

PLDI’96 Tutorial April 30, 1996 12:20 pm 1

Object-based vs. Class-based
Languages

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

PLDIÕ96 Tutorial

© Luca Cardelli, 1996

PLDI’96 Tutorial April 30, 1996 12:20 pm 2

Abstract

Class-based object-oriented programming languages take object generators as central,

while object-based languages emphasize the objects themselves. This dichotomy, or

spectrum, has been explicitly recognized for at least 15 years.

During this time, class-based languages have become relatively well-understood (or

well-misunderstood), widely debated, and hugely popular. In contrast, the area of

object-based languages has evolved within a smaller and more varied community, and

is still underdeveloped. Much of its visibility is due today to the Self language which, in

many ways, is the Smalltalk of object-based programming. But where are the Simula

and the C++ of object-based programming? It seems that they have not been invented

yet, or certainly they are not as popular.

PLDI’96 Tutorial April 30, 1996 12:20 pm 3

History of this Material

¥ Designing a class-based language (Modula-3).

¥ Designing an object-based language (Obliq).

¥ Learning about other object-based languages.

~ Organizing what I learned.

¥ Working on object calculi.

~ Filling the gap between object calculi and object-oriented
languages.

Class-Based Languages April 30, 1996 12:20 pm 4

C

LASS

-B

ASED

 L

ANGUAGES

¥ The mainstream.

¥ We discuss only common, kernel properties.

Class-Based Languages April 30, 1996 12:20 pm 5

Classes and Objects

¥ Classes are descriptions of objects.

¥ Example: storage cells.

¥ Self.

class

cell

 is
var

contents

:

Integer

 := 0;

method

get

():

Integer

 is
return

self

.

contents

;

end

;

method

set

(

n

:

Integer

)

 is
self

.

contents

 :=

n

;

end

;

end

;

Class-Based Languages April 30, 1996 12:20 pm 6

Naive Storage Model

¥ Object = reference to a record of attributes.

 Naive storage model

contents
get
set

0
(code for get)
(code for set)

object

reference attribute record







Class-Based Languages April 30, 1996 12:20 pm 7

Object Creation

¥ Objects are created from classes via

new

.

¥ (

InstanceTypeOf(c)

 indicates the type of an object of class

c

.)

var

myCell

:

InstanceTypeOf

(

cell

) :=

new

cell

;

Class-Based Languages April 30, 1996 12:20 pm 8

Object Operations

¥ Field selection.

¥ Field update.

¥ Method invocation.

procedure

double

(

aCell

:

InstanceTypeOf

(

cell

))

 is

aCell

.

set

(2 *

aCell

.

get

());

end

;

Class-Based Languages April 30, 1996 12:20 pm 9

The Method-Suites Storage Model

¥ A more refined storage model for class-based languages.

 Method suites

contents 0
get
set

(code for get)
(code for set)

method suite

contents 1

Þeld suite

Class-Based Languages April 30, 1996 12:20 pm 10

Embedding vs. Delegation

¥ In the naive storage model, methods are embedded in
objects.

¥ In the methods-suites storage model, methods are
delegated to the method suites.

contents
get
set

0
(code for get)
(code for set)

attribute record

contents 0
get
set

(code for get)
(code for set)

method suite

contents 1

Þeld suite

Class-Based Languages April 30, 1996 12:20 pm 11

¥ Naive and method-suites models are semantically
equivalent for class-based languages.

¥ The contrast between embedding and delegation will be
our main theme.

¥ It will becomes particularly important in the context of
object-based languages.

Class-Based Languages April 30, 1996 12:20 pm 12

Method Lookup

¥ Method lookup is the process of finding the code to run
on a method invocation o.m(É).

¥ The details depend on the language and the storage
model.

Class-Based Languages April 30, 1996 12:20 pm 13

The Great Class-Based Illusion

¥ In class-based languages, method lookup gives the
illusion that methods are embedded in objects (cf. o.x,
o.m(...)).

