

ATSC’95 August 15, 1995 10:57 pm 1 of 64

On Subtyping and Matching

Luca Cardelli

(joint work with Mart�n Abadi)

Digital Equipment Corporation
Systems Research Center

ATSCÕ95

ATSC’95 August 15, 1995 10:57 pm 2 of 64

I

NTRODUCTION

¥ The subtyping relation between object types is the foundation of subclassing and in-
heritance . . . when it holds.

¥ Subtyping fails to hold between certain types that arise naturally in object-oriented
programming. Typically, recursively defined object types with binary methods.

¥ F-bounded subtyping was invented to solve this kind of problem.

¥ A new programming construction, called ÒmatchingÓ has been proposed to solve
the same problem, inspired by F-bounded subtyping.

¥ Matching achieves Òcovariant subtypingÓ for Self types. Contravariant subtyping
still applies, otherwise.

¥ We argue that matching is a good idea, but that it should not be based on F-bounded
subtyping. We show that a new interpretation of matching, based on higher-order
subtyping, has better properties.

ATSC’95 August 15, 1995 10:57 pm 3 of 64

O-O P

ROGRAMMING

¥ Goals

~ Data abstraction.

~ Polymorphism.

~ Code reuse.

¥ Mechanisms

~ Objects with

self

 (packages of data and code).

~ Subtyping and subsumption.

~ Classes and inheritance.

ATSC’95 August 15, 1995 10:57 pm 4 of 64

Object-oriented constructs

Objects and object types

Objects are packages of data (

instance variables

) and code (

methods

).

Object types describe the shape of objects.

where

a

 :

A

 means that the program

a

 has type

A

. So,

cell

 :

CellType

.

ObjectType

CellType

;

var

contents

:

Integer

;

method

get

():

Integer

;
method

set

(

n

:

Integer

);

end

;

object

cell

:

CellType

;

var

contents

:

Integer

 := 0;

method

get

():

Integer

;

return

self

.

contents

end;
method

set

(

n

:

Integer

);

self

.

contents

 :=

n

end;
end

;

ATSC’95 August 15, 1995 10:57 pm 5 of 64

Classes

Classes are ways of describing and generating collections of objects.

class

cellClass

for

CellType;

var

contents

:

Integer

 := 0;

method

get

():

Integer

;

return

self

.

contents

end

;

method

set

(

n

:

Integer

);

self

.

contents

 :=

n

end

;

end

;

var

cell

 :

CellType

 :=

new

cellClass

;

procedure

double

(

aCell

:

CellType

);

aCell

.

set

(2 *

aCell

.

get

());

end

;

ATSC’95 August 15, 1995 10:57 pm 6 of 64

Subclasses
Subclasses are ways of describing classes incrementally, reusing code.

ObjectType ReCellType;
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

subclass reCellClass of cellClass for ReCellType; (Inherited:
var backup: Integer := 0; var contents
override set(n: Integer); method get)

self.backup := self.contents;
super.set(n);

end;
method restore(); self.contents := self.backup end;

end;

ATSC’95 August 15, 1995 10:57 pm 7 of 64

Subtyping and subsumption
¥ Subtyping relation, A <: B

An object type is a subtype of any object type with fewer components.

(e.g.: ReCellType <: CellType)

¥ Subsumption rule

if a : A and A <: B then a : B

(e.g.: reCell : CellType)

¥ Subclass rule

cClass can be a subclass of dClass only if cType <: dType

(e.g.: reCellClass can indeed be declared as a subclass of cellClass)

ATSC’95 August 15, 1995 10:57 pm 8 of 64

Healthy skepticism
¥ Object-oriented languages have been plagued, more than any other kind of languag-

es, but confusion and unsoundness.

¥ How do we keep track of the interactions of the numerous object-oriented features?

¥ How can we be sure that it all makes sense?

ATSC’95 August 15, 1995 10:57 pm 9 of 64

WHEN SUBTYPING WORKS

¥ A simple and successful treatment of object, classes, and inheritance, for covariant
Self types only.

ATSC’95 August 15, 1995 10:57 pm 10 of 64

Object Types
¥ Consider two types Inc and IncDec containing an integer field and some methods:

¥ A typical object of type Inc is:

Inc @ µ(X)[n:Int, inc+:X]
IncDec @ µ(Y)[n:Int, inc+:Y, dec+:Y]

p : Inc @
[n = 0,
 inc = ς(self: Inc) self.n := self.n +1]

ATSC’95 August 15, 1995 10:57 pm 11 of 64

Subtyping
¥ Subtyping (<:) is a reflexive and transitive relation on types, with subsumption:

¥ For object types, we have the subtyping rule:

¥ For recursive types we have the subtyping rule:

¥ Combining them, we obtain a derived rule for recursive object types:

¥ By applying this derived rule to our example, we obtain:

 if a : A and A <: B then a : B

[vi:Bi iÏI, mj
+:Cj jÏJ] <: [vi:Bi iÏIÕ, mj

+:CjÕ jÏJÕ]
if Cj <: CjÕ for all jÏJÕ, with IÕ⊆ I and JÕ⊆ J

µ(X)A{X} <: µ(Y)B{Y}
if X <: Y implies A{X} <: B{Y}

µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ] <: µ(Y)[vi:Bi iÏIÕ, mj

+:CjÕ{Y} jÏJÕ]
if X <: Y implies Cj{X} <: CjÕ{Y} for all jÏJÕ, with IÕ⊆ I and JÕ⊆ J

IncDec <: Inc

ATSC’95 August 15, 1995 10:57 pm 12 of 64

Pre-Methods
¥ The subtyping relation (e.g. IncDec <: Inc) plays an important role in inheritance.

