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Simple Properties of Mobile Computation

* We have been looking for ways to express properties of
mobile computations, E.g.:
e “Here today, gone tomorrow.”
e “Eventually the agent crosses the firewall.”
e “Every agent carries a suitcase.”
e “Somewhere there 1s a virus.”

e “There 1s always at most one entity called n here.”

* As with properties of ordinary concurrent computations,
formalization options include:
* Type systems (limited).
» Equational reasoning (hard).
e Reasoning on traces (ugly).
e Reasoning via modal/temporal logics (a popular compromise).



Harder Properties

* Moreover, we would like to express properties of unique,
private, hidden, and secret names:
e “The applet is placed in a private sandbox.”
e “The key exchange happens 1n a secret location.”
e “A shared private key 1s established between two locations.”

* “A fresh nonce is generated and transmitted.”

* Crucial to expressing this kind of properties 1s devising
new logical quantifiers for fresh and hidden entities:
e “There 1s a fresh (never used before) name such that ...”
e “There 1s a hidden (unnamable) location such that ...”

* N.B.: standard quantifiers are problematic. “There exists a
sandbox containing the applet” is rather different from “There
exists a fresh sandbox containing the applet” and from “There
exists a hidden sandbox containing the applet”.



Approach

e Use a specification logic grounded 1n an operational model
of mobility. (So soundness 1s not an 1ssue.)

e Find ways of expressing properties of dynamically
changing structures of locations.

e Previous work [POPL’00].

* Find ways of talking about hidden names. We split it into
two logical tasks:

* Find ways of quantifying over fresh names. We adopt a recent
solution [Gabbay-Pitts].

* Find ways of revealing hidden names, so we can talk about them.
e Combine the two, to quantify over hidden locations.
“There 1s a hidden location ...” represented as:

“There 1s a fresh name that can be used to reveal (mention) the
hidden name of a location ...”.



Spatial Logics

* We want to describe mobile behaviors. The ambient calculus
provides an operational model, where spatial structures (agents,
networks, etc.) are represented by nested locations.

* We also want to specify mobile behaviors. To this end, we devise an
ambient logic that can talk about spatial structures.

Processes Formulas
0 (void) 0 (there 1s nothing here)
n[P] (location) n|4] (there 1s one thing here)
Pl Q (composition) 418 (there are two things here)
Trees n

- AN

(void) (location) (composition)




Spatial Structures

e QOur basic model of space i1s going to be finite-depth edge-labeled
unordered trees (c.f. semistructured data, XML). For short: spatial
trees, represented by a syntax of spatial expressions. Unbounded
resources are represented by infinite branching:
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Ambient Structures

* These spatial expressions/trees are a subset of ambient
expressions/trees, which can represent both the spatial and
the temporal aspects of mobile computation.

g - e

e An ambient tree 1s a spatial tree with, possibly, threads at
each node that can locally change the shape of the tree.

alclout a. in b. P]] | b[0]



Mobility
» Mobility 1s change of spatial structures over time.
a b
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X

alO | clout a. in b. P]] | b[R]



Mobility

» Mobility 1s change of spatial structures over time.

al Q] | c[in b. P] | D[R]



Mobility
» Mobility 1s change of spatial structures over time.
a b

alQ] | B[R | c[P]]



Properties of Mobile Computation

 These often have the form:

e Right now, we have a spatial configuration, and later, we have
another spatial configuration.

* E.g.: Right now, the agent is outside the firewall, ...
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Properties of Mobile Computation

 These often have the form:

* Right now, we have a spatial configuration, and later, we have
another spatial configuration.

