Computation on
Wide Area Networks

Luca Cardelli

Microsoft Research
Lipari, July 2001

Reflecting joint work with Luis Caires, Giorgio Ghelli, Andrew D. Gordon.

Part 1
Global Interaction

Luca Cardelli

Introduction

We are building infrastructure that allows us to be
connected “everywhere all the time”.

Global wired and wireless speech and data networks.

Local / reactive / synchronous / connected.

At the same time, we are building infrastructure that allows
us to be 1solated and protected from intrusion.

Answering machines, crypto, Great FireWall of China.
Remote / deferred / asynchronous / blocked.

We cannot have it both ways. We will have to describe

W

ad

All this applies on a very small scale (ad hoc networks),

hat we want to be local or accessible and we will have to
apt to what must necessarily be remote or inaccessible.

but global networks tend to stretch the imagination.

Outline
* (Global Communication

 Why 1t 1s different from, e.g., send/receive.

* Global Computation

 Why 1t 1s different from, e.g., method invocation.

e Global Languages
 Why they are different from, e.g. Pascal and ML.

1. Global Communication

e Three “Paradoxes’:

e Wires are very, very complicated.
Most of Computer Science 1s about implementing wires.

* Even when nothing breaks,
still, things don’t work.

* Having the capability to communicate does not mean
being able to communicate.

In-Memory Wires

LAN Wires

WAN Wires

|
Wk

@~

y

N »..:\N

%
T, INUSt €IS 7 277
I in some countries,
use weak crypto
bandwidth
Very, very
COStS money :
— long wires

Mobile (““Wireless’’) Wires

MILBKTLBRARRRRNBNNNE

i

7/

AR

////////////////Z

AMIMININTINNNINNNNN

Mobile obstacles

Tunnel Effect

Mobile devices
going around obstacles

it/

Tunnel

)
)

7
g
/
/
/
/
g
/

\\\\\\\\\\\\L\\\\\\\\\

Yoo
Y

\ g

N
§
\
\
\
\
\
%
\

Tunnel Effect

Mobile devices
going around obstacles

i

Tunnel

7
g
/
/
/
/
/
g
/

T

A

Tunnel Effect

7///////////////////////

Mobile devices
going around obstacles

\\\\\\\}\\\\\\\\\\\\

I

it/

Tunnel

4
4

4

L 4

L 4
Q

NAANNNNNN

AN

\
\
\
\
\
\
N

Tunnels vs Reliable Communication
e Reliable communication = continuous unbreakable wires

e

NIRRT
AN

>\
"\
\
\
N

g7

s

%
D

=
-
=
(g%
P—
O
NN\

e Reliable communication + Tunnels
= wires get tangled (and untangling them 1s hard)
= eventually one can no longer move (or the wire breaks).

About the Tunnel Effect

e In hardwired communication:

 Whoever is capable of communication (holds one end of the
wire) 1s always able to communicate (send/receive on the wire).

e Unless, of course, something 1s broken.

e In the tunnel effect:

e The client 1s capable of communication (holds one end of the
“wire”’) but 1s still unable to communicate in some cases.

* Moreover, nothing is broken:
* The client i1s working. The server is working.
e The tunnel tunnels.
* The ether works like physics says it should.
* All goes back to normal without need to fix anything.

e Just one of a variety of phenomena where...

Sudden Inability to Communicate

* No longer to be regarded as a failure
It 1s a state of affairs, due to many causes:

Congestion
Obstructions
Geography
Security
Safety
Policy
Privacy
Psyche
Crime

Physics

(“The server could not be reached.”)
(“Infrared device out of sight.”)

(“No Cellnet saims Linloch Rannoch.”)

(“Please WS hswer from Mars.”)

e Nothing is broken

"9 A

“broken” =

somebody can be found to fix the problem”.

* In the cases above, nothing is “broken”. Yet, things don’t work.

e The failure model is not ‘it crashed” but...

