Anytime, Anywhere Modal Logics for Mobile Ambients *Luca Cardelli Andy Gordon*

Microsoft Research

POPL 2000

Introduction

- We want to describe mobile behaviors. The *ambient calculus* provides an operational model, where spatial structures (agents, networks, etc.) are represented by nested locations.
- We also want to specify mobile behaviors. To this end, we devise an *ambient logic* that can talk about spatial structures.

Spatial Structures

• Our basic model of space is going to be *finite-depth edge-labeled unordered trees*; for short: *spatial trees*, represented by a syntax of *spatial expressions*. Unbounded resources are represented by infinite branching:

Cambridge[Eagle[chair[0] | chair[0] | !glass[pint[0]]] | ...]

Ambient Structures

• Spatial expressions/trees are a subset of ambient expressions/trees, which can represent both the spatial and the dynamic aspects of mobile computation.

• An ambient tree is a spatial tree with, possibly, threads at each node that can locally change the shape of the tree.

a[*c*[*out a. in b. P*]] | *b*[**0**]

a[*Q* | *c*[*out a. in b. P*]]

| *b*[*R*]

a[Q]

| *c*[*in b*. *P*] | *b*[*R*]

Mobility

• *Mobility* is change of spatial structures over time.

a[Q]

Restriction-Free Ambient Calculus

$P \in \Pi ::=$	Processes	<i>M</i> ::=	Messages
0	inactivity	n	name
P P '	parallel	in M	entry capability
! P	replication	out M	exit capability
M [P]	ambient	open M	open capability
<i>M.P</i>	exercise a capability	3	empty path
(n). P	input locally, bind to n	<i>M.M</i> '	composite path
(M)	output locally (async)		

 $n[] \triangleq n[0]$ $M \triangleq M.0 \qquad (where appropriate)$

Reduction Semantics

- A structural congruence relation $P \equiv Q$:
 - On spatial expressions, $P \equiv Q$ iff P and Q denote the same tree.
 - On full ambient expressions, $P \equiv Q$ if in addition the respective threads are "trivially equivalent".
 - Prominent in the definition of the logic.
- A reduction relation $P \rightarrow^* Q$:
 - Defining the meaning of mobility and communication actions.
 - Closed up to structural congruence:

 $P \equiv P', P' \longrightarrow^* Q', Q' \equiv Q \implies P \longrightarrow^* Q$

Space-Time Modalities

- In a modal logic, the truth of a formula is relative to a state (called a *world*).
- In our case, the truth of a space-time modal formula is relative to the *here and now* of a process.
 - The formula *n*[**0**] is read:

there is here and now an empty location called n

- The operator $n[\mathcal{A}]$ is a single step in space (akin to the temporal next), which allows us talk about that place one step down into n.
- Other modal operators can be used to talk about undetermined times (in the future) and undetermined places (in the location tree).

Logical Formulas

$\mathscr{R} \in \Phi ::=$	Formulas	(η is a name or a variable)
Т	true	
$\neg \mathcal{A}$	negation	
$\mathcal{A} \lor \mathcal{A}$	disjunction	
0	void	
η[Ά]	location	
ЯIЯ	composition	
$\diamond \mathfrak{A}$	somewhere n	nodality
◇ A	sometime mo	odality
<i>A</i> @η	location adju	nct
Ad A'	composition	adjunct
$\forall x. \mathcal{A}$	universal qua	ntification over names

2003-03-18 15:01 Ambient Logic POPL'00 11

Satisfaction Relation

$P \models \mathbf{T}$		
$P \vDash \neg \mathscr{A}$	≜	$\neg P \vDash \mathscr{A}$
$P \vDash \mathscr{A} \lor \mathscr{B}$	≜	$P \vDash \mathscr{A} \lor P \vDash \mathscr{B}$
$P \models 0$	≜	$P \equiv 0$
$P \vDash n[\mathcal{A}]$	≜	$\exists P' \in \Pi. P \equiv n[P'] \land P' \models \mathcal{A}$
$P \models \mathcal{A} \mid \mathcal{B}$	≜	$\exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models \mathcal{A} \land P'' \models \mathcal{B}$
$P \models \diamondsuit \mathscr{A}$	≜	$\exists P' \in \Pi. P \downarrow^* P' \land P' \vDash \mathscr{A}$
$P \vDash \Diamond \mathscr{R}$	≜	$\exists P' \in \Pi. P \longrightarrow P' \land P' \vDash \mathcal{A}$
$P \models \mathcal{A}@n$	≜	$n[P] \models \mathscr{R}$
₽⊨Я⊳₿	≜	$\forall P' \in \Pi. P' \models \mathscr{R} \Longrightarrow P P' \models \mathscr{B}$
$P \vDash \forall x.\mathscr{A}$	≜	$\forall m \in \Lambda. P \vDash \mathscr{A} \{ x \leftarrow m \}$

