Part 2 Ambient Calculus Luca Cardelli Andy Gordon

Approach

- We want to capture in an abstract way, notions of locality, of mobility, and of ability to cross barriers.
- An *ambient* is a place, delimited by a boundary, where computation happens.
- Ambients have a name, a collection of local processes, and a collection of subambients.
- Ambients can move in an out of other ambients, subject to capabilities that are associated with ambient names.
- Ambient names are unforgeable (as in π and spi).

Basic Assumptions

- Mobile processes are not data. *They* move, they are not moved.
 - (It might be temping to move processes by sending them over channels.)
- Mobile computation is the dynamic local rearrangement of labeled trees.
 - (*Cf*.: in π , it is dynamic propagation of channel names.)
- The choice of primitives for tree rearrangement depends strongly on the *design principles* one adopts.
 - Are these trees in-memory? (No, they are distributed)
 - Are they just passive data that gets globally transformed? (No, they are full of active local processes with a will of their own.)
 - Do mobile processes have any guarantees?
 - Can they get killed, robbed, poisoned, kidnapped? (In *Classical Ambients*, only if they are stupid: talk too much, eat bad food, step in dark alleys.)
 - Can they get infected? (Not in *Safe Ambients*, if they are careful.)
 - How do they talk to each other? (Richer options in *Boxed Ambients*.)

Folder Metaphor

- An ambient can be graphically represented as a folder:
 - Consisting of a folder name *n*,
 - And active contents *P*, including:
 - Hierarchical data, and computations ("gremlins").
 - Primitives for mobility and communication.

The Ambient Calculus

$P \in \Pi ::=$	Processes		<i>M</i> ::=	Messages
(vn) P	restriction		n	name
0	inactivity		in M	entry capability
P P'	parallel	Location Trees	out M	exit capability
<i>M</i> [<i>P</i>]	ambient	Spatial	open M	open capability
! <i>P</i>	replication)		3	empty path
<i>M.P</i>	exercise a ca	apability	<i>M.M</i> '	composite path
(n). P	input locally	, bind to $n >$	Actions	
(<i>M</i>)	output locall	y (async)	Temporal	
		-		

 $n[] \triangleq n[\mathbf{0}]$

 $M \triangleq M.0$ (where appropriate)

Reduction Semantics

- A structural congruence relation $P \equiv Q$:
 - On spatial expressions, $P \equiv Q$ iff P and Q denote the same tree. So, the syntax modulo \equiv is a notation for spatial trees.
 - On full ambient expressions, $P \equiv Q$ if in addition the respective threads are "trivially equivalent".
 - Prominent in the definition of the logic.
- A reduction relation $P \rightarrow^* Q$:
 - Defining the meaning of mobility and communication actions.
 - Closed up to structural congruence:

 $P \equiv P', P' \longrightarrow^* Q', Q' \equiv Q \implies P \longrightarrow^* Q$

Composition

• Parallel execution is denoted by a binary operator:

$P \mid Q$

• It is commutative and associative:

 $P \mid Q \equiv Q \mid P$ $(P \mid Q) \mid R \equiv P \mid (Q \mid R)$

• It obeys the reduction rule:

 $P \to Q \implies P \mid R \to Q \mid R$

Replication

• Replication is a technically convenient way of representing iteration and recursion.

!*P*

• It denotes the unbounded replication of a process *P*.

 $P \equiv P \mid !P$ $!(P \mid Q) \equiv !P \mid !Q$ $!0 \equiv 0$ $!P \equiv !!P$

• There are no reduction rules for **!***P*; in particular, the process *P* under **!** cannot begin to reduce until it is expanded out as *P* | **!***P*.

Restriction

• The restriction operator creates a new (forever unique) ambient name *n* within a scope *P*.

