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Outline

Object calculi are formalisms at the same level of abstraction as A-calculi, but based ex-
clusively on objects rather than functions.

® An untyped object calculus.
® An imperative operational semantics.
® A type system.

— Self types.

— Variance annotations.

Structural subtyping assumptions.

Polymorphism.
® (Classes and inheritance.

¢ Typing soundness, based on store typings.
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New from last year:

¢ Imperative/operational semantics (instead of functional/denotational).
e Primitive Self type (instead of encoded).

® Primitive variance annotations (instead of encoded).

e Structural subtyping assumptions (which are not denotationally sound).

¢ Soundness based on subject reduction (rather than models).

¢ Class encodings, requiring polymorphism and structural subtyping assumptions.

Syntax and Informal Semantics

The evaluation of terms is based on an imperative operational semantics with a global
store; it proceeds deterministically from left to right.

Syntax of terms

ab = term
x variable
[Li=¢(x:)b; fel.n] object (I; distinct)
al method invocation
al=c(x)b method update (imperative)
letx=ainb let (sequential evaluation)
clone(a) cloning (shallow copy)
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e An object is a collection of components l;=¢(x;)b;, for distinct labels (method names)
l; and associated methods ¢(x;)b;. The methods are parameterless: x; is a name for self
within b;.

o The letter g (sigma) is a binder; it delays evaluation of the term to its right.

The let and method update constructs may be combined into a single construct, for
more expressive typing (see FASE proceedings).
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A Small Example

We define a memory cell with get, set, and dup (duplicate) components:

[get = false, field

set = g(self ) Mb) method with parameter
self.get :=b, field update

dup = ¢(self )
clone(self )] self-cloning

Some new constructions are used here:
e Procedures (A), which can be encoded.
e Booleans, which can be encoded much as in the A-calculus.

e Fields and field update, which can be desugared as follows:

let y1 = false
in [get = g(self) y1,
set = g(self ) M(b)
let y» = b self.get = (self ) yo,
o]
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Procedures

Consider an imperative call-by-value A-calculus that includes abstraction, application,
and assignment to A-bound variables. E.g.: (A(x) x:=x+1)(3) is a term yielding 4.

Translation of procedures

€xDp £ p(x) if xedom(p), and x otherwise

1>

(x:=ad, x.arg:=(ad,

Mx)b), & [arg = c(2)z.arg,
val = g(x)«b»p(xex.arg}]

(clone({b)p).arg:=(a),).val

>

>

«b(u)»p

Low-level interpretation

o The translation of a procedure A(x)b is a stack frame with an uninitialized (divergent)
argument slot (arg), and a initial program counter (val) that points to code accessing
the argument slot through a frame pointer (x).

o The translation of a procedure call allocates a fresh stack frame (by clone), fills the ar-
gument slot (by :=), and jumps to the code (by .val).
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Operational Semantics

The semantics relates terms to results in a global store.

Notation
1 store location (e.g., an integer)
v = [l=y " object result(l; distinct)
6 u= 1(c(r)b;,Sp) € store for closures(1; distinct)
S u= xpeu; el stack for results (x; distinct)

Well-formed store judgment: ok o
Well-formed stack judgment: c.Sko
Term reduction judgment: .Sk av>v.¢’
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Sample rules

(Red Object)  (I;\; distinct)
0:Sto 1g¢dom(c) Viel.n

-8 F [li=g(xi)b; 1] v [Ii=; "] « (0, 1—>(c(x:)b;, S) ")

(Red Select)
o:Staw =" """’ ()=(c(x)b;S) xgdom(S)) jel.n
o . S’, xj'_)[li:li ielun] = b] ws 0.6”

6.5t aliv>v.c”

(Red Simple Update)
o.Skav [l=;"".¢’ yedom(c’) jel.n

0.8 Fal=g()b v [li=y; 1" « " ()b, S)

N.B. The term:
[1=¢(x) x1l:=x].1

creates a loop in the store. An attempt to read out the result by “inlining” the store and
stack mappings would produce the infinite term:

[I=¢(x)[I=¢(x)[I=¢(x)...]1]
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A Type System

We develop a type system for the imperative calculus. We treat Self types, variance an-
notations, and structural subtyping assumptions. Simpler (and less expressive) type
systems could also be defined.

Syntax of types
AB:= type
type variable

Top the biggest type

Obj(X)[1;0:B; 1" object type (v; € {7°,*})
Well-formed environment judgment: EtFo
Well-formed type judgment: E-A
Subtyping judgments: E-A<B E-FvA<:v'B
Term typing judgment: Eta:A
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Self Types

Intent: memory cells can be typed as:

MemDup & Obj(X)[get: Bool, set: Bool—X, dup: X]
In general, let:

A = Obj(X)[lviB{X} <"

o Ais the type of those objects with methods named /; and result types Bi{A}.

