
Part 3Part 3
Ambient TypesAmbient Types

Luca CardelliLuca Cardelli
Giorgio GhelliGiorgio Ghelli
Andy GordonAndy Gordon

2003-03-17 16:42

Talk 2

Types for Exchange ControlTypes for Exchange Control
•• Ambients exchange information by reading an writing to Ambients exchange information by reading an writing to

the the ““local etherlocal ether””. In an untyped system, the ether can be . In an untyped system, the ether can be
full of garbage.full of garbage.

•• How do we make sure that ether interactions are well How do we make sure that ether interactions are well
typed? We need to track the exchanges of messages typed? We need to track the exchanges of messages
between processes.between processes.

2003-03-17 16:42

Talk 3

Like Typing a File SystemLike Typing a File System
•• nn : : FolFol[[TT]] means that means that nn is a name for folders that can contain only is a name for folders that can contain only

files of type files of type TT. E.g.: . E.g.: psps : : FolFol[[PostscriptPostscript]]..

•• Nothing is said about the subfolders of folders of name Nothing is said about the subfolders of folders of name nn: they : they
can have any name and any type (and can come and go).can have any name and any type (and can come and go).

•• Hierarchy rearrangements are totally unconstrained.Hierarchy rearrangements are totally unconstrained.

aa : : FolFol[[--]]

msgmsg : : FolFol[[FolFol[[--]]]]

bb : : FolFol[[FolFol[[--]]]]

xx : : FolFol[[--]]

ba

msg

out a. in b

a

open msg

x P{x}

contains contains
no filesno files

will contain file will contain file
of type of type FolFol[[--]]

contains file of contains file of
type type FolFol[[--]] will accept will accept aa

2003-03-17 16:42

Talk 4

Need for DistinctionsNeed for Distinctions
•• The ambients syntax does not distinguish between names The ambients syntax does not distinguish between names

and capabilities, therefore it permits strange terms like:and capabilities, therefore it permits strange terms like:
in nin n[[PP]] (stuck)(stuck)
nn..PP (stuck)(stuck)

•• This cannot be avoided by a more precise syntax, because This cannot be avoided by a more precise syntax, because
such terms may be generated by interactions:such terms may be generated by interactions:

��in nin n�� | (| (mm).).mm[[PP]] �������� in nin n[[PP]]
��nn�� | (| (mm).).mm..PP �������� nn..PP
((mm). (). (mm..PP | | mm[[QQ])]) (tests whether (tests whether mm is a name or a capability!)is a name or a capability!)

•• We have two sorts of things (ambient names and We have two sorts of things (ambient names and
capabilities) that we want to use consistently. A type capabilities) that we want to use consistently. A type
system should do the job. system should do the job.

•• Desired property: a wellDesired property: a well--typed program does not produce typed program does not produce
insane terms like insane terms like in nin n[[PP]] and and nn..PP..

2003-03-17 16:42

Talk 5

Exchange TypesExchange Types

••

•• A quiet ambient: A quiet ambient: AmbAmb[[ShhShh]]
•• A harmless capability: A harmless capability: CapCap[[ShhShh]]
•• A synchronization ambient: A synchronization ambient: AmbAmb[[11]]
•• Ambient containing harmless capabilities: Ambient containing harmless capabilities: AmbAmb[[CapCap[[ShhShh]]]]
•• A capability that may unleash the exchange of names for quiet A capability that may unleash the exchange of names for quiet

ambients: ambients: CapCap[[AmbAmb[[ShhShh]]]]

WW ::=::=
AmbAmb[[TT]]
CapCap[[TT]]

TT ::=::=
ShhShh
WW11××......××WWkk

message typesmessage types
ambient name allowing ambient name allowing TT exchangesexchanges
capability unleashing capability unleashing TT exchangesexchanges

process typesprocess types
no exchangeno exchange
tuple exchange (tuple exchange (11 is the null product)is the null product)

2003-03-17 16:42

Talk 6

PolyadicPolyadic Ambient CalculusAmbient Calculus
P,QP,Q ::=::=

((ννn:Wn:W))PP
00
P P | | QQ
!!PP
MM[[PP]]
MM..PP
((nn11:W:W11, ..., , ..., nnkk::WWkk).).PP
��MM11, ..., M, ..., Mkk��

M,NM,N ::=::=
nn
in Min M
out Mout M
openopen MM
εε
MM..NN

typed bindertyped binder

polyadicpolyadic inputinput

typed binderstyped binders

polyadicpolyadic outputoutput

2003-03-17 16:42

Talk 7

ReductionReduction
nn[[inin mm. . PP | | QQ] |] | mm[[RR]] �������� mm[[nn[[PP | | QQ] |] | RR]]
mm[[nn[[outout mm. . PP | | QQ] |] | RR]] �������� nn[[PP | | QQ] |] | mm[[RR]]
open nopen n. . PP | | nn[[QQ]] �������� PP | | QQ
((nn11:W:W11, ..., , ..., nnkk::WWkk).).PP | | ��MM11, ..., M, ..., Mkk�� �������� PP{{nn11←←MM11, ..., , ..., nnkk←←MMkk}}

PP �������� QQ �� ((ννn:Wn:W))PP �������� ((ννn:Wn:W))QQ
PP �������� QQ �� nn[[PP]] �������� nn[[QQ]]
PP �������� QQ �� PP | | RR �������� QQ | | RR
PP’’ �� PP, , PP �������� QQ, , QQ �� QQ’’ �� PP’’ �������� QQ’’

type oblivioustype oblivious

type oblivioustype oblivious

2003-03-17 16:42

Talk 8

Structural CongruenceStructural Congruence
•• As usual (As usual (polyadicpolyadic).).

2003-03-17 16:42

Talk 9

Intuitions: Typing of ProcessesIntuitions: Typing of Processes
•• If If MM is a is a WW, then , then ��MM�� is a process that exchanges is a process that exchanges WW..

M M : : WW �� ��MM�� : : WW

•• If If PP is a process that may exchange is a process that may exchange WW, then (, then (nn::WW).).PP is too.is too.
PP : : WW �� ((nn::WW).).PP : : WW

•• If If PP and and QQ are processes that may exchange are processes that may exchange TT, then , then P P | | QQ is is
too. (Similarly for too. (Similarly for !!PP.).)

PP : : T, QT, Q : : TT �� P P | | QQ : : TT

•• Both Both 00 and and nn[[PP] exchange nothing at the current level, so] exchange nothing at the current level, so
they can have any exchange type, and can be added in they can have any exchange type, and can be added in
parallel freely.parallel freely.

•• Therefore, Therefore, WW--inputs and inputs and WW--outputs are tracked so that they outputs are tracked so that they
match correctly when placed in parallel. match correctly when placed in parallel.

2003-03-17 16:42

Talk 10

Intuitions: Typing of OpenIntuitions: Typing of Open
•• We have to worry about We have to worry about openopen, which might open, which might open--up a up a TT--

ambient and unleash ambient and unleash TT--exchanges inside an exchanges inside an SS--ambient.ambient.

•• We decorate each ambient name with the We decorate each ambient name with the TT that can be that can be
exchanged in ambients of that name. Different ambients exchanged in ambients of that name. Different ambients
may permit internal exchanges of different types.may permit internal exchanges of different types.

nn : : AmbAmb[[TT]], P, P : : TT �� nn[[PP]] is legal andis legal and nn[[PP] :] : SS

•• If If nn permits permits TT--exchanges, then exchanges, then open nopen n may unleash may unleash TT--
exchanges in the current location.exchanges in the current location.

nn : : AmbAmb[[TT]] �� open nopen n : : CapCap[[TT]]

•• Any process that uses a Any process that uses a CapCap[[TT] had better be a process that] had better be a process that
already exchanges already exchanges TT, because new , because new TT--exchanges may be exchanges may be
unleashed.unleashed.

MM : : CapCap[[TT]], P, P : : TT �� MM..PP : : TT

2003-03-17 16:42

Talk 11

JudgmentsJudgments

E E �� �� good environmentgood environment
E E �� MM : : WW good message of type good message of type WW
E E �� PP :: TT good process that exchanges good process that exchanges TT

2003-03-17 16:42

Talk 12

RulesRules

		 �� ��

((EnvEnv))

EE, , nn::WW �� ��
E E �� �� nn

domdom((EE))
((EnvEnv nn))

EE’’, , nn::WW, , EE”” �� nn : : WW
EE’’, , nn::WW, , EE”” �� ��

(Exp (Exp nn))

E E �� εε : : CapCap[[TT]]
E E �� ��

(Exp (Exp εε))

E E �� MM..MM’’ : : CapCap[[TT]]
E E �� MM : : CapCap[[TT]] E E �� MM’’ : : CapCap[[TT]]
(Exp .)(Exp .)