(vn)P

• As in the π -calculus, the (vn) binder can float as necessary to extend or restrict the scope of a name. E.g.:

 $(\forall n)(P \mid Q) \equiv P \mid (\forall n)Q \quad \text{if } n \notin fn(P)$ $(\forall n)m[P] \equiv m[(\forall n)P] \quad \text{if } n \neq m$

• Reduction rule:

 $P \rightarrow Q \implies (vn)P \rightarrow (vn)Q$

Inaction

• The process that does nothing:

0

• Some garbage-collection equivalences:

 $P \mid \mathbf{0} \equiv P$ $\mathbf{!0} \equiv \mathbf{0}$

- $(\mathbf{v}n)\mathbf{0} \equiv \mathbf{0}$
- This process does not reduce.

Ambients

• An ambient is written as follows, where *n* is the name of the ambient, and *P* is the process running inside of it.

n[P]

• In *n*[*P*], it is understood that *P* is actively running:

 $P \rightarrow Q \implies n[P] \rightarrow n[Q]$

• Multiple ambients may have the same name, (e.g., replicated servers).

Actions and Capabilities

- Operations that change the hierarchical structure of ambients are sensitive. They can be interpreted as the crossing of firewalls or the decoding of ciphertexts.
- Hence these operations are restricted by *capabilities*.

М. Р

- This executes an action regulated by the capability M, and then continues as the process P.
- The reduction rules for M. P depend on M.

Entry Capability

• An entry capability, *in m*, can be used in the action:

in m. P

• The reduction rule (non-deterministic and blocking) is: $n[in m. P | Q] | m[R] \rightarrow m[n[P | Q] | R]$

Exit Capability

• An exit capability, *out m*, can be used in the action:

out m. P

• The reduction rule (non-deterministic and blocking) is: $m[n[out \ m. \ P | Q] | R] \rightarrow n[P | Q] | m[R]$

Open Capability

• An opening capability, *open m*, can be used in the action:

open n. P

• The reduction rule (non-deterministic and blocking) is:

open n. $P \mid n[Q] \rightarrow P \mid Q$

- An *open* operation may be upsetting to both *P* and *Q* above.
 - From the point of view of P, there is no telling in general what Q might do when unleashed.
 - From the point of view of Q, its environment is being ripped open.
- Still, this operation is relatively well-behaved because:
 - The dissolution is initiated by the agent *open n*. *P*, so that the appearance of *Q* at the same level as *P* is not totally unexpected;
 - open n is a capability that is given out by n, so n[Q] cannot be dissolved if it does not wish to be.

Design Principle

- An ambient should not get killed or trapped unless:
 - It talks too much. (Making its capabilities public.)
 - It poisons itself. (Opening an untrusted intruder.)
 - Doesn't look where it's going. (Entering an untrusted ambient.)
- Some natural primitives violate this principle. E.g.:

 $n[burst n. P | Q] \rightarrow P | Q$

• Then a mere *in* capability gives a kidnapping ability:

entrap(M) \triangleq (v k m) (m[M. burst m. in k] | k[])

 $entrap(in n) \mid n[P] \rightarrow^* (vk) (n[in k \mid P] \mid k[])$

 $\rightarrow^* (vk) k[n[P]]$

• One can imagine lots of different mobility primitives, but one must think hard about the "security" implications of combinations of these primitives.

Ambient I/O

- Local anonymous communication within an ambient:
 - (x). *P* input action
 - $\langle M \rangle$ async output action
- We have the reduction:

 $(x). P \mid \langle M \rangle \longrightarrow P\{x \leftarrow M\}$

- This mechanism fits well with the ambient intuitions.
 - Long-range communication, like long-range movement, should not happen automatically because messages may have to cross firewalls and other obstacles.
 - Still, this is sufficient to emulate communication over named channels, etc.

