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Abstract
Object-oriented languages were invented to provide an intuitive view of data and com-
putation, by drawing an analogy between software and the physical world of objects.
The detailed explanation of this intuition, however, turned out to be quite complex;
there are still no standard definitions of such fundamental notions as objects, classes,
and inheritance.

Much progress was made by investigating the notion of subtyping within procedural
languages and their theoretical models (lambda calculi). These studies clarified the role
of subtyping in object-oriented languages, but still relied on complex encodings to
model object-oriented features. Recently, in joint work with Martin Abadi, I have stud-
ied more direct models of object-oriented features: object calculi.

Object calculi embody, in a minimal setting, the object-oriented model of computation,
as opposed to the imperative, functional, and process models. Object calculi are based
exclusively on objects and methods, not on functions or data structures. They help in
classifying and explaining the features of object-oriented languages, and in designing
new, more regular languages. They directly inspired my design of Obliq, an object-ori-
ented language for network programming.
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Questions

• Standard Programming Questions

~ Will my program compile?

~ Will my program crash after a successful compilation?

~ What will my program do (if it does not crash)?

~ How do I avoid writing the “same” code over and over?

• Software Engineering Questions

~ Will my use of a library cause it to crash?

~ Will my changes cause my clients to recompile or crash?

~ What will my client’s programs do after my changes?

~ How can my clients avoid having to rewrite my code?
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Outline

• Background

~ Types in programming languages.

~ Object-oriented features.

• Foundations

~ λ-calculi for procedural languages.

~ Object calculi for object-oriented languages.

• Issues

~ Expressiveness.

~ Soundness.
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A BRIEF HISTORY OF TYPE

The early days
• Integers and floats (occasionally, also booleans and voids).

• Monomorphic arrays (Fortran).

• Monomorphic trees (Lisp).

The days of structured programming
• Product types (records in Pascal, structs in C). 

• Union types (variant records in Pascal, unions in C). 

• Function/procedure types (often with various restrictions).

• Recursive types (typically via pointers). 

End of the easy part
• This phase culminated with user-definable monomorphic types obtained by com-

bining the constructions above (Pascal, Algol68).
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Four major innovations

Polymorphism (ML, etc.). (Impredicative universal types.)

Abstract types (CLU, etc.). (Impredicative existentials types.)

Modules (Modula 2, etc.). (Predicative dependent types.)

Objects and subtyping (Simula 67, etc.). (Subtyping + ???)

• The first three innovations are now largely understood, in isolation, both theoretical-
ly and practically. Some of their combinations are also well understood.

• There has been little agreement on the theoretical and practical properties of objects.

• Despite much progress, nobody really knows yet how to combine all four ingredi-
ents into coherent language designs.
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Confusion

These four innovations are partially overlapping and certainly interact in interesting
ways. It is not clear which ones should be taken as more prominent. E.g.:

• Object-oriented languages have tried to incorporate type abstraction, polymor-
phism, and modularization all at once. As a result, o-o languages are (generally) a
mess. Much effort has been dedicated to separating these notions back again.

• Claims have been made (at least initially) that objects can be subsumed by either
higher-order functions and polymorphism (ML camp), by data abstraction (CLU
camp), or by modularization (ADA camp).

• One hard fact is that full-blown polymorphism can subsume data abstraction. But
this kind of polymorphism is more general than, e.g., ML’s, and it is not yet clear
how to handle it in practice.

• Modules can be used to obtain some form of polymorphism and data abstraction
(ADA generics, C++ templates) (Modula 2 opaque types), but not in full generality.
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O-O PROGRAMMING

• Goals

~ Data abstraction.

~ Polymorphism.

~ Code reuse.

• Mechanisms

~ Objects with self (packages of data and code).

~ Subtyping and subsumption.

~ Classes and inheritance.
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Object-oriented constructs
Objects and object types

Objects are packages of data (instance variables) and code (methods).

Object types describe the shape of objects.

where a : A means that the program a has type A. So, cell : CellType.

ObjectType CellType;
var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object cell: CellType;
var contents: Integer := 0;
method get(): Integer; return self.contents end;
method set(n: Integer); self.contents := n end;

end;
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Classes

Classes are ways of describing and generating collections of objects.

class cellClass for CellType;
var contents: Integer := 0;
method get(): Integer; return self.contents end;
method set(n: Integer); self.contents := n end;

end;

var cell : CellType := new cellClass;

procedure double(aCell: CellType);
aCell.set(2 * aCell.get());

end;



Talk May 30, 1997 2:30 pm 10

Subclasses

Subclasses are ways of describing classes incrementally, reusing code.