EE �� inin M M :: CapCap[[TT]]
E E �� MM : : AmbAmb[[SS]]

(Exp In)(Exp In)

EE �� outout M M :: CapCap[[TT]]
E E �� MM : : AmbAmb[[SS]]

(Exp Out)(Exp Out)

EE �� openopen M M :: CapCap[[TT]]
E E �� MM : : AmbAmb[[TT]]

(Exp Open)(Exp Open)

E E �� MM..P P :: TT
E E �� M M :: CapCap[[TT]] E E �� P P :: TT

(Proc Action)(Proc Action)

E E �� MM[[PP]] :: SS
E E �� MM : : AmbAmb[[TT]] E E �� P P :: TT

(Proc Amb)(Proc Amb)

E E �� ((nn11::WW11, ,, , nnkk::WWkk).).PP :: WW11××......××WWkk

E, nE, n11::WW11, ..., , ..., nnkk::WWkk �� P P :: WW11××......××WWkk

(Proc Input)(Proc Input)

E E �� ��MM11, ,, , MMkk�� :: WW11××......××WWkk

E E �� MM11::WW11 E E �� MMkk::WWkk

(Proc Output)(Proc Output)

2003-03-17 16:42

Talk 13

•• Ex.: A capability that may unleash Ex.: A capability that may unleash SS--exchanges:exchanges:
nn::AmbAmb[[TT]], m, m::AmbAmb[[SS]] �� in nin n. . open mopen m :: CapCap[[SS]]

•• Ex.: A process that outputs names of quiet ambients:Ex.: A process that outputs names of quiet ambients:
E E �� !!((ννnn::AmbAmb))��nn�� :: AmbAmb

•• Proposition (Subject Reduction)Proposition (Subject Reduction)
If If EE �� PP :: TT and and PP �������� QQ then then EE �� QQ :: TT..

E E �� 00 :: TT
E E �� �

(Proc Zero)

E E �� ((ννnn::AmbAmb[[TT])])PP :: SS
EE, , nn::AmbAmb[[TT]] �� P P :: SS

(Proc Res)(Proc Res)

E E �� P | Q P | Q :: TT
E E �� P P :: TT E E �� Q Q :: TT

(Proc Par)(Proc Par)

E E �� !!P P :: TT
E E �� P P :: TT

(Proc Repl)

2003-03-17 16:42

Talk 14

ExerciseExercise
•• Construct a typing derivation for the message example:Construct a typing derivation for the message example:

((ν ν aa: : AmbAmb[[ShhShh])])
((ν ν bb: : AmbAmb[[AmbAmb[[ShhShh]])]])
((ν ν msgmsg: : AmbAmb[[AmbAmb[[ShhShh]])]])

aa[[msgmsg[[��MM�� || out a. in bout a. in b]] |]] |
bb[[open msgopen msg. (. (nn::AmbAmb[[ShhShh]).]). PP]]

2003-03-17 16:42

Talk 15

Typed Typed PolyadicPolyadic Asynchronous Asynchronous ππππππππ--calculus calculus
�E E �� PP� �EE� �� �PP� : Shh

�		, n, n11::WW11, ..., , ..., nnkk::WWkk� 		, n, n11::�WW11�, n, np
11::�WW11�, ..., , ..., nnkk::�WWkk�, , nnp

kk::�WWkk�

�Ch[W1, ..., Wk]� ���Amb[�W1�×�W1�×...×�Wk�×�Wk�]

�(νπn:Ch[W1, ..., Wk])P� ���(νn,np:�Ch[W1, ..., Wk]�) n[!open np] | �P�

�n�n1, ..., nk�� np[in n. �n1, np
1, ..., nk, np

k�]

�n(n1:W1, ..., nk:Wk).P�
(νq:Amb[Shh]) (open q |

np[in n. (n1,np
1:�W1�, ..., nk,np

k:�Wk�). q[out n. �P�]])

�P | Q� ����P� | �Q�

�!P� ���!�P�

create the create the
nn bufferbuffer

create an create an nn packetpacket

enter the enter the nn bufferbuffer

climb out of climb out of
the the nn bufferbuffer

2003-03-17 16:42

Talk 16

•• The previous encoding emulates the The previous encoding emulates the ππ--calculus, but:calculus, but:
•• Channel buffers are generated at Channel buffers are generated at ν occurrences.occurrences.
•• If freely embedded within ambients, channel I/O may then fail ifIf freely embedded within ambients, channel I/O may then fail if

the channel buffer is not where the I/O happens, even if I and Othe channel buffer is not where the I/O happens, even if I and O
are in the same place. (I.e., extrusion across ambient boundarieare in the same place. (I.e., extrusion across ambient boundaries s
is not implemented by this encoding.)is not implemented by this encoding.)

•• Using 2 ambient names for 1 Using 2 ambient names for 1 ππ name is a bit awkward.name is a bit awkward.