 $P \downarrow P'$ iff $\exists n, P''. P \equiv n[P'] \mid P''$ \downarrow^* is the reflexive and transitive closure of \downarrow

Satisfaction Relation for Trees

• **⊨ 0**

• Basic Fact: satisfaction is invariant under structural congruence:

$$P \vDash \mathcal{A}, \ P \equiv P' \implies P' \vDash \mathcal{A}$$

I.e.: $\{P \in \Pi \mid P \models \mathcal{A}\}$ is closed under \equiv .

Hence, formulas describe only congruence-invariant properties.

2003-03-18 15:01 Ambient Logic POPL'00 14

Some Derived Connectives

F	≜¬T	false
$\mathcal{A} \wedge \mathcal{B}$	≜ ¬(¬Я∨¬В)	conjunction
$\mathscr{A} \! \Rightarrow \! \mathscr{B}$	$\triangleq \neg \mathcal{A} \lor \mathcal{B}$	implication
$\Box \mathcal{A}$	≜¬�¬ℛ	everytime modality
¤A	≜⊸∻⊸ℛ	everywhere modality
$\exists x. \mathcal{A}$	$\triangleq \neg \forall x. \neg \mathcal{A}$	existential quantification
$\mathcal{A} \propto \mathcal{B}$	$\triangleq \neg(\mathcal{B} \triangleright \neg \mathcal{A})$	fusion
$\mathcal{A} \mathrel{\rightarrowtail} \mathcal{B}$	≜ ¬(𝒴 ¬𝘕)	fusion adjunct
𝒴 𝑘 𝑘	≜ ¬(¬𝔄 ¬𝘕)	decomposition
\mathscr{A}^{\forall}		every component satisfies \mathcal{P}
Â	≜ <i>Я</i> I T	some component satisfies \mathcal{P}
Æ	≜ <i>Я</i> ⊳ F	\mathcal{A} is unsatisfiable

Claims

- The satisfaction relation looks natural (to us):
 - The definitions of 0, $n[\mathcal{A}]$, and $\mathcal{A} \mid \mathcal{B}$ seem inevitable, once we accept that formulas should be able to talk about the tree structure of locations (up to \equiv).
 - The connectives $\mathcal{A}@n$ and $\mathcal{A}\triangleright\mathcal{B}$ have security motivations.
 - The modalities $\Diamond \mathscr{A}$ and $\Diamond \mathscr{A}$ talk about process evolution and structure in an undetermined way (good for specs).
 - The fragment **T**, $\neg \mathcal{A}, \mathcal{A} \lor \mathcal{B}, \forall x.\mathcal{A}$, is classical: why not?
- The logic is induced by the satisfaction relation.
 - We did not have any preconceptions about what kind of logic this ought to be. We didn't invent this logic, we discovered it!

From Satisfaction to (Propositional) Logic

Propositional validity

vld $\mathcal{A} \triangleq \forall P \in \Pi. P \models \mathcal{A}$ \mathcal{A} (closed) is valid

• Sequents

 $\mathcal{A} \vdash \mathcal{B} \quad \triangleq \quad \forall P \in \Pi. \ P \models \mathcal{A} \Longrightarrow P \models \mathcal{B}$

• Rules

 $\begin{aligned} &\mathcal{A}_1 \vdash \mathcal{B}_1; ...; \mathcal{A}_n \vdash \mathcal{B}_n \\ &\mathcal{A}_1 \vdash \mathcal{B}_1 \land ... \land \mathcal{A}_n \vdash \mathcal{B}_n \Longrightarrow \mathcal{A} \vdash \mathcal{B} \end{aligned} \qquad (n \ge 0)$

(N.B.: all the rules shown later are validated accordingly.)

