
Logics for Mobility

Luca Cardelli
Andy Gordon
Microsoft Research

Tokyo 2000-08-21

Mobility Logics 2
September 7, 2000 12:38 pm

Introduction

We have been looking for ways to express properties of mobile
computations, E.g.:

"Here today, gone tomorrow."

"Eventually the agent crosses the firewall."

"Every agent carries a suitcase."

"Somewhere there is a virus."

"There is always at most one ambient called n here."

As with properies of ordinary concurrent computations, options in-
clude equational reasoning (hard), reasoning on traces (ugly), and
reasoning via modal (e.g. temporal) logics.

Mobility Logics 3
September 7, 2000 12:38 pm

Spatial Logics

We want to describe mobile behaviors. The ambient calculus pro-
vides an operational model, where spatial structures (agents, net-
works, etc.) are represented by nested locations.

We also want to specify mobile behaviors. To this end, we devise
an ambient logic that can talk about spatial structures.

Processes Formulas
0 (void) 0 (there is nothing here)
n[P] (location) n[A] (there is one thing here)
P | Q (composition) A | B (there are two things here)

Trees
n

P QP
(void) (location) (composition)

Mobility Logics 4
September 7, 2000 12:38 pm

Spatial Structures

Our basic model of space is going to be finite-depth edge-labeled
unordered trees; for short: spatial trees, represented by a syntax of
spatial expressions. Unbounded resources are represented by infi-
nite branching:

Cambridge[Eagle[chair[0] | chair[0] | !glass[pint[0]]] | ...]

chair chair
...

Eagle

Cambridge

...

...

pint pint pint

glass glass glass
......

Mobility Logics 5
September 7, 2000 12:38 pm

Ambient Structures

Spatial expressions/trees are a subset of ambient expressions/trees,
where we can represent not only the spatial aspects, but also the dy-
namic aspects of mobile computation.

An ambient tree is a spatial tree with, possibly, threads at each node
that can locally change the shape of the tree.

a[c[out a. in b.P] | b[0]]

a b

c
thread

Mobility Logics 6
September 7, 2000 12:38 pm

Mobility

Mobility is change of spatial structures over time.

c

a b a b

cc

a b

% %

a b

c
%

a b
c

%

a b

c

a[c[R] | P] | b[Q] % %a[P] | c[R’] | b[Q] a[P] | b[c[R”] | Q]

Semantics

Intuition

Syntax

Mobility Logics 7
September 7, 2000 12:38 pm

Properties of Mobile Computation

These often have the form:

Right now, we have a spatial configuration, and later, we have
another spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent is inside the fire-
wall.

agent firewall

agent

firewall

Now Later

Mobility Logics 8
September 7, 2000 12:38 pm

Ambient Calculus: Example

The packet msg moves from a to b, mediated by the capabilities out a (to
exit a), in b (to enter b), and open msg (to open the msg envelope).

a[msg[ÜMá | out a. in b]] | b[open msg. (x). P]
(exit a) îïïñ a[] | msg[ÜMá | in b] | b[open msg. (x). P]
(enter b) îïïñ a[] | b[msg[ÜMá] | open msg. (x). P]
(open msg) îïïñ a[] | b[ÜMá | (x). P]
(read M) îïïñ a[] | b[P{x←M}]

a[msg[ÜMá | out a. in b]] | b[open msg. (x). P]

send M : a=>b receive x; P

Location a Location b

Mobility Logics 9
September 7, 2000 12:38 pm

Ambient Calculus

P,Q : Π ::= (processes)
(νn)P
0
P | Q
!P
M[P]
M.P
(n).P
ÜMá

M ::= (messages)
n
in M
out M
open M
ε
M.M’

n[] @ n[0]
M @ M.0 (where appropriate)

Mobility Logics 10
September 7, 2000 12:38 pm

Reduction Semantics

A structural congruence relation P 7 Q:

On spatial expressions, P 7 Q iff P and Q denote the same tree.

On full ambient expressions, P 7 Q if in addition the respective
thread are "trivially equivalent".

Prominent in the definition of the logic.

A reduction relation P îïïñ* Q:

Defining the mobility and communication actions.