ObjectType ReCellType;
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

subclass reCellClass of cellClass for ReCellType; (Inherited:
var backup: Integer := 0; var contents
override set(n: Integer); method get)

self.backup := self.contents; 
super.set(n);

end;
method restore(); self.contents := self.backup end;

end;
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Subtyping and subsumption

• Subtyping relation, A <: B

An object type is a subtype of any object type with fewer components.

(e.g.: ReCellType <: CellType)

• Subsumption rule

if a : A and A <: B then a : B

(e.g.: reCell : CellType)

• Subclass rule

cClass can be a subclass of dClass only if cType  <: dType

(e.g.: reCellClass can indeed be declared as a subclass of cellClass)
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Healthy skepticism
• Object-oriented languages have been plagued, more than any other kind of languag-

es, but confusion and unsoundness.

• How do we keep track of the interactions of the numerous object-oriented features?

• How can we be sure that it all makes sense?
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LANGUAGE FOUNDATIONS

• Procedural languages are modeled by λ-calculi.
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The λ-calculus

The simplest procedural language.

• Functional Semantics: 

(λ(x)b)(b1)   ñ�   b{x←b1} (β-reduction)

• Imperative Semantics: 

more complicated, store-based.

b ::=
x
λ(x)b
b1(b2)

terms
identifiers
functions (i.e. procedure (x) return b end)
applications

x := b assignments
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... also the hardest procedural language.
~ Scoping (cf. Lisp’s botch, Algol’s blocks).

~ Data structures (numbers, trees, etc.).

~ Controls structures (parameters, declarations, state encapsulation,
conditionals, loops, recursion, continuations).

~ module structures (interfaces, genericity, visibility).

~ Typing (soundness, polymorphism, data abstraction).

~ Semantics (formal language definitions).
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The Functional Point of View
• Functions (or procedures) are the most interesting aspect of computation.

• Various λ-calculi are seen both as paradigms and foundations for procedural lan-
guages. (E.g.: Landin/Reynolds for Algol, Milner for ML.)

According to the functional approach, objects, like anything else, ought to be ex-
plained by some combination of functions.

But people working on and with object-oriented language do not think that func-
tions are so interesting ...
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However...
• The Simula lament:

“Unlike procedural languages, object-oriented languages have no formal 
foundation.”
(I.e.: We made it up.)

• The Smalltalk axiom:

“Everything is an object. I mean, EVERYTHING.”
(I.e.: If you have objects, you don’t need functions.)

• The C++ / Eiffel / etc. trade press:

“A revolutionary software life-cycle paradigm.”
(I.e.: Don’t call procedures, invoke methods!)

They all say: These are no ordinary languages.

They reject the reductionist approach of mapping everything to the λ-calculus.
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If there is something really unique to O-O, 
then ...

There ought to be a formalism comparable to the λ-calculus, such that:

• It is computationally complete.

• It is based entirely on objects, not functions.

• It can be used as a paradigm and a foundation for object-oriented language.

• It can explain object-oriented concepts more directly and fruitfully than functional
encodings.

Some evidence to the contrary:

• Objects have methods, methods have parameters, parameters are λ’s, therefore any
object formalism is an extension of the λ-calculus, not a replacement for it.

And yet...
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FOUNDATIONS OF O-O
• Object-oriented languages are better modeled by object calculi.
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The ς-calculus

The simplest object-oriented language.

• Fields can be encoded:

[..., l = b, ... ]
b1.l := b2

b ::=
x
[li = ς(xi)bi iì1..n]
b.l
b1.l Þ� ς(x)b2

terms
identifiers
objects (i.e. object[l = method()...self...end, ...])
method invocation (with no parameters)
method update

clone(b)
let x = b1 in b2

cloning
local declaration (yields fields)
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Reduction rules of the ς-calculus
• The notation b ñ� c means that b reduces to c.

Let o 7 [li=ς(xi)bi iì1..n] (li distinct)

o.lj ñ� bj{xj←o} (jì1..n)
o.ljÞ�ς(y)b ñ� [lj=ς(y)b, li=ς(xi)bi iì(1..n)-{j}] (jì1..n)

Theorem: Church-Rosser
If a ���� b and a ���� c, then there exists d such that b ���� d and c ���� d.

