Logics for Mobility Luca Cardelli Andy Gordon

Microsoft Research

Lausanne 2000-10-24

Simple Properties of Mobile Computation

- We have been looking for ways to express properties of mobile computations, E.g.:
 - "Here today, gone tomorrow."
 - "Eventually the agent crosses the firewall."
 - "Every agent carries a suitcase."
 - "Somewhere there is a virus."
 - "There is always at most one entity called *n* here."
- As with properties of ordinary concurrent computations, formalization options include:
 - Type systems (limited).
 - Equational reasoning (hard).
 - Reasoning on traces (ugly).
 - Reasoning via modal/temporal logics (a popular compromise).

Harder Properties

- Moreover, we would like to express properties of unique, private, hidden, and secret *names*:
 - "The applet is placed in a private sandbox."
 - "The key exchange happens in a secret location."
 - "A shared private key is established between two locations."
 - "A fresh nonce is generated and transmitted."
- Crucial to expressing this kind of properties is devising new logical quantifiers for *fresh* and *hidden* entities:
 - "There is a fresh (never used before) name such that ..."
 - "There is a hidden (unnamable) location such that ..."
 - N.B.: standard quantifiers are problematic. "There exists a sandbox containing the applet" is rather different from "There exists a fresh sandbox containing the applet" and from "There exists a hidden sandbox containing the applet".

Approach

- Use a specification logic grounded in an operational model of mobility. (So soundness is not an issue.)
- Find ways of expressing properties of dynamically changing structures of locations.
 - Previous work [POPL'00].
- Find ways of talking about hidden names. We split it into two logical tasks:
 - Find ways of quantifying over fresh names. We adopt a recent solution [Gabbay-Pitts].
 - Find ways of revealing hidden names, so we can talk about them.
 - Combine the two, to quantify over hidden locations. "There is a hidden location ..." represented as:

"There is a fresh name that can be used to reveal (mention) the hidden name of a location ...".

Spatial Logics

- We want to describe mobile behaviors. The *ambient calculus* provides an operational model, where spatial structures (agents, networks, etc.) are represented by nested locations.
- We also want to specify mobile behaviors. To this end, we devise an *ambient logic* that can talk about spatial structures.

Spatial Structures

• Our basic model of space is going to be *finite-depth edge-labeled unordered trees* (*c.f.* semistructured data, XML). For short: *spatial trees*, represented by a syntax of *spatial expressions*. Unbounded resources are represented by infinite branching:

Cambridge[Eagle[chair[0] | chair[0] | !glass[pint[0]]] | ...]

Ambient Structures

• These spatial expressions/trees are a subset of ambient expressions/trees, which can represent both the spatial and the temporal aspects of mobile computation.

• An ambient tree is a spatial tree with, possibly, threads at each node that can locally change the shape of the tree.

a[*c*[*out a. in b. P*]] | *b*[**0**]

2003-03-19 16:09 Ambient Logic - Lausanne 7

• *Mobility* is change of spatial structures over time.

a[*Q* | *c*[*out a. in b. P*]]

| *b*[*R*]

2003-03-19 16:0 mbient Logic - Lausanne 8

a[Q]

| *c*[*in b*. *P*] | *b*[*R*]

Mobility

• *Mobility* is change of spatial structures over time.

a[Q]

|b[R | c[P]]

- These often have the form:
 - Right now, we have a spatial configuration, and later, we have another spatial configuration.
 - E.g.: Right now, the agent is outside the firewall, ...

Properties of Mobile Computation

- These often have the form:
 - Right now, we have a spatial configuration, and later, we have another spatial configuration.
 - E.g.: Right now, the agent is outside the firewall, and later (after running an authentication protocol), the agent is inside the firewall.