Up to structural congruence:

P 7 P’, P’ îïïñ Q’, Q’ 7 Q ⇒ P îïïñ Q

Mobility Logics 11
September 7, 2000 12:38 pm

Reduction

Four basic reductions plus propagation, rearrangement (composi-
tion with structural congruence), and transitivity.

n[in m. P | Q] | m[R] îïïñ m[n[P | Q] | R]
m[n[out m. P | Q] | R] îïïñ n[P | Q] | m[R]
open n. P | n[Q] îïïñ P | Q
(n).P | ÜMá îïïñ P{n←M}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P îïïñ Q ⇒ (νn)P îïïñ (νn)Q
P îïïñ Q ⇒ n[P] îïïñ n[Q]
P îïïñ Q ⇒ P | R îïïñ Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ 7 P, P îïïñ Q, Q 7 Q’ ⇒ P’ îïïñ Q’ (Red 7)

îïïñ* refl-tran closure of îïïñ

Mobility Logics 12
September 7, 2000 12:38 pm

Structural Congruence

Routine, but used heavily in the logic and in the semantics.

P 7 P
P 7 Q ⇒ Q 7 P
P 7 Q, Q 7 R ⇒ P 7 R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P 7 Q ⇒ (νn)P 7 (νn)Q
P 7 Q ⇒ P | R 7 Q | R
P 7 Q ⇒ !P 7 !Q
P 7 Q ⇒ M[P] 7 M[Q]
P 7 Q ⇒ M.P 7 M.Q
P 7 Q ⇒ (x).P 7 (x).Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

ε.P 7 P
(M.M’).P 7 M.M’.P

(Struct ε)
(Struct .)

Mobility Logics 13
September 7, 2000 12:38 pm

These axioms (N.B.: !) are sound and complete with respect to equal-
ity of spatial trees: edge-labeled finite-depth unordered trees, with in-
finite-branching but finitely many distinct labels under each node.

(νn)0 7 0
(νn)(νm)P 7 (νm)(νn)P
(νn)(P | Q) 7 P | (νn)Q if n Ì fn(P)
(νn)(m[P]) 7 m[(νn)P] if n ≠ m

(Struct Res Zero)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 7 P
P | Q 7 Q | P
(P | Q) | R 7 P | (Q | R)

(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)

!(P | Q) 7 !P | !Q
!0 7 0
!P 7 P | !P
!P 7 !!P

(Struct Repl Par)
(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)

Mobility Logics 14
September 7, 2000 12:38 pm

Space-Time Modalities

In a modal logic, the truth of a formula is relative to a state (world).

In our case, the truth of a space-time modal formula is relative to
the here and now of a process. The formula n[0] is read:

there is here and now an empty location called n

The operator n[A] is a single step in space (akin to the temporal
next), which allows us talk about that place one step down into n.

Other modal operators can be used to talk about undetermined
times (in the future) and undetermined places (in the location tree).

Mobility Logics 15
September 7, 2000 12:38 pm

Logical Formulas

A, B : Φ ::=
T
¬ A
A ∨ B
0
A | B
A≈B
η[A]
A@η
ηA
A η
"A
NA
Óx.A

(η is a name n or a variable x)
true
negation
disjunction
void
composition
composition adjunct
location
location adjunct
revelation
revelation adjunct
somewhere modality
sometime modality
universal quantification over names

Mobility Logics 16
September 7, 2000 12:38 pm

Satisfaction Relation

PßP’ iff Ôn, P”. P 7 n[P’] | P”. ß* is the refl-trans closure of ß

P ª T
P ª ¬ A
P ª A∨ B
P ª 0
P ª A | B
P ª A≈B
P ª n[A]
P ª A@n
P ª nA
P ª A n
P ª "A
P ª NA
P ª Óx.A

@ ¬ P ª A
@ P ª A ∨ P ª B
@ P 7 0
@ ÔP’,P”:Π. P 7 P’|P” ∧ P’ ª A ∧ P” ª B
@ ÓP’:Π. P’ ª A ⇒ P|P’ ª B
@ ÔP’:Π. P 7 n[P’] ∧ P’ ª A
@ n[P] ª A
@ ÔP’:Π. P 7 (νn)P’ ∧ P’ ª A
@ (νn)P ª A
@ ÔP’:Π. Pß*P’ ∧ P’ ª A
@ ÔP’:Π. Pîïñ*P’ ∧ P’ ª A
@ Óm:Λ. P ª A{x←m}

Mobility Logics 17
September 7, 2000 12:38 pm

Satisfaction Relation for Trees

ª 0

n

P
ª n[A] if ª AP

ª A | B if ª A and ª BQP P Q

Q
ª "A if ª A

P
Q

ª NA if and ª A *%P QP Q

Mobility Logics 18
September 7, 2000 12:38 pm

Basic Fact: Satisfaction is invariant under structural congruence:

P ª A, P 7 P’ ⇒ P’ ª A

I.e.: {P:Π \ P ª A} is closed under 7.
Hence, formulas describe only congruence-invariant properties.