- Conventions:
 - $\dashv \vdash$ means \vdash in both directions
 - {} means } in both directions

Logical Adjunctions

- This is a logic with multiple logical adjunctions (3 of them!):
 - \wedge / \Rightarrow (classical)
 - $\mathcal{A} \land \mathcal{C} \vdash \mathcal{B} \quad \text{iff} \quad \mathcal{A} \vdash \mathcal{C} \Rightarrow \mathcal{B}$
 - $|/ \triangleright$ (linear, \otimes / \neg)
 - $\mathcal{A} | C \vdash \mathcal{B}$ iff $\mathcal{A} \vdash C \triangleright \mathcal{B}$
 - n[-] / -@n
 - $n[\mathcal{A}] \vdash \mathcal{B} \quad \text{iff} \quad \mathcal{A} \vdash \mathcal{B}@n$
- Which one should be taken as *the* logical adjunction for sequents? I.e., what should "," mean in a sequent?

"Neutral" Sequents

- Our logic is formulated with single-premise, singleconclusion sequents. We don't pre-judge ",".
 - By taking ∧ on the left and ∨ on the right of ⊢ as structural operators, we can derive all the standard rules of sequent and natural deduction systems with multiple premises/conclusions.
 - By taking I on the left of ⊢ as a structural operator, we can derive all the rules of intuitionistic linear logic (by appropriate mappings of the ILL connectives).
 - By taking nestings of ∧ and | on the left of ⊢ as structural "bunches", we obtain a bunched logic, with its two associated implications, ⇒ and ▷.
- This is convenient. We do not know much, however, about the meta-theory of this presentation style.

Rules: Propositional Calculus

- (A-L) $\Re(C \wedge \mathcal{D}) \vdash \mathcal{B} \{ \} (\Re(C) \wedge \mathcal{D} \vdash \mathcal{B} \}$
- (A-R) $\mathcal{A} \vdash (\mathcal{C} \lor \mathcal{D}) \lor \mathcal{B} \{ \mathcal{A} \vdash \mathcal{C} \lor (\mathcal{D} \lor \mathcal{B}) \}$
- (X-L) $\mathcal{A} \wedge \mathcal{C} + \mathcal{B} > \mathcal{C} \wedge \mathcal{A} + \mathcal{B}$
- (X-R) $\mathcal{A} \vdash C \lor \mathcal{B} \not \mathcal{A} \vdash \mathcal{B} \lor C$
- (C-L) $\mathcal{A} \land \mathcal{A} \vdash \mathcal{B} \neq \mathcal{A} \vdash \mathcal{B}$
- (C-R) $\mathcal{A} \vdash \mathcal{B} \lor \mathcal{B} \not \mathcal{A} \vdash \mathcal{B}$
- (W-L) $\mathcal{A} \vdash \mathcal{B} \neq \mathcal{A} \land \mathcal{C} \vdash \mathcal{B}$
- $(W-R) \quad \mathcal{A} \vdash \mathcal{B} \quad \Big\} \quad \mathcal{A} \vdash \mathcal{C} \lor \mathcal{B}$
- (Id) $\mathcal{A} \vdash \mathcal{A}$
- (Cut) $\mathcal{A} \vdash C \lor \mathcal{B}; \mathcal{A} \land C \vdash \mathcal{B}' \neq \mathcal{A} \land \mathcal{A} \vdash \mathcal{B} \lor \mathcal{B}'$
- $(\mathbf{T}) \qquad \mathcal{A} \wedge \mathbf{T} \vdash \mathcal{B} \quad \Big\} \quad \mathcal{A} \vdash \mathcal{B}$
- (F) $\mathcal{A} \vdash \mathbf{F} \lor \mathcal{B} \not \mathcal{A} \vdash \mathcal{B}$
- $(\neg -L) \quad \mathcal{A} \vdash C \lor \mathcal{B} \quad \ \ \, \mathcal{A} \land \neg C \vdash \mathcal{B}$
- $(\neg -\mathbf{R}) \quad \mathcal{A} \land C \vdash \mathcal{B} \quad \Big\} \quad \mathcal{A} \vdash \neg C \lor \mathcal{B}$