Ambient Calculus

$P \in \Pi ::=$	Processes		<i>M</i> ::=	Messages
(vn) P	restriction		n	name
0	inactivity		in M	entry capability
P P '	parallel	> Trees	out M	exit capability
<i>M</i> [<i>P</i>]	ambient		open M	open capability
! P	replication)		3	empty path
M.P	exercise a ca	apability	<i>M.M</i> '	composite path
(n). P	input locally	y, bind to n		
(<i>M</i>)	output locall	y (async)		

 $n[] \triangleq n[\mathbf{0}]$

 $M \triangleq M.0$ (where appropriate)

Reduction Semantics

- A structural congruence relation $P \equiv Q$:
 - On spatial expressions, $P \equiv Q$ iff P and Q denote the same tree. So, the syntax modulo \equiv is a notation for spatial trees.
 - On full ambient expressions, $P \equiv Q$ if in addition the respective threads are "trivially equivalent".
 - Prominent in the definition of the logic.
- A reduction relation $P \rightarrow^* Q$:
 - Defining the meaning of mobility and communication actions.
 - Closed up to structural congruence:

 $P \equiv P', P' \longrightarrow^* Q', Q' \equiv Q \implies P \longrightarrow^* Q$

Restriction (much as in the \pi-calculus)

- (vn)P
 - "The name *n* is known only inside *P*."
 - "Create a <u>new</u> name *n* and use it in *P*."
 - It *extrudes* (floats) because it represents knowledge, not behavior:

 $(\forall n)P \equiv (\forall m)(P\{n \leftarrow m\})$ a private name is as good as another $(\forall n)0 \equiv 0$ $(\forall n)(\forall m)P \equiv (\forall m)(\forall n)P$ $(\forall n)(P \mid Q) \equiv P \mid (\forall n)Q$ if $n \notin fn(P)$ scope extrusion $(\forall n)(m[P]) \equiv m[(\forall n)P]$ if $n \neq m$

- Uses or restriction:
 - Initially to represent private channels.
 - Later, to represent private names of any kind: Channels, Locations, Nonces, Cryptokeys, ...

Modal Logics

- In a modal logic, the truth of a formula is relative to a state (called a *world*).
 - Temporal logic: current time.
 - Program logic: current store contents.
 - Epistemic logic: current knowledge. Etc.
- In our case, the truth of a *space-time modal formula* is relative to the *here and now* of a process.
 - The formula *n*[0] is read:

there is *here and now* an empty location called *n*

- The operator $n[\mathcal{A}]$ is a single step in space (akin to the temporal next), which allows us talk about that place one step down into n.
- Other modal operators talk about undetermined times (in the future) and undetermined places (in the location tree).

Logical Formulas

$\mathcal{A} \in \Phi ::=$	Formulas	Formulas $(\eta \text{ is a name } n \text{ or a variable } x)$		
Τ	true			
$\neg \mathcal{A}$	negation			
$\mathcal{A} \lor \mathcal{A}'$	disjunction			
0	void			
$\eta[\mathcal{A}]$	location	<i>Я</i> @η	location adjunct	
$\mathcal{A} \mathcal{A}'$	composition	AdA'	composition adjunct	
$\eta \mathbb{R} \mathcal{A}$	revelation	$\mathcal{A} \oslash \eta$	revelation adjunct	
$\diamond \mathcal{A}$	somewhere m	somewhere modality		
$\Diamond \mathcal{A}$	sometime mo	sometime modality		
$\forall x.\mathcal{A}$	universal qua	universal quantification over names		

Simple Examples

 $\mathbf{0}: \quad p[\mathbf{T}] \mid \mathbf{T}$

there is a location p here (and possibly something else)