(Where ���� is the reflexive, transitive, and contextual closure of ñ�.)

~ We are dealing with a calculus of objects (not of functions).

~ The semantics is deterministic. It is neither imperative nor concurrent.

~ We have investigated imperative versions of the calculus.

~ We have not yet investigated a concurrent version.
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Basic Examples

Let o1 @ [l=ς(x)[]] A convergent method.
then o1.l ñ� []

Let o2 @ [l=ς(x)x.l] A divergent method.
then o2.l ñ� x.l{x←o2} 7 o2.l ñ�  ...

Let o3 @ [l = ς(x)x] A self-returning method.
then o3.l ñ� x{x←o3} 7 o3

Let o4 @ [l = ς(y) (y.lÞ�ς(x)x)] A self-modifying method.
then o4.l ñ� (o4.lÞ�ς(x)x) ñ� o3
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... also the hardest object-oriented language.
~ role of self (hidden recursion)

~ data structures (numbers, trees, etc.)

~ controls structures (functions, classes, state encapsulation, 
 conditionals, loops, recursion)

~ typing (soundness, subtyping, Self types)

~ semantics (formal o-o language definitions)
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A.k.a. Obliq

b ::=
x
{li => meth(xi)bi end iì1..n }
b.l
b1.l := meth(x)b2 end
clone(b)
let x = b1 in b2 end

terms
identifiers
objects
method invocation 
method update
cloning
local declaration (yields fields) 
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Functions from Objects

Example:

�(λ(x)x)(a)� 7 ([arg = ς(x) x.arg, val = ς(x)�x�{x←x.arg}].arg Þ� ς(z)�a�).val
ñ� �a�

Preview: this encoding extends to typed calculi:

�A→B� @ [arg: �A�, val: �B�] 1st-order λ into 1st-order ς

�x�   @   x

�b(a)�   @ (�b�.arg Þ� ς(x)�a�).val x í FV(a)

�λ(x)b{x}�   @
[arg = ς(x) x.arg,
 val = ς(x) �b{x}�Yx←x.argZ]
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• β-reduction is validated:

let o   7   [arg = ς(z) �a�, val = ς(x) �b{x}�{x←x.arg}]

�(λ(x)b{x})(a)� 
7 ([arg = ς(x) x.arg, val = ς(x) �b{x}�{x←x.arg}].arg Þ� ς(z)�a�).val
= o.val   =   (�b{x}�{x←x.arg}){x←o}   
= �b{x}�{x←o.arg}   =   �b{x}�{x←�a�}    
= �b{a}�

• Roughly the same technique extends to imperative calculi, and to various typed cal-
culi.

• Generalizes to default parameters and call-by-keyword.

• Thus, procedural languages are reduced to object-oriented languages.



Talk May 30, 1997 2:30 pm 27

Objects from Functions

Preview: this translation does not extend to typed calculi.

[li:Bi iì1..n]    @   µ(X)�li:X→Bi iì1..n�

But NOT, e.g.: µ(X)�l:X→A, l’:X→B� <: µ(Y)�l:Y→A�

�x�   @   x

�[li = ς(xi)bi iì1..n]�   @ �li = λ(xi)�bi� iì1..n�

�b.l�   @ �b�.l(�b�)

�b1.l Þ� ς(x)b2�   @ �b1�.l:=λ(x)�b2�
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Example: A Storage Cell

Let cell @ [contents = 0, set = ς(x) λ(n) x.contents := n]
then cell.set(3) 

ñ� (λ(n)[contents = 0, set = ς(x) λ(n) x.contents := n]
.contents:=n)(3)

ñ� [contents = 0, set = ς(x)λ(n) x.contents := n].contents:=3
ñ� [contents = 3, set = ς(x) λ(n) x.contents := n]

and cell.set(3).contents
ñ� ...
ñ� 3

Basic types (such as booleans and integers) can be added as primitive, or encoded.
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Example: Object-Oriented Booleans

true @   [if = ς(x) x.then, then = ς(x) x.then, else = ς(x) x.else]
false @   [if = ς(x) x.else, then = ς(x) x.then, else = ς(x) x.else]
cond(b,c,d) @   ((b.then:=c).else:=d).if

Initially the methods then and else are set to diverge when invoked. 