•• Georges Georges GonthierGonthier devised a different encoding:devised a different encoding:
•• Uses 1 ambient name for 1 Uses 1 ambient name for 1 ππ name.name.
•• New buffers are generated whenever needed to do I/O. New buffers are generated whenever needed to do I/O.
•• Encoding can be freely merged with ambient operations (Encoding can be freely merged with ambient operations (II’’ss and and

OO’’s on a channel s on a channel nn interact when they are in the same ambient.)interact when they are in the same ambient.)
•• Buffers must be Buffers must be coalescedcoalesced to allow I/O interactions.to allow I/O interactions.

2003-03-17 16:42

Talk 17

GonthierGonthier’’ss Coalescing EncodingCoalescing Encoding
�Ch[W1, ..., Wk]� ���Amb[�W1�×...×�Wk�]

�(νπn:Ch[W1, ..., Wk])P� ���(νn:�Ch[W1, ..., Wk]�) �P�

�n�n1, ..., nk�� n[!open n | in n | �n1, ..., nk�]

�n(n1:W1, ..., nk:Wk).P�
(νq:Amb[Shh]) (open q.q[] |

n[!open n | in n | (n1:�W1�, ..., nk:�Wk�). q[!out n | open q. �P�]])

�P | Q� ����P� | �Q�

�!P� ���!�P�

open any open any nn buffer that entersbuffer that enters

enter any enter any nn bufferbuffer climb out of climb out of
coalescing towers coalescing towers

of of nn buffersbuffers

create an create an nn bufferbuffer

create no bufferscreate no buffers

2003-03-17 16:42

Talk 18

Typed CallTyped Call--byby--Value Value λλλλλλλλ--calculuscalculus

��xx::T T �� xx::TT��
== ��x:Tx:T�� �� ((ννππkk::ChCh[[��TT��])]) kk��xx�� :: ShhShh
== xx::��TT��, x, xpp::��TT�� �� ((ννkk::AmbAmb[[��TT��××��TT��])]) kk[[!!open kopen kpp] |] | kkpp[[in kin k..��x, xx, xpp��]] :: ShhShh

��E E �� b:Tb:T�� ��EE�� �� ((ννππk:Chk:Ch[[��TT��])]) ��bb��kk : : ShhShh

��AA→→BB�� ChCh[[��AA��, , ChCh[[��BB��]]]]

��xxTT��kk kk��xx��

��λλxx::A.bA.bAA→→BB��kk
((ννππnn::��AA→→BB��) () (kk��nn�� | | !!nn((xx::��AA��, , kk’’::ChCh[[��BB��]).]). ��bbBB��kk’’))

��bbAA→→BB((aaAA))��kk

((ννππkk’’::ChCh[[��AA→→BB��],], kk””::ChCh[[��AA��])])
((��bb��kk’’ | | kk’’((xx::��AA→→BB��). (). (��aa��kk”” | | kk””((yy::��AA��).). xx��yy, , kk��))))

2003-03-17 16:42

Talk 19

GeneralizationsGeneralizations
•• The The AmbAmb--Cap Cap style of types and rules is very robust and style of types and rules is very robust and

extensible to many situations. extensible to many situations.
•• It works for all kinds of It works for all kinds of effectseffects (not just exchanges).(not just exchanges).
•• AmbAmb types for names.types for names.
•• CapCap types for capabilities (to deal with types for capabilities (to deal with openopen).).

•• Sketch of possible extensions:Sketch of possible extensions:
•• Instead of a single type Instead of a single type AmbAmb[[TT]] for all ambient names that allow for all ambient names that allow

TT exchanges, we can allow types exchanges, we can allow types GG[[TT]], for distinct groups , for distinct groups GG from from
a fixed collection. (Akin to Milnera fixed collection. (Akin to Milner’’s sort system for s sort system for ππ).).

•• Further, we can allow a subgroup hierarchy Further, we can allow a subgroup hierarchy GG’’<:<:GG, with , with Amb Amb as as
the top group, inducing a subtype hierarchy.the top group, inducing a subtype hierarchy.

•• Further, we can allow the creation of new groups Further, we can allow the creation of new groups GG, as in , as in ((ννGG))
((ννnn::GG)) PP or or ((ννGG’’<:<:GG) () (ννnn::GG’’)) PP..