2: ∲0

somewhere there is a location p

3: 2⇒□2

if there is a p somewhere, then forever there is a p somewhere

$\mathbf{4}: \quad p[q[\mathbf{T}] \mid \mathbf{T}] \mid \mathbf{T}$

there is a *p* with a child *q* here

5: **4**

somewhere there is a p with a child q

Satisfaction Relation

$P \models \mathbf{T}$		
$P \models \neg \mathscr{A}$	≜	$\neg P \vDash \mathscr{A}$
$P \vDash \mathscr{R} \lor \mathscr{B}$	≜	$P \vDash \mathscr{R} \lor P \vDash \mathscr{B}$
$P \models 0$	≜	$P \equiv 0$
$P \vDash n[\mathcal{A}]$	≜	$\exists P' \in \Pi. P \equiv n[P'] \land P' \models \mathcal{A}$
$P \models \mathcal{A}@n$	≜	$n[P] \models \mathscr{R}$
$P \models \mathscr{R} \mid \mathscr{B}$	≜	$\exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models \mathcal{A} \land P'' \models \mathcal{B}$
₽⊨Я⊳ℬ	≜	$\forall P' \in \Pi. P' \models \mathscr{R} \Rightarrow P \mid P' \models \mathscr{B}$
$P \vDash n \otimes \mathcal{A}$	≜	$\exists P' \in \Pi. P \equiv (\forall n)P' \land P' \vDash \mathcal{A}$
$P \models \mathscr{R} \heartsuit n$	≜	$(\forall n)P \vDash \mathscr{A}$
$P \models \diamondsuit \mathscr{R}$	≜	$\exists P' \in \Pi. P \downarrow P' \land P' \models \mathcal{R}$
$P \models \Diamond \mathscr{A}$		$\exists P' \in \Pi. P \to P' \land P' \models \mathcal{A}$
$P \vDash \forall x. \mathscr{A}$	≜	$\forall m \in \Lambda. P \vDash \mathscr{R} \{ x \leftarrow m \}$

 $P \downarrow P'$ iff $\exists n, P''$. $P \equiv n[P'] \mid P''; \downarrow^*$ is the refl-trans closure of \downarrow

• Satisfaction is invariant under structural congruence:

 $P \models \mathcal{A}, \ P \equiv P' \implies P' \models \mathcal{A}$

I.e.: $\{P \in \Pi \mid P \models \mathcal{A}\}$ is closed under \equiv .

- Hence, formulas describe congruence-invariant properties.
 - In particular, formulas describe properties of spatial trees.
 - N.B.: Most process logics describe bisimulation-invariant properties.

Basic Tree Formulas

$P \models 0$	≜	$P \equiv 0$
$P \vDash n[\mathcal{A}]$	≜	$\exists P' \in \Pi. \ P \equiv n[P'] \land P' \models \mathcal{A}$
$P \models \mathcal{A} \mid \mathcal{B}$	≜	$\exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models \mathcal{A} \land P'' \models \mathcal{B}$
P⊨A@n	≜	$n[P] \models \mathscr{R}$
₽⊨Я⊳₿	≜	$\forall P' \in \Pi. P' \models \mathscr{R} \Rightarrow P \mid P' \models \mathscr{B}$

- **0** : there is no structure here now.
- $n[\mathcal{A}]$: there is a location *n* with contents satisfying \mathcal{A} .
- $\mathcal{A} \mid \mathcal{B}$: there are two structures satisfying \mathcal{A} and \mathcal{B} .
- $\mathcal{A}@n$: when the current structure is placed in a location n, the resulting structure satisfies \mathcal{A} .
- $\mathcal{A} \triangleright \mathcal{B}$: when the current structure is composed with one satisfying \mathcal{A} , the resulting structures satisfies \mathcal{B} .

Satisfaction for Basic Trees

• **⊨ 0**

Ambient Logic - Lausanne 22

Satisfaction for Somewhere/Sometime

Satisfaction for Revelation

• Trees with hidden labels:

Revelation

$P \vDash n \mathbb{R} \mathcal{A} \quad \triangleq \quad \exists P' \in \Pi. \ P \equiv (\forall n) P' \land P' \vDash \mathcal{A}$

- $n \mathbb{R} \mathcal{A}$ is read, informally:
 - *Reveal* a private name as n and check that the revealed process satisfies \mathcal{A} .
 - Pull out (by extrusion) a (∇n) binder, and check that the process stripped of the binder satisfies \mathcal{A} .
- Examples:
 - *n*®*n*[**0**]: reveal a restricted name (say, *p*) as *n* and check the presence of an empty *n* location in the revealed process.

