An Imperative
Object Calculus

Martin Abadi and Luca Cardelli

Digital Equipment Corporation
Systems Research Center

FASE 95

FASE 95 May 31, 1995 17:01 am.

This document was created with FrameMaker 4.0.4

Outline

Object calculi are formalisms at the same level of abstraction as A-calculi, but based ex-
clusively on objects rather than functions.

® An untyped object calculus.
® An imperative operational semantics.
® A type system.

— Self types.

— Variance annotations.

Structural subtyping assumptions.

Polymorphism.
® (Classes and inheritance.

¢ Typing soundness, based on store typings.

TASE 95 May 31, 1995 1101 am Tor23

New from last year:

¢ Imperative/operational semantics (instead of functional/denotational).
e Primitive Self type (instead of encoded).

® Primitive variance annotations (instead of encoded).

e Structural subtyping assumptions (which are not denotationally sound).

¢ Soundness based on subject reduction (rather than models).

¢ Class encodings, requiring polymorphism and structural subtyping assumptions.

Syntax and Informal Semantics

The evaluation of terms is based on an imperative operational semantics with a global
store; it proceeds deterministically from left to right.

Syntax of terms

ab = term
x variable
[Li=¢(x:)b; fel.n] object (I; distinct)
al method invocation
al=c(x)b method update (imperative)
letx=ainb let (sequential evaluation)
clone(a) cloning (shallow copy)

FASE 95 May 31, 1995 1101 am

30123

e An object is a collection of components l;=¢(x;)b;, for distinct labels (method names)
l; and associated methods ¢(x;)b;. The methods are parameterless: x; is a name for self
within b;.

o The letter g (sigma) is a binder; it delays evaluation of the term to its right.

The let and method update constructs may be combined into a single construct, for
more expressive typing (see FASE proceedings).

FASE 95 May 31, 1995 1101 am Tor23

A Small Example

We define a memory cell with get, set, and dup (duplicate) components:

[get = false, field

set = g(self) Mb) method with parameter
self.get :=b, field update

dup = ¢(self)
clone(self)] self-cloning

Some new constructions are used here:
e Procedures (A), which can be encoded.
e Booleans, which can be encoded much as in the A-calculus.

e Fields and field update, which can be desugared as follows:

let y1 = false
in [get = g(self) y1,
set = g(self) M(b)
let y» = b self.get = (self) yo,
o]

TASE 95 May 31, 1995 11:01 am 50123

Procedures

Consider an imperative call-by-value A-calculus that includes abstraction, application,
and assignment to A-bound variables. E.g.: (A(x) x:=x+1)(3) is a term yielding 4.

Translation of procedures

€xDp £ p(x) if xedom(p), and x otherwise

1>

(x:=ad, x.arg:=(ad,

Mx)b), & [arg = c(2)z.arg,
val = g(x)«b»p(xex.arg}]

(clone({b)p).arg:=(a),).val

>

>

«b(u)»p

Low-level interpretation

o The translation of a procedure A(x)b is a stack frame with an uninitialized (divergent)
argument slot (arg), and a initial program counter (val) that points to code accessing
the argument slot through a frame pointer (x).

o The translation of a procedure call allocates a fresh stack frame (by clone), fills the ar-
gument slot (by :=), and jumps to the code (by .val).

TASE 95 May 31, 1995 1101 am Gol 23

Operational Semantics

The semantics relates terms to results in a global store.