Connectivity Depends on Location

e Proximity:

/’lllllllllllllllllllll

OO

"””””””””””’/

Ok. Fast (bounded delay), reliable, secure.

“‘.‘““.‘
LA NN S

* Physical distance:

/”IIIIII”‘ IIIIIIII"

’
’
’
’
’
’
;
Yo

WA AT "lllllll

“\\\\\\\\
AR

‘.‘““““

No such thing as remote real-time control. No unbreakable links.

 Virtual distance:

/""’””””””””””””' ""”””””””””””’l"
*

A

F ””””"

O

T ITFrErr

F ””””l‘

N\

T
“\\\\\\\
‘.‘““““

‘\\\\\\\“
‘Q
N e e e e R R S

AT T I

“,‘.‘“““““‘_
“_

A
e
\\\\\\\\\\\\\\“

*,

‘"IIIIIIIIIIIIIIIIIIIIIIIIII’ p P F T T FFFFFFFFFFrFFFrrrrrrry

No such thing as implicitly secure remote links.

Summary: Global Communication
e Mobility 1s about:

e Not only mobility of wire endpoints in simple topology
(m-calculus, distributed object systems)

e But also mobility of wire endpoints in complex topology
(Ambient Calculus, agent systems).

* In complex topology, wires endpoints cannot be continuously
connected.

e To model global (wide-area, mobile) communication:
* We need to model locations where communication 1s attempted.

* We need to make the capability to communicate independent
from the ability to communicate.

» (Capability without ability: security by location access control.
» Ability without capability: security by resource access control.

2. Global Computation

How do we embed the features and restrictions of global
communication in a computational model?

We must abandon the familiar notion of function call/handshake.

* We cannot afford to have every function call over the network to block waiting
for an answer. (T vs. async-T.)

We must even abandon the familiar notion of symmetric multi-party
(even async) channel communication.

* We cannot afford to solve consensus problems all the time. (async-T vs. join.)

We must abandon the familiar notion of pointers/references.

* We cannot afford references of any kind that are always connected to their
target, and we must be able to reconnect them later. (7T vs. ambients.)

We must abandon familiar failure models.
* We cannot assume that every failure leads to an exception.

* We cannot assume we are even allowed to know that a failure ever happened.

The Ambient Calculus

 The Ambient Calculus: a computational model for:
* Behaviors that are capable but sometimes unable to communicate.

e Communication that is neither broken nor not broken.

e To this end, spatial structures (agents, networks, etc.) are
represented by nested locations:

Processes Tree Representation

0 (void)

n[P] (location)

Pl Q (composition) %h

Mobility

» Mobility is change of spatial structures over time.

a b

;’lllllllllll“

C

A

X

llllllllllll“

~‘\\\\\\

\\\\\\t‘

A A A

X X

*,
" A A A A "l””””ll’

"‘\\\\\\\\\\\\\‘\\

‘.“““““““'
“““““““‘\\

g
\‘\\\\\\\\\\\\\“

x Nk
X

alO | clout a. in b. P]] | b[R]

Mobility

» Mobility is change of spatial structures over time.

0".”””””””

i

AN EEE .y
Y i
"”””””’,

/""""""".‘

0”””

n
\
\
\
\
\
A\

/1’.’.’.’.’.!0

'll”l””lj

"".’.’.’.’”’.’”’.‘.
N

../

i

/IIIIIIII T,
* i
*

AT,

T

| c[in b. P] | b|R]

alQ]

Mobility

» Mobility is change of spatial structures over time.

0".”””””””

P et

£}

f’

ATy
A
A MM AT
"l””””ll’

.’.’.’.’“

-

""""""""

""’.’”””’.’”

../

i

/IIIIIIII T,
* i
*

AT,

T

| b[R | ¢[P]]

alQ]

Communication

e Communication 1s strictly local, within a given location.

* Remote communication must be simulated by sending
around mobile packets (which may get lost).