 $(vp)p[\mathbf{0}] \vDash n \otimes n[\mathbf{0}]$ because $(vp)p[\mathbf{0}] \equiv (vn)n[\mathbf{0}]$ and $n[\mathbf{0}] \vDash n[\mathbf{0}]$

- $0 \vDash n \otimes 0$ because $0 \equiv (vn)0$ and $0 \vDash 0$
- $m[\mathbf{0}] \vDash n \otimes \mathbf{T}$ because $m[\mathbf{0}] \equiv (\mathbf{v}n)m[\mathbf{0}]$ and $m[\mathbf{0}] \vDash \mathbf{T}$
 - because $n[0] \not\equiv (vn)...$
- Therefore, the set of processes satisfying $n \mathbb{R} \mathcal{A}$ is:
 - closed under α-variants

• $n[\mathbf{0}] \nvDash n \mathbb{R}\mathbf{T}$

- closed under ≡-variants
- not closed under changes in the set of free names
- not closed under reduction (free names may disappear)
- not closed under any equivalence that includes reduction
- still ok for temporal reasoning: $\neg n \mathbb{R} \mathcal{A} \land \Diamond n \mathbb{R} \mathcal{A}$

Derived Formulas

F	≜ ¬T	
$\mathscr{A} \Rightarrow \mathscr{B}$	$\triangleq \neg \mathcal{A} \lor \mathcal{B}$	$P \vDash \operatorname{-iff} P \vDash \mathscr{R} \Longrightarrow P \vDash \mathscr{D}$
$\mathcal{A} \wedge \mathcal{B}$	$\triangleq \neg (\neg \mathcal{A} \lor \neg \mathcal{B})$	$P \vDash - \inf P \vDash \mathscr{R} \land P \vDash \mathscr{B}$
∃x.Я	$\triangleq \neg \forall x. \neg \mathcal{A}$	$P \vDash \operatorname{-iff} \exists m \in \Lambda. P \vDash \mathscr{A} \{x \leftarrow m\}$
۵Â	≜⊸≎⊸ℛ	$P \vDash \operatorname{-iff} \forall P' \in \Pi. P \checkmark^* P' \Rightarrow P' \vDash \mathscr{A}$
$\mathtt{P} \mathcal{A}$	≜⊸∻⊸ℛ	$P \vDash \operatorname{-iff} \forall P' \in \Pi. P \longrightarrow P' \Rightarrow P' \vDash \mathcal{A}$
Æ	≜ <i>Я</i> ⊳ F	$P \vDash \operatorname{-iff} \forall P' \in \Pi. P' \vDash \mathscr{D} \Rightarrow P P' \vDash \mathbf{F}$
		iff $\forall P' \in \Pi$. $\neg P' \models \mathcal{A}$
ƬF	A valid	$P \vDash \operatorname{-iff} \forall P' \in \Pi. P' \vDash \mathscr{A}$
<i>A</i>F ¬	A satisfiable	$P \vDash \operatorname{-iff} \exists P' \in \Pi. P' \vDash \mathscr{A}$

Derived Formulas: Revelation

- $\bigcirc n$ $\triangleq \neg n \otimes T$ $P \models -iff \neg \exists P' \in \Pi. P \equiv (\forall n)P'$
iff $n \in fn(P)$ closed $\triangleq \neg \exists x. \odot x$ $P \models -iff \neg \exists n \in \Lambda. n \in fn(P)$ separate $\triangleq \neg \exists x. \odot x \mid \odot x$ $P \models -iff \neg \exists n \in \Lambda, P' \in \Pi, P'' \in \Pi.$
 $P \equiv P' \mid P'' \land n \in fn(P') \land n \in fn(P'')$
- Examples:
 - $n[] \models \mathbb{O}n$
 - $(vp)p[] \vDash closed$
 - $n[] \mid m[] \vDash separate$

From Satisfaction to (Propositional) Logic

Propositional validity

 $vld \mathcal{A} \triangleq \forall P \in \Pi. P \models \mathcal{A}$ (closed) is valid

• Sequents

 $\mathcal{A} \vdash \mathcal{B} \quad \triangleq \quad \forall P \in \Pi. \ P \models \mathcal{A} \Longrightarrow P \models \mathcal{B}$

• Rules

 $\begin{aligned} &\mathcal{A}_1 \vdash \mathcal{B}_1; \dots; \mathcal{A}_n \vdash \mathcal{B}_n \ \middle\} \, \mathcal{A} \vdash \mathcal{B} \ \triangleq & (n \ge 0) \\ &\mathcal{A}_1 \vdash \mathcal{B}_1 \land \dots \land \mathcal{A}_n \vdash \mathcal{B}_n \Rightarrow \mathcal{A} \vdash \mathcal{B} \end{aligned}$

(N.B.: all the rules shown later are validated accordingly.)