ª C@n if ª CP
n

P

ª A≈B if for all ª A, we have ª BQPP Q

Mobility Logics 19
September 7, 2000 12:38 pm

Simple Examples

(1) p[T] | T

there is a p here (and possibly something else)

(2) "(1)

somewhere there is a p

(3) (2) ⇒ P(2)

if there is a p somewhere, then forever there is a p somewhere

(4) p[q[T] | T] | T

there is a p with a child q here

(5) "(4)

somewhere there is a p with a child q

Mobility Logics 20
September 7, 2000 12:38 pm

Revelation

P ª nA @ ÔP’:Π. P 7 (νn)P’ ∧ P’ ª A

nA is read, informally:

Reveal a private name as n and check that the revealed process
satisfies A.

Pull (by 7) a (νn) binder at the top and check that the stripped
process satisfies A.

Ex.: nn[0]: reveal a private name (say, p) as n and check the pres-
ence of an empty n ambient in the revealed process.

(νp)p[0] ª nn[0]
since (νp)p[0] 7 (νn)n[0] and n[0] ª n[0]

Mobility Logics 21
September 7, 2000 12:38 pm

More examples of revelation:

0 ª n0 since 0 7 (νn)0 and 0 ª 0
m[0] ª nT since m[0] 7 (νn)m[0] and m[0] ª T
n[0] Ω nT since: n[0] ? (νn)...

Therefore, the set of processes satisfying nA is

closed under α-variants

closed under 7-variants

not closed under changes in the set of free names

not closed under reduction (free names may disappear)

not closed under any equivalence that includes reduction

still ok for temporal reasoning: ¬nA ∧ NnA

Mobility Logics 22
September 7, 2000 12:38 pm

Some Derived Formulas

F
A ⇒ B
A ∧ B
Ôx.A
#A
PA

AF

A¬ F

AF¬

@ ¬T
@ ¬ A ∨ B
@ ¬ (¬ A ∨ ¬ B)
@ ¬Óx.¬ A
@ ¬"¬ A
@ ¬N¬ A

@ A≈F

A valid
A satisfiable

P ª - iff P ª A ⇒ P ª B
P ª - iff P ª A ∧ P ª B
P ª - iff Ôm:Λ. P ª A{x←m}
P ª - iff ÓP’:Π. Pß*P’ ⇒ P’ ª A
P ª - iff ÓP’:Π. Pîïñ*P’ ⇒ P’ ª A

P ª - iff ÓP’:Π. P’ ª A ⇒ P|P’ ª F
iff ÓP’:Π. ¬ P’ ª A

P ª - iff ÓP’:Π. P’ ª A
P ª - iff ÔP’:Π. P’ ª A

Mobility Logics 23
September 7, 2000 12:38 pm

Revelation Derived Formulas

Examples :

n[] ª ©n
(νm)m[] ª (νx)x[] (νn)n[] | (νn)n[] Ω (νx)(x[] | x[])
(νm)m[] ª (νx)n[] (νn)(n[] | n[]) Ω (νx)x[] | (νx)x[]

©n

closed

separate

@ ¬n®T

@ ¬Ôx.©x

@ ¬Ôx.©x | ©x

P ª - iff ¬ÔP’ÏΠ. P 7 (νn)P’
iff n Ï fn(P)

P ª - iff ¬Ôn:Λ. n Ï fn(P)

P ª - iff ¬Ôn:Λ, P’ÏΠ, P”ÏΠ.
P 7 P’|P” ∧ n Ï fn(P’) ∧ n Ï fn(P”)

Mobility Logics 24
September 7, 2000 12:38 pm

Name Equality

Name equality can be defined within the logic:

η = µ @ η[T]@µ

Since (for any substitution applied to η,µ):

P ª η[T]@µ
iff µ[P] ª η[T]
iff η = µ ∧ P ª T
iff η = µ

Example: "Any two ambients here have different names":

Óx.Óy. x[T] | y[T] | T ⇒ ¬ x=y

Mobility Logics 25
September 7, 2000 12:38 pm

Claims

The satisfaction relation looks natural (to us):

The definitions of 0, n[A], and A|B seem inevitable, once we ac-
cept that formulas should be able to talk about the tree structure
of locations (up to 7).

The connectives A@n and A≈B have security motivations.

The connective nA is useful in security specs.

The modalities NA and "A talk about process evolution and
structure in an undetermined way (good for specs).

The fragment T, ¬ A, A∨ B, Óx.A, is classical: why not?

The logic is induced by the satisfaction relation.

We did not have any preconceptions about what kind of logic
this ought to be. We didn’t invent this logic, we discovered it!