2003-03-17 16:42

Talk 20

Types for Mobility ControlTypes for Mobility Control
•• EffectsEffects

•• An effect is anything a process can do that we may want to trackAn effect is anything a process can do that we may want to track..
•• Then, Then, EE �� PP :: F F is interpreted to mean that is interpreted to mean that P P may havemay have at mostat most

effectseffects FF. Works well for composition.. Works well for composition.
•• And And AmbAmb[[FF]] is an ambient that allows at most effects is an ambient that allows at most effects FF..
•• And And CapCap[[FF]] is a capability that can unleash at most effects is a capability that can unleash at most effects FF..

•• ApplicationsApplications
•• We have seen the case where an effect is an input or output We have seen the case where an effect is an input or output

operation of a certain type.operation of a certain type.
•• We can also consider We can also consider inin and and outout operations as effects. We can operations as effects. We can

then use a type system to statically prevent certain movements.then use a type system to statically prevent certain movements.
•• We can also consider We can also consider openopen operations as effects. We can then use operations as effects. We can then use

a type system to statically prevent such operations.a type system to statically prevent such operations.
•• To do all this without dependent types, we use groups.To do all this without dependent types, we use groups.

2003-03-17 16:42

Talk 21

Name GroupsName Groups
•• Name Groups have a variety of uses:Name Groups have a variety of uses:

•• We would like to say, within a type system, something like:We would like to say, within a type system, something like:
The ambient named The ambient named nn can enter the ambient named can enter the ambient named mm..

But this would bring us straight into But this would bring us straight into dependent typesdependent types, since names , since names
are valueare value--level entities. This is level entities. This is no fun at allno fun at all..

•• Instead, we introduce typeInstead, we introduce type--level name groups level name groups G,HG,H, and we say:, and we say:
Ambients of group Ambients of group GG can enter ambients of group can enter ambients of group HH..

•• Groups are akin to Groups are akin to ππ--calculus sorting mechanisms. We call them calculus sorting mechanisms. We call them
groups in the Unix sense of collections of principals.groups in the Unix sense of collections of principals.

2003-03-17 16:42

Talk 22

Crossing ControlCrossing Control

E E �� PP :: ��HsHs,,TT process that exchanges process that exchanges TT and crosses and crosses HsHs

ννnn::GG[[��{},{},TT]] a name for immobile ambientsa name for immobile ambients

G, HG, H
HsHs ::= {::= {HH11....HHkk}}

WW ::=::=
GG[[��HsHs,,TT]]

CapCap[[��HsHs,,TT]]

groupsgroups
sets of groupssets of groups

message typesmessage types
ambient name in group ambient name in group GG, containing , containing
processes that may cross processes that may cross HsHs and exchange and exchange TT

capability unleashing capability unleashing HsHs crossings crossings
and and TT exchangesexchanges

2003-03-17 16:42

Talk 23

Opening ControlOpening Control

E E �� PP :: °°HsHs,,TT process that exchanges process that exchanges TT and opens and opens HsHs

ννnn::GG[[°°{},{},TT]] a name for locked ambients (where a name for locked ambients (where GG

{}{}))

(Here (Here nn cannot be opened, because we require cannot be opened, because we require GG��HsHs for for open nopen n
to be to be typeabletypeable, when , when nn::GG[[°°HsHs,,TT]. This is because the opening of]. This is because the opening of
G G may unleash further openings of may unleash further openings of HsHs. With this rule the . With this rule the
transitive closure of possible openings must be present already transitive closure of possible openings must be present already in in
the given types. It also makes the given types. It also makes nn above above unopenableunopenable.).)

WW ::=::=
GG[[°°HsHs,,TT]]

CapCap[[°°HsHs,,TT]]

message typesmessage types
ambient name in group ambient name in group GG, containing , containing
processes that may open processes that may open HsHs and exchange and exchange TT

capability unleashing capability unleashing HsHs openings and openings and TT exchangesexchanges

2003-03-17 16:42

Talk 24

Types for Secrecy ControlTypes for Secrecy Control
•• In addition to static groups, we add In addition to static groups, we add group creationgroup creation. .

•• This is a new construct for generating typeThis is a new construct for generating type--level names.level names.
•• It can be studied already in It can be studied already in ππ--calculus:calculus:

((ννGG)()(ννxx::GG)()(ννyy::GG))……
Create a new group (collection of names) Create a new group (collection of names) GG
and populate it with new elements and populate it with new elements xx and and yy

•• Simply by typeSimply by type--checking, we can guarantee that a fresh checking, we can guarantee that a fresh xx
cannot escape the scope of cannot escape the scope of GG..

•• It can statically block certain communications that would be It can statically block certain communications that would be
allowed by scope extrusion.allowed by scope extrusion.

•• We can therefore prevent the We can therefore prevent the ““accidentalaccidental”” escape of escape of
capabilities that is a major concern in practical systems.capabilities that is a major concern in practical systems.