- Conventions:
 - ⊣⊢ means ⊢ in both directions
 - {} means } in both directions

Omitted

- Logical axioms and rules.
 - Rules of propositional logic (standard).
 - Rules of location and composition $\Re | C \vdash \mathcal{B} \{ \} \Re \vdash C \triangleright \mathcal{B} \}$
 - Rules of revelation $\eta \otimes \mathcal{A} \vdash \mathcal{B} \{ \} \mathcal{A} \vdash \mathcal{B} \otimes \eta$ $\} (\neg \mathcal{A}) \otimes x \dashv \vdash \neg (\mathcal{A} \otimes x)$

I-▷ adjunction

 \mathbb{R} - \otimes adjunction

- \otimes is self-dual
- Rules of \diamondsuit and \diamondsuit modalities (standard S4, plus some)
- Rules of quantification (standard, but for name quantifiers)
- A large collection of logical consequences.

Ex: Immovable Object vs. Irresistible Force

- $Im \triangleq \mathbf{T} \triangleright \Box(obj[] \mid \mathbf{T})$
- $Ir \triangleq \mathbf{T} \triangleright \Box \diamondsuit \neg (obj[] \mid \mathbf{T})$
- $Im \mid Ir \vdash (\mathbf{T} \triangleright \Box(obj[] \mid \mathbf{T})) \mid \mathbf{T}$
 - $\vdash \Box(obj[] \mid \mathbf{T})$
 - $\vdash \Diamond \Box(obj[] \mid \mathbf{T})$
- $Im \mid Ir \vdash \mathbf{T} \mid (\mathbf{T} \triangleright \Box \diamondsuit \neg (obj[] \mid \mathbf{T}))$
 - $\vdash \Box \Diamond \neg (obj[] \mid \mathbf{T})$
 - $\vdash \neg \Diamond \Box(obj[] \mid \mathbf{T})$

Hence: $Im \mid Ir \vdash \mathbf{F}$

 $\begin{array}{l} \mathcal{A}\vdash\mathbf{T} \\ (\mathcal{A}\triangleright\mathcal{B})\,|\,\mathcal{A}\vdash\mathcal{B} \\ \mathcal{A}\vdash\Diamond\mathcal{A} \end{array}$ $\begin{array}{l} \mathcal{A}\vdash\mathbf{T} \\ \Diamond\neg\mathcal{A}\vdash\neg\Box\mathcal{A} \end{array}$

 $\Box \neg \mathcal{A} \vdash \neg \Diamond \mathcal{A}$

 $\mathcal{A} \wedge \neg \mathcal{A} \vdash \mathbf{F}$

Example: Thief!

• A *shopper* is likely to pull out a wallet. A *thief* is likely to grab it.

Shopper \triangleq Person[Wallet[\$] | **T**] \land \diamond (Person[NoWallet] | Wallet[\$]) NoWallet $\triangleq \neg$ (Wallet[\$] | **T**) Thief \triangleq Wallet[\$] $\triangleright \diamond$ NoWallet

 By simple logical deductions involving laws of ▷ and ◇: Shopper | Thief ⇒ (Person[Wallet[\$] | T] | Thief) ∧ ◊(Person[NoWallet] | NoWallet)

Fresh-Name Quantifier

 $P \models \forall x. \mathcal{A} \quad \triangleq \quad \exists m \in \Lambda. \ m \notin fn(P, \mathcal{A}) \land P \models \mathcal{A} \{x \leftarrow m\}$

- C.f.: $P \models \exists x. \mathcal{A} \text{ iff } \exists m \in \Lambda. P \models \mathcal{A} \{x \leftarrow m\}$
- Actually definable (metatheoretically, as an abbreviation): $Vx.\mathcal{A} \triangleq \exists x. x \# (fn(\mathcal{A}) - \{x\}) \land x \otimes \mathbf{T} \land \mathcal{A}$
- Fundamental "freshness" property (Gabbay-Pitts):

 $\forall x.\mathcal{A} \text{ iff } \exists m \in \Lambda. \ m \notin fn(P,\mathcal{A}) \land P \vDash \mathcal{A} \{x \leftarrow m\}$ $\text{iff } \forall m \in \Lambda. \ m \notin fn(P,\mathcal{A}) \Rightarrow P \vDash \mathcal{A} \{x \leftarrow m\}$

because any fresh name as as good as any other.