* E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent is inside the
firewall.
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Ambient Calculus

P € I1 ::= Processes M ::= Messages
(vn)P  restriction n name
0 inactivity inM  entry capability
PIP’ parallel > Trees out M  exit capability
M[P]  ambient open M open capability
P replication € empty path
M.P exercise a capability M.M’  composite path

(n).P  input locally, bind to n
(M) output locally (async)

n[] £ n[0]
M 2 M0 (where appropriate)



Reduction Semantics

A structural congruence relation P = Q:

* On spatial expressions, P = Q 1iff P and Q denote the same tree.
So, the syntax modulo = 1s a notation for spatial trees.

e On full ambient expressions, P = Q if in addition the respective
threads are “trivially equivalent”.

* Prominent in the definition of the logic.

* A reduction relation P —" Q:
e Defining the meaning of mobility and communication actions.

* Closed up to structural congruence:
P=pP,PP—"0,0=0 = P—="0



Restriction (much as in the w-calculus)
e (vn)P
e “The name n 1s known only inside P.”

e “Create a new name n and use it in P.”

It extrudes (floats) because it represents knowledge, not behavior:

(Vn) P= (Vm)( P{ n@m}) a private name is as good as another
(vn)0=0
(vn)(vm)P = (vm)(vn)P
(va)(P1 Q)= P (vrn)Q if n¢fn(P) scope extrusion
(vr)(m[P]) = m[(vh)P] ifn#m
e Uses or restriction:

» Initially to represent private channels.

 Later, to represent private names of any kind:
Channels, Locations, Nonces, Cryptokeys, ...



Modal Logics

* In a modal logic, the truth of a formula is relative to a state
(called a world).
e Temporal logic: current time.
* Program logic: current store contents.
e Epistemic logic: current knowledge. Etc.

e In our case, the truth of a space-time modal formula 1s
relative to the here and now of a process.
e The formula n[0] is read:
there 1s here and now an empty location called n

» The operator n[%4] is a single step in space (akin to the temporal
next), which allows us talk about that place one step down into n.

e Other modal operators talk about undetermined times (in the
future) and undetermined places (in the location tree).



Logical Formulas

e ®::= Formulas (1 is a name 7 or a variable x)
T true
—4 negation

Av A disjunction

0 void

n[#Al location A@n location adjunct
AlA composition ‘A composition adjunct
n®A revelation 40N revelation adjunct
<A somewhere modality

OA sometime modality

Vx4 universal quantification over names



Simple Examples
O: pT)IT

there 1s a location p here (and possibly something else)

o <O

somewhere there 1s a location p

©: -0

if there 1s a p somewhere, then forever there is a p somewhere

O: plglT]IT]IT
there 1s a p with a child ¢ here

o <O

somewhere there i1s a p with a child ¢



PET
PE-A
PEAV DB
PEO

P E n[#A]
PEA@n
PEA|B
P E >3
P E n®#A
P ESACn
PE %4
PE OHA
PEYxA

[ 1| L (- | - L 12| L (| L | il |-

Satisfaction Relation

- PEYA

PEAVPED

P=0

AP’ell. P=n[P’|AP’EA
n[PlE A

AP, P’ell. P=P’ | PP AP EAAP’ESB
VPell. PEA=PIPESB
AP’ell. P=(vn)P’ AP'EA
(vn)PEA

3P’ell. PV'P’ AP EHA
AP’ell. PP AP’ EA
VmeA. P E A{xe—m}

PP’ iff In,P”. P=n[P’]| P”; |"is the refl-trans closure of |



Basic Fact
e Satisfaction 1s invariant under structural congruence:
PEA P=P = PEXA
Ie.: {PelIl| P E %4} is closed under =.

* Hence, formulas describe congruence-invariant properties.
 In particular, formulas describe properties of spatial trees.

* N.B.: Most process logics describe bisimulation-invariant
properties.



Basic Tree Formulas

PEO £ P=0

P E n[94] L& JPell. P=n[P AP EHA

PEAIB & 3APP’ell. P=P’ |IPPAPEAAP’ESB
PEYA@n £ n[lPIEXA

PES>B £ VPell PEA=PIPED

() : there 1s no structure here now.
e n[%] : there is a location n with contents satisfying .
e 541G : there are two structures satisfying 7 and B.

e J@n : when the current structure is placed in a location n,
the resulting structure satisfies .

e S>B : when the current structure is composed with one
satisfying %4, the resulting structures satisfies 3.