Rules: Composition

(10)	} 𝔄 I O ⊣⊢ 𝔅	0 is nothing	
(-0)	<i>Я</i> I¬0⊢¬0	if a part is non-0, so	is the whole
(AI) (XI) (I⊢) 9 (I∨)	} Я (B C) ++ (Я } Я B+B Я Я`+B'; Я"+B" } } (Я√B) C+Я (TB)IC A'IA"⊢B'IB" C∨BIC	I associativity I commutativity I congruence I-∨ distribution
(III) (I▷) 9	}	∨ B`I <i>A</i> " ∨ ¬B`I ¬B" C⊳B	decomposition I-▷ adjunction
(▷ F ¬) (¬ ▷ F)	╞╶ℛ ^ϝ ⊢ ℛ [−] ╞╶ℛ ^ϝ ┑⊢ ℛ ^ϝ ӻ	if \mathcal{A} is unsatisfiable then \mathcal{A} if \mathcal{A} is satisfiable then \mathcal{A}^{F}	A is false is unsatisfiable

where $\mathscr{A}^{\neg} \triangleq \neg \mathscr{A}$ and $\mathscr{A}^{\mathbf{F}} \triangleq \mathscr{A} \triangleright \mathbf{F}$

The Decomposition Operator

• Consider the De Morgan dual of | :

A B	$\triangleq \neg (\neg \mathcal{R} \mid \neg \mathcal{B})$	$P \vDash \text{-} \text{iff } \forall P', P'' \in \Pi. P \equiv P' P'' \Rightarrow$
		$P' \vDash \mathscr{A} \lor P'' \vDash \mathscr{B}$
\mathscr{A}^{\forall}	≜ <i>Я</i> ∥ F	$P \vDash \operatorname{-iff} \forall P', P'' \in \Pi. P \equiv P' P'' \Longrightarrow P' \vDash \mathscr{A}$
Æ	≜ <i>Я</i> । Т	$P \vDash \text{-} \text{iff } \exists P', P'' \in \Pi. P \equiv P' P'' \land P' \vDash \mathscr{A}$
	$\mathcal{A} \parallel \mathcal{B}$	for every partition, one piece satisfies \mathcal{P} or the other piece satisfies \mathcal{B}
	$\mathcal{A}^{\forall} \Leftrightarrow \neg((\neg \mathcal{A})^{\exists})$	every component satisfies \mathcal{P}
	$\mathcal{A}^{\exists} \Leftrightarrow \neg ((\neg \mathcal{A})^{\forall})$	some component satisfies \mathcal{P}
Examp	oles:	
	$(p[\mathbf{T}] \Rightarrow p[q[\mathbf{T}]^{\exists}])$	\forall every <i>p</i> has a <i>q</i> child

 $(p[\mathbf{T}] \Rightarrow p[q[\mathbf{T}] \mid (\neg q[\mathbf{T}])^{\forall}])^{\forall}$ every p has a unique q child

The Decomposition Axiom

$(|||) \quad \Big\} \ (\mathcal{A}'|\mathcal{A}'') \vdash (\mathcal{A}'|\mathcal{B}'') \lor (\mathcal{B}'|\mathcal{A}'') \lor (\neg \mathcal{B}'|\neg \mathcal{B}'')$

- Alternative formulations and special cases:
 - $\left\{ \begin{array}{c} (\mathcal{A}^{'} \mid \mathcal{A}^{''}) \land (\mathcal{B}^{'} \mid \mathcal{B}^{''}) \vdash (\mathcal{A}^{'} \mid \mathcal{B}^{''}) \lor (\mathcal{B}^{'} \mid \mathcal{A}^{''}) \\ \end{array} \right.$

"If P has a partition into pieces that satisfy \mathcal{A} and \mathcal{A} , and every partition has one piece that satisfies \mathcal{B} or the other that satisfies \mathcal{B} , then either P has a partition into pieces that satisfy \mathcal{A} and \mathcal{B} , or it has a partition into pieces that satisfy \mathcal{B} and \mathcal{A} ."

$$\left\{ \neg(\mathcal{A} \mid \mathcal{B}) \vdash (\mathcal{A} \mid \mathbf{T}) \Rightarrow (\mathbf{T} \mid \neg \mathcal{B}) \right.$$

"If *P* has no partition into pieces that satisfy \mathcal{A} and \mathcal{B} , but *P* has a piece that satisfies \mathcal{A} , then *P* has a piece that does not satisfy \mathcal{B} ."

$$-(\mathbf{T} \mid \mathcal{B}) \vdash \mathbf{T} \mid \neg \mathcal{B}$$

$$\left\{ \neg (\mathcal{A} \mid \mathcal{B}) \vdash (\neg \mathcal{A} \mid \mathbf{T}) \lor (\mathbf{T} \mid \neg \mathcal{B}) \right.$$