They are updated in the conditional expression.

So:

cond(true, a, b)   7   ((true.then:=a).else:=b).if
ñ� ([if = ς(x) x.then, then = a, else = ς(x) x.else].else:=b).if
ñ� [if = ς(x) x.then, then = a, else = b].if
ñ� [if = ς(x) x.then, then = a, else = b].then
ñ� a
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Example: Object-Oriented Naturals
• Each numeral has a case field that contains either λ(z)λ(s)z for zero, or λ(z)λ(s)s(x) for

non-zero, where x is the predecessor (self). 

• Each numeral has a succ method that can modify the case field to the non-zero ver-
sion.

Informally: n.case(z)(s) = if n is zero then z else s(n-1)

zero @

[case = λ(z) λ(s) z,
 succ = ς(x) x.case := λ(z) λ(s) s(x) ]

So:

zero 7 [case = λ(z) λ(s) z, succ = ... ]
one @ zero.succ 7 [case = λ(z) λ(s) s(zero), succ = ... ]
two @ one.succ 7 [case = λ(z) λ(s) s(one), succ = ... ]

iszero @ λ(n) n.case(true)(λ(p)false)
pred @ λ(n) n.case(zero)(λ(p)p)
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Example: A Calculator
The calculator uses method update for keeping track of the pending operation.

calculator @

[arg = 0.0,
 acc = 0.0,
 enter = ς(s) λ(n) s.arg := n,
 add = ς(s) (s.acc := s.equals).equals Þ� ς(s’) s’.acc+s’.arg,
 sub = ς(s) (s.acc := s.equals).equals Þ� ς(s’) s’.acc-s’.arg,
 equals = ς(s) s.arg ]

The equals method works as the result button and as the operator stack.

We obtain the following calculator-style behavior:

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0
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Classes from Objects

• Inheritance is method reuse. One can reuse methods by: 

~ sharing them with other objects (delegation-based) 

~ extracting them from other objects (embedding-based)

~ sharing/extracting them from traits or classes (class-based)

• Embedding-based inheritance is the simplest. 

But one cannot easily extract a method of an existing object: 
method extraction is not type-sound in typed languages. 

• Delegation-based inheritance is more complex.

It has been handled formall [Honsell, Fisher, Mitchell], but is 
harder to think about and to typecheck. We don’t discuss it.
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• Class-based inheritance is useful or needed anyway.

We need something like classes, on top of objects, to achieve 
(typable) inheritance in our object-based framework.

• Here is the general idea:

~ A pre-method is a function that is later used (over and over) as a 
method.

~ A class is a collection of pre-methods plus a way of generating 
new objects. (I.e., a class is a trait plus a generator.)
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Classes and Inheritance

Example
We define classes cp1 and cp2 for one-dimensional and two-dimensional points:

We define points p1 and p2 by generating them from cp1 and cp2:

let cp1 =
[new = ς(z)[x = ς(s) z.x(s), mv_x = ς(s) z.mv_x(s)],
 x = λ(s) 0,
 mv_x = λ(s) λ(dx) s.x := s.x+dx];

let cp2 =
[new = ς(z)[…, y = ς(s) z.y(s), mv_y = ς(s) z.mv_y(s)],
 x = cp1.x,
 y = λ(s) 0,
 mv_x = cp1.mv_x,
 mv_y = λ(s) λ(dy) s.y := s.y+dy]

let p1 = cp1.new;
let p2 = cp2.new;
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Dynamic Inheritance

We change the mv_x pre-method of cp1 so that it does not set the x coordinate of a point
to a negative number:

• The update is seen by p1 because p1 was generated from cp1. 

• The update is seen also by p2 because p2 was generated from cp2 which inherited
mv_x from cp1:

cp1.mv_x Þ� ς(z) λ(s) λ(dx) s.x := max(s.x+dx, 0)

p1.mv_x(–3).x = 0
p2.mv_x(–3).x = 0
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In General

• If o 7 [li=ς(xi)bi iì1..n] is an object,

c 7 [new = ς(z)[li = ς(s) z.li(s) iì1..n],
li = λ(xi)bi iì1..n]

then c is a class for generating objects like o.