¥ Self is always the receiver: the object that appears to
contain the method.

¥ Features that would distinguish embedding from
delegation implementations (e.g. method update) are
usually avoided.

¥ This illusion hides the details of the storage model and
of method lookup.

Class-Based Languages April 30, 1996 12:20 pm 14

Subclasses and Inheritance

¥ A subclass is a differential definition of a class.

¥ The subclass relation is the partial order induced by the
subclass declarations.

¥ Example: restorable cells.
subclass reCell of cell is

var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
super.set(n);

end;
method restore() is

self.contents := self.backup;
end;

end;

Class-Based Languages April 30, 1996 12:20 pm 15

Subclasses and Self

¥ Because of subclasses, the meaning of self becomes
dynamic.

¥ Because of subclasses, the concept of super becomes
useful.

self.m(...)

super.m(...)

Class-Based Languages April 30, 1996 12:20 pm 16

Subclasses and Naive Storage

¥ In the naive implementation, the existence of subclasses
does not cause any change in the storage model.

contents
get
set

0
(code for get)
(code for set)

attribute record

contents
get
set

0
(code for get)
(code for set)

attribute record

backup
restore

0
(code for restore)

aCell

aReCell

Class-Based Languages April 30, 1996 12:20 pm 17

Subclasses and Method Suites

¥ Because of subclasses, the method-suites model has to be
reconsidered. In dynamically-typed class-based
languages, it is modified:

 Hierarchical method suites

contents 0 get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell

Class-Based Languages April 30, 1996 12:20 pm 18

¥ In statically-typed class-based languages, however, it is
maintained in its original form.

 Collapsed method suites

contents 0
get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell get (code for get)

Class-Based Languages April 30, 1996 12:20 pm 19

Embedding/Delegation View of Class Hierarchies

¥ Hierarchical method suites: delegation (of objects to
suites) combined with delegation (of sub-suites to super-
suites).

¥ Collapsed method suites: delegation (of objects to suites)
combined with embedding (of super-suites in sub-suites).

Class-Based Languages April 30, 1996 12:20 pm 20

Class-Based Summary

¥ In analyzing the meaning and implementation of class-
based languages we end up inventing and analyzing
sub-structures of objects and classes.

¥ These substructures are independently interesting: they
have their own semantics, and can be combined in
useful ways.

¥ What if these substructures were directly available to
programmers?

Object-Based Languages May 28, 1996 11:09 pm 21

OBJECT-BASED LANGUAGES

¥ Slow to emerge.

¥ Simple and flexible.

¥ Usually untyped.

Object-Based Languages May 28, 1996 11:09 pm 22

Objects without Classes

¥ Just objects and dynamic dispatch.

¥ When typed, just object types and subtyping.

¥ Direct object-to-object inheritance.

Object-Based Languages May 28, 1996 11:09 pm 23

An Object, All by Itself

¥ Classes are replaced by object constructors.

¥ Object types are immediately useful.
ObjectType Cell is

var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

Object-Based Languages May 28, 1996 11:09 pm 24

An Object Generator

¥ Procedures as object generators.

¥ Quite similar to classes!

procedure newCell(m: Integer): Cell is
object cell: Cell is

var contents: Integer := m;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;
return cell;

end;

var cellInstance: Cell := newCell(0);

Object-Based Languages May 28, 1996 11:09 pm 25

Decomposing Class-based Features

¥ General idea: decompose class-based notions. (And
orthogonally recombine them.)

¥ We have seen how to decompose simple classes into
objects and procedures.

¥ We will now investigate how to decompose inheritance.

Object-Based Languages May 28, 1996 11:09 pm 26

Prototypes and Clones

¥ Object generation by parameterization.

¥ Vs. object generation by cloning and mutation.

Object-Based Languages May 28, 1996 11:09 pm 27

Prototypes

¥ Classes describe objects.