The Composition Adjunct

$(ID) \ \mathcal{A}IC \vdash \mathcal{B} \{\} \mathcal{A} \vdash C D \mathcal{B}$

"Assume that every process that has a partition into pieces that satisfy \mathcal{A} and C, also satisfies \mathcal{B} . Then, every process that satisfies \mathcal{A} , together with any process that satisfies C, satisfies \mathcal{B} . (And vice versa.)" (*c.f.* ($\neg \circ$ R))

- Interpretations of $\mathcal{A} \triangleright \mathcal{B}$:
 - **P** provides \mathcal{B} in any context that provides \mathcal{A}
 - **P** ensures \mathcal{B} under any attack that ensures \mathcal{A}

That is, $P \models \mathscr{A} \triangleright \mathscr{B}$ is a context-system spec (a concurrent version of a pre-post spec).

Moreover $\mathfrak{A} \mathfrak{B}$ is, in a precise sense, linear implication: the context that satisfies \mathfrak{A} is used exactly once in the system that satisfies \mathfrak{B} .

Some Derived Rules

$(\mathcal{A} \triangleright \mathcal{B}) | \mathcal{A} \vdash \mathcal{B}$

"If *P* provides \mathcal{B} in any context that provides \mathcal{A} , and *Q* provides \mathcal{A} , then *P* and *Q* together provide \mathcal{B} ."

• Proof: $\mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{A} \triangleright \mathcal{B}$ $(\mathcal{A} \triangleright \mathcal{B}) \mid \mathcal{A} \vdash \mathcal{B}$ by (Id), ($\mid \triangleright$)

$\mathcal{D} \vdash \mathcal{A}; \mathcal{B} \vdash C \} \mathcal{D} \mid (\mathcal{A} \triangleright \mathcal{B}) \vdash C$

- (*c.f.* (⊸ L))
- "If anything that satisfies \mathcal{D} satisfies \mathcal{A} , and anything that satisfies \mathcal{B} satisfies C, then: anything that has a partition into a piece satisfying \mathcal{D} (and hence \mathcal{A}), and another piece satisfying \mathcal{B} in a context that satisfies \mathcal{A} , it satisfies (\mathcal{B} and hence) C."
- Proof:
 - $\begin{array}{l} \mathcal{D} \vdash \mathcal{A}; \ \mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{A} \triangleright \mathcal{B} \end{array} \end{array} \begin{array}{l} \mathcal{D} \mid \mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{A} \mid \mathcal{A} \triangleright \mathcal{B} \end{array} \text{ assumption, (Id), (I\vdash)} \\ \mathcal{A} \mid \mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{B} \end{array} \qquad \qquad \text{above} \\ \mathcal{B} \vdash \mathcal{C} \end{array}$
 - assumption 2003-03-18 15:01 Ambient Logic POPL'00 25

More Derived Rules

 $\mathcal{A} \vdash \mathbf{T} \mid \mathcal{A}$ you can always add more pieces (if they are $\mathbf{0}$) $F | \mathcal{A} \vdash F$ if a piece is absurd, so is the whole $0 \vdash \neg (\neg 0 \mid \neg 0)$ **0** is single-threaded $A B \land 0 \vdash A$ you can split (but you get). Proof uses (| ||) $\mathcal{A} \vdash \mathcal{A}; \mathcal{B} \vdash \mathcal{B}' \neq \mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{A} \triangleright \mathcal{B}'$ \triangleright is contravariant on the left $A \supset B \mid B \supset C \vdash A \supset C$ \triangleright is transitive $\{ (\mathcal{A} \mid \mathcal{B}) \triangleright \mathcal{C} \vdash \mathcal{A} \triangleright (\mathcal{B} \triangleright \mathcal{C}) \}$ curry/uncurry $\mathcal{A} \supset (\mathcal{B} \triangleright \mathcal{C}) \vdash \mathcal{B} \triangleright (\mathcal{A} \triangleright \mathcal{C})$ contexts commute $T \rightarrow T T \rightarrow T$ truth can withstand any attack $T \vdash \mathbf{F} \lor \mathcal{A}$ anything goes if you can find an absurd partner $T \triangleright \mathcal{A} \vdash \mathcal{A}$ if \mathcal{A} resists any attack, then it holds

> 2003-03-18 15:01 Ambient Logic POPL'00 26

Rules: Location

(n[] 0)	$n[\mathcal{A}] \vdash \neg 0$	locati
$(n[] \neg I)$	$n[\mathcal{A}] \vdash \neg(\neg 0 \mid \neg 0)$	are ne