•• In ambient calculus, it further allows the safe sharing of secreIn ambient calculus, it further allows the safe sharing of secret t
between mobile processesbetween mobile processes..

2003-03-17 16:42

Talk 25

•• Consider a player Consider a player PP and an opponent and an opponent OO::
OO | | PP

•• In the In the ππ--calculuscalculus, if , if PP is to create a fresh secret not shared is to create a fresh secret not shared
with with OO, we program it to evolve into:, we program it to evolve into:
OO | | ((ννxx))PP’’

•• Name creationName creation ((ννxx))PP’’ makes a fresh name makes a fresh name xx, whose scope , whose scope
is the process is the process PP’’

Making SecretsMaking Secrets

2003-03-17 16:42

Talk 26

Leaking SecretsLeaking Secrets
•• Now, if the system were to evolve into this, the privacy of Now, if the system were to evolve into this, the privacy of

xx would be violated:would be violated:
pp((yy).).OO’’ | | ((ννxx))((pp�xx� | | PP’’’’))

(Output (Output pp�xx� may be accidental or malicious.)may be accidental or malicious.)

•• By extrusion, this is By extrusion, this is ((ννxx))((pp((yy).).OO’’ | | pp�xx� | | PP’’’’))
which evolves to which evolves to ((ννxx))((OO’’{{yy←←xx} | } | PP’’’’))

•• So, the secret So, the secret xx has leaked to the opponent.has leaked to the opponent.

2003-03-17 16:42

Talk 27

Trying to Prevent LeakageTrying to Prevent Leakage
•• How might we prevent leakage?How might we prevent leakage?

•• Restrict output: not easy to prevent Restrict output: not easy to prevent pp�xx� as as pp may have arisen may have arisen
dynamicallydynamically

•• Restrict extrusion: again difficult, as itRestrict extrusion: again difficult, as it’’s needed for legitimate s needed for legitimate
communicationcommunication

•• Can we exploit a sorted Can we exploit a sorted ππ--calculus?calculus?
•• Declare Declare xx to be of sort to be of sort PrivatePrivate. But sorts are global, so the . But sorts are global, so the

opponent can be typeopponent can be type--checked.checked.

pp((yy::PrivatePrivate).).OO’’ | | ((ννxx::PrivatePrivate))((pp�xx� | | PP’’’’))

2003-03-17 16:42

Talk 28

Group CreationGroup Creation
•• We want to be able to create fresh groups (sorts) on We want to be able to create fresh groups (sorts) on

demand, and to create fresh elements of these groups on demand, and to create fresh elements of these groups on
demand.demand.

•• We extend the sorted We extend the sorted ππ--calculus with group creation calculus with group creation
((ννGG))PP, which makes a new group , which makes a new group GG with scope with scope PP..

•• Group creation obeys scope extrusion laws analogous to Group creation obeys scope extrusion laws analogous to
those for name creation.those for name creation.

2003-03-17 16:42

Talk 29

Preventing LeakagePreventing Leakage
•• We can now prevent leakage to a wellWe can now prevent leakage to a well--typed opponent by typed opponent by

typetype--checking and lexical scoping (where checking and lexical scoping (where GG[][] is the type of is the type of
nullarynullary channels of group channels of group GG):):

pp((yy::TT).).OO’’ | | ((ννGG)()(ννxx::GG[])[])((pp�xx� | | PP’’’’))

•• The opponent The opponent pp((yy::TT).).OO’’ cannot be typed: the type cannot be typed: the type TT would would
need to mention need to mention GG, but , but GG is out of scope.is out of scope.

2003-03-17 16:42

Talk 30

Untyped OpponentsUntyped Opponents
•• We cannot realistically expect the opponent to be wellWe cannot realistically expect the opponent to be well--

typed.typed.

•• Can an untyped opponent, by cheating about the type of Can an untyped opponent, by cheating about the type of
the channel the channel pp, somehow acquire the secret , somehow acquire the secret xx??

•• No, provided the player is typed; in particular, No, provided the player is typed; in particular, provided provided
pp�xx� is typed.is typed.

2003-03-17 16:42

Talk 31

SecrecySecrecy
•• A player creating a fresh A player creating a fresh GG cannot export elements of cannot export elements of GG

outside the initial scope of outside the initial scope of GG,,
•• either because a welleither because a well--typed opponent cannot name typed opponent cannot name GG to receive a to receive a

message,message,
•• or because a wellor because a well--typed player cannot use public channels to typed player cannot use public channels to

transmit transmit GG elements.elements.