¥ Prototypes describe objects and are objects.

Object-Based Languages May 28, 1996 11:09 pm 28

Cloning of Prototypes

¥ Regular objects are clones of prototypes.

¥ clone is a bit like new, but operates on objects instead of
classes.

var cellClone: Cell := clone cellInstance;

Object-Based Languages May 28, 1996 11:09 pm 29

Mutation of Clones

¥ Clones are customized by mutation (e.g., update).

¥ Field update.

¥ Method update.

cellClone.contents := 3;

cellClone.get :=
method (): Integer is

if self.contents < 0 then return 0 else return self.contents end;
end;

Object-Based Languages May 28, 1996 11:09 pm 30

Self-Mutation

¥ Restorable cells with no backup field.
ObjectType ReCell is

var contents: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

Object-Based Languages May 28, 1996 11:09 pm 31

¥ The set method updates the restore method!
object reCell: ReCell is

var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is

let x = self.get();
self.restore := method () is self.contents := x end;
self.contents := n;

end;
method restore() is self.contents := 0 end;

end;

Object-Based Languages May 28, 1996 11:09 pm 32

Forms of Mutation

¥ Method update is an example of a mutation operation. It
is simple and statically typable.

¥ Forms of mutation include:

~ Direct method update (Beta, NewtonScript, Obliq, Kevo,
Garnet).

~ Dynamically removing and adding attributes (Self, Act1).

~ Swapping groups of methods (Self, Ellie).

Object-Based Languages May 28, 1996 11:09 pm 33

Object-Based Inheritance

¥ Object generation can be written as procedures, but with
no real notion of inheritance.

¥ Object inheritance can be achieved by cloning (reuse)
and update (override), but with no shape change.

¥ How can we inherit while changing shape?

Object-Based Languages May 28, 1996 11:09 pm 34

An Option: Object Extension

¥ Object extension achieves inheritance and shape change.
However:

~ Not easy to typecheck.

~ Not easy to implement efficiently.

~ Provided rarely or restrictively.

Object-Based Languages May 28, 1996 11:09 pm 35

Donors and Hosts

¥ General object-based inheritance: building new objects
by ÒreusingÓ attributes of existing objects.

¥ Two orthogonal aspects:

~ obtaining the attributes of a donor object, and

~ incorporating those attributes into a new host object.

¥ Four categories of object-based inheritance:

~ The attributes of a donor may be obtained implicitly or
explicitly. Orthogonally:

~ those attributes may be either embedded into a host, or
delegated to a donor.

Object-Based Languages May 28, 1996 11:09 pm 36

Embedding vs. Delegation Inheritance

¥ A difference in execution.

¥ Embedding inheritance: the attributes inherited from a
donor become part of the host (in principle, at least).

¥ Delegation inheritance: the inherited attributes remain
part of the donor, and are accessed via an indirection
from the host.

¥ Either way, self is the receiver.

¥ In embedding, host objects are independent of their
donors. In delegation, complex webs of dependencies
may be created.

Object-Based Languages May 28, 1996 11:09 pm 37

Implicit vs. Explicit Inheritance

¥ A difference in declaration.

¥ Implicit inheritance: one or more objects are designated
as the donors (explicitly!), and their attributes are
implicitly inherited.

¥ Explicit inheritance, individual attributes of one or
more donors are explicitly designated and inherited.

¥ Super and override make sense for implicit inheritance,
not for explicit inheritance.

Object-Based Languages May 28, 1996 11:09 pm 38

¥ Intermediate possibility: explicitly designate a named
collection of attributes that, however, does not form a
whole object. E.g. mixin inheritance.

¥ (We can see implicit and explicit inheritance, as the
extreme points of a spectrum.)

Object-Based Languages May 28, 1996 11:09 pm 39

Embedding

¥ Host objects contain copies of the attributes of donor
objects.