¥ Inheritance is obtained by reusing polymorphic code fragments.

¥ We call a code fragment such as pre-inc a pre-method.

¥ We can specialize pre-inc to implement the method inc of type Inc or IncDec:

¥ Thus, we have reused pre-inc at different types, without retypechecking its code.

pre-inc : Ó(X<:Inc)X→X @
λ(X<:Inc) λ(self:X) self.n := self.n+1

pre-inc(Inc) : Inc→Inc
pre-inc(IncDec) : IncDec→IncDec

ATSC’95 August 15, 1995 10:57 pm 13 of 64

Classes
¥ Pre-method reuse can be systematized by collecting pre-methods into classes.

¥ A class for an object type A can be described as a collection of pre-methods and ini-
tial field values, plus a way of generating new objects of type A.

¥ In a class for an object type A, the pre-methods are parameterized over all subtypes
of A, so that they can be reused (inherited) by any class for any subtype of A.

ATSC’95 August 15, 1995 10:57 pm 14 of 64

¥ Let A be a type of the form µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]. As part of a class for A, a pre-

method for mj would have the type Ó(X<:A)X→Cj{X}. For example:

¥ A typical class of type IncClass reads:

The code for new is uniform: it assembles all the pre-methods into a new object.

IncClass @
[new+: Inc,
 n: Int,
 inc: Ó(X<:Inc)X→X]

IncDecClass @
[new+: IncDec,
 n: Int,
 inc: Ó(X<:IncDec)X→X,
 dec: Ó(X<:IncDec)X→X]

incClass : IncClass @
[new = ς(classSelf: IncClass)

[n = classSelf.n, inc = ς(self:Inc) classSelf.inc(Inc)(self)]
 n = 0,
 inc = pre-inc]

ATSC’95 August 15, 1995 10:57 pm 15 of 64

Inheritance
¥ Inheritance is obtained by extracting a pre-method from a class and reusing it for

constructing another class.

For example, the pre-method pre-inc of type Ó(X<:Inc)X→X in a class for Inc could
be reused as a pre-method of type Ó(X<:IncDec)X→X in a class for IncDec:

¥ This example of inheritance requires the subtyping:

Ó(X<:Inc)X→X <: Ó(X<:IncDec)X→X

which follows from the subtyping rules for quantified types and function types:

incDecClass : IncDecClass @
[new = ς(classSelf: IncDecClass)[...],
 n = 0,
 inc = incClass.inc,
 dec = ...]

Ó(X<:A)B <: Ó(X<:AÕ)BÕ if AÕ<:A and if X<:A implies B<:BÕ
A→B <: AÕ→BÕ if AÕ <: A and B <: BÕ

ATSC’95 August 15, 1995 10:57 pm 16 of 64

Inheritance from Subtyping
¥ In summary, inheritance from a class for Inc to a class for IncDec is enabled by the

subtyping IncDec <: Inc.

¥ Unfortunately, inheritance is possible and desirable even in situations where such
subtypings do not exist. These situations arise with binary methods.

ATSC’95 August 15, 1995 10:57 pm 17 of 64

Binary Methods
¥ Consider a recursive object type Max, with a field n and a binary method max.

Consider also a type MinMax with an additional binary method min:

¥ Problem:

MinMax E: Max

according to the rules we have adopted. Moreover, it would be unsound to assume
MinMax <: Max.

¥ Hence, the development of classes and inheritance developed for Inc and IncDec fal-
ters in presence of binary methods.

Max @ µ(X)[n:Int, max+:X→X]

MinMax @ µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

ATSC’95 August 15, 1995 10:57 pm 18 of 64

LOOKING FOR A NEW RELATION

¥ A possible replacement for subtyping: matching.
(Presented semi-formally.)

ATSC’95 August 15, 1995 10:57 pm 19 of 64

Matching
¥ Recently, Bruce et al. proposed axiomatizing a relation between recursive object

types, called matching.

¥ We write A <# B to mean that A matches B; that is, that A is an Òextended versionÓ
of B. We expect to have, for example:

¥ In particular, we may write X <# A, where X is a variable. We may then quantify
over all types that match a given one, as follows:

We call Ó(X<#A)B match-bounded quantification, and say that occurrences of X in B are
match-bound.