Reduction

n[in m. P Q] m[R]	$\rightarrow m[n[P \mid Q] \mid R]$	(Red In)
<i>m</i> [<i>n</i> [<i>out m</i> . <i>P</i> <i>Q</i>] <i>R</i>]	$\rightarrow n[P \mid Q] \mid m[R]$	(Red Out)
open m. P m[Q]	$\rightarrow P \mid Q$	(Red Open)
$(n).P \mid \langle M \rangle$	$\rightarrow P\{n \leftarrow M\}$	(Red Comm)
$P \rightarrow Q \Rightarrow (\forall n)P \rightarrow$	> (∨n)Q	(Red Res)
$P \to Q \implies n[P] \to$	n[Q]	(Red Amb)
$P \to Q \implies P \mid R \to$	$Q \mid R$	(Red Par)
$P' \equiv P, P \longrightarrow Q, Q \equiv Q$	$Q' \Rightarrow P' \rightarrow Q'$	(Red ≡)

 \rightarrow^* is the reflexive-transitive closure of \rightarrow

Structural Congruence

$P \equiv P$
$P \equiv Q \implies Q \equiv P$
$P \equiv Q, Q \equiv R \implies P \equiv R$
$P \equiv Q \implies (\forall n)P \equiv (\forall n)Q$
$P \equiv Q \implies P \mid R \equiv Q \mid R$
$P \equiv Q \implies !P \equiv !Q$
$P \equiv Q \implies M[P] \equiv M[Q]$
$P \equiv Q \implies M.P \equiv M.Q$
$P \equiv Q \implies (n).P \equiv (n).Q$
$\varepsilon P \equiv P$
$(M.M').P \equiv M.M'.P$

(Struct Refl) (Struct Symm) (Struct Trans) (Struct Res)

(Struct Par)

(Struct Repl)

(Struct Amb)

(Struct Action)

(Struct Input)

(Struct ε) (Struct .)

$(\mathbf{v}n)0\equiv0$		(Struct Res Zero)
$(\vee n)(\vee m)P \equiv (\vee m)(\vee n)P$		(Struct Res Res)
$(\forall n)(P \mid Q) \equiv P \mid (\forall n)Q$	if $n \notin fn(P)$	(Struct Res Par)
$(\forall n)(m[P]) \equiv m[(\forall n)P]$	if <i>n ≠ m</i>	(Struct Res Amb)
$P \mid Q \equiv Q \mid P$		(Struct Par Comm)
$(P \mid Q) \mid R \equiv P \mid (Q \mid R)$		(Struct Par Assoc)
$P \mid 0 \equiv P$		(Struct Par Zero)
$!(P \mid Q) \equiv !P \mid !Q$		(Struct Repl Par)
$!0 \equiv 0$		(Struct Repl Zero)
$!P \equiv P \mid !P$		(Struct Repl Copy)
$!P \equiv !!P$		(Struct Repl Repl)

• These axioms (particularly the ones for !) are sound and complete with respect to equality of spatial trees: edge-labeled finite-depth unordered trees, with infinite-branching but finitely many distinct labels under each node.

Ambient Calculus: Example

The packet msg moves from a to b, mediated by the capabilities *out* a (to exit a), *in* b (to enter b), and *open* msg (to open the msg envelope).

	a[msg[(M) out a. in b]]	<i>b</i> [<i>open msg.</i> (<i>n</i>). <i>P</i>]
(exit) \rightarrow	$a[] msg[\langle M \rangle in b]$	b[open msg. (n). P]
(enter) \rightarrow	<i>a</i> []	$b[msg[\langle M \rangle] b[msg[\langle M \rangle]]$
(open) →	<i>a</i> []	$b[\langle M \rangle \langle n \rangle, P]$
(read) \rightarrow	<i>a</i> []	$b[P\{n \leftarrow M\}]$

Noticeable Inequivalences

• Replication creates new names:

$!(\nu n)P \not\equiv (\nu n)!P$

• Multiple *n* ambients have separate identity: $n[P] \mid n[Q] \neq n[P \mid Q]$

Safe Ambients [Levi, Sangiorgi]

