con-
vert B;{X} to B;{{PiTu} to exit the abstraction. Pierce and Turner solve this
problem by using functorial strength to coerce between those types.

The solution in Cais much simpler. Since X<:Cais the given bound and B;{ X}
ismonotonic in X, we have B;{{ X} <: B;{Ca}. Hence we can exit the abstraction
just by subsumption; no repackaging is needed.

Ay 16,1994 8:20AM FOOL'94, Paris 45

The Ca encoding was not considered further because, as pointed out in the 1988
correspondence, it has a serious flaw. Since objects are defined recursively, up-
date cannot work properly: the methods are bound to self, and cannot be properly
rebound to a different self because of the abstraction.

PiTu does not have this problem because the state is decoupled from the meth-
ods. Hence objects need not be defined recursively, and the representation type
does not itself contain a troublesome abstraction.

The update problem in Ca was solved via the first-order object types of [Abadi,
Cardelli 1994b]. There, objects are not defined recursively, have sdlf built-in, and
support update. Hence an object type:

[1:B{X} i<t]
can be used to replace the structure:

XX (X = (1iBi{ X} iet-m)
Thisway, we obtain exactly the AbCatype from the Catype.
The AbCatype still avoids the need for functorial strength.

July 16,1994 8:20AM FOOL' 94, Paris 46

Asacuriosity, we can use the AbCa type as the representation type of a PiTu en-
coding:

pack X=AbCawith ([l;=¢(x;)k; €], A(x:X) (li=xI;)
D AX) X x (X = (1B { X} etny)
obtaining a PiTu implementation where the state is the entire object.

However, again, we need to apply the functorial strength on selection (I do not
know that this existsin our type system).

Ay 16,1994 8:20AM FOOL' 94, Paris 47

CONCLUSIONS

« We offer a striking example of how operational semantics can justify strong
notions of subtyping.

« Structural subtyping assumptions have been used before, but only in first-or-
der contexts [Bruce 1993; Cardelli, Mitchell 1994]. These assumptions do not
seem important for ordinary types (although, in retrospect, we can take advan-
tage of them), but are crucial for object types.

« Wegive asmall and fully adequate second-order theory of object types. We
can express object types, class types, and method specialization, in the spirit
of [Mitchell 1990; Bruce 1993], and we analyze inheritability. We support
polymorphism, but we avoid the complications of higher-order typing and row
variables.

« We cover both class-based and delegation-based frameworks. Delegation-
based frameworks are essntially built-in. We demonstrate the expressibility of
class-based frameworks by closely emulating TOOPLE.

Ay 16,1994 8:20AM FOOL' 94, Paris 48

REFERENCES

[Abadi, Cardelli 1994a] M. Abadi and L. Cardelli. A theory of primitive objects: second-order
systems. Proc. ESOP’ 94 - European Symposium on Programming. Springer-Verlag.

[Abadi, Cardelli 1994b] M. Abadi and L. Cardelli. A theory of primitive objects: untyped and
first-order systems. Proc. Theoretical Aspects of Computer Software. Springer-Verlag.

[Bruce 1993] K. Bruce. A paradigmatic object-oriented programming language: design, static
typing, and semantics. Technical Report No. CS-92-01, revised. Williams College. To appear
in the Journal of Functional Programming.

[Bruce, Longo 1990] K.B. Bruce and G. Longo, A modest model of recor ds, inheritance and
bounded quantification. Information and Computation 87(1/2), 196-240.

[Cardelli, Mitchell 1994] L. Cardelli and J.C. Mitchell, Operations on records. In Theoretical
Aspects of Object-Oriented Programming, C.A. Gunter and J.C. Mitchell, ed. MIT Press. 295-
350.

[G.Castagna 1994] G.Castagna. Covariance and contravariance: conflict without a cause. LIENS-
DMI. To appear.

[Mitchell 1990] J.C. Mitchell. Toward atyped foundation for method specialization and
inheritance. Proc. 17th Annual ACM Symposium on Principles of Programming Languages.

Ay 16,1994 8:20AM FOOL'94, Paris 49

[Pierce, Turner 1994] B.C. Pierce and D.N. Turner, Simple type-theor etic foundations for object-
oriented programming. Journal of Functional Programming 4(2).

Quly 16,1994 8:20AM FOOL' 94, Paris