IncDec <# Inc
MinMax <# Max

Ó(X<#A)B{X}

ATSC’95 August 15, 1995 10:57 pm 20 of 64

¥ Using match-bounded quantification, we can rewrite the polymorphic function pre-
inc in terms of matching rather than subtyping:

¥ Similarly, we can write a polymorphic version of the function pre-max:

¥ Thus, the use of match-bounded quantification enables us to express the polymor-
phism of both pre-max and pre-inc: contravariant and covariant occurrences of Self
are treated uniformly.

pre-inc : Ó(X<#Inc)X→X @
λ(X<#Inc) λ(self:X) self.n := self.n+1

pre-inc(IncDec) : IncDec→IncDec

pre-max : Ó(X<#Max)X→X→X @
λ(X<#Max) λ(self:X) λ(other:X)

if self.n>other.n then self else other

pre-max(MinMax) : MinMax→MinMax→MinMax

ATSC’95 August 15, 1995 10:57 pm 21 of 64

Matching and Subsumption
¥ A subsumption-like property does not hold for matching; A <# B is not quite as good

as A <: B. (Fortunately, subsumption was not needed in the examples above.)

¥ Thus, matching cannot completely replace subtyping. For example, forget that In-
cDec <: Inc and try to get by with IncDec <# Inc. We could not typecheck:

We can circumvent this difficulty by turning inc into a polymorphic function of type
Ó(X<#Inc)X→X, but this solution requires foresight, and is cumbersome:

a : A and A <# B need not imply a : B

inc : Inc→Inc @
λ(x:Inc) x.n := x.n+1

λ(x:IncDec) inc(x)

pre-inc : Ó(X<#Inc)X→X @
λ(X<#Inc) λ(x:X) x.n := x.n+1

λ(x:IncDec) pre-inc(IncDec)(x)

ATSC’95 August 15, 1995 10:57 pm 22 of 64

Matching and Classes
¥ We can now revise our treatment of classes, adapting it for matching.

¥ A typical class of type MaxClass reads:

MaxClass @
[new+: Max,
 n: Int,
 max: Ó(X<#Max)X→X→X]

MinMaxClass @
[new+: MinMax,
 n: Int,
 max: Ó(X<#MinMax)X→X→X,
 min: Ó(X<#MinMax)X→X→X]

maxClass : MaxClass @
[new = ς(classSelf: MaxClass)

[n = classSelf.n, max = ς(self:Max) classSelf.max(Max)(self)],
 n = 0,
 max = pre-max]

ATSC’95 August 15, 1995 10:57 pm 23 of 64

Matching and Inheritance
¥ A typical (sub)class of type MinMaxClass reads:

¥ The implementation of max is taken from maxClass, that is, it is inherited. The inher-
itance typechecks assuming that

Ó(X<#Max)X→X→X <: Ó(X<#MinMax)X→X→X

¥ Thus, we are still using some subtyping and subsumption as a basis for inheritance.

minMaxClass : MinMaxClass @
[new = ς(classSelf: MinMaxClass)[...],
 n = 0,
 max = maxClass.max,
 min = ...]

ATSC’95 August 15, 1995 10:57 pm 24 of 64

Advantages of Matching

Matching is attractive
¥ The fact that MinMax matches Max is reasonably intuitive.

¥ Matching handles contravariant Self and inheritance of binary methods.

¥ Matching is meant to be directly axiomatized as a relation between types.The typing
rules of a programming language that includes matching can be explained directly.

¥ Matching is simple from the programmerÕs point to of view, in comparison with
more elaborate type-theoretic mechanisms that could be used in its place.

However...
¥ The notion of matching is ad hoc (e.g., is defined only for object types).

¥ We still have to figure out the exact typing rules and properties matching.

¥ The rules for matching vary in subtle but fundamental ways in different languages.

¥ What principles will allow us to derive the ÒrightÓ rules for matching?

ATSC’95 August 15, 1995 10:57 pm 25 of 64

MATCHING AS
F-BOUNDED SUBTYPING

¥ An attempt to formalize matching as F-bounded subtyping.

ATSC’95 August 15, 1995 10:57 pm 26 of 64

Type Operators
¥ We introduce a theory of type operators that will enable us to express various formal

relationships between types. Alternatives interpretations of matching will become
available.

¥ A type operator is a function from types to types.

¥ Notation for fixpoints:

λ(X)B{X} maps each type X to a corresponding type B{X}
B(A) applies the operator B to the type A

(λ(X)B{X})(A) = B{A}

F* abbreviates µ(X)F(X)

AOp abbreviates λ(X)D{X} whenever A 7 µ(X)D{X}

ATSC’95 August 15, 1995 10:57 pm 27 of 64

¥ We obtain:

¥ The unfolding property of recursive types yields:

¥ Note that AOp is defined in terms of the syntactic form µ(X)D{X} of A. In particular,
the unfolding D{A} of A is not necessarily in a form such that D{A}Op is defined.
Even if D{A}Op is defined, it need not equal AOp. For example, consider:

¥ Thus, we may have two types A and B such that A = B but AOp ≠ BOp (when recursive
types are taken equal up to unfolding). This is a sign of trouble to come.