Satisfaction for Basic Trees

e EO

g En[9  if A =39

AMI:CJHCB if AI:CJI and QI:CB

n
A ED@n if =59))

AP@DCB if for all QPC}[ Wehaveﬁbh%




Satisfaction for Somewhere/Sometime

m NNT
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Satisfaction for Revelation
e Trees with hidden labels:

TN [\ o

AIZQZ@}@ if pfzz



Revelation
PEn®YE & 3IAPell. P=(vn)P’AP’EA

* n®% is read, informally:

* Reveal a private name as n and check that the revealed process
satisfies %.

e Pull out (by extrusion) a (vn) binder, and check that the process
stripped of the binder satisfies %.

e Examples:

 n®n[0]: reveal a restricted name (say, p) as n and check the
presence of an empty n location 1n the revealed process.

(vp)p[0] F n®n[0]
because (vp)p[0] = (vn)n[0] and n[0] FE n[0]



e 0 En®0 because 0 = (vn)0 and 0 E 0
e ml0] En®T because m[0] = (vin)m[0] and m[0] E T
e n[0] #n®T because n[0] Z (vn)...

» Therefore, the set of processes satisfying n®% is:

 closed under a-variants

* closed under =-variants

* not closed under changes in the set of free names

* not closed under reduction (free names may disappear)

* not closed under any equivalence that includes reduction

e still ok for temporal reasoning: " n®4 A OGn®%A



Derived Formulas

F =T

A=>B L-AAvSB PE-iff PEA=PESB

AANB L2(-Av-B) PE-iff PEAAPESB

dx.A L Vx—A PE -iff dmeA. PE A{xe—m}

oA & oA PE-iff VP’eIlL. P\'P’= P’ EH
=49/] L A PE-iff VP’ell. PP =P’ E%A
7 £ 9K PE-iff VPell. PEA= PIP’EF

iff VP’ ell. - P°EA
AF A valid PE-iff VPell. PPEYA
A A satisfiable PE-iff 3Pell. PPEA



Derived Formulas: Revelation

©n £ —n®T PE -iff =dP’ell. P = (vn)P’
iff nefn(P)
closed £ —dx.©Ox PE - iff —dneA. nefn(P)

separate & —Jx.©x | ©Ox PE -iff —3neA, P’ell, P eIl
P=P’| P” A nefa(P’) A nefa(P”)

* Examples:

e n[]E ©n
e (vp)pll E closed

e n[] | m[]F separate



From Satisfaction to (Propositional) Logic

Propositional validity

vid 4 &2 VPell. PEA 4 (closed) is valid
Sequents

A-B 2 VPell. PEA=PESDB
Rules

AFB;. A rB tFA-B A (n>0)

A-B A "AFB =ADB

(N.B.: all the rules shown later are validated accordingly.)

Conventions:
— -+ means F 1n both directions

4 F means F in both directions



Omitted

* Logical axioms and rules.
e Rules of propositional logic (standard).
e Rules of location and composition

AICHFB At D+ C>B l->> adjunction

e Rules of revelation
N®F+ B 3t D+ BO ®-O adjunction
t (=A)Ox - —(4Ox) ® is self-dual

e Rules of <~ and ¢ modalities (standard S4, plus some)
* Rules of quantification (standard, but for name quantifiers)

e A large collection of logical consequences.



Ex: Immovable Object vs. Irresistible Force

Im & T o(b]T)
Ir & Tbod(ob[]1T)

Im\Ir v (T>0OGbH[IT)IT DT
- o(ebj[] 1 T) (A>B) | D+ B
- <o(ebj[]11T) Ar OF
Im\Ir v TI(T>oOl—(ebj[]1T)) DT
F oO—(ebj[]11 T) O— A+ —oA
F —<o(ebj[] 1 T) 0~ - ~0F

Hence: Im|Ir+ F DA—49FF



Example: Thief!