Notation
1 store location (e.g., an integer)
v = [l=y " object result(l; distinct)
6 u= 1(c(r)b;,Sp) € store for closures(1; distinct)
S u= xpeu; el stack for results (x; distinct)

Well-formed store judgment: ok o
Well-formed stack judgment: c.Sko
Term reduction judgment: .Sk av>v.¢’

FASE 95 May 31, 1995 1101 am Tor23

Sample rules

(Red Object) (I;\; distinct)
0:Sto 1g¢dom(c) Viel.n

-8 F [li=g(xi)b; 1] v [Ii=; "] « (0, 1—>(c(x:)b;, S) ")

(Red Select)
o:Staw =" """’ ()=(c(x)b;S) xgdom(S)) jel.n
o . S’, xj'_)[li:li ielun] = b] ws 0.6”

6.5t aliv>v.c”

(Red Simple Update)
o.Skav [l=;"".¢’ yedom(c’) jel.n

0.8 Fal=g()b v [li=y; 1" « " ()b, S)

N.B. The term:
[1=¢(x) x1l:=x].1

creates a loop in the store. An attempt to read out the result by “inlining” the store and
stack mappings would produce the infinite term:

[I=¢(x)[I=¢(x)[I=¢(x)...]1]

FASE 95 May 31, 1995 1101 am Tor23

A Type System

We develop a type system for the imperative calculus. We treat Self types, variance an-
notations, and structural subtyping assumptions. Simpler (and less expressive) type
systems could also be defined.

Syntax of types
AB:= type
type variable

Top the biggest type

Obj(X)[1;0:B; 1" object type (v; € {7°,*})
Well-formed environment judgment: EtFo
Well-formed type judgment: E-A
Subtyping judgments: E-A<B E-FvA<:v'B
Term typing judgment: Eta:A

TASE 95 May 31, 1995 11:01 am So123

Self Types

Intent: memory cells can be typed as:

MemDup & Obj(X)[get: Bool, set: Bool—X, dup: X]
In general, let:

A = Obj(X)[lviB{X} <"

o Ais the type of those objects with methods named /; and result types Bi{A}.

¢ The binder Obj binds a Self type named X (which is known to be a subtype of A).
Moreover:

o The v; are variance annotations.

o The variable X may occur only covariantly in the types B;.

Notation
- B{X} means that X may occur free in B.
— B{X*} means that X occurs covariantly in B.

B{A} is the result of substituting A for X in B{X}, where X is clear from context.

TASE 95 May 31, 1995 1101 am Toor 23

The subtyping rule for object types with Self asserts, as usual, that a “longer” object
type is a subtype of a “shorter” one.

A simplified rule for object types without variance annotations reads:

E,X<:Top - B{X"} Viel.n+m
E F Obj(X)[1:BAX} <™ <: Obj(X)[1:Bi{X]} *1-"]

For example:

Mem
MemDup

MemDup <: Mem

Obj(X)[get: Bool, set: Bool—X]
Obj(X)[get: Bool, set: Bool—X, dup: X]

> li>

The type Obj(X)[...] can be viewed as a recursive type p(X)[...], but with differences in
subtyping that are crucial for object-oriented applications. The subtyping rule above is
unsound with recursive types instead of Self types (i.e. with u instead of Obj), in pres-
ence of subsumption and update.

FASE 95 May 31, 1995 1101 am TTor2s

Note: Counterexample

A

memDup : MemDup £
[get = c(self) let x = self.set(false).dup in false,
set = g(self) Mb) self,
dup = (self) self]

mem : Mem £ memDup since MemDup <: Mem
mem.set := Mb) [get = false, set = c(self) Mb) self]
mem =
[get = ¢(self) let x = self.set(false).dup in false,
set = g(self) Mb) [get = false, set = g(self) Mb) self],
dup = (self) self]

mem.get FAILS!

FASE 95 May 31, 1995 1101 am T2 o123

Variance Annotations

Again, let:
A = Obj(X)[l,’Di:Bi{X} id""]

Each v; is a variance annotation; it is one of the symbols -, °, and *, for contravariance,
invariance, and covariance, respectively.

Intuitively, * means read-only, ~ means write-only, and ® means read-write.

e * prevents update, but allows covariant component subtyping.

® ~ prevents invocation, but aliows contravariant component subtyping.

¢ °allows both invocation and update, but requires exact matching in subtyping.