MaxOp 7 λ(X)[n:Int, max+:X→X]
MinMaxOp 7 λ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

MaxOp* = µ(X) MaxOp(X) = µ(X) [n:Int, max+:X→X] = Max
MaxOp* = MaxOp(µ(X) MaxOp(X)) = MaxOp(Max)

D{X} @ µ(Y) X→Y

A @ µ(X) D{X}
D{A} 7 µ(Y) A→Y = A

AOp 7 λ(X) D{X}
D{A}Op 7 λ(Y) A→Y ≠ AOp

ATSC’95 August 15, 1995 10:57 pm 28 of 64

F-bounded Subtyping
¥ F-bounded subtyping was invented to support parameterization in the absence of

subtyping.

¥ The property:

A <: BOp(A) (A is a pre-fixpoint of BOp)

is seen as a statement that A extends B.

¥ This view is justified because, for example, a recursive object type A such that A
<: [n:Int, max+:A→A] often has the shape µ(Y)[n:Int, max+:Y→Y, ...].

ATSC’95 August 15, 1995 10:57 pm 29 of 64

¥ Both Max and MinMax are pre-fixpoints of MaxOp:

So, we can parameterize over all types X with the property that X <: MaxOp(X).

This form of parameterization leads to a general typing of pre-max, and permits the
inheritance of pre-max:

Max <: MaxOp(Max) (= Max)
MinMax (= [n:Int, max+:MinMax→MinMax, min+: ...])

<: MaxOp(MinMax) (= [n:Int, max+:MinMax→MinMax])

Ó(X<:MaxOp(X))B{X}

pre-max : Ó(X<:MaxOp(X))X→X→X @
λ(X<:MaxOp(X)) λ(self:X) λ(other:X)

if self.n>other.n then self else other

pre-max(Max) : Max→Max→Max
pre-max(MinMax) : MinMax→MinMax→MinMax

ATSC’95 August 15, 1995 10:57 pm 30 of 64

The F-bounded Interpretation
¥ The central idea of the interpretation is:

¥ However, this interpretation is not defined when the right-hand side of <# is a vari-
able, as in the case of cascading quantifiers:

Since Ó(X<:AOp(X)) Ó(Y<:XOp(Y)) ... does not make sense the type structure support-
ed by this interpretation is somewhat irregular: type variables are not allowed in
places where object types are allowed.

A <# B 1 A <: BOp(A)
Ó(X<#A)B{X} 1 Ó(X<:AOp(X))B{X}

Ó(X<#A) Ó(Y<#X) ... 1 ?

ATSC’95 August 15, 1995 10:57 pm 31 of 64

Reßexivity and Transitivity
¥ We would expect A <# A to hold, e.g. to justifying the instantiation f(A) of a poly-

morphic function f : Ó(X<#A)B. We have:

with A = AOp(A) by the unfolding property of recursive types. However, if A is a
type variable X, then XOp is not defined, so X <: XOp(X) does not make sense.
Hence, reflexivity does not hold in general.

A <# A 1 A <: AOp(A)

ATSC’95 August 15, 1995 10:57 pm 32 of 64

¥ If A, B, and C are object types of the source language, then we would expect that A
<# B and B <# C imply A <# C; this would mean:

As in the case of reflexivity, we run into difficulties with type variables.

¥ Worse, transitivity fails even for closed types, with the following counterexample:

We have both A <# B and B <# C, but we do not have A <# C (because [p+:A→Int,
q:Int] <: [p+:B→Int] fails).

 A <: BOp(A) and B <: COp(B) imply A <: COp(A)

A @ µ(X)[p+: X→Int, q: Int]
B @ µ(X)[p+: X→Int]
C @ µ(X)[p+: B→Int]

A = [p+: A→Int, q: Int] <:
BOp(A) = [p+: A→Int]

B = [p+: B→Int] <:
COp(B) = [p+: B→Int]

A = [p+: A→Int, q: Int] E :
COp(A) = [p+: B→Int]

ATSC’95 August 15, 1995 10:57 pm 33 of 64

¥ We can trace this problem back to the definition of DOp, which depends on the exact
syntax of the type D. Because of the syntactic character of that definition, two equal
types may behave differently with respect to matching.

In our example, we have B = C by the unfolding property of recursive types. Despite
the equality B = C, we have A <# B but not A <# C !

ATSC’95 August 15, 1995 10:57 pm 34 of 64

Matching Self
¥ According to the F-bounded interpretation, two types that look rather different may

match. Consider two types A and AÕ such that:

This holds when A <: AÕOp(A), that is, when [vi:Bi iÏI, mj
+:Cj{A} jÏJ] <: [vi:Bi iÏI,

mj
+:CjÕ{A} jÏJÕ]. It suffices that, for every jÏJÕ:

¥ For example, we have:

The variable X on the left matches the type [v:Int] on the right. Since X is the Self vari-
able, we may say that Self matches not only Self but also other types (here [v:Int]).
This treatment of Self is both sound and flexible. On the other hand, it can be difficult
for a programmer to see whether two types match.