¢ The binder Obj binds a Self type named X (which is known to be a subtype of A).
Moreover:

o The v; are variance annotations.

o The variable X may occur only covariantly in the types B;.

Notation
- B{X} means that X may occur free in B.
— B{X*} means that X occurs covariantly in B.

B{A} is the result of substituting A for X in B{X}, where X is clear from context.
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The subtyping rule for object types with Self asserts, as usual, that a “longer” object
type is a subtype of a “shorter” one.

A simplified rule for object types without variance annotations reads:

E,X<:Top - B{X"} Viel.n+m
E F Obj(X)[1:BAX} <™ <: Obj(X)[1:Bi{X]} *1-"]

For example:

Mem
MemDup

MemDup <: Mem

Obj(X)[get: Bool, set: Bool—X]
Obj(X)[get: Bool, set: Bool—X, dup: X]

> li>

The type Obj(X)[...] can be viewed as a recursive type p(X)[...], but with differences in
subtyping that are crucial for object-oriented applications. The subtyping rule above is
unsound with recursive types instead of Self types (i.e. with u instead of Obj), in pres-
ence of subsumption and update.
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Note: Counterexample

A

memDup : MemDup £
[get = c(self ) let x = self.set(false).dup in false,
set = g(self ) Mb) self,
dup = (self ) self ]

mem : Mem £ memDup since MemDup <: Mem
mem.set := Mb) [get = false, set = c(self ) Mb) self]
mem =
[get = ¢(self ) let x = self.set(false).dup in false,
set = g(self ) Mb) [get = false, set = g(self ) Mb) self],
dup = (self ) self ]

mem.get FAILS!
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Variance Annotations

Again, let:
A = Obj(X)[l,’Di:Bi{X} id""]

Each v; is a variance annotation; it is one of the symbols -, °, and *, for contravariance,
invariance, and covariance, respectively.

Intuitively, * means read-only, ~ means write-only, and ® means read-write.

e * prevents update, but allows covariant component subtyping.

® ~ prevents invocation, but aliows contravariant component subtyping.

¢ °allows both invocation and update, but requires exact matching in subtyping.

By convention, any omitted v’s are taken to be equal to °.

A simple object type:
[1:B; "]

is an abbreviation for Obj(X)[I,°:B; iel.n] where X does not appear in any B;.
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Variance Rules

Because of variance annotations, we use an auxiliary subtyping judgment:

(Sub Object)
E,Y<:Obj(X)[li1)i:B,-{X} iel..n+m] = V; B,{{Y}} < 'l)," B,"{{Y}} Viel..n

E F Obj(X)[10;:B{ X} -] <: Obj(X)[};0;/:B;/1X} 1]

(Sub Invariant)  (Sub Covariant) (Sub Contravariant)
E+B EFB<:B’" ve{°"} EFB'<:B ve{°7}
EF°B<:°B EFvB<:*B’ EFvB<:"B’

¢ (Sub Invariant) An invariant component on the right requires an identical one on the
left.

¢ (Sub Covariant) A covariant component type on the right can be a supertype of a cor-
responding component type on the left, either covariant or invariant. Intuitively, an
invariant component can be regarded as covariant.

¢ (Sub Contravariant) A contravariant component type on the right can be a subtype
of a corresponding component type on the left, either contravariant or invariant. In-
tuitively, an invariant component can be regarded as contravariant.
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Example: Procedure Types

A procedure with argument of type A and result of type B, encoded as shown earlier,
can be given type:

[arg®: A, val®: B]

By the subtyping rules for variances we obtain:
[arg®: A, val®: B]l <: [arg™: A, val®: B]

By subsumption, any procedure has the type on the right. Therefore, we can take:
A—B & [arg: A, val*: B]

Which yields a defined notion of procedure type that is contravariant in the argument
and covariant in the result type.
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Example: State Encapsulation
One can hide certain object components from view simply by subsumption; this tech-
nique can be used to encapsulating state.

Variance annotations enable more sophisticated forms of encapsulation.

Mem &
Obj(X)[get°:Bool, set*:Bool—X]
mem : Mem & N.B. get is both read and written

[get = false,
set = g(self ) Mb) self.get :=b]

When considering a memory cell as an object encapsulating state, it is natural to expect
both components of Mem to be protected against external update. Take:

ProtectedMem 2
Obj(X)[get*:Bool, set*:Bool—X]

Since Mem <: ProtectedMem, any memory cell can be subsumed into ProtectedMem and
thus protected against updating from the outside.