- "Each action has an equal and opposite coaction."
- In Ambient Calculus it is difficult to count reliably the number of visitors to an ambient. The fix:

n[in m. P Q] m[<u>in</u> m. R S]	$\rightarrow m[n[P \mid Q] \mid R \mid S]$	(In)
<i>m</i> [<i>n</i> [<i>out m. P</i> <i>Q</i>] <u><i>out m. R</i> <i>S</i>]</u>	$\rightarrow n[P \mid Q] \mid m[R \mid S]$	(Out)
open n. P n[<u>open</u> n.Q R]	$\rightarrow P Q R$	(Open)
$(m) P \mid (M) O$	$\rightarrow P\{m \leftarrow M\} \mid O$	(Comm)

The Ambient Calculus is recovered by sprinkling !<u>in</u> n,
 !<u>out</u> n, !<u>open</u> n appropriately.

Channeled Ambients [Pericas-Geertsen]

• Each ambient contains a list of channels *c* that are used for named communication within the ambient. They are restricted as usual.

$n[D, c; c\langle M \rangle P \mid c(m) Q \mid R]$	(Send)
$\rightarrow n[D, c; P \mid Q\{m \leftarrow M\} \mid R]$	
$n[D; in m. P Q] m[E; R] \longrightarrow m[E; n[D; P Q] R]$	(In)
$m[E; n[D; out m. P Q] R] \rightarrow n[D; P Q] m[E; R]$	(Out)
$m[D; open n. P n[E; Q] R] \rightarrow m[D; P Q R]$	(Open)

Boxed Ambients [Bugliesi, Castagna, Crafa]

- I/O to parents/children is tricky to encode reliably in Ambient Calculus, but is a very natural basic primitive.
- Boxed Ambients provide it directly (simplifying Seal):

n[in m. P Q] m[R]	$\rightarrow m[n[P \mid Q] \mid R]$	(In)
<i>m</i> [<i>n</i> [<i>out m</i> . <i>P</i> <i>Q</i>] <i>R</i>]	$\rightarrow n[P \mid Q] \mid m[R]$	(Out)
		no (Open)
$(m).P \mid \langle M \rangle.Q$	$\rightarrow P\{m \leftarrow M\} \mid Q$	(Local)
$(m)^n . P \mid n[\langle M \rangle . Q \mid R]$	$\rightarrow P\{m \leftarrow M\} \mid n[Q \mid R]$	(Input <i>n</i>)
$\langle M \rangle^n . P \mid n[(m) . Q \mid R]$	$\rightarrow P \mid n[Q\{m \leftarrow M\} \mid R]$	(Output <i>n</i>)
$\langle M \rangle . P \mid n[(m)^{\uparrow} . Q \mid R]$	$\rightarrow P \mid n[Q\{m \leftarrow M\} \mid R]$	(Input 1)
$(m).P \mid n[\langle M \rangle^{\uparrow}.Q \mid R]$	$\rightarrow P\{m \leftarrow M\} \mid n[Q \mid R]$	(Output 1)

Ambjects [Bugliesi, Castagna]

• [CG] Ambient Calculus + [AC] Object Calculus =

$n.a(M).P \mid n[D; a(m).Q; R]$	(Send)
$\rightarrow P \mid Q\{m \leftarrow M, self \leftarrow n\} \mid n[D; a(m).Q; R]$	
$n[D; in m. P Q] m[E; R] \longrightarrow m[E; n[D; P Q] R]$	(In)
$m[E; n[D; out m. P Q] R] \rightarrow n[D; P Q] m[E; R]$	(Out)
$m[E; open n. P n[D; Q] R] \rightarrow m[E; D; P Q R]$	(Open)

Joinbients [Anonymous]

• Ambient Calculus + Join Calculus =

??? n[D; P]

(Join)

 $n[D; in m. P | Q] | m[E; R] \rightarrow m[E; n[D; P | Q] | R]$ (In) $m[E; n[D; out m. P | Q] | R] \rightarrow n[D; P | Q] | m[E; R]$ (Out) $m[E; open n. P | n[D; Q]] \rightarrow m[E; D; P | Q]$ (Open)

Expressiveness: Encoding Old Concepts

- Synchronization and communication mechanisms.
- Turing machines. (Natural encoding, no I/O required.)
- Arithmetic. (Tricky, no I/O required.)
- Data structures.