A 7 µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]

<# µ(X)[vi:Bi iÏI, mj
+:CjÕ{X} jÏJÕ] 7 AÕ

Cj{A} <: CjÕ{A}

µ(X)[v:Int, m+:X] <# µ(X)[m+: [v:Int]]

ATSC’95 August 15, 1995 10:57 pm 35 of 64

MATCHING AS
HIGHER-ORDER SUBTYPING

¥ A formalization of matching as higher-order subtyping.

¥ Inheritance of binary methods.

ATSC’95 August 15, 1995 10:57 pm 36 of 64

Higher-Order Subtyping
¥ Subtyping can be extended to operators, in a pointwise manner:

¥ The property:

AOp ': BOp (AOp is a suboperator of BOp)

is seen as a statement that A extends B.

F ': G if, for all X, F(X) <: G(X)

ATSC’95 August 15, 1995 10:57 pm 37 of 64

¥ We obtain:

We can parameterize over all type operators X with the property that X ': MaxOp.

We need to be careful about how X is used in B{X}, because X is now a type operator.

MaxOp ': MaxOp

MinMaxOp (ÓX. [n:Int, max+:X→X, min+: X→X]
': MaxOp <: [n:Int, max+:X→X])

Ó(X':MaxOp)B{X}

ATSC’95 August 15, 1995 10:57 pm 38 of 64

The idea is to take the fixpoint of X wherever necessary.

This typechecks, e.g.:

(In this derivation we have used the unfolding property X*=X(X*), but we can do
without it by introducing explicit fold/unfold terms.)

pre-max : Ó(X':MaxOp)X*→X*→X* @
λ(X':MaxOp) λ(self:X*) λ(other:X*)

if self.n>other.n then self else other

pre-max(MinMaxOp) : MinMax→MinMax→MinMax

X = X(X*)
X ': MaxOp ⇒ X(X*) <: MaxOp(X*)
self : X* ⇒ self : X(X*) ⇒ self : MaxOp(X*) ⇒ self.n : Int

ATSC’95 August 15, 1995 10:57 pm 39 of 64

The Higher-Order Interpretation
¥ The central idea of the interpretation is:

We must be more careful about the B{X*} part, because X may occur both in type and
operator contexts.

¥ We handle this problem by two translations for the two kinds of contexts:

A <# B 1 AOp ': BOp

Ó(X<#A)B{X} 1 Ó(X':AOp)B{X*} (not quite)

A <# B 1 OperÜAá ': OperÜBá

Ó(X<#A)B 1 Ó(X':OperÜAá)TypeÜBá

ATSC’95 August 15, 1995 10:57 pm 40 of 64

¥ The two translations, TypeÜAá and OperÜAá, can be summarized as follows.

For object types of the source language, we set:

For other types, we set:

OperÜXá 1 (assuming that X is match-bound)
X

OperÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á 1

λ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá 1 (when X is match-bound)
X*

TypeÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á 1

µ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá 1 X (when X is not match-bound)
TypeÜA→Bá 1 TypeÜAá→TypeÜBá

TypeÜÓ(X<#A)Bá 1 Ó(X':OperÜAá)TypeÜBá

ATSC’95 August 15, 1995 10:57 pm 41 of 64

¥ For instance:

This translation is well-defined on type variables, so there are no problems with cas-
cading quantifiers.

TypeÜÓ(X<#Max) Ó(Y<#X) X→Yá 1
Ó(X':MaxOp) Ó(Y':X) X*→Y*

ATSC’95 August 15, 1995 10:57 pm 42 of 64

¥ A note about unfolding of recursive types:

~ The higher-order interpretation does not use the unfolding property of recursive
types for the target language; instead, it uses explicit fold and unfold primitives.

~ On the other hand, the higher-order interpretation is incompatible with the un-
folding property of recursive types in the source language, because OperÜµ(X)A{X}á
and OperÜA{µ(X)A{X}}á are in general different type operators.

~ Technically, the unfolding property of recursive types is not an essential feature
and it is the origin of complications; we are fortunate to be able to drop it through-
out.

ATSC’95 August 15, 1995 10:57 pm 43 of 64

Reßexivity and Transitivity
¥ Reflexivity is now satisfied by all object types, including variables; for every object

type A, we have:

This follows from the reflexivity of ':.

¥ Similarly, transitivity is satisfied by all triples A,B, and C of object types, including
variables:

This follows from the transitivity of ':.

A <# A 1 OperÜAá ': OperÜAá

A <# B and B <# C imply A <# C 1
OperÜAá ': OperÜBá and OperÜBá ': OperÜCá

imply OperÜAá ': OperÜCá

ATSC’95 August 15, 1995 10:57 pm 44 of 64

Matching Self
¥ With the higher-order interpretation, the relation:

holds when the type operators corresponding to A and AÕ are in the subtyping rela-
tion, that is, when:

For this, it suffices that, for every j in JÕ:

Since Self is µ-bound, all the occurrences of Self are translated as Self*. Then, an oc-
currence of Self* on the left can be matched only by a corresponding occurrence of
Self* on the right, since Self is arbitrary. In short,:

Self matches only itself.