By convention, any omitted v’s are taken to be equal to °.

A simple object type:
[1:B; "]

is an abbreviation for Obj(X)[I,°:B; iel.n] where X does not appear in any B;.

TASE 95 May 31, 1995 11:01 am 30123

Variance Rules

Because of variance annotations, we use an auxiliary subtyping judgment:

(Sub Object)
E,Y<:Obj(X)[li1)i:B,-{X} iel..n+m] = V; B,{{Y}} < 'l)," B,"{{Y}} Viel..n

E F Obj(X)[10;:B{ X} -] <: Obj(X)[};0;/:B;/1X} 1]

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E+B EFB<:B’" ve{°"} EFB'<:B ve{°7}
EF°B<:°B EFvB<:*B’ EFvB<:"B’

¢ (Sub Invariant) An invariant component on the right requires an identical one on the
left.

¢ (Sub Covariant) A covariant component type on the right can be a supertype of a cor-
responding component type on the left, either covariant or invariant. Intuitively, an
invariant component can be regarded as covariant.

¢ (Sub Contravariant) A contravariant component type on the right can be a subtype
of a corresponding component type on the left, either contravariant or invariant. In-
tuitively, an invariant component can be regarded as contravariant.

TASE 95 May 31, 1995 1101 am ot 23

Example: Procedure Types

A procedure with argument of type A and result of type B, encoded as shown earlier,
can be given type:

[arg®: A, val®: B]

By the subtyping rules for variances we obtain:
[arg®: A, val®: B]l <: [arg™: A, val®: B]

By subsumption, any procedure has the type on the right. Therefore, we can take:
A—B & [arg: A, val*: B]

Which yields a defined notion of procedure type that is contravariant in the argument
and covariant in the result type.

FASE 95 May 31, 1995 1101 am TSor23

Example: State Encapsulation
One can hide certain object components from view simply by subsumption; this tech-
nique can be used to encapsulating state.

Variance annotations enable more sophisticated forms of encapsulation.

Mem &
Obj(X)[get°:Bool, set*:Bool—X]
mem : Mem & N.B. get is both read and written

[get = false,
set = g(self) Mb) self.get :=b]

When considering a memory cell as an object encapsulating state, it is natural to expect
both components of Mem to be protected against external update. Take:

ProtectedMem 2
Obj(X)[get*:Bool, set*:Bool—X]

Since Mem <: ProtectedMem, any memory cell can be subsumed into ProtectedMem and
thus protected against updating from the outside.

Note that the set method can still update the get field “from the inside”.

FASE 95 May 31, 1995 1101 am Toor 23

Polymorphism
Additional syntax of terms

ab = term
... (as before)
)b type abstraction
a() type application

N.B. M)b is the type-erasure of MX<:A)b; a() is the type-erasure of a(A).

Additional results

v ou= result
(as before)

(MOB,S) type abstraction result

Additional term reductions (...)
Additional syntax of types

AB:= type
(as before)
V(X<:A)B bounded universal quantifier

Additional typing rules (...)

TASE 95 May 31, 1995 11:01 am 70123

Structural Subtyping Assumptions

(Val Field Update Non-Structural) (where A = Obj(X)[l;0:Bi{X} 1-"])
EFa:A EY<AFb:B{Y] velo} jeln
Etal:=b:A

(Val Field Update) (where A’= Obj(X)[l;0:B4{X} ")
EFa:A EFA<A’ EY<AFb:Bf{Y} vel’} jel.n
Etalz=b:A

Mem £ Obj(X)[get®:Bool, set®:Bool—X]

E, X<:Mem, x:X, b:Bool F x : X

E, X<:Mem, x:X, b:Bool - X <: Mem

E, X<:Mem, x:X, b:Bool b : Bool

E, X<:Mem, x:X, b:Bool |- x.get:=b : X

E, X<:Mem F A(x) A(b) x.get:=b : X—Bool—>X

E F M) Mx) Mb) x.get:=b : V(X<:Mem) X—Bool—X

N.B. We have obtained a non-trivial term of type V(X<:Mem) X—B{X}. The non-struc-
tural rule would only yield V(X<:Mem) X—B{Mem}.