Mobility Logics 26
September 7, 2000 12:38 pm

From Satisfaction to (Propositional) Logic

Propositional validity

vld A @ ÓP:Π. P ª A A (closed) is valid

Sequents

A hô B @ ÓP:Π. P ª A ⇒ P ª B

Rules

A1 hô B1; ...; An hô Bn  A hô B @ (n≥0)

A1 hô B1 ∧ ... ∧ An hô Bn ⇒ A hô B

(N.B.: all the rules shown later are validated accordingly.)

Conventions:

îihô means hô in both directions

 means  in both directions

Mobility Logics 27
September 7, 2000 12:38 pm

Logical Adjunctions

This is a logic with multiple logical adjunctions (4 of them!):

∧ / ⇒ (classical)

A ∧ C hô B iff A hô C ⇒ B

| / ≈ (linear, ⊗ / îï—)

A | C hô B iff A hô C ≈ B

n[-] / -@n (location)

n[A] hô B iff A hô B@n

n®- / - n (restriction)

n®A hô B iff A hô B n

Which one should be taken as the logical adjunction for sequents?
I.e., what should "," mean in a sequent?

Mobility Logics 28
September 7, 2000 12:38 pm

"Neutral" Sequents

Our logic is formulated as a sequent calculus with single-premise,
single-conclusion sequents. We don’t pre-judge ",".

By taking ∧ on the left and ∨ on the right of hô as structural oper-
ators, we can derive all the standard rules of sequent and natural
deduction systems with multiple premises/conclusions.

By taking | on the left of hô as a structural operator, we can derive
all the rules of intuitionistic linear logic (by appropriate map-
pings of the ILL connectives).

By taking nestings of ∧ and | on the left of hô as structural "bunch-
es", we obtain a bunched logic, with its two associated implica-
tions, ⇒ and ≈.

This is convenient. We do not know much, however, about the
meta-theory of this presentation style.

Mobility Logics 29
September 7, 2000 12:38 pm

Rules: Propositional Calculus

(A-L) A∧ (C∧ D) hô B  (A∧ C)∧ D hô B
(A-R) A hô (C∨ D)∨ B  A hô C∨ (D∨ B)
(X-L) A∧ C hô B  C∧ A hô B
(X-R) A hô C∨ B  A hô B∨ C
(C-L) A∧ A hô B  A hô B
(C-R) A hô B∨ B  A hô B
(W-L) A hô B  A∧ C hô B
(W-R) A hô B  A hô C∨ B
(Id)  A hô A
(Cut) A hô C∨ B; A’∧ C hô B’  A∧ A’ hô B∨ B’
(T) A∧ T hô B  A hô B
(F) A hô F∨ B  A hô B
(¬ -L) A hô C∨ B  A∧¬ C hô B
(¬ -R) A∧ C hô B  A hô ¬ C∨ B

Mobility Logics 30
September 7, 2000 12:38 pm

Rules: Composition

(| 0)  A | 0 îihô A 0 is nothing

(| ¬0)  A | ¬ 0 hô ¬0 if a part is non-0, so is the whole

(A |)  A | (B | C) îihô (A | B) | C | associativity

(X |)  A | B hô B | A | commutativity

(| hô) A’ hô B’; A” hô B”  A’ | A” hô B’ | B” | congruence

(| ∨)  (A∨ B) | C hô A | C ∨ B | C |-∨ distribution

(| ||)  A’ | A” hô A’ | B” ∨ B’ | A” ∨ ¬ B’ | ¬ B” decomposition

(| ≈) A | C hô B  A hô C≈B |-≈ adjunction

(≈F ¬)  AF hô A¬ if A is unsatisfiable then A is false

(¬ ≈F)  AF¬ hô AFF if A is satisfiable then AF is unsatisfiable

where A¬ @ ¬ A and AF @ A≈F

Mobility Logics 31
September 7, 2000 12:38 pm

The Decomposition Operator

Consider the De Morgan dual of | :

A || B for every partition, one piece satisfies A
or the other piece satisfies B

A Ó ⇔ ¬ ((¬ A)Ô) every component satisfies A
A Ô ⇔ ¬ ((¬ A)Ó) some component satisfies A

Examples:

(p[T] ⇒ p[q[T]Ô])Ó every p has a q child
(p[T] ⇒ p[q[T] | (¬q[T])Ó])Ó every p has a unique q child

A || B

A Ó

A Ô

@ ¬ (¬ A | ¬ B)

@ A || F
@ A | T

P ª - iff ÓP’,P”:Π. P 7 P’|P” ⇒
P’ ª A ∨ P” ª B

P ª - iff ÓP’,P”:Π. P 7 P’|P” ⇒ P’ ª A
P ª - iff ÔP’,P”:Π. P 7 P’|P” ∧ P’ ª A

Mobility Logics 32
September 7, 2000 12:38 pm

The Decomposition Axiom

(| ||)  (A’ | A”) hô (A’ | B”) ∨ (B’ | A”) ∨ (¬ B’ | ¬ B”)

Alternative formulations and special cases:

 (A’ | A”) ∧ (B’ || B”) hô (A’ | B”) ∨ (B’ | A”)

"If P has a partition into pieces that satisfy A’ and A” , and every
partition has one piece that satisfies B’ or the other that satisfies B”,
then either P has a partition into pieces that satisfy A’ and B” , or it
has a partition into pieces that satisfy B’ and A” ."