This property makes it easy for programmers to glance at two object types and tell
whether they match.

A 7 µ(Self)[vi:Bi iÏI, mj
+:Cj{Self} jÏJ]

<# µ(Self)[vi:Bi iÏI, mj
+:CjÕ{Self} jÏJÕ] 7 AÕ

[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{Self}á jÏJ]

<: [vi:TypeÜBiá iÏI, mj
+:TypeÜCjÕ{Self}á jÏJÕ] for an arbitrary Self

 TypeÜCj{Self}á <: TypeÜCjÕ{Self}á

ATSC’95 August 15, 1995 10:57 pm 45 of 64

Inheritance and Classes via Higher-Order
Subtyping
¥ Applying our higher-order translation to MaxClass, we obtain:

The corresponding translation at the term level produces:

MaxClass @
[new+: Max,
 n: Int,
 max: Ó(X':MaxOp)X*→X*→X*]

maxClass : MaxClass @
[new = ς(classSelf: MaxClass)

fold(
[n = classSelf.n,
 max = ς(self:MaxOp(Max))

classSelf.max(MaxOp)(fold(self))]),
 n = 0,
 max = pre-max]

ATSC’95 August 15, 1995 10:57 pm 46 of 64

It is possible to check that pre-max is well typed.

The instantiations pre-max(MaxOp) and pre-max(MinMaxOp) are both legal. Since
pre-max has type Ó(X':MaxOp)X*→X*→X*, this pre-method can be used as a com-
ponent of a class of type MaxClass.

Moreover, a higher-order version of the rule for quantifier subtyping yields:

so pre-max has type Ó(X':MinMaxOp)X*→X*→X* by subsumption, and hence pre-
max can be reused as a component of a class of type MinMaxClass.

pre-max : Ó(X':MaxOp)X*→X*→X* @
λ(X':MaxOp) λ(self:X*) λ(other:X*)

if unfold(self).n>unfold(other).n then self else other

Ó(X':MaxOp)X*→X*→X* <: Ó(X':MinMaxOp)X*→X*→X*

ATSC’95 August 15, 1995 10:57 pm 47 of 64

¥ Note. We expect following typings:

The higher-order interpretation induces the following term translations:

For the first typing, we have unfold(x):X(X*). Moreover, from X':IncOp we obtain
X(X*) <: IncOp(X*) = [n:Int, inc:X*]. Therefore, unfold(x):[n:Int, inc:X*], and un-
fold(x).n:Int.

For the second typing, we have again unfold(x):X(X*) with X(X*) <: [n:Int, inc:X*].
We then use a typing rule for field update in the target language. This rule says that
if a:A, c:C, and A <: [v:C,...] then (a.v:=c) : A. In our case, we have unfold(x):X(X*),
b:Int, and X(X*) <: [n:Int, inc:X*]. We obtain (unfold(x).n:=b) : X(X*). Finally, by fold-
ing, we obtain fold(unfold(x).n:=b) : X*.

if X<#Inc and x:X then x.n : Int
if X<#Inc and x:X and b:Int then x.n:=b : X

if X':IncOp and x:X* then unfold(x).n : Int
if X':IncOp and x:X* and b:Int then fold(unfold(x).n:=b) : X*

ATSC’95 August 15, 1995 10:57 pm 48 of 64

APPLICATIONS

¥ A language based on matching should be given a set of type rules based on the
source type system.

¥ The rules can be proven sound by a judgment-preserving translation into an object-
calculus with higher-order subtyping.

ATSC’95 August 15, 1995 10:57 pm 49 of 64

The Language OÐ3

Syntax of OÐ3

A,B ::=
X
Top
Object(X)[liυi:Bi{X} iÏ1..n]
Class(A)
All(X<#A)B

types
type variable
maximum type
object type
class type
match-quantified type

ATSC’95 August 15, 1995 10:57 pm 50 of 64

a,b,c ::=
x
object(x:X=A) li=bi{X,x} iÏ1..n end
a.l
a.l := method(x:X<#A) b end
new c
root
subclass of c:C with(x:X<#A)

li=bi{X,x} iÏn+1..n+m
override li=bi{X,x} iÏOvr⊆ 1..n end

c^l(A,a)
fun(X<#A) b end
b(A)

terms
variable
direct object construction
field/method selection
update
object construction from a class
root class
subclass

additional attributes
overridden attributes

class selection
match-polymorphic abstraction
match-polymorphic instantiation

ATSC’95 August 15, 1995 10:57 pm 51 of 64

¥ Convenient abbreviations:

Root @
Class(Object(X)[])

class with(x:X<#A) li=bi{X,x} iÏ1..n end @
subclass of root:Root with(x:X<#A) li=bi{X,x} iÏ1..n override end

subclass of c:C with(x:X<#A) ... super.l ... end @
subclass of c:C with(x:X<#A) ... c^l(X,x) ... end

object(x:X=A) ... l copied from c ... end @
object(x:X=A) ... l=c^l(X,x) ... end

a.l := b @ where X,xÌFV(b) and a:A,
a.l := method(x:X<#A) b end with A clear from context