 π -calculus. (Easy: channels are ambients.) λ-calculus. (Hard: different than encoding λ in π .)

• Spi-calculus concepts. (?)

Expressiveness: Encoding New Concepts

- Named machines and services on complex networks.
- Agents, applets, RPC.
- Encrypted data and firewalls.
- Data packets, routing, active networks.
- Dynamically linked libraries, plug-ins.
- Mobile devices.
- Public transportation.

Expressiveness: New Challenges

- The combination of mobility and security in the same formal framework is novel and intriguing.
- E.g., we can represent both mobility and security aspects of "crossing a firewall".
- The combination of mobility and local communication raises questions about suitable synchronization models and programming constructs.

Ambients as Locks

• We can use *open* to encode locks:

release $n. P \triangleq n[] | P$ acquire $n. P \triangleq open n. P$

• This way, two processes can "shake hands" before proceeding with their execution:

acquire n. release m. P | release n. acquire m. Q

Turing Machines

```
end[extendLft | S_0 |
   square [S_1]
    square [S_2]
      ...
        square[S<sub>i</sub> | head |
          ...
            square [S_n-1]
              square[S_n | extendRht]] ... ]... ]]]
```

• Exercise: code up *extendLft*, *extendRht*, and (an example of) *head*. You will probably need to use restriction.

Random Access Machines [Busi]

- A finite set of registers: they can hold arbitrary natural numbers.
- A program is a sequence of numbered operations:
 - $succ(r_i)$: add 1 to the contents of register r_i and continue.
 - $decjmp(r_j, s)$: if the contents of r_j is non-zero, decrease it by 1 and continue, otherwise jump to instruction *s*.
 - To stop: jump to nowhere; answer is the content of registers. $r_i = 0 = z_i [\dots]$... = some clever code

$$[r_i = 0] = z_i[...] \qquad \dots = \text{some clever co}$$

$$[r_i = n+1] = s_i[...| [r_i = n]]$$

$$[i : succ(r_j)] = !p_i[inc-req_j[!in s_i | in z_i...]|$$

$$open inc-ack_j. open p_{i+1}]$$

$$[i : decjmp(r_j, s)] = !p_i[dec-req_j[in s_i] | zero-req_j[in z_i] |$$

$$\dots open ok-dec_j. \dots open p_{i+1} |$$

$$\dots open ok-zero_j. \dots open p_s]$$

To start the program: open p_1

• Turing-completeness even without restriction and I/O.

Ambients as Mobile Processes

tourist \triangleq (x). joe[x. enjoy] ticket-desk \triangleq ! (in AF81SFO. out AF81CDG)

SFO[ticket-desk | tourist | AF81SFO[route]]

→* SFO[ticket-desk |

joe[in AF81SFO. out AF81CDG. enjoy] |

AF81SF0[route]]

→* *SFO*[ticket-desk |

AF81SFO[route | joe[out AF81CDG. enjoy]]]

Firewall Crossing (buggy)

• Assume that the shared key k is already known to the firewall and the client, and that w is the secret name of the firewall.

Wally \triangleq ($\forall w r$) ($\langle in r \rangle | r[open k. in w] | w[open r. P]$) Cleo \triangleq (x). k[x. C]

Cleo | Wally

- $\rightarrow^* (v w r) ((x), k[x, C] | \langle in r \rangle | r[open k, in w] | w[open r, P])$
- $\rightarrow^* (v w r) (k[in r. C] | r[open k. in w] | w[open r. P])$
- $\rightarrow^* (v w r) (r[k[C] | open k. in w] | w[open r. P])$
- $\rightarrow^* (v w r) (r[C | in w] | w[open r. P])$
- $\rightarrow^* (\mathbf{v} \ w \ r) (\ w[r[C] \mid open \ r. \ P])$
- $\rightarrow^* (\mathbf{v} w) \quad (w[C \mid P])$
- Prone to a "stowaway attack".