 ¬ (A | B) hô (A | T) ⇒ (T | ¬ B)

"If P has no partition into pieces that satisfy A and B, but P has a
piece that satisfies A, then P has a piece that does not satisfy B."

 ¬ (T | B) hô T | ¬ B  ¬ (A | B) hô (¬ A | T) ∨ (T | ¬ B)

Mobility Logics 33
September 7, 2000 12:38 pm

The Composition Adjunct

(| ≈) A | C hô B  A hô C≈B

"Assume that every process that has a partition into pieces that sat-
isfy A and C , also satisfies B. Then, every process that satisfies A,
together with any process that satisfies C, satisfies B. (And vice
versa.)" (c.f. (îï— R))

Interpretations of A≈B:

- P provides B in any context that provides A
- P ensures B under any attack that ensures A

That is, P ª A≈B is a context-system spec (a concurrent version of a
pre-post spec).

Moreover A≈B is, in a precise sense, linear implication: the context
that satisfies A is used exactly once in the system that satisfies B.

Mobility Logics 34
September 7, 2000 12:38 pm

Some Derived Rules

 (A≈B) | A hô B
"If P provides B in any context that provides A, and Q provides A, then P
and Q together provide B."

Proof: A≈B hô A≈B  (A≈B) | A hô B by (Id), (| ≈)

D hô A; B hô C  D | (A≈B) hô C (c.f. (îï— L))

"If anything that satisfies D satisfies A, and anything that satisfies B satis-
fies C, then: anything that has a partition into a piece satisfying D (and
hence A), and another piece satisfying B in a context that satisfies A, it sat-
isfies (B and hence) C."

Proof:

D hô A; A≈B hô A≈B  D | A≈B hô A | A≈B assumption, (Id), (| hô)

A | A≈B hô B above

B hô C assumption

Mobility Logics 35
September 7, 2000 12:38 pm

More Derived Rules

 A hô T | A you can always add more pieces (if they are 0)

 F | A hô F if a piece is absurd, so is the whole

 0 hô ¬ (¬0 | ¬0) 0 is single-threaded

 A | B ∧ 0 hô A you can split 0 (but you get 0). Proof uses (| ||)

A’ hô A; B hô B’  A≈B hô A’≈B’ ≈ is contravariant on the left

 A≈B | B≈C hô A≈C ≈ is transitive

 (A | B)≈C îihô A≈(B≈C) ≈ curry/uncurry

 A≈(B≈C) hô B≈(A≈C) contexts commute

 T îihô T≈T truth can withstand any attack

 T hô F≈A anything goes if you can find an absurd partner

 T≈A hô A if A resists any attack, then it holds

Mobility Logics 36
September 7, 2000 12:38 pm

Rules: Location

(n[] ¬0)  n[A] hô ¬ 0 locations exist

(n[] ¬ |)  n[A] hô ¬ (¬0 | ¬ 0) are not decomposable

(n[] hô) A hô B  n[A] hô n[B] n[] congruence

(n[] ∧)  n[A]∧ n[C] hô n[A∧ C] n[]-∧ distribution

(n[] ∨)  n[C∨ B] hô n[C]∨ n[B] n[]-∨ distribution

(n[] @) n[A] hô B  A hô B@n n[]-@ adjunction

(¬ @)  A@n îihô ¬ ((¬ A)@n) @ is self-dual

Mobility Logics 37
September 7, 2000 12:38 pm

Rules: Revelation

(®)  x®x®A îihô x®A
(® ®)  x®y®A hô y®x®A
(® ∨)  x®(A ∨ B) hô x®A ∨ x®A
(® hô) A hô B  x®A hô x®B

(®) η®A hô B  A hô B η
(¬)  (¬ A) x îihô ¬ (A x)
(≈F)  AF x îihô AF

Mobility Logics 38
September 7, 2000 12:38 pm

(® 0)  x®0 îihô 0
(0)  0 x hô 0

(® |)  x®(A | x®B) îihô x®A | x®B
(|)  (A | B) x hô A x | B x
(® |)  x®((A | B) x) hô x®(A x) | x®(B x)

(® n[])  x®y[A] îihô y[x®A] (x ≠ y)
(n[])  y[A] x hô y[A x] (x ≠ y)
(n[])  x[A] x hô F