ATSC’95 August 15, 1995 10:57 pm 52 of 64

Judgments

Environments

E ∫ Q
E ∫ A
E ∫ A :: Obj

environment E is well formed
A is well formed type in E
A is a well formed object in E

E ∫ A <: B
E ∫ A <# B
E ∫ a : A

A is a subtype of B in E
A matches B in E
a has type A in E

(Env) (Env X<:) (Env X<#) (Env x)

E ∫ A XÌdom(E) E ∫ A :: Obj XÌdom(E) E ∫ A xÌdom(E)

 ∫ Q E, X<:A ∫ Q E, X<#A ∫ Q E, x:A ∫ Q

ATSC’95 August 15, 1995 10:57 pm 53 of 64

Types

Object Types

The judgments for types and object types are connected by the (Type Obj) rule.

(Type Obj) (Type X) (Type Top)

E ∫ A :: Obj EÕ, X<:A, EÓ ∫ Q E ∫ Q

E ∫ A EÕ, X<:A, EÓ ∫ X E ∫ Top

(Type Class) (where A 7 Object(X)[liυi:Bi iÏ1..n]) (Type All<#)

E, X<#A ∫ Bi ÓiÏ1..n E, X<#A ∫ B

E ∫ Class(A) E ∫ All(X<#A)B

(Obj X) (Obj Object) (li distinct, υiÏ{o,Ð,+})

EÕ, X<#A, EÓ ∫ Q E, X<:Top ∫ Bi ÓiÏ1..n

EÕ, X<#A, EÓ ∫ X :: Obj E ∫ Object(X)[liυi:Bi iÏ1..n] :: Obj

ATSC’95 August 15, 1995 10:57 pm 54 of 64

Subtyping

(Sub Refl) (Sub Trans) (Sub X) (Sub Top)

E ∫ A E ∫ A<:B E ∫ B<:C EÕ, X<:A, EÓ ∫ Q E ∫ A

E ∫ A<:A E ∫ A<:C EÕ, X<:A, EÓ ∫ X<:A E ∫ A<:Top

(Sub Object)

E ∫ Object(X)[liυi:Bi iÏ1..n+m] E ∫Object(Y)[liυiÕ:BiÕ iÏ1..n]
E, Y<:Top, X<:Y ∫ υiBi <: υiÕ BiÕ Ó iÏ1..n E, X<:Top ∫ Bi Ó iÏn+1..m

E ∫ Object(X)[liυi:Bi iÏ1..n+m] <: Object(Y)[liυiÕ:BiÕ iÏ1..n]

(Sub All<#)

E ∫ AÕ <# A E, X<#AÕ ∫ B <: BÕ

E ∫ All(X<#A)B <: All(X<#AÕ)BÕ

(Sub Invariant) (Sub Covariant) (Sub Contravariant)

E ∫ B E ∫ B <: BÕ υÏ{o,+} E ∫ BÕ <: B υÏ{o,Ð}

E ∫ o B <: o B E ∫ υ B <: + BÕ E ∫ υ B <: Ð BÕ

ATSC’95 August 15, 1995 10:57 pm 55 of 64

Matching

(Match Refl) (Match Trans) (Match X)

E ∫ A :: Obj E ∫ A<#B E ∫ B<#C EÕ, X<#A, EÓ ∫ Q

E ∫ A<#A E ∫ A<#C EÕ, X<#A, EÓ ∫ X<#A

(Match Object) (li distinct)

E, X<:Top ∫ υiBi <: υiÕ BiÕ Ó iÏ1..n E, X<:Top ∫ Bi Ó iÏn+1..m

E ∫ Object(X)[liυi:Bi iÏ1..n+m] <# Object(X)[liυiÕ:BiÕ iÏ1..n]

ATSC’95 August 15, 1995 10:57 pm 56 of 64

Terms

(Val Subsumption) (Val x)

E ∫ a : A E ∫ A <: B EÕ, x:A, EÓ ∫ Q

E ∫ a : B EÕ, x:A, EÓ ∫ x : A

(Val Object) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E, x:A ∫ biYAZ : BiYAZ ÓiÏ1..n

E ∫ object(x:X=A) li=bi{X} iÏ1..n end : A

(Val Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : AÕ E ∫ AÕ <# A υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAÕZ

(Val Method Update) (where A 7 Object(X)[liυi:Bi iÏ1..n])

E ∫ a : AÕ E ∫ AÕ <# A E, X<#AÕ, x:X ∫ b : Bj υjÏ{o,Ð} jÏ1..n

E ∫ a.lj := method(x:X<#AÕ)b end : AÕ

(Val New)

E ∫ c : Class(A)

E ∫ new c : A

ATSC’95 August 15, 1995 10:57 pm 57 of 64

(Val Root)

E ∫ Q

E ∫ root : Class(Object(X)[])

(Val Subclass) (where A 7 Object(X)[liυi:Bi iÏ1..n+m], AÕ 7 Object(XÕ)[liυiÕ:BiÕ iÏ1..n], Ovr⊆ 1..n)