 $(n[] \vdash) \qquad \mathcal{A} \vdash \mathcal{B} \{ \} n[\mathcal{A}] \vdash n[\mathcal{B}] \\ (n[] \land) \qquad \} n[\mathcal{A}] \land n[C] \vdash n[\mathcal{A} \land C] \\ (n[] \lor) \qquad \} n[C \lor \mathcal{B}] \vdash n[C] \lor n[\mathcal{B}]$

locations exist are not decomposable

n[] congruence $n[]-\land$ distribution $n[]-\lor$ distribution

 $(n[] @) \quad n[\mathcal{A}] \vdash \mathcal{B} \{\} \ \mathcal{A} \vdash \mathcal{B} @ n$ $(\neg @) \quad \} \ \mathcal{A} @ n \dashv \vdash \neg ((\neg \mathcal{A}) @ n)$

n[]-@ adjunction@ is self-dual

Rules: Time and Space Modalities

(�)	} <> A - I A	(�)	╞╺╱ <i>╗╶</i> ╟╴┑¤ <i>┑</i> ∅
(□ K)	} □(𝒴⇒𝔅) ⊢ □𝒴⇒□𝔅	(¤K)	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(D T)	ן ת⊢ א ת	(¤T)	} ¤Я⊦Я
(□ 4)	$a \mathcal{A} \vdash \Box \mathcal{A}$	(¤4)	} ¤Я⊢ ¤¤Я
(□ T)	} T⊢ □ T	(¤ T)	$T \vdash \Xi T$
(□⊢)	𝒫⊢𝒫 \ פ𝒫⊢ פ𝔅	(¤⊢)	$\mathcal{A} \vdash \mathcal{B} \neq \mathcal{A} \vdash \mathcal{A} \in \mathcal{B}$
(�n[])	$n[\Diamond \mathcal{A}] \vdash \Diamond n[\mathcal{A}]$	(◇ n[])	$n[\diamond \mathcal{A}] \vdash \diamond \mathcal{A}$
(◊))	$\diamond \mathcal{A} \diamond \mathcal{B} \vdash \diamond (\mathcal{A} \mid \mathcal{B})$	(♦)	} ∻ℛ୲ℬ⊢ ∻(ℛℹፐ)
(��)	}		

S4, but not S5: $\neg vld \diamond \mathcal{A} \vdash \Box \diamond \mathcal{A} \qquad \neg vld \diamond \mathcal{A} \vdash \Box \diamond \mathcal{A}$ ($\diamond \diamond$): if somewhere sometime \mathcal{A} , then sometime somewhere \mathcal{A}

Some Derived Rules

 $\mathcal{A} \vdash \mathcal{B}$ $\mathcal{A} \otimes n \vdash \mathcal{B} \otimes n$

@ congruence

- $n[\mathcal{A}@n] \vdash \mathcal{A}$
- } A -⊩ n[A]@n
- $n[\neg \mathcal{A}] \vdash \neg n[\mathcal{A}]$
- $-n[\mathcal{A}] \rightarrow -n[\mathbf{T}] \lor n[-\mathcal{A}]$

Examples

- $an n \triangleq n[\mathbf{T}] | \mathbf{T}$
- $no n \triangleq \neg an n$
- one $n \triangleq n[\mathbf{T}] \mid no n$
- $\mathcal{A}^{\forall} \triangleq \neg(\neg \mathcal{A} \mid \mathbf{T})$
- $(n[\mathbf{T}] \Rightarrow n[\mathcal{A}])^{\forall}$

there is now an *n* here there is now no *n* here there is now exactly one *n* here everybody here satisfies \mathcal{A} every *n* here satisfies \mathcal{A} every *n* everywhere satisfies \mathcal{A}

Ex: Immovable Object vs. Irresistible Force

- $Im \triangleq \mathbf{T} \triangleright \Box(obj[\mathbf{0}] \mid \mathbf{T})$
- $Ir \triangleq \mathbf{T} \triangleright \Box \diamondsuit \neg (obj[\mathbf{0}] \mid \mathbf{T})$

 $Im \mid Ir = (\mathbf{T} \triangleright \Box(obj[\mathbf{0}] \mid \mathbf{T})) \mid Ir$