 Embedding

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

get (new code for get)

contents 0

backup 0
contents 0

Object-Based Languages May 28, 1996 11:09 pm 40

Embedding and Self

¥ Embedding provides the simplest explanation of the
standard semantics of self as the receiver.

¥ The invocation of an inherited method works exactly
like the invocation of an original method.

Object-Based Languages May 28, 1996 11:09 pm 41

Embedding-Based Languages

¥ Embedding was described by Borning as part of one of
the first proposals for prototype-based languages.

¥ Recently, it has been adopted by languages like Kevo
and Obliq. We call these languages embedding-based
(concatenation-based, in Kevo terminology).

¥ Embedding inheritance can be specified explicitly or
implicitly.

~ Explicit forms of embedding inheritance can be understood as
reassembling parts of old objects into new objects.

~ Implicit forms of embedding inheritance can be understood as
ways of concatenating or extending copies of existing objects
with new attributes.

Object-Based Languages May 28, 1996 11:09 pm 42

Explicit Embedding Inheritance

¥ Individual methods and fields of specific objects
(donors) are copied into new objects (hosts).

¥ We write

embed o.m(É)

to embed the method m of object o into the current object.

¥ The meaning of embed cell.set(n) is to execute the set
method of cell with self bound to the current self, and
not with self bound to cell as in a normal invocation
cell.set(n).

¥ Moreover, the code of set is embedded in reCellExp.

Object-Based Languages May 28, 1996 11:09 pm 43

reCellExp

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

object reCellExp: ReCell is
var contents: Integer := cell.contents;
var backup: Integer := 0;
method get(): Integer is

return embed cell.get();
end;
method set(n: Integer) is

self.backup := self.contents;
embed cell.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Object-Based Languages May 28, 1996 11:09 pm 44

¥ The code for get could be abbreviated to:

method get copied from cell;

Object-Based Languages May 28, 1996 11:09 pm 45

Implicit Embedding Inheritance

¥ Whole objects (donors) are copied to form new objects
(hosts).

¥ We write

object o: T extends oÕ

to designate a donor object oÕ for o.

¥ As a consequence of this declaration, o is an object
containing a copy of the attributes of oÕ, with
independent state.

Object-Based Languages May 28, 1996 11:09 pm 46

reCellImp

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

object reCellImp: ReCell extends cell is
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
embed super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Object-Based Languages May 28, 1996 11:09 pm 47

Alternate reCellImp via method update

¥ We could define an equivalent object by a pure
extension of cell followed by a method update.

This code works because, with embedding, method
update affects only the object to which it is applied. (This
is not true for delegation.)

object reCellImp1: ReCell extends cell is
var backup: Integer := 0;
method restore() is self.contents := self.backup end;

end;

reCellImp1.set :=
method (n: Integer) is

self.backup := self.contents;
self.contents := n;

end;

Object-Based Languages May 28, 1996 11:09 pm 48

Stand-alone reCell

¥ The definitions of both reCellImp and reCellExp can be
seen as convenient abbreviations:

object reCell: ReCell is
var contents: Integer := 0;
var backup: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is

self.backup := self.contents;
self.contents := n;

end;
method restore() is self.contents := self.backup end;

end;

Object-Based Languages May 28, 1996 11:09 pm 49

Delegation

¥ Host objects contain links to the attributes of donor
objects.

¥ Prototype-based languages that permit the sharing of
attributes across objects are called delegation-based.

¥ Operationally, delegation is the redirection of field
access and method invocation from an object or
prototype to another, in such a way that an object can be
seen as an extension of another.

¥ Note: similar to hierarchical method suites.

Object-Based Languages May 28, 1996 11:09 pm 50

Delegation and Self

¥ A crucial aspect of delegation inheritance is the
interaction of donor links with the binding of self.

¥ On an invocation of a method called m, the code for m
may be found only in the donor cell. But the occurrences
of self within the code of m refer to the original receiver,
not to the donor.

¥ Therefore, delegation is not redirected invocation.