Location a

a

/””"'””””””” ””””"‘
/ "

b
a’s etfaer , -
’) \
/
/
I

I v

-

Message M

a

””””””’l’ 7
’ *

AL\ g

“.“““““““‘\
4 \
T T T

packet

0"n'"‘""""""""""T’ ,’IIIIIIIIIII“

;

/

/

b MY
/

T TTTTTTTETTS, o /
/ * N2 FFFFITFFTIF)

1
/

\.

O

““‘\\\\\\\\

g
L d
\.“““““““““““
b 2

‘\\\\\\\\\\

*,
"'l I P P g e e e

i\\‘\‘\".“

W R B

-

4 ———
/\Eaecept, openj
"IIIIIIIIIIIIII /

receive from
local ether

send to
local ether

“‘\“‘\‘\\\“‘\“.

Security

» Security 1ssues are reduced to the capability to create,
destroy, enter and exit locations.

e T-calculus restriction accounts for private capabilities.

* As for communication, capabilities can be exercised only the the

right places. ,
e :

/”lll”””””l’. »
*,

a

/’IIIIIIIIIIII".

a

/””””””l"
*

4
SRR
\
y S
\
\

o

O

N\

s
RS

“\\\\\\

T

P s
-
M ATATATATETATLA A A A A A A A A A AR RS

“\.‘““““““‘\\

>
“‘\.‘.“.““““““““““‘

"
\\\\\\\\\\\\\\\\“

N AP FE T

*,
0"".”””””””l"

enabled blocked

Calculi for Concurrency

* (One basic notion

 Communication channels (a.k.a. wires).

e One billion variations
e Value passing / name passing / process passing
e Synchronous / asynchronous / broadcast
 Internal choice / external choice / mixed choice / no choice

* Linearity / fresh output

Calculi for Mobility

 One basic notion
e Dynamic topology

* One million variations
e Name mobility, process mobility
e Synchronous / asynchronous / datagram
e Actions / coactions / intermediaries
Talk to local ether / talk to parent / talk to children

Difference

* Mobility i1s more general than concurrency

* One can always use channel communication within each location.

* Mobility 1s more restrictive than concurrency

* One cannot have reliable channel communication across
locations.

Daring Classification

Will work fine on a:

LAN

(bounded-delay, integrated management, uniform access)

Will work fine on a:

WAN

(unbounded-delay, federated management, restricted access)

JF- | cocu (synch/asynch-)T, d-T Caleui TC-1, jOIN

(fixed Infrastructure DOOP Infrastructure SOAP, BZC, BZB, P2P
ma | apes File Servers apps Email, Web, Napster

locations)

M- | Coteu d-join cacui aMbients, ..., seals

(mobile | Soft Infrastructure AGLETS soft mfrastructure MIOb1le Code

or | softapes ? soitapps Applets, Worms

locations)

Hard Infrasiucwre. WV 1FElESS Ethernet
nad apps Meeting Trance

Hard nfrastrucure. WY 1TE]€SS TElephony
Hard Apps Mobile BZC, B2B

3. Global Languages

The ambient calculus 1s a minimal formalism designed for
theoretical study. As such, it 1s not a “programming
language”.

Still, the ambient calculus 1s designed to match

fundamental WAN characteristics.

By building languages on top of a well-understood WAN
semantics, we can be confident that languages will embody
the intended semantics.

We now discuss how ambient characteristics might look
like when extrapolated to programming languages.

Global Data
 Semistructured Data (a.k.a. XML)

(Abiteboul, Buneman, Suciu: “Data on the Web” Morgan Kaufman’00.)

Unusual Data

Not really arrays/lists:
* Many children with the same label, instead of indexed children.
e Mixture of repeated and non repeated labels under a node.

Not really records:
e Many children with the same label.
e Missing/additional fields with no tagging information.

Not really variants:
* Labeled but untagged unions.

New “flexible” type theories are required.
* Based on the “effects” of processes over trees (Ambient Types).
e Based on tree automata (Xduce).

Unusual data.

* Yet, it aims to be the new universal standard for interoperability
of programming languages, databases, e-commerce...