TASE 95 May 31, 1995 1101 am ROt 23

Classes as Collections of Pre-Methods

We define classes as collections of reusable pre-methods.

¢ A pre-method is a procedure that is later used to construct a method.

¢ Each pre-method must work for all possible subclasses of a given class, so that it can
be inherited and instantiated to any of these subclasses.

¢ To this end, pre-methods have types of the form V(X<:A)X—Bi{X}.

We associate a class type Class(A) to each object type A:

It A = ObBj(X)[lv:Bi{X} "]
then Class(A) £ [new:A, [:¥(X<:A)X—B{X} 1]

The implementation of new is uniform for all classes: it produces an object of type A by
collecting all the pre-methods and applying them to the self of the new object.

c:Class(A) 2 [new=c(z) [l=c¢(x) zLi)(x) "], Li=.., ..., L,=..]

FASE 95 May 31, 1995 1101 am Toor 23

Classes

Class(Mem) =
[new: Mem,
get: V(X<:Mem) X—Bool,
set: V(X<:Mem) X—Bool—X]

memClass: Class(Mem) 2
[new = (2) [get = o(x) z.get()(x), set = ¢(x) z.set()(x)],
get = M) Mx) false,
set = M) Mx) Mb) x.get:=b]

m:Mem 2 memClass.new

Note that the set pre-method receives the desired type (as shown earlier) thanks to the
structural subtyping assumptions.

FASE 95 May 31, 1995 1101 am 200123

Subclasses and Inheritance

Class(MemDup) =
[new: MemDup,
get: V(X<:MemDup) X—Bool,
set: ¥(X<:MemDup) X—Bool—X,
dup: V(X<:MemDup) X—X]
memDupClass: Class(MemDup) £
[new = ¢(z) [get = ¢(x) z.get()(x), set = c(x) z.set()(x), dup = ¢(x) z.dup()(x)],
get = memClass.get,
set = memClass.set,
dup = M) Mx) clone(x)]

Note that:
memClass.set : V(X<:Mem)X—Bool—X

V(X<:Mem)X—Bool—»X <: V(X<:MemDup)X— Bool—X
by subsumption, memClass.set : ¥(X<:MemDup)X—Bool—X

therefore, memClass.set can be reused as a pre-method of Class(MemDup).

TASE 95 May 31, 1995 11:01 am Tlor23

Soundness

Store types

M == Obj(X)[I0:BidX} <1-"=j method type (jel..n)

L= M el store type (1; distinct)
Type stacks

T = Xp>A;*r type stack (A; closed types)

Result typing judgment: Fv:A (A closed)

Stack typing judgment: TFS.T:E

Store typing judgment: ZF o

N.B. The fact that values are typed with respect to store types (and not stores) allows
us to deal with cycles in the store.

Theorem (Subject Reduction)

Ifgta:Aand g.gtav>v.c
then there exist a type A" and a store type Xt such that
' Eoand I Fou: AT, withg - AT <: A,

O

TASE 95 May 31, 1995 1101 am 20123

Conclusions

® We have described a basic calculus for imperative objects and their types.

¢ Because of its compactness and expressiveness, this calculus is appealing as a kernel
for object-oriented languages that include subsumption and Self types.

o The calculus is not class-based, since classes are not built-in, nor delegation-based,
since the method-lookup mechanism does not delegate invocations. However, the
calculus models class-based languages well: classes and inheritance arise from ob-
ject types and polymorphic types. In delegation-based languages, traits play the role
of classes; our calculus can model traits just as easily as classes, along with dynamic
delegation based on traits.

FASE 95 May 31, 1995 1101 am 730123