Object-Based Languages May 28, 1996 11:09 pm 51

Explicit Delegation Inheritance

¥ Individual methods and fields of specific objects
(donors) are linked into new objects (hosts).

¥ We write

delegate o.m(É)

to execute the m method of o with self bound to the
current self (not to o).

¥ The difference between delegate and embed is that the
former obtains the method from the donor at the time of
method invocation, while the latter obtains it earlier, at
the time of object creation.

Object-Based Languages May 28, 1996 11:09 pm 52

.

 (An example of) Delegation

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 0

contents
backup

0
0

donor links

get Ð

Object-Based Languages May 28, 1996 11:09 pm 53

reCellExp

object reCellExp: ReCell is
var contents: Integer := cell.contents;
var backup: Integer := 0;
method get(): Integer is return delegate cell.get() end;
method set(n: Integer) is

self.backup := self.contents;
delegate cell.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Object-Based Languages May 28, 1996 11:09 pm 54

¥ Explicit delegation provides a clean way of delegating
operations to multiple objects. It provides a clean
semantics for multiple donors.

Object-Based Languages May 28, 1996 11:09 pm 55

Implicit Delegation Inheritance (Traditional Delegation)

¥ Whole objects (donors/parents) are shared to from new
objects (hosts/children).

¥ We write

object o: T child of oÕ

to designate a parent object oÕ for o.

¥ As a consequence of this declaration, o is an object
containing a single parent link to oÕ, with parent state
shared among children. Parent links are followed in the
search for attributes.

Object-Based Languages May 28, 1996 11:09 pm 56

 (Single-parent) Delegation

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 0

contents
backup

0
0

parent link

Object-Based Languages May 28, 1996 11:09 pm 57

reCellImp

¥ A first attempt.
object cell: Cell is

var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

object reCellImpÕ: ReCell child of cell is
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
delegate super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Object-Based Languages May 28, 1996 11:09 pm 58

¥ This is almost identical to the code of reCellImp for
embedding.

¥ But for delegation, this definition is wrong: the contents
field is shared by all the children.

Object-Based Languages May 28, 1996 11:09 pm 59

¥ A proper definition must include a local copy of the
contents field, overriding the contents field of the parent.

object reCellImp: ReCell child of cell is
override contents: Integer := cell.contents;
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
delegate super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Object-Based Languages May 28, 1996 11:09 pm 60

¥ On an invocation of reCellImp.get(), the get method is
found only in the parent cell, but the occurrences of self
within the code of get refer to the original receiver,
reCellImp, and not to the parent, cell.

¥ Hence the result of get() is, as desired, the integer stored
in the contents field of reCellImp, not the one in the parent
cell.

Object-Based Languages May 28, 1996 11:09 pm 61

Dynamic Inheritance

¥ Inheritance is called static when inherited attributes are
fixed for all time.

¥ It is dynamic when the collection of inherited attributes
can be updated dynamically (replaced, increased,
decreased).

Object-Based Languages May 28, 1996 11:09 pm 62

Mode Switching

¥ Although dynamic inheritance is in general a dangerous
feature, it enables rather elegant and disciplined
programming techniques.

¥ In particular, mode-switching is the special case of
dynamic inheritance where a collection of (inherited)
attributes is swapped with a similar collection of
attributes. (This is even typable.)

Object-Based Languages May 28, 1996 11:09 pm 63

Delegation-Style Mode Switching

 Reparenting

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 1

contents
backup

0
0

ßip a parent link

get
set

(other code for get)
(other code for set)

contents 2

old parent new parent

Object-Based Languages May 28, 1996 11:09 pm 64

Embedding-Style Mode Switching

 Method Update

set
restore

(code for set)
(code for restore)

get (code for get)
backup 0

contents 0

set
restore

(other code for set)
(code for restore)

get (other code for get)
backup 0

contents 0

ßip a set of attributes

old object new object

Object-Based Languages May 28, 1996 11:09 pm 65

Embedding vs. Delegation Summary

¥ In embedding inheritance, a freshly created host object
contains copies of donor attributes.