Analogies

An accidental(?) similarity between two areas:

Semistructured Data 1s the way it 1s because:

e “Cannot rely on uniform structure” of data.
Abandon schemas based on records and disjoint unions.

* Adopt “self-describing” data structures:
Edge-labeled trees (or graphs).

Mobile Computation 1s the way it 1s because:

e “Cannot rely on static structure” of networks.
Abandon type systems based on records and disjoint unions.

e Adopt “self-describing” network structures:
Edge-labeled trees (or graphs) of locations and agents.

Both arose out of the Web, because things there are just too
dynamic for traditional notions of data and computation.

Implications

* Immediate implication: a new, uniform, model of data and
computation on the Web, with opportunities for cross-
fertilization:

* Programming technology can be used to typecheck, navigate, and
transform both dynamic network structures and the
semistructured data they contain. Uniformly.

» Database technology can be used to search through both dynamic
network structures (“resource discovery”), and the semistructured
data they contain. Uniformly.

e This 1s still a dream, but 1t did motivate us to apply a
particular technology developed for mobile computation to
semistructured data:

» Specification Logic = Query Logic

WAN Observable Phenomena

e Physical Locations
* (Observable because of the speed of light limit
e Preclude instantaneous actions

* Require mobile code

e Virtual Locations
e (Observable because of administrative domains
e Preclude unfettered actions
* Require security model and disconnected operation

e Variable Connectivity
e Observable because of free-will actions, physical mobility
e Precludes purely static networks

e Requires bandwidth adaptability

e Failures
» Unobservable because of asynchrony, domain walls
* Preclude reliance on others
» Require blocking behavior, transaction model

Mobility and Barriers

* Mobility is all about barriers:
e Locality = barrier topology.
* Process mobility = barrier crossing.
* Security = (in)ability to cross barriers.
e Communication = interaction within a barrier.

 No immediate action at a distance (= across barriers).

 Ambients embed this barrier-based view of mobility,
which 1s grounded on WAN observables.

e A “wide-area language” i1s one that does not contain
features violating this view of computation.

Wide Area Languages
Languages for Wide Area Networks:

WAN-sound

* No action-at-a-distance assumption
* No continued connectivity assumption

* No security bypasses

WAN-complete

* Able to emulate surfer/roamer behavior

Some steps towards Wide Area Languages:
* Ambient Calculus (with Andy Gordon)
e Service Combinators (with Rowan Davies)

Outline of WAL Features

No “hard” pointers.

* Remote references are URLSs, symbolic links, or such.

Migration/Transportation
e Thread migration.
e Data migration.

* Whole-application migration.

Dynamic linking.

* A missing library or plug-in may suddenly show up.

Patient communication.

» Blocking/exactly-once semantics.

Built-1n security primitives.

Ambients as a Programming Abstraction

Our basic abstraction is that of mobile computational
ambients.

The ambient calculus brings this abstraction to an extreme,
by representing everything in terms of ambients at a very
fine grain.

In practice, ambients would have to be medium or large-
grained entities. Ambient contents should include standard
programming subsystems such as modules, classes,
objects, and threads.

But: the ability to smoothly move a collection of running
threads 1s almost unheard of in current software
infrastructures. Ambients would be a novel and non-trivial
addition to our collection of programming abstractions.

Names vs. Pointers

* The only way to denote an ambient 1s by its name.

* One may possess a name without having immediate access to any
ambient of that name (unlike pointers).

e Name references are never “broken” but may be “blocked” until a
suitable ambient becomes available.

e Uniformly replace pointers (to data structures etc.) by
names.
* At least across ambient boundaries.

 This 1s necessary to allow ambients to move around freely
without being restrained by immobile ties.

Locations

* Ambients can be used to model both physical and virtual
locations.

e Some physical locations are mobile (such as airplanes) while
others are immobile (such as buildings).

* Similarly, some virtual locations are mobile (such as agents)
while others are immobile (such as mainframe computers).