- $\vdash \Box(obj[\mathbf{0}] \mid \mathbf{T})$
- $\vdash \Diamond P(obj[\mathbf{0}] \mid \mathbf{T})$

 $\begin{array}{c} \mathcal{A} \vdash \mathbf{T} \\ (\mathcal{A} \triangleright \mathcal{B}) \mid \mathcal{A} \vdash \mathcal{B} \\ \mathcal{A} \vdash \Diamond \mathcal{A} \end{array}$

- $Im \mid Ir = Im \mid (\mathbf{T} \triangleright \Box \diamondsuit \neg (obj[\mathbf{0}] \mid \mathbf{T}))$
 - $\vdash \Box N \neg (obj[\mathbf{0}] \mid \mathbf{T})$
 - $\vdash \neg \Diamond P(obj[\mathbf{0}] \mid \mathbf{T})$

Hence: $Im \mid Ir \vdash \mathbf{F}$

$$\mathcal{A} \land \neg \mathcal{A} \vdash \mathbf{F}$$

Model Checking

- If *P* is !-free and \mathcal{A} is \triangleright -free, then $P \vDash \mathcal{A}$ is decidable.
- This provides a way of mechanically checking (certain) assertions about (certain) mobile processes.
- Potential application: checking (the bytecode of) mobile agents against the internal mobility policies of receiving sites. (I.e.: conferring more flexibility than just sandboxing the agent.)

Connections with Intuitionistic Linear Logic

- Weakening and contraction are not valid rules: principle of *conservation of space*.
- Semantic connection: sets of processes closed under ≡ and ordered by inclusion form a quantale (a model of ILL).
- Multiplicative intuitionistic linear logic (MILL) can be faithfully embedded in our logic:

1 _{MILL}	≜	0
$\mathscr{A} \otimes_{\mathrm{MILL}} \mathscr{B}$	≜	A B
$\mathcal{A} woheadrightarrow_{\mathrm{MILL}} \mathcal{B}$	≜	$\mathcal{A} \triangleright \mathcal{B}$

MILL rules and our rules are interderivable ("our rules" means the rules involving only 0, |, \triangleright , plus a derivable cut rule for |).

2003-03-18 15:01 Ambient Logic POPL'00 33

• Full intuitionistic linear logic (ILL) can be embedded:

1 _{II.L} ≜	0	$\mathcal{A} \oplus \mathcal{B}$	≜	$\mathcal{A} \lor \mathcal{B}$
	F	$\mathcal{A}\&\mathcal{B}$	≜	$\mathcal{A} \wedge \mathcal{B}$
T _{ILL} ≜	Τ	$\mathcal{A}\otimes\mathcal{B}$	≜	AB
	F	$\mathcal{A} \multimap \mathcal{B}$	≜	$\mathcal{A} \triangleright \mathcal{B}$
		!A		$0 \land (0 \Longrightarrow \mathscr{R}) \neg \mathbf{F}$

- The rules of ILL can be logically derived from these definitions. (E.g.: the proof of !𝔅 ⊢ !𝔅 ⊗ !𝔅 uses the decomposition axiom.)
- So, $\mathcal{A}_1, ..., \mathcal{A}_n \vdash_{\mathrm{ILL}} \mathcal{B}$ implies $\mathcal{A}_1 \mid ... \mid \mathcal{A}_n \vdash \mathcal{B}$.
- Some discrepancies: $\perp_{ILL} = \mathbf{0}_{ILL}$; the additives distribute; \mathscr{D} is not "replication"; $\mathscr{D} \to \mathscr{D}$ is not so interesting; $\mathscr{D}^{\perp}/\mathscr{D}$ is unusually interesting.

Connection with Relevant Logic

- (Noted after the fact [O'Hearn, Pym].) The definition of the satisfaction relation is very similar to Urquhart's semantics of relevant logic. In particular *A* | *B* is defined just like *intensional conjunction*, and *A* ▷ *B* is defined just like *relevant implication* in that semantics.
- Except:
 - We do not have contraction. This does not make sense in process calculi, because P | P ≠ P. Urquhart semantics without contraction does not seem to have been studied.
 - We use an equivalence ≡, instead of a Kripke-style partial order ø as in Urquhart's general case. (We may have a need for a partial order in more sophisticated versions of our logic.)