¥ Access to the inherited donor attributes is no different
than access to original attributes, and is quick.

¥ Storage use may be comparatively large, unless
optimizations are used.

Object-Based Languages May 28, 1996 11:09 pm 66

¥ In delegation inheritance, a host object contains links to
external donor objects.

¥ During method invocation, the attribute-lookup
procedure must preserve the binding of self to the
original receiver, even while following the donor links.

~ This results in more complicated implementation and formal
modeling of method lookup.

~ It creates couplings between objects that may not be desirable
in certain (e.g. distributed) situations.

Object-Based Languages May 28, 1996 11:09 pm 67

¥ In class-based languages the embedding and delegation
models are normally (mostly) equivalent.

¥ In object-based languages they are distinguishable.

~ In delegation, donors may contain fields, which may be
updated; the changes are seen by the inheriting hosts.

~ Similarly, the methods of a donor may be updated, and again
the changes are seen by the inheriting hosts.

Object-Based Languages May 28, 1996 11:09 pm 68

~ It is often permitted to replace a donor link with another one in
an object; then all the inheritors of that object may change
behavior.

~ Cloning is still taken to perform shallow copies of objects,
without copying the corresponding donors. Thus, all clones of
an object come to share its donors and therefore the mutable
fields and methods of the donors.

Object-Based Languages May 28, 1996 11:09 pm 69

¥ Thus, embedding and delegation are two fundamentally
distinct ways of achieving inheritance with prototypes.

¥ Interesting languages exist that explore both
possibilities.

Object-Based Languages May 28, 1996 11:09 pm 70

Advantages of Delegation

¥ Space efficiency by sharing.

¥ Convenience in performing dynamic, pervasive changes
to all inheritors of an object.

¥ Well suited for integrated languages/environments.

Object-Based Languages May 28, 1996 11:09 pm 71

Advantages of Embedding

¥ Delegation can be criticized because it creates dynamic
webs of dependencies that lead to fragile systems.
Embedding is not affected by this problem since objects
remain autonomous.

¥ In embedding-based languages such as Kevo and
Omega, pervasive changes are achieved even without
donor hierarchies.

¥ Space efficiency, while essential, is best achieved behind
the scenes of the implementation.

~ Even delegation-based languages optimize cloning operations
by transparently sharing structures; the same techniques can be
used to optimize space in embedding-based languages.

Object-Based Languages May 28, 1996 11:09 pm 72

Traits: from Prototypes back to Classes?

¥ Prototypes were initially intended to replace classes.

¥ Several prototype-based languages, however, seem to be
moving towards a more traditional approach based on
class-like structures.

¥ Prototypes-based languages like Omega, Self, and Cecil
have evolved usage-based distinctions between objects.

Object-Based Languages May 28, 1996 11:09 pm 73

Different Kinds of Objects

¥ Trait objects.

¥ Prototype objects.

¥ Normal objects.

 Traits

contents 0

prototype

get
set

(code for get)
(code for set)

trait

contents 0

object

aCell

clone(aCell)

Object-Based Languages May 28, 1996 11:09 pm 74

Not all These Object are ÒTrueÓ Objects

¥ In the spirit of classless languages, traits and prototypes
are still ordinary objects. However, there is a separation
of roles.

¥ Traits are intended only as the shared parents of normal
objects: they should not be used directly or cloned.

¥ Prototypes are intended only as object (and prototype)
generators via cloning: they should not be used directly
or modified.

Object-Based Languages May 28, 1996 11:09 pm 75

¥ Normal objects are intended only to be used and to carry
local state: they should rely on traits for their methods.

¥ These distinctions may be seen as purely
methodological, or may be enforced: for example, some
operations on traits and prototypes may be forbidden to
protect these objects from accidental damage.