•• In sum: channels of group In sum: channels of group GG remain remain secretsecret, forever, , forever,
outside the initial scope of outside the initial scope of ((ννGG))..

2003-03-17 16:42

Talk 32

SummarySummary
•• We have reduced secrecy of names to scoping and typing; We have reduced secrecy of names to scoping and typing;

subtleties include:subtleties include:
•• extrusion rules associated with scopingextrusion rules associated with scoping
•• leakage allowed by name extrusionleakage allowed by name extrusion
•• the possibility of untyped opponentsthe possibility of untyped opponents

•• A reasonable precondition of our results is that the player A reasonable precondition of our results is that the player
(but not the opponent) be type(but not the opponent) be type--checked in some global checked in some global
environment. environment.

2003-03-17 16:42

Talk 33

2003-03-17 16:42

Talk 34

Secrecy in Typed ContextsSecrecy in Typed Contexts
•• For wellFor well--typed opponents, subject reduction alone has typed opponents, subject reduction alone has

secrecy implications.secrecy implications.

Theorem (Subject Reduction)Theorem (Subject Reduction)
If If EE �� PP and and PP �� QQ then then EE �� QQ..
If If EE �� PP and and PP →→ QQ then then EE �� QQ..

Corollary (No Leakage)Corollary (No Leakage)
Let Let PP == pp((yy::TT).).OO’’ | (| (ννGG)()(ννxx::GG[[TT])])PP’’. If . If EE �� PP for some for some EE then there then there
are no are no QQ’’, , QQ’’’’, , CC{{--}} such that such that PP �� ((ννGG)()(ννxx::GG[[TT])])QQ’’ and and QQ’’ →→ QQ’’’’ and and
QQ’’’’ �� CC{{pp��xx��}} where where pp and and xx are not bound by are not bound by CC{{--}}..

2003-03-17 16:42

Talk 35

Where Where ““preserves the secrecypreserves the secrecy”” is defined (in the paper) in is defined (in the paper) in
terms of interactions with an opponent idealized as a set of terms of interactions with an opponent idealized as a set of
names. It is similar to names. It is similar to AbadiAbadi’’ss definition for spi.definition for spi.

Secrecy in Untyped ContextsSecrecy in Untyped Contexts
Theorem (Secrecy)Theorem (Secrecy)
Suppose that Suppose that ((ννGG)()(ννxx::TT))PP where where GG free in free in TT. Let . Let SS be the names be the names
occurring in occurring in domdom((EE)).. Then the type erasure Then the type erasure ((ννxx))eraseerase((PP)) of of
((ννGG)()(ννxx::TT))PP preserves the secrecy of the restricted name preserves the secrecy of the restricted name xx from from SS..

2003-03-17 16:42

Talk 36

Instances and ApplicationsInstances and Applications
•• There seems to be a link between group creation and There seems to be a link between group creation and

several unusual type systems:several unusual type systems:
•• letregionletregion in in TofteTofte and and TalpinTalpin’’ss region analysisregion analysis
•• newlocknewlock in Flanagan and in Flanagan and AbadiAbadi’’ss lock typeslock types
•• runSTrunST in in LaunchburyLaunchbury and Peyton Jonesand Peyton Jones’’ lazy functional state lazy functional state

threadsthreads

•• Elsewhere, Elsewhere, DalDal ZilioZilio and Gordon formalize the link with and Gordon formalize the link with
regions, and Cardelli, Ghelli and Gordon apply regions, and Cardelli, Ghelli and Gordon apply ((ννGG)) to to
regulate mobility.regulate mobility.

2003-03-17 16:42

Talk 37

Typed Ambient Calculus with Group CreationTyped Ambient Calculus with Group Creation
•• Start with exchange types.Start with exchange types.

•• Just one new process construct:Just one new process construct:
((ννGG))PP

to create a new group to create a new group GG with scope with scope PP..

•• Just one modified type construct:Just one modified type construct:
GG[[TT]]

as the type of names of group as the type of names of group GG that name ambients that that name ambients that
contain contain TT exchanges. exchanges.