* Mobility distinctions are not part of the basic semantics of
ambients.
e Can be added as a refinement of the basic model, or

e Can be embedded 1n type systems that restrict the mobility of
certain ambients.

Migration and Transportation

* Ambients offer a good paradigm for application migration.

 If an ambient encloses a whole application, then the whole
running application can be moved without need to restart it or
reinitialize it.

 In practice, an application will have ties to the local window
system, the local file system, etc. These ties, however, should
only be via ambient names.

» After movement the application can smoothly move and
reconnect its bindings to the new local environment. (Some care
will still be needed to restart in a good state).

Communication

e The communication primitives of the ambient calculus
(local to an ambient) do not support global consensus or
failure detection.

e These properties should be preserved by any higher-level
communication primitives that may be added to the basic
model, so that the intended semantics of communication
over a wide-area networks 1s preserved.

* RPC, interpreted as mobile packets that transport and deposit
messages to remote locations.

e Parent-child communication

 Communication between siblings.

Synchronization

e The ambient calculus 1s highly concurrent.

* It has high-level synchronization primitives that are natural and
effective (as shown in the examples).

[t 1s easy to represent basic synchronization constructs, such as

mutexes:
releasen; P 2 n[]|P
release a mutex called n, and do P
acquire n, P 2 openn. P

acquire a mutex called n, then do P

 Still, additional synchronization primitives are desirable.

* A useful technique 1s to synchronize on the change of name of an
ambient:

nlbem.P|Q] — m|P| Q]
* (See also the Seal calculus by Castagna and Vitek.)

Static and Dynamic Binding

* The names of the ambient calculus represent an unusual
combination of static and dynamic binding.

* The names obey the classical rules of static scoping, including
consistent renaming, capture-avoidance, and block nesting.

* The navigation primitives behave by dynamically binding/linking
a name to any ambient that has the right name.

e Definitional facilities can similarly be derived in static or
dynamic binding style. E.g.:
 Statically bound function definitions.

e Dynamically bound resource definitions.

Modules

e An ambient containing definitions 1s similar to a
module/class.
e Remote invocation is like qualified module access.
 open 1s like inheritance.

e copy 1is like object generation from a prototype.

e Unusual “module” features:

e Ambients are first class modules: one can choose at run time
which particular instance of a module to use.

e Ambients support dynamic linking: missing subsystems can be
added to a running system by placing them in the right spot.

e Ambients support dynamic reconfiguration. Module i1dentity is
maintained at run time. The blocking semantics allows smooth
suspension and reactivation. The dynamic hierarchical structure
allows replacement of subsystems.

Security

* Ambient security 1s based on boundaries and capabilities,
as opposed to a cryptography, or access-control.

 These three models are all interdefinable. In our case:

* Access control 1s obtained by using ambients to implement RPC-
like invocations that have to cross boundaries and authenticate
every time.

* Cryptography is obtained by interpreting ambient names (by
assumption unforgeable) as encryption keys.

e The ambient security model is high level.

It maps naturally to administrative domains and sandboxes.

It allows the direct discussion of virus, trojan horses, infection of
mobile agents, firewall crossing, etc.

4. Summary

e Global Communication
* Broadens communication mechanisms.
e But also restricts the ways in which we can communicate.
“Connected anytime anywhere to anything.” NOT!

e Global Computation
e Extends and connects all computational resources.
e But must deal with new notions of data and communication.

“I’ll just write a script to manage my virtual program
committee meeting.” NOT!

* New opportunities: data structures and network structures
“look the same”.

e Global Languages
* The fundamental observables have changed.
* Languages must change as well.
“I’ll just use Pascal to write a mail server.” NOT!!

Conclusions
e Global problems

* New challenge for most aspects of computation.

e Which require global solutions
e Uniform solutions hard to implement (“reboot the internet”).
* Federated solutions more likely.
e Everybody must be able to connect to everybody.
* Everybody must be able exchange data.
* Everybody must be able to invoke everybody’s programs.

e Challenges for the present and future

e Build the infrastucture(s), both practical and theoretical,
that will make all this easy.