Object-Based Languages May 28, 1996 11:09 pm 76

Trait Treason

¥ This separation of roles violates the original spirit of
prototype-based languages. Traits objects cannot
function on their own.

¥ With the separation between traits and other objects, we
seem to have come full circle back to class-based
languages and to the separation between classes and
instances.

Object-Based Languages May 28, 1996 11:09 pm 77

Object Constructions vs. Class Implementations

¥ The traits-prototypes partition in delegation-based
languages looks exactly like an implementation
technique for classes.

¥ A similar traits-prototypes partition in embedding-
based languages corresponds to a different
implementation technique for classes that trades space
for access speed.

¥ Class-based notions and techniques are not totally
banned in object-based languages. Rather, they
resurface naturally.

Object-Based Languages May 28, 1996 11:09 pm 78

The Contribution of the Object-Based Approach

¥ The achievement of object-based languages is to make
clear that classes are just one of the possible ways of
generating objects with common properties.

¥ Objects are more primitive than classes, and they should
be understood and explained before classes.

¥ Different class-like constructions can be used for
different purposes. Hopefully, more flexibly than in
strict class-based languages.

PLDI’96 Tutorial May 28, 1996 11:09 pm 79

CONCLUSIONS

¥ Class-based: various implementation techniques based
on embedding and/or delegation. Self is the receiver.

¥ Object-based: various language mechanisms based on
embedding and/or delegation. Self is the receiver.

¥ Object-based can emulate class-based. (By traits, or by
otherwise reproducing the implementations techniques
of class-based languages.)

PLDI’96 Tutorial May 28, 1996 11:09 pm 80

Foundations

¥ Objects can emulate classes (by traits) and procedures
(by Òstack frame objectsÓ).

¥ Everything can indeed be an object.

PLDI’96 Tutorial May 28, 1996 11:09 pm 81

Future Directions

¥ I look forward to the continued development of typed
object-based languages.

~ The notion of object type arise more naturally in object-based
languages.

~ Traits, method update, and mode switching are typable
(general reparenting is not easily typable).

¥ No need for dichotomy: object-based and class-based
features can be merged within a single language, based
on the common object-based semantics (Beta, OÐ1, OÐ2,
OÐ3).

PLDI’96 Tutorial May 28, 1996 11:09 pm 82

¥ Embedding-based languages seem to be a natural fit for
distributed-objects situations. E.g. COM vs. CORBA.

~ Objects are self-contained and are therefore localized.

~ For this reason, Obliq was designed as an embedding-based
language.

PLDI’96 Tutorial May 28, 1996 11:09 pm 83

A New Hierarchy

Object-Oriented

Class-Based Object-Based

Closures Prototypes

Embedding Delegation

Implicit . . . Explicit Implicit . . . Explicit

PLDI’96 Tutorial May 28, 1996 11:09 pm 84

BIBLIOGRAPHY

[1] Abadi, M. and L. Cardelli, A theory of objects. Springer. 1996 (to appear).
[2] Abadi, M. and L. Cardelli, A theory of primitive objects: untyped and first-or-

der systems. Proc. Theoretical Aspects of Computer Software. Lecture Notes in
Computer Science 789, 296-320. Springer-Verlag. 1994.

[3] Adams, N. and J. Rees, Object-oriented programming in Scheme. Proc. 1988
ACM Conference on Lisp and Functional Programming, 277-288. 1988.

[4] Agesen, O., L. Bak, C. Chambers, B.-W. Chang, U. H�lzle, J. Maloney, R.B.
Smith, D. Ungar, and M. Wolczko, The Self 3.0 programmer's reference manu-
al. Sun Microsystems. 1993.

[5] Alagic, S., R. Sunderraman, and R. Bagai, Declarative object-oriented program-
ming: inheritance, subtyping, and prototyping. Proc. ECOOP'94. Lecture
Notes in Computer Science 821, 236-259. Springer-Verlag. 1994.