• A (sub)class c’ may inherit pre-methods from c:

c’ 7 [new = ... 
 ..., lk = c.lk, ... ]

• Roughly the same technique extends to various typed calculi.
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Object Types
An object type 

[li:Bi iì1..n] 

is the type of those objects with methods li, with a self parameter of type A <: [li:Bi
iì1..n] and a result of type Bi.

An object type with more methods is a subtype of one with fewer methods:

[li:Bi iì1..n+m] <: [li:Bi iì1..n] 

Object types are invariant (not covariant, not contravariant) in their components. 

An object can be used in place of another object with fewer methods, by subsump-
tion: 

a : A      ∧      A <: B      ⇒      a : B

This is the basis for a kind of polymorphism, and useful for inheritance:

f : B→C ∧ a : A ∧ A <: B ⇒ f(a) : C
f implements l in B ∧ A <: B ⇒ f can implement l in A
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A First-Order Calculus

Judgments
E º Q environment E is well-formed
E º A A is a type in E
E º A <: B A is a subtype of B in E
E º a : A a has type A in E

Environments
E 7 xi:Ai iì1..n environments, with xi distinct

Types
A,B   ::= Top the biggest type

[li:Bi iì1..n] object types, with li distinct

Terms
As for the untyped calculus, but with types for bound variables.
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Typing Rules

The object fragment:

(Type Object)    (li distinct) (Sub Object)    (li distinct)

E º Bi      îiì1..n E º Bi      îiì1..n+m

E º [li:Bi iì1..n] E º [li:Bi iì1..n+m] <: [li:Bi iì1..n]

(Val Object)    (where A 7 [li:Bi iì1..n])

E, xi:A º bi : Bi      îiì1..n

E º [li=ς(xi:A)bi iì1..n] : A

(Val Select) (Val Update)    (where A 7 [li:Bi iì1..n])

E º a : [li:Bi iì1..n]      jì1..n E º a : A      E, x:A º b : Bj     jì1..n

E º a.lj : Bj E º a.ljÞ�ς(x:A)b : A
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With some additional, standard rules we obtain a complete calculus:

(Env ð) (Env x) (Val x)

E º A      xídom(E) E’,x:A,E” º Q

ð º Q E,x:A º Q E’,x:A,E” º x:A

(Sub Refl) (Sub Trans) (Val Subsumption)

E º A E º A <: B      E º B <: C E º a : A      E º A <: B

E º A <: A E º A <: C E º a : B

(Type Top) (Sub Top)

E º Q E º A

E º Top E º A <: Top
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Theorem (Minimum types)
If E º a : A then there exists B such that E º a : B and, 
for any A’, if E º a : A’ then E º B<:A’.

Theorem (Subject reduction)
If ð º a : C and a ñ� v then ð º v : C.
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Typed Reasoning
Consider:

A @ [x:Nat, f:Nat]
a:A @ [x=1, f=ς(s:A)1]
b:A @ [x=1, f=ς(s:A)s.x]

We have, informally, a.x = b.x : Nat and a.f = b.f : Nat.

So, is a = b? Consider the context:

C{o} @ (o.x:=2).f

We have C{a} = 1 ¦ 2 = C{b}. Hence:

a ¦ b : A

Still, a = [x=1] : [x:Nat] and b = [x=1] : [x:Nat]. Hence:

a = b : [x:Nat]

Finally:

a m b : [f:Nat]

This is sound but not provable in our functional theory. It would be unsound in an im-
perative or concurrent context.
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Judgment:

E º a↔ b : A a and b are equal in A

(Eq Object)    (li distinct)

º bi ↔ bi’ îiì1..n

º [li=ς(xi)bi iì1..n] ↔ [li=ς(xi)bi’ iì1..n]

(Eq Sub Object)    (where A 7 [li:Bi iì1..n], A’ 7 [li:Bi iì1..n+m])

E, xi:A º bi : Bi   îiì1..n      E, xj:A’ º bj : Bj   îjìn+1..n+m

E º [li=ς(xi:A)bi iì1..n] ↔ [li=ς(xi:A’)bi iì1..n+m] : A

(Eval Select)    (where A 7 [li:Bi iì1..n], a 7 [li=ς(xi:A’)bi{xi} iì1..n+m])

E º a : A      jì1..n

E º a.lj ↔ bjYaZ : Bj

(Eval Update)    (where A 7 [li:Bi iì1..n], a 7 [li=ς(xi:A’)bi iì1..n+m])