Mobility Logics 39
September 7, 2000 12:38 pm

Rules: Time and Space Modalities

S4, but not S5: ¬ vld NA hô PNA ¬ vld "A hô #"A

("N): if somewhere sometime A, then sometime somewhere A

(N)  NA îihô ¬P¬ A (")  "A îihô ¬#¬ A
(P K)  P(A⇒B) hô PA⇒PB(# K) #(A⇒B) hô #A⇒#B
(P T)  PA hô A (# T) #A hô A
(P 4)  PA hô PPA (# 4)  #A hô ##A
(P T)  T hô PT (# T) T hô #T
(P hô) A hô B  PA hô PB (# hô) A hô B  #A hô #B

(Nn[])  n[NA] hô Nn[A] ("n[]) n["A] hô "A
(N |)  NA | NB hô N(A | B) (" |) "A | B hô "(A | T)

("N)  "NA hô N"A

Mobility Logics 40
September 7, 2000 12:38 pm

Some Derived Rules

Consequences:
A hô B  A@n hô B@n @ congruence

 n[A@n] hô A
 A îihô n[A]@n

 n[¬ A] hô ¬n[A]
 ¬n[A] îihô ¬n[T] ∨ n[¬ A]

Mobility Logics 41
September 7, 2000 12:38 pm

Examples

an n @ n[T] | T there is now an n here

no n @ ¬ an n there is now no n here

one n @ n[T] | no n there is now exactly one n here

A Ó @ ¬ (¬ A | T) everybody here satisfies A

(n[T] ⇒ n[A])Ó every n here satisfies A

#((n[T] ⇒ n[A])Ó) every n everywhere satisfies A

Mobility Logics 42
September 7, 2000 12:38 pm

Ex: Immovable Object vs. Irresistible Force

Im @ T ≈ P(obj[0] | T)

Ir @ T ≈ PN¬ (obj[0] | T)

Im | Ir = (T ≈ P(obj[0] | T)) | Ir A hô T
hô P(obj[0] | T) (A≈B) | A hô B
hô NP(obj[0] | T) A hô NA

Im | Ir = Im | (T ≈ PN¬ (obj[0] | T))
hô PN¬ (obj[0] | T) N¬ A hô ¬PA
hô ¬NP(obj[0] | T) P¬ A hô ¬NA

Hence, Im | Ir hô F A ∧ ¬ A hô F

Mobility Logics 43
September 7, 2000 12:38 pm

Ex: Thief!

A shopper is likely to pull out a wallet. A thief is likely to grab it.

Shopper @
Person[Wallet[£] | T] ∧
N(Person[NoWallet] | Wallet[£])

NoWallet @ ¬ (Wallet[£] | T)

Thief @ Wallet[£] ≈ NNoWallet

By simple logical deductions involving the laws of ≈ and N:

Shopper | Thief ⇒
(Person[Wallet[£] | T] | Thief) ∧
N(Person[NoWallet] | NoWallet)

Mobility Logics 44
September 7, 2000 12:38 pm

Applications

Model Checking

We have an algorithm for deciding the ª relation for !-free pro-
cesses and ≈-free formulas.

Expressing Locking

If E, n:Amb•[S] hô P : T (a typing judgment asserting that no am-
bient called n can ever be opened in P), then:

P ª P("an n ⇒ P"an n)

Expressing Immobility

If E, p:Amb•[S], q:Amb•[nS’] hô P : T (a typing judgment assert-
ing that no ambient called q can ever move within P), then:

P ª P("(p parents q) ⇒ P"(p parents q))
where p parents q @ p[q[T] | T] | T

Mobility Logics 45
September 7, 2000 12:38 pm

Model Checking

If P is !-free and A is ≈-free, then P ª A is decidable.

This provides a way of mechanically checking (certain) assertions
about (certain) mobile processes.

Potential application: checking (the bytecode of) mobile agents
against the internal mobility policies of receiving sites. (I.e.: con-
ferring more flexibility than just sandboxing the agent.)

Mobility Logics 46
September 7, 2000 12:38 pm

Future Directions: Fixpoints

Abadi, Lamport, and Plotkin and have described reactive specifica-
tions such that:

A → B | B → A ⇒ A ∧ B

Define: Y → Z @ µX. (X ≈ Y) ≈ Z. Then:

A → B = ((A → B) ≈ A) ≈ B ⇒ (B → A) ≈ B
B → A = ((B → A) ≈ B) ≈ A ⇒ (A → B) ≈ A

A → B | B → A ⇒ (B → A) ≈ B | B → A ⇒ B
A → B | B → A ⇒ A → B | (A → B) ≈ A ⇒ A

Modalities and their variations can be defined from fixpoints.
Moreover, we can express new useful predicates:

n @ ¬"(n[T] | T)
unique n @ µX. n | (n[n] ∨ Ôy≠n. y[X])

Mobility Logics 47
September 7, 2000 12:38 pm

Connections with Intuitionistic Linear Logic

Weakening and contraction are not valid rules:
principle of conservation of space.