* A shopper 1s likely to pull out a wallet. A thief 1s likely to
grab it.

A

Shopper =
Person|[Wallet[$] | T] A
O(Person[NoWallet] | Wallet[$])

NoWallet 2 —(Wallet[$] | T)

Thief £ Wallet[$] > ONoWallet

e By simple logical deductions involving laws of > and <:
Shopper | Thief =
(Person|Wallet|$] | T] | Thief) A
O(Person[NoWallet] | NoWallet)



Fresh-Name Quantifier

PEWA £ JmeA mifm(P,A) A PE A{xe—m)

e Cf.: PEIxA iff ImeA. PE A{xem)
* Actually definable (metatheoretically, as an abbreviation):

x4 2 Ax. xd#t(n(A)-{x}) Ax®T A A

* Fundamental “freshness” property (Gabbay-Pitts):

x4 iff dmeA. méfm(P,A9) A P E A{x—m)
iff VmeA. méfn(P,A) = P E A{xm}

because any fresh name as as good as any other.

* Very nice properties:
- Vx4 = x4 = x4
—Wx.A4 < Nx.—A4
e Nx.(A18B) & (Nx.49 | (Nx.B)
- OUxA = Nx.OA



Hidden-Name Quantifier
(VA & Uxx®A
e Example: (vx)x[T] = x.x®x[T]

e “for hidden x, we find a location called x” = “for fresh x, we
reveal a hidden name as x, then we find a location called x”

e (vr)n[] E (vx)x|T] because (vn)n|[] E Nx.x®x[T]
because (vn)n[] E n®n[T] (where né¢fn((vn)n[])).

e Other examples
* (vm)m[] F (vx)n[]
* (vm)n[] | (vr)n[] # (vx)(x[] | x[])
* (va)(n[] I n[]) # (va)x(] | (va)x(]




A Good Property

» A property not shared by other candidate definitions (it 1s
even derivable within the logic):

(VX)(A{ne—x}) A n®T 4+ n®A  where x ¢ f(HA)
It implies:

PEXA = (vn)P E (vx)(A{n<x})

PE n®4 = PE (vx)(A{n<x})
PE (vX)(A{n<x}) nnéfn(P) = PEn®%A




Example: Key Sharing

e Consider a situation where “a hidden name x is shared by
two locations n and m, and 1S not known outside those
locations™.

(Vvx) (n[©x] | m[©x])

e PE (vx) (n[©x] | m[©x])

& dreA. réfm(P)u{n,m} A dR’,R”’ell. P = (vr)(n[R’] | m[R”])
ATEM(R’) A refn(R”)

* E.g.: take P = (vp) (n[p[1] | m[p[1D.

* A protocol establishing a shared key should satisty:
O(vx) (n[©x] | m[©x])



Applications
Verifying security+mobility protocols.

Modelchecking security+mobility assertions:
e If Pis !-free and ¥4 is D>-free, then P = 4 is decidable.

» This provides a way of mechanically checking (certain) assertions
about (certain) mobile processes.

Expressing mobility/security policies of host sites.
(Conferring more flexibility than just sandboxing the
agent.)

Just-in-time verification of code containing mobility
instructions (by either modelchecking or proof-carrying
code).



Conclusions

e The novel aspects of our logic lie in 1ts explicit treatment
of space and of the evolution of space over time
(mobility). The logic has a linear flavor in the sense that
space cannot be instantly created or deleted, although it can
be transformed over time.

e These ideas can be applied to any process calculus that
embodies a distinction between spatial and temporal
operators.

e Qur logical rules arise from a particular model. This
approach makes the logic very concrete (and sound), but
raises questions of logical completeness, which are being
investigated.