E º a : A      E, x:A º b : Bj     jì1..n

E º a.ljÞ�ς(x:A)b ↔ [lj=ς(x:A’)b, li=ς(xi:A’)bi iì(1..n+m)–{j}] : A 
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A @ [x:Nat, f:Nat]
a:A @ [x=1, f=ς(s:A)1]
b:A @ [x=1, f=ς(s:A)s.x]

The rule (Eq Object) is a congruence rule. (We omit the obvious congruence rules for
selection and update.) It can only compare objects of equal length. Hence this is not suf-
ficient to prove a↔[x=1]:[x:Nat].

Objects of different lengths can be compared by (Eq Sub Object). This rule requires that,
in the longer object, the common methods do not depend on the additional methods,
so that the common methods can be typed with the shorter type as the type of self.

This allows us to conclude a↔[x=1]:[x:Nat], but not a↔[f=ς(s:A)s.x]:[f:Nat], because f
depends on a hidden method
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Unsoundness of Covariance
U @  [] The unit object type.
L @ [l:U] An object type with just l.
L <: U

P @ [x:U, f:U]
Q @ [x:L, f:U]
Assume Q <: P   by an (erroneous) covariant rule for object subtyping

q : Q @ [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P    that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!

The essence of this counterexample is used to show the unsoundness of record type co-
variance in presence of side-effecting field update. 
With methods, the counterexample can be adapted to our setting.
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Unsoundness of Method Extraction

(Val Extract)    (where A 7 [li:Bi iì1..n])

E º a : A      jì1..n

E º a lj : A→Bj

(Eval Extract)    (where A 7 [li:Bi iì1..n], a 7 [li=ς(xi:A’)bi iì1..n+m])

E º a : A     jì1..n

E º a lj  ↔  λ(xj:A)bj : A→Bj
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P   @   [f:[]]
Q   @   [f:[], y:[]]
Q <: P

p : P   @   [f=[]]
q : Q   @   [f=ς(s:Q)s.y, y=[]]
then q : P by subsumption with Q <: P
hence q f : P→[]          that is λ(s:Q)s.y : P→[]

But q.f(p)  fails!
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Unsoundness of the Naive
Recursive Subtyping Rule

Assume:

A 7 µ(X)X→Nat <: µ(X)X→Int 7 B

Let: Type-erased:

f : Nat →Nat (given)
a : A = fold(A, λ(x:A) 3)  = λ(x) 3
b : B = fold(B, λ(x:B) –3)  = λ(x) –3

c : A = fold(A, λ(x:A) f(unfold(x)(a)))  = λ(x) f(x(a))

By subsumption:

c : B

Hence:

unfold(c)(b) : Int Well-typed!  = c(b)

But:
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unfold(c)(b) = f(–3) Error!



Talk May 30, 1997 2:30 pm 47

Unsoundness of Naive Object Subtyping

Consider:

Assume MinMax <: Max, then: 

But: 

Max   @   µ(X)[n:Int, max+:X→X]
MinMax   @   µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

m : Max   @ [n = 0, max = ... ]
mm : MinMax @

[n = 0, min = ... ,
 max = ς(s:MinMax) λ(o:MinMax)

if o.min(o).n > s.n then o else s]

mm : Max (by subsumption)
mm.max(m) : Max

mm.max(m)  ñ� if m.min(m).n > mm.n then m else mm ñ� CRASH!
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Function Types
Translation of function types:

�A→B� @ [arg:�A�, val:�B�]

�x�ρ @ ρ(x)

�b(a)�ρ @

(�b�ρ.arg Þ� ς(x) �a�ρ).val for x í FV(�a�ρ)

�λ(x:A)b�ρ @

[arg = ς(x) x.arg,
 val = ς(x) �b�ρ{x←x.arg}]

According to this translation, A→B is invariant!

(There are several ways to obtain variant function types in richer object calculi.)
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Typed Classes and Inheritance
If A 7 [li:Bi iì1..n] is an object type, then:

Class(A)   @   [new:A, li:A→Bi iì1..n] 

where 

new:A is a generator for objects of type A
li:A→Bi is a pre-method for objects of type A

c : Class(A)   @   
[new = ς(c:Class(A)) [li = ς(x:A) c.li(x) iì1..n],

  li = λ(xi:A) bi{xi} iì1..n]

We can produce new objects as follows:

c.new 7 [li = ς(x:A) bi{x} iì1..n] : A
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Subsumption Validates Inheritance

Let A 7 [li:Bi iì1..n] and A’ 7 [li:Bi iì1..n, lj:Bj jìn+1..m], with A’ <: A.