Semantic connection: sets of processes closed under 7 and ordered
by inclusion form a quantale (a model of ILL).

Multiplicative intuitionistic linear logic (MILL) can be faithfully
embedded in our logic:

MILL rules and our rules are interderivable ("our rules" means the
rules involving only 0, |, ≈, plus a derivable cut rule for |).

1MILL @ 0
A ⊗ MILL B @ A | B
A îï—MILL B @ A ≈ B

Mobility Logics 48
September 7, 2000 12:38 pm

Full intuitionistic linear logic (ILL) can be embedded in our logic:

The rules of ILL can be logically derived from these definitions.
(E.g.: the proof of !A hô !A ⊗ !A uses the decomposition axiom.)

So, A1, ..., An hôILL B implies A1 | ... | An hô B.

Some discrepancies: ®ILL = 0ILL; the additives distribute; !A is not
"replication"; !A îï— B is not so interesting; A®/A0 is unusually in-
teresting.

1ILL @ 0
®ILL @ F
©ILL @ T
0ILL @ F

A ⊕ B @ A ∨ B
A & B @ A ∧ B
A ⊗ B @ A | B
A îï— B @ A ≈ B
!A @ 0 ∧ (0 ⇒ A)¬ F

Mobility Logics 49
September 7, 2000 12:38 pm

Connections with Relevant Logic

(Noted after the fact [O’Hearn, Pym].) The definition of the satis-
faction relation is very similar to Urquhart’s semantics of relevant
logic. In particular A|B is defined just like intesional conjunction,
and A≈B is defined just like relevant implication in that semantics.

Except:

We do not have contraction. This does not make sense in process
calculi, because P | P ≠ P. Urquhart semantics without contrac-
tion does not seem to have been studied.

We use an equivalence 7, instead of a Kripke-style partial order
≤ as in Urquhart’s general case. (We may have a need for a par-
tial order in more sophisticated versions of our logic.)

Mobility Logics 50
September 7, 2000 12:38 pm

Connections with Bunched Logic

Peter O’Hearn and David Pym study bunched logics, where se-
quents have two structural combinators, instead of the standard sin-
gle “,” combinator (usually meaning ∧ or ⊗ on the left) found in
most presentations of logic. Thus, sequents are bunches of formu-
las, instead of lists of formulas. Correspondingly, there are two im-
plications that arise as the adjuncts of the two structural
combinators.

The situation is very similar to our combinators | and ∧ , which can
combine to irreducible bunches of formulas in sequents, and to our
two implications ⇒ and ≈. However, we have a classical and a lin-
ear implication, while bunched logics have so far had an intuition-
istic and a linear implication.

Mobility Logics 51
September 7, 2000 12:38 pm

Process Domain

Semantic domain: Φ

The domain Φ is both a quantale (1, ⊗ , ⊆ , ê) and a boolean algebra
(Ô, Π, ∪ , ∩, Π−). It has additional structure induced by n[P] and (νn)P.

Spatial operators over Φ

ÓC⊆Π .
Π
C7

Φ

@ the set of process expressions
@ {PÏΠ \ ÔP’ÏC. P’7P}
@ {C7 \ C⊆Π }

ÓC,DÏΦ.
ÓnÏΛ, CÏΦ.
ÓnÏΛ, CÏΦ.

1
C⊗ D
n[C]
nC

@ {0}7

@ {P|Q \ PÏC ∧ QÏD}7

@ {n[P] \ PÏC}7

@ {(νn)P \ PÏC}7

Mobility Logics 52
September 7, 2000 12:38 pm

Semantics of Revelation

nC @ {(νn)P \ PÏC}7

This means: take all processes of the form (νn)P (not up to renam-
ing of n), remove the ones such that PÌC, and 7-close the result
(thus adding, in particular, all the α-variants).

nC is read, informally:

Reveal a private name as n and check that the contents are in C.

Pull (by 7) a (νn) binder at the top and check the rest is in C.

Ex.: nn[1]: reveal a private name (say, p) as n and check the pres-
ence of an empty n ambient in the revealed process.