Connections with Bunched Logic

- Peter O'Hearn and David Pym study *bunched logics*, where sequents have two structural combinators, instead of the standard single "," combinator (usually meaning ∧ or ⊗ on the left) found in most presentations of logic. Thus, sequents are *bunches* of formulas, instead of lists of formulas. Correspondingly, there are two implications that arise as the adjuncts of the two structural combinators.
- The situation is very similar to our combinators | and ∧, which can combine to irreducible bunches of formulas in sequents, and to our two implications ⇒ and ▷. However, we have a classical and a linear implication, while bunched logics have so far had an intuitionistic and a linear implication.

Conclusions

- The novel aspects of our logic lie in its explicit treatment of *space* and of the evolution of space over time (*mobility*). The logic has a linear flavor in the sense that space cannot be instantly created or deleted, although it can be transformed over time.
- These ideas can be applied to any process calculus that embodies a distinction between topological and dynamic operators.
- Our logical rules arise from a particular model. This approach makes the logic very concrete, but raises questions of logical completeness, which are being investigated.
- We are now working on generalizing the logic to the full ambient calculus (including restriction), in order to talk about properties of hidden/secret locations.

Ambient Calculus: Example

The packet msg moves from a to b, mediated by the capabilities *out* a (to exit a), *in* b (to enter b), and *open* msg (to open the msg envelope).

 $a[msg[\langle M \rangle | out a. in b. P]] | b[open msg. (n). P]$

(exit) \rightarrow	<i>a</i> []	msg[(M) <mark>in b</mark> . P]	b [open msg. (n). P]
(enter) \rightarrow	<i>a</i> []		$ b[msg[\langle M \rangle] open msg. (n). P]$
(open) →	<i>a</i> []		$ b[\langle M \rangle (n), P]$
(read) \rightarrow	<i>a</i> []		$b[P\{n \leftarrow M\}]$
			2003-03-18 15:01

Ambient Logic POPL'00 38

Reduction

• Four basic reductions plus propagation, rearrangement (composition with structural congruence), and transitivity.

n[in m. P Q] m[R]	$\rightarrow m[n[P \mid Q] \mid R]$	(Red In)
<i>m</i> [<i>n</i> [<i>out m</i> . <i>P</i> <i>Q</i>] <i>R</i>]	$\rightarrow n[P \mid Q] \mid m[R]$	(Red Out)
open m. P m[Q]	$\rightarrow P \mid Q$	(Red Open)
(n). $P \mid \langle M \rangle$	$\rightarrow P\{n \leftarrow M\}$	(Red Comm)
$\begin{array}{ll} P \to Q & \Rightarrow & n[P] \to n \\ P \to Q & \Rightarrow & P \mid R \to Q \end{array}$	[Q] 2 R	(Red Amb) (Red Par)

 \rightarrow^* is the reflexive-transitive closure of \rightarrow

Structural Congruence

- Routine definition, but used heavily in the logic and semantics.
- $P \equiv P$ $P \equiv Q \implies Q \equiv P$ $P \equiv Q, Q \equiv R \implies P \equiv R$ $P \equiv Q \implies P \mid R \equiv Q \mid R$ $P \equiv Q \implies !P \equiv !Q$ $P \equiv Q \implies M[P] \equiv M[Q]$ $P \equiv Q \implies M.P \equiv M.Q$ $P \equiv Q \implies (n).P \equiv (n).Q$ $\mathbf{E} \cdot \mathbf{P} \equiv \mathbf{P}$ $(M.M').P \equiv M.M'.P$
 - (Struct Refl)
 - (Struct Symm)
 - (Struct Trans)
 - (Struct Par)
 - (Struct Repl)
 - (Struct Amb)
 - (Struct Action)
 - (Struct Input)

AND 3-03-18 15:0

Ambient Logic POPL'00 40

(Struct ε) (Struct .)

$P \mid Q \equiv Q \mid P$	(Struct Par Comm)
$(P \mid Q) \mid R \equiv P \mid (Q \mid R)$	(Struct Par Assoc)
$P \mid 0 \equiv P$	(Struct Par Zero)
$!(P \mid Q) \equiv !P \mid !Q$	(Struct Repl Par)
$!0 \equiv 0$	(Struct Repl Zero)
$!P \equiv P \mid !P$	(Struct Repl Copy)
$!P \equiv !!P$	(Struct Repl Repl)

• These axioms (particularly the ones for !) are sound and complete with respect to equality of spatial trees: edge-labeled finite-depth unordered trees, with infinite-branching but finitely many distinct labels under each node.