Class(A’) may inherit from Class(A)   iff    A’<:A

Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then 

c.li: A→Bi <: A’→Bi. 

Hence c.li is a good pre-method for Class(A’). For example, we may define:

c’ @ [new=..., li=c.li iì1..n, ... ] : Class(A’)

where class c’ inherits the methods li from class c.
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TRANSLATIONS

• The representation of object-oriented notions in λ-calculi has normally been carried
out informally and incompletely, in terms of examples.

• Object calculi allow us to discuss these representation issues formally and complete-
ly, in terms of translations of object calculi into λ-calculi.

• Trying to translate object calculi into λ-calculi means, intuitively, “trying to program
in object-oriented style within a procedural language”.
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Untyped Translations
• Give insights into the nature of object-oriented computation.

• Objects = records of functions.

O-O Language

λ-calculusς-calculus

= easy translation
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Type-preserving Translations
• Give insights into the nature of object-oriented typing and subsumption/coercion.

• Object types = recursive records-of-functions types. 

[li:Bi iì1..n]    @   µ(X)�li:X→Bi iì1..n�

typed

λ-calculusς-calculus

= useful for semantic purposes
impractical for actual programming
losing the “oo-flavor”

O-O Language

typed typed
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Subtype-preserving Translations
• Give insights into the nature of subtyping for object types.

• Object types = recursive bounded existential types.

[li:Bi iì1..n] @ µ(Y)ï(X<:Y)�r:X, lisel:X→Bi iì1..n, liupd:(X→Bi)→X iì1..n�

O-O Language

λ-calculusς-calculus

= very difficult to obtain,
impossible to use in actual programming

typed

typed typed

with <:
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LANGUAGE TRANSLATIONS

• We have carried out the subtype-preserving translation of three artificial object-ori-
ented languages of increasing complexity into object calculi, thus showing their
type-soundness.

• The features of these object-oriented languages correspond, roughly, to Modula-3,
Eiffel, and PolyTOIL.
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Object-Oriented Logics?

• Curry-Howard

~ Proofs are programs.

~ Therefore, big proofs are big programs.

~ In software engineering, big programs are handled via object-
oriented techniques.

• How shall we handle big proofs?

~ Standard modularization techniques (which “haven’t quite 
made it yet” in programming practice).

~ Object-oriented-style techiques. 

For a first look at such proof techniques, see M.Hofmann, 
W.Naraschewski, M.Steffen, and T.Stroup: Inheritance of Proofs. 
Proc. FOOL 3, 1996.
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CONCLUSIONS

• Expressiveness

~ Pure object-based languages are as expressive as procedural languages. (Despite
all the Smalltalk claims, to our knowledge nobody had previously shown formal-
ly that one can build functions out of objects.)

~ Classes can be easily and faithfully encoded into object calculi. Thus, object-based
languages are simpler and just as expressive as class-based ones. (To our knowl-
edge, nobody had previously shown that one can build type-correct classes out of
objects.)

• Language soundness

~ The simple untyped ς-calculus is a good foundation for studying rich object-ori-
ented type systems (including polymorphism, Self types, etc.) and to prove their
soundness. We have done much work in this area.

~ Practical object-oriented languages can be shown sound by fairly direct subtype-
preserving translations into object calculi. 

~ We can make (some) sense of object-oriented languages.
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• Foundations

~ Subtype-preserving translations of object calculi, into lambda-calculi are extreme-
ly difficult to obtain.

~ In contrast, subtype-preserving translations of lambda-calculi into object-calculi
can be easily obtained.

~ In this sense, object calculi are more fundamental than λ-calculi.

• Other developments

~ Imperative calculi.

~ Second-order object types for “Self types”. 

~ Higher-order object types for “matching”.

• Potential future areas

~ Typed ς-calculi should be a good simple foundation for studying object-oriented
specification and verification (a still largely underdeveloped area). 

~ They should also give us a formal platform for studying object-oriented concur-
rent languages (as opposed to “ordinary” concurrent languages).
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