[6] Andersen, B., Ellie: a general, fine-grained, first-class, object-based language.
Journal of Object Oriented Programming 5(2), 35-42. 1992.

[7] Apple, The NewtonScript programming language. Apple Computer, Inc. 1993.
[8] Blaschek, G., Type-safe OOP with prototypes: the concepts of Omega. Struc-

tured Programming 12(12), 1-9. 1991.

PLDI’96 Tutorial May 28, 1996 11:09 pm 85

[9] Blaschek, G., Object-oriented programming with prototypes. Springer-Verlag.
1994.

[10] Borning, A.H., The programming language aspects of ThingLab, a constraint-
oriented simulation laboratory. ACM Transactions on Programming Languages
and Systems 3(4), 353-387. 1981.

[11] Borning, A.H., Classes versus prototypes in object-oriented languages. Proc.
ACM/IEEE Fall Joint Computer Conference, 36-40. 1986.

[12] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59.
MIT Press. 1995.

[13] Chambers, C., The Cecil language specification and rationale. Technical Re-
port 93-03-05. University of Washington, Dept. of Computer Science and Engi-
neering. 1993.

[14] Chambers, C., D. Ungar, and E. Lee, An efficient implementation of Self, a dy-
namically-typed object-oriented language based on prototypes. Proc. OOPS-
LA'89, 49-70. ACM Sigplan Notices 24(10). 1989.

[15] Dony, C., J. Malenfant, and P. Cointe, Prototype-based languages: from a new
taxonomy to constructive proposals and their validation. Proc. OOPSLA'92,
201-217. 1992.

[16] Lieberman, H., A preview of Act1. AI Memo No 625. MIT. 1981.
[17] Lieberman, H., Using prototypical objects to implement shared behavior in

object oriented systems. Proc. OOPSLA'86, 214-223. ACM Press. 1986.

PLDI’96 Tutorial May 28, 1996 11:09 pm 86

[18] Lieberman, H., Concurrent object-oriented programming in Act 1. In Object-
oriented concurrent programming, A. Yonezawa and M. Tokoro, ed., MIT Press. 9-
36. 1987.

[19] Madsen, O.L., B. M¿ller-Pedersen, and K. Nygaard, Object-oriented program-
ming in the Beta programming language. Addison-Wesley. 1993.

[20] Paepcke, A., ed., Object-oriented programming: the CLOS perspective. MIT
Press, 1993.

[21] Rajendra, K.R., E. Tempero, H.M. Levy, A.P. Black, N.C. Hutchinson, and E. Jul,
Emerald: a general-purpose programming language. Software Practice and Ex-
perience 21(1), 91-118. 1991.

[22] Stein, L.A., H. Lieberman, and D. Ungar, A shared view of sharing: the treaty
of Orlando. In Object-oriented concepts, applications, and databases, W. Kim and F.
Lochowsky, ed., Addison-Wesley. 31-48. 1988.

[23] Taivalsaari, A., Kevo, a prototype-based object-oriented language based on
concatenation and module operations. Report LACIR 92-02. University of Vic-
toria. 1992.

[24] Taivalsaari, A., A critical view of inheritance and reusability in object-orient-
ed programming. Jyv�skyl� Studies in computer science, economics and statis-
tics No.23, A. Salminen, ed., University of Jyv�skyl�. 1993.

[25] Taivalsaari, A., Object-oriented programming with modes. Journal of Object
Oriented Programming 6(3), 25-32. 1993.

PLDI’96 Tutorial May 28, 1996 11:09 pm 87

[26] Ungar, D., C. Chambers, B.-W. Chang, and U. H�lzle, Organizing programs
without classes. Lisp and Symbolic Computation 4(3), 223-242. 1991.

[27] Ungar, D. and R.B. Smith, Self: the power of simplicity. Lisp and Symbolic Com-
putation 4(3), 187-205. 1991.