- Very nice properties:
 - $\forall x. \mathcal{A} \Rightarrow \mathsf{N} x. \mathcal{A} \Rightarrow \exists x. \mathcal{A} \\ \neg \mathsf{N} x. \mathcal{A} \Leftrightarrow \mathsf{N} x. \neg \mathcal{A}$
 - $\mathsf{N}x.(\mathcal{A} | \mathcal{B}) \Leftrightarrow (\mathsf{N}x.\mathcal{A}) | (\mathsf{N}x.\mathcal{B})$
 - $\Diamond \mathsf{N} x. \mathscr{A} \Leftrightarrow \mathsf{N} x. \Diamond \mathscr{A}$

Hidden-Name Quantifier

 $(\nabla x)\mathcal{A} \triangleq \nabla x.x\mathcal{B}\mathcal{A}$

- Example: (vx)x[T] = Vx.x@x[T]
 - "for hidden *x*, we find a location called *x*" = "for fresh *x*, we reveal a hidden name as *x*, then we find a location called *x*"
 - $(\forall n)n[] \vDash (\forall x)x[\mathbf{T}]$ because $(\forall n)n[] \vDash \forall x.x \otimes x[\mathbf{T}]$ because $(\forall n)n[] \vDash n \otimes n[\mathbf{T}]$ (where $n \notin fn((\forall n)n[])$).
- Other examples
 - $(vm)m[] \vDash (vx)n[]$
 - $(\forall n)n[] \mid (\forall n)n[] \nvDash (\forall x)(x[] \mid x[])$
 - $(\forall n)(n[] \mid n[]) \not\vDash (\forall x)x[] \mid (\forall x)x[]$

A Good Property

• A property not shared by other candidate definitions (it is even derivable within the logic):

 $(\forall x)(\mathcal{A}\{n \leftarrow x\}) \land n \otimes \mathbf{T} \dashv n \otimes \mathcal{A} \quad \text{where } x \notin fv(\mathcal{A})$

It implies:

 $P \vDash \mathcal{A} \Rightarrow (\forall n) P \vDash (\forall x) (\mathcal{A}\{n \leftarrow x\})$ $P \vDash n \otimes \mathcal{A} \Rightarrow P \vDash (\forall x) (\mathcal{A}\{n \leftarrow x\})$ $P \vDash (\forall x) (\mathcal{A}\{n \leftarrow x\}) \land n \notin fn(P) \Rightarrow P \vDash n \otimes \mathcal{A}$

Example: Key Sharing

 Consider a situation where "a hidden name x is shared by two locations n and m, and is <u>not known</u> outside those locations".

(vx) (n[@x] | m[@x])

• $P \vDash (vx) (n[@x] | m[@x])$

 $\Leftrightarrow \exists r \in \Lambda. \ r \notin fn(P) \cup \{n,m\} \land \exists R', R'' \in \Pi. \ P \equiv (\forall r)(n[R'] \mid m[R'']) \\ \land r \in fn(R') \land r \in fn(R'')$

- E.g.: take P = (vp) (n[p[]] | m[p[]]).
- A protocol establishing a shared key should satisfy:

(vx) (n[@x] | m[@x])

Applications

- Verifying security+mobility protocols.
- Modelchecking security+mobility assertions:
 - If *P* is !-free and \mathcal{A} is \triangleright -free, then $P \vDash \mathcal{A}$ is decidable.
 - This provides a way of mechanically checking (certain) assertions about (certain) mobile processes.
- Expressing mobility/security policies of host sites. (Conferring more flexibility than just sandboxing the agent.)
- Just-in-time verification of code containing mobility instructions (by either modelchecking or proof-carrying code).

Conclusions

- The novel aspects of our logic lie in its explicit treatment of space and of the evolution of space over time (mobility). The logic has a linear flavor in the sense that space cannot be instantly created or deleted, although it can be transformed over time.
- These ideas can be applied to any process calculus that embodies a distinction between spatial and temporal operators.
- Our logical rules arise from a particular model. This approach makes the logic very concrete (and sound), but raises questions of logical completeness, which are being investigated.