(νp)p[0] Ï nn[1]
since (νp)p[0] 7 (νn)n[0] and n[0] Ï n[1]

Mobility Logics 53
September 7, 2000 12:38 pm

More examples of nC @ {(νn)P \ PÏC}7:

0 Ï n1 since 0 7 (νn)0 and 0 Ï 1
m[0] Ï nΠ since m[0] 7 (νn)m[0] and m[0] Ï Π
n[0] Ì nΠ since: n[0] ? (νn)...

Therefore, nC is

closed under α-variants

closed under 7-variants

not closed under changes in the set of free names

not closed under reduction (free names may disappear)

not closed under any equivalence that includes reduction

still ok for temporal reasoning: ¬nA ∧ NnA

Mobility Logics 54
September 7, 2000 12:38 pm

Semantics of the Logic

PßP’ @ Ôn, P”. P 7 n[P’] | P” ß* is the refl-tran closure of ß

[T]
[¬ A]
[A∨ B]
[0]
[A | B]
[n[A]]
[nA]
[A≈B]
[A@n]
["A]
[NA]
[Óx.A]

@ Π
@ Π − [A]
@ [A] ∪ [B]
@ 1
@ [A] ⊗ [B]
@ n[[A]]
@ n[A]
@ ê{CÏΦ \ C ⊗ [A] ⊆ [B]}
@ ê{CÏΦ \ n[C] ⊆ [A]}
@ {PÏΠ \ ÔP’ÏΠ. Pß*P’ ∧ P’Ï[A]}
@ {PÏΠ \ ÔP’ÏΠ. Pîïñ*P’ ∧ P’Ï[A]}
@ ëmÏΛ [A{x←m}]

Mobility Logics 55
September 7, 2000 12:38 pm

Basic Fact

ÓA. [A] Ï Φ

Hence, formulas describe only congruence-invariant properties.

Mobility Logics 56
September 7, 2000 12:38 pm

Recovering the Satisfaction Relation

The properies of satisfaction for each logic constructs are then de-
rivable.

This approach to defining satisfaction is particularly good for intro-
ducing recursive formulas in the logic: it is easy to give them se-
mantics as least and greates fixpoints in the model, while it is not
easy to define them directly via a satisfaction relation.

P ª A @ P Ï [A]

Mobility Logics 57
September 7, 2000 12:38 pm

Semantic Connections with Linear Logic

A (commutative) quantale Q is a structure
<S : Set, ≤ : S2→Bool, é : P(S)→S, ⊗ : S2→S, 1 : S> such that:

≤, é : a complete join semilattice
⊗ , 1 : a commutative monoid
p ⊗ éQ = é{p ⊗ q \ q Ï Q}

They are complete models of Intuitionistic Linear Logic (ILL):

[A ⊕ B] @ é{[A], [B]} [1ILL] @ 1
[A & B] @ é{C \ C≤[A] ∧ C≤ [B]} [®ILL] @ any element of S
[A ⊗ B] @ [A] ⊗ [B] [©ILL] @ éS
[A îï— B] @ é{C \ C ⊗ [A] ≤ [B]} [0ILL] @ éÔ
[!A] @ υX. [1 & A & X⊗ X] where υX. A{X} @ é{C \ C ≤ A{C}}

vldILL(A1, ..., An hôILL B)Q @ [A1]Q ⊗ Q ... ⊗ Q [An]Q ≤Q [B]Q

Mobility Logics 58
September 7, 2000 12:38 pm

The Process Quantale

The sets of processes closed under 7 and ordered by inclusion form
a quantale (let A7 @ {P \ ÔQÏA. P7Q}):

Φ @ <Φ, ⊆ , ê, ⊗ , 1> where, for A,B ⊆ Π :

Φ @ {A7 \ A ⊆ Π }
1Φ @ {0}7

A ⊗ Φ B @ {P | Q \ P Ï A ∧ Q Ï B}7

ILL validity in Φ:

vldILL(A1, ..., An hôILL B)Φ
⇔ [A1] ⊗ Φ ... ⊗ Φ [An] ⊆ [B]
⇔ [A1 | ... | An] ⊆ [B]
⇔ (Π − [A1 | ... | An]) ∪ [B] = Π
⇔ [A1 | ... | An ⇒ B] = Π

Mobility Logics 59
September 7, 2000 12:38 pm

Conclusions

The novel aspects of our logic lie in its explicit treatment of space
and of the evolution of space over time (mobility). The logic has a
linear flavor in the sense that space cannot be instantly created or
deleted, although it can be transformed over time.

These ideas can be applied to any process calculus that embodies a
distinction between topological and dynamic operators.

Our logical rules arise from a particular model. This approach
makes the logic very concrete, but raises questions of logical com-
pleteness, which are being investigated.

We are now working on generalizing the logic to the full ambient
calculus (including restriction), in order to talk about properties of
hidden/secret locations.