Firewall Crossing

• Assume that the shared key *k* is already known to the firewall and the client, and that *w* is the secret name of the firewall.

Wally \triangleq (vw) (k[in k. in w] | w[open k. P]) Cleo \triangleq k[open k. C]

Cleo | Wally

 $\rightarrow^* (vw) (k[open k. C] | k[in k. in w] | w[open k. P])$

- $\rightarrow^* (\mathbf{v}w) (k[k[in w] | open k. C] | w[open k. P])$
- \rightarrow^* (vw) (k[in w | C] | w[open k. P])
- $\rightarrow^* (\mathbf{v}w) \quad w[k[C] \mid open \ k. \ P]$
- $\rightarrow^* (\mathbf{v}w) \quad w[C \mid P]$

The Asynchronous π -Calculus

- A named channel is represented by an ambient.
 - The name of the channel is the name of the ambient.
 - Communication on a channel is becomes local I/O inside a channel-ambient.
 - A conventional name, *io*, is used to transport I/O requests into the channel.

 $(ch n)P \triangleq (vn) (n[!open io] | P)$

 $n(x).P \triangleq (vp) (io[in n. (x). p[out n. P]] | open p)$

 $n\langle M\rangle \triangleq io[in n. \langle M\rangle]$

• These definitions satisfy the expected reduction in presence of a channel for *n*:

$$n(x).P \mid n\langle m \rangle \longrightarrow^* P\{x \leftarrow m\}$$

• Full translation

- $\langle\!\langle (\mathbf{v}n)P \rangle\!\rangle \triangleq (\mathbf{v}n) (n[!open io] | \langle\!\langle P \rangle\!\rangle)$
- $\langle (n(x).P \rangle \triangleq (vp) (io[in n. (x). p[out n. \langle P \rangle]] | open p)$
- $\langle\!\langle n \langle m \rangle \rangle\!\rangle \triangleq io[in n. \langle m \rangle]$
- $\langle\!\langle P \mid Q \rangle\!\rangle \triangleq \langle\!\langle P \rangle\!\rangle \mid \langle\!\langle Q \rangle\!\rangle$
- $\langle\!\langle !P \rangle\!\rangle \qquad \triangleq ! \langle\!\langle P \rangle\!\rangle$
- The choice-free synchronous π -calculus, can be encoded within the asynchronous π -calculus.
- The λ -calculus can be encoded within the asynchronous π -calculus.

"Bigger"

- Ambients is certainly "bigger" than π .
- We initially strived for the smallest possible set of primitives, compatibly with our design principles. *in-out-open* are Turing-complete (even without I/O). Hard to find a smaller such set for tree operations.
- Several new versions of the Ambient Calculus primitives have been proposed:
 - They each have their merits in terms of design principles that the original Ambient Calculus does not capture or enforce.
 - They lead to even "bigger" calculi. But the features provided by Safe Ambients and Boxed Ambients (and probably more) are certainly needed in a programming language.
 - Nobody has proposed a variation that is "smaller" than the original Ambient Calculus.

The Tram Protocol

- Example:
 - A tram goes back and forth along a line with several stops.
 - A tram leaves a stop whenever it feels like.
 - A passenger can jump on any available tram.
 - A passenger cannot enter or leave a tram between stations.
- Exercise:
 - Code this in the Ambient Calculus.

The Golf Cart Protocol

- Example:
 - A golf cart carries at most one passenger. When empty, it moves randomly between "holes".
 - A passenger can hail a golf cart. An empty golf cart will not ignore a passenger.
 - The passenger can then tell the golf cart where to go. The golf cart will then go there (without leaving the passenger behind).
 - The passenger cannot exit the golf cart until the destination.
 - The golf cart cannot leave again until the passenger has disembarked.
- Exercise:
 - Try coding this example in Ambients, Safe Ambients, and Boxed Ambients.

Think!

• To what extent is the Ambient Calculus (or its variations) WAN-sound and WAN-complete?