Note that the set method can still update the get field “from the inside”.
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Polymorphism
Additional syntax of terms

ab = term
... (as before)
)b type abstraction
a() type application

N.B. M)b is the type-erasure of MX<:A)b; a() is the type-erasure of a(A).

Additional results

v ou= result
(as before)

(MOB,S) type abstraction result

Additional term reductions (...)
Additional syntax of types

AB:= type
(as before)
V(X<:A)B bounded universal quantifier

Additional typing rules (...)
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Structural Subtyping Assumptions

(Val Field Update Non-Structural) (where A = Obj(X)[l;0:Bi{X} 1-"])
EFa:A EY<AFb:B{Y] velo} jeln
Etal:=b:A

(Val Field Update) (where A’= Obj(X)[l;0:B4{X} ")
EFa:A EFA<A’ EY<AFb:Bf{Y} vel’} jel.n
Etalz=b:A

Mem £ Obj(X)[get®:Bool, set®:Bool—X]

E, X<:Mem, x:X, b:Bool F x : X

E, X<:Mem, x:X, b:Bool - X <: Mem

E, X<:Mem, x:X, b:Bool b : Bool

E, X<:Mem, x:X, b:Bool |- x.get:=b : X

E, X<:Mem F A(x) A(b) x.get:=b : X—Bool—>X

E F M) Mx) Mb) x.get:=b : V(X<:Mem) X—Bool—X

N.B. We have obtained a non-trivial term of type V(X<:Mem) X—B{X}. The non-struc-
tural rule would only yield V(X<:Mem) X—B{Mem}.
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Classes as Collections of Pre-Methods

We define classes as collections of reusable pre-methods.

¢ A pre-method is a procedure that is later used to construct a method.

¢ Each pre-method must work for all possible subclasses of a given class, so that it can
be inherited and instantiated to any of these subclasses.

¢ To this end, pre-methods have types of the form V(X<:A)X—Bi{X}.

We associate a class type Class(A) to each object type A:

It A = ObBj(X)[lv:Bi{X} "]
then  Class(A) £ [new:A, [:¥(X<:A)X—B{X} 1]

The implementation of new is uniform for all classes: it produces an object of type A by
collecting all the pre-methods and applying them to the self of the new object.

c:Class(A) 2 [new=c(z) [l=c¢(x) zLi)(x) "], Li=.., ..., L,=..]
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Classes

Class(Mem) =
[new: Mem,
get: V(X<:Mem) X—Bool,
set: V(X<:Mem) X—Bool—X]

memClass: Class(Mem) 2
[new = (2) [get = o(x) z.get()(x), set = ¢(x) z.set()(x)],
get = M) Mx) false,
set = M) Mx) Mb) x.get:=b]

m:Mem 2 memClass.new

Note that the set pre-method receives the desired type (as shown earlier) thanks to the
structural subtyping assumptions.
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Subclasses and Inheritance

Class(MemDup) =
[new: MemDup,
get: V(X<:MemDup) X—Bool,
set: ¥(X<:MemDup) X—Bool—X,
dup: V(X<:MemDup) X—X]
memDupClass: Class(MemDup) £
[new = ¢(z) [get = ¢(x) z.get()(x), set = c(x) z.set()(x), dup = ¢(x) z.dup()(x)],
get = memClass.get,
set = memClass.set,
dup = M) Mx) clone(x)]

Note that:
memClass.set : V(X<:Mem)X—Bool—X

V(X<:Mem)X—Bool—»X <: V(X<:MemDup)X— Bool—X
by subsumption, memClass.set : ¥(X<:MemDup)X—Bool—X

therefore, memClass.set can be reused as a pre-method of Class(MemDup).
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Soundness

Store types

M == Obj(X)[I0:BidX} <1-"=j method type (jel..n)

L= M el store type (1; distinct)
Type stacks

T = Xp>A;*r type stack (A; closed types)

Result typing judgment: Fv:A (A closed)

Stack typing judgment: TFS.T:E

Store typing judgment: ZF o

N.B. The fact that values are typed with respect to store types (and not stores) allows
us to deal with cycles in the store.

Theorem (Subject Reduction)

Ifgta:Aand g.gtav>v.c
then there exist a type A" and a store type Xt such that
' Eoand I Fou: AT, withg - AT <: A,

O
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Conclusions

® We have described a basic calculus for imperative objects and their types.

¢ Because of its compactness and expressiveness, this calculus is appealing as a kernel
for object-oriented languages that include subsumption and Self types.

o The calculus is not class-based, since classes are not built-in, nor delegation-based,
since the method-lookup mechanism does not delegate invocations. However, the
calculus models class-based languages well: classes and inheritance arise from ob-
ject types and polymorphic types. In delegation-based languages, traits play the role
of classes; our calculus can model traits just as easily as classes, along with dynamic
delegation based on traits.
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