E ∫ Class(A) E ∫ cÕ : Class(AÕ) E ∫ A<#AÕ
E, X<#A ∫ BiÕ <: Bi ÓiÏ1..nÐOvr

E, X<#A, x:X ∫ bi : Bi ÓiÏOvr∪ n+1..n+m

E ∫ subclass of cÕ:Class(AÕ) with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end
: Class(A)

(Val Class Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : AÕ E ∫ AÕ <# A E ∫ c : Class(A) jÏ1..n

E ∫ c^lj(AÕ,a) : BjYAÕZ

(Val Fun<#) (Val Appl<#)

E, X<#A ∫ b : B E ∫ b : All(X<#A)B{X} E ∫ AÕ <# A

E ∫ fun(X<#A) b end : All(X<#A)B E ∫ b(AÕ) : BYAÕZ

ATSC’95 August 15, 1995 10:57 pm 58 of 64

CONCLUSIONS

¥ There are situations in programming where one would like to parameterize over all
ÒextensionsÓ of a recursive object type, rather than over all its subtypes.

¥ Both F-bounded subtyping and higher-order subtyping can be used in explaining
the matching relation.

We have presented two interpretations of matching:

¥ Both interpretations can be soundly adopted, but they require different assumptions
and yield different rules. The higher-order interpretation validates reflexivity and
transitivity.

Technically, the higher-order interpretation need not assume the equality of recur-
sive types up to unfolding (which seems to be necessary for the F-bounded inter-
pretation). This leads to a simpler underlying theory, especially at higher order.

¥ Thus, we believe that the higher-order interpretation is preferable; it should be a
guiding principle for programming languages that attempt to capture the notion of
type extension.

A <# B 1 A <: BOp(A) (F-bounded interpretation)

A <# B 1 AOp ': BOp (higher-order interpretation)

ATSC’95 August 15, 1995 10:57 pm 59 of 64

¥ Matching achieves Òcovariant subtypingÓ for Self types and inheritance of binary
methods at the cost not validating subsumption.

¥ Subtyping is still useful when subsumption is needed. Moreover, matching is best
understood as higher-order subtyping. Therefore, subtyping is still needed as a fun-
damental concept, even though the syntax of a programming language may rely
only on matching.

ATSC’95 August 15, 1995 10:57 pm 60 of 64

EXTRA

ATSC’95 August 15, 1995 10:57 pm 61 of 64

Unsoundness of Naive Object Subtyping
with Binary Methods

Consider:

Assume MinMax <: Max, then:

But:

Max @ µ(X)[n:Int, max+:X→X]
MinMax @ µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

m : Max @ [n = 0, max = ...]
mm : MinMax @

[n = 0, min = ... ,
 max = ς(s:MinMax) λ(o:MinMax)

if o.min(o).n > s.n then o else s]

mm : Max (by subsumption)
mm.max(m) : Max

mm.max(m) Òñ if m.min(m).n > mm.n then m else mm Òñ CRASH!

ATSC’95 August 15, 1995 10:57 pm 62 of 64

Unsoundness of Covariant Object Types
With record types, it is unsound to admit covariant subtyping of record components in
presence of imperative field update. With object types, the essence of that couterexam-
ple can be reproduced even in a purely functional setting.

U @ [] The unit object type.
L @ [l:U] An object type with just l.
L <: U

P @ [x:U, f:U]
Q @ [x:L, f:U]
Assume Q <: P by an (erroneous) covariant rule for object subtyping

q : Q @ [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!

ATSC’95 August 15, 1995 10:57 pm 63 of 64

Unsoundness of Method Extraction
It is unsound to have an operation that extracts a method as a function.

P @ [f:[]]
Q @ [f:[], y:[]] Q <: P

p : P @ [f=[]]
q : Q @ [f=ς(s:Q)s.y, y=[]]
then q : P by subsumption with Q <: P
hence q†f : P→[] that is λ(s:Q)s.y : P→[]

But q.f(p) fails!

(Val Extract) (where A 7 [li:Bi iÏ1..n])

E ∫ a : A jÏ1..n

E ∫ a†lj : A→Bj

(Eval Extract) (where A 7 [li:Bi iÏ1..n], a 7 [li=ς(xi:AÕ)bi iÏ1..n+m])

E ∫ a : A jÏ1..n

E ∫ a†lj ↔ λ(xj:A)bj : A→Bj

ATSC’95 August 15, 1995 10:57 pm 64 of 64

Unsoundness of a Naive
Recursive Subtyping Rule
Assume:

A 7 µ(X)X→Nat <: µ(X)X→Int 7 B

Let: Type-erased:

f : Nat →Nat (given)
a : A = fold(A, λ(x:A) 3) = λ(x) 3
b : B = fold(B, λ(x:B) Ð3) = λ(x) Ð3

c : A = fold(A, λ(x:A) f(unfold(x)(a))) = λ(x) f(x(a))

By subsumption:

c : B

Hence:

unfold(c)(b) : Int Well-typed! = c(b)

But:

unfold(c)(b) = f(Ð3) Error!