•• The construct The construct GG[[TT]] replaces replaces AmbAmb[[TT]], where , where AmbAmb can now can now
be seen as the group of all names. So we can now write: be seen as the group of all names. So we can now write:

((ννGG) () (ννnn::GG[[IntInt])]) nn[[��33�� | (| (xx::IntInt).). PP]]

2003-03-17 16:42

Talk 38

TypesTypes

•• A quiet ambient: A quiet ambient: GG[[ShhShh]]
•• A harmless capability: A harmless capability: CapCap[[ShhShh]]
•• A synchronization ambient: A synchronization ambient: GG[[11]]
•• Ambient containing harmless capabilities: Ambient containing harmless capabilities: GG[[CapCap[[ShhShh]]]]
•• A capability that may unleash the exchange of names for quiet A capability that may unleash the exchange of names for quiet

ambients: ambients: CapCap[[GG[[ShhShh]]]]

WW ::=::=
GG[[TT]]
CapCap[[TT]]

TT ::=::=
ShhShh
WW11××......××WWkk

message typesmessage types
ambient name in group ambient name in group GG with with TT exchangesexchanges
capability unleashing capability unleashing TT exchangesexchanges

process typesprocess types
no exchangeno exchange
tuple exchange (tuple exchange (11 is the null product)is the null product)

2003-03-17 16:42

Talk 39

Processes and MessagesProcesses and Messages

�� ννGG is static: type rules handle such is static: type rules handle such GG’’s.s.

�� ννGG is dynamic/generative: is dynamic/generative: !!((ννGG))PP not the same as not the same as ((ννGG))!!PP..

P,QP,Q ::=::=
((ννGG))PP
((ννn:Wn:W))PP
00
P P | | QQ
!!PP
MM[[PP]]
MM..PP
((nn11:W:W11, ..., , ..., nnkk::WWkk).).PP
��MM11, ..., M, ..., Mkk��

M,NM,N ::=::=
nn
in Min M
out Mout M
openopen MM
εε
MM..NN

new groupnew group

2003-03-17 16:42

Talk 40

ReductionReduction
nn[[inin mm. . PP | | QQ] |] | mm[[RR]] �������� mm[[nn[[PP | | QQ] |] | RR]]
mm[[nn[[outout mm. . PP | | QQ] |] | RR]] �������� nn[[PP | | QQ] |] | mm[[RR]]
open nopen n. . PP | | nn[[QQ]] �������� PP | | QQ
((nn11:W:W11, ..., , ..., nnkk::WWkk).).PP | | ��MM11, ..., M, ..., Mkk�� �������� PP{{nn11←←MM11, ..., , ..., nnkk←←MMkk}}

PP �������� QQ �� ((ννGG))PP �������� ((ννGG))QQ
PP �������� QQ �� ((ννn:Wn:W))PP �������� ((ννn:Wn:W))QQ
PP �������� QQ �� nn[[PP]] �������� nn[[QQ]]
PP �������� QQ �� PP | | RR �������� QQ | | RR
PP’’ �� PP, , PP �������� QQ, , QQ �� QQ’’ �� PP’’ �������� QQ’’

new groupnew group

2003-03-17 16:42

Talk 41

Structural CongruenceStructural Congruence
•• A usual. A usual.

•• ((ννGG))PP is similar to is similar to ((ννn:Wn:W))PP, including scope extrusion., including scope extrusion.

PP �� QQ �� ((ννGG))PP �� ((ννGG))QQ
((ννGG)()(ννGG’’))PP �� ((ννGG’’)()(ννGG))PP
((ννGG)()(ννnn::WW))PP �� ((ννnn::WW)()(ννGG))PP if if GG

 fgfg((WW))
((ννGG)()(PP | | QQ)) �� PP | (| (ννGG))QQ if if GG

 fgfg((PP))
((ννGG)()(mm[[PP])]) �� mm[([(ννGG))PP]]
((ννGG))00 �� 00

•• Extrusion of Extrusion of ((ννGG)) allows ambients to establish shared allows ambients to establish shared
secrets, then go arbitrarily far away, and then come back to secrets, then go arbitrarily far away, and then come back to
share the secrets. Without been able to give them away. share the secrets. Without been able to give them away.

2003-03-17 16:42

Talk 42

JudgmentsJudgments

E E �� �� good environmentgood environment
E E �� TT good typegood type
E E �� MM : : WW good message of type good message of type WW
E E �� PP :: TT good process that exchanges good process that exchanges TT

2003-03-17 16:42

Talk 43

RulesRules

		 �� ��

((EnvEnv))

EE, , nn::WW �� ��
E E �� WW nn

domdom((EE))

((EnvEnv nn))

EE’’, , nn::WW, , EE”” �� nn : : WW
EE’’, , nn::WW, , EE”” �� ��

(Exp (Exp nn))

E E �� εε : : CapCap[[TT]]
E E �� CapCap[[TT]]

(Exp (Exp εε))

E E �� MM..MM’’ : : CapCap[[TT]]
E E �� MM : : CapCap[[TT]] E E �� MM’’ : : CapCap[[TT]]
(Exp .)(Exp .)

EE �� inin n n :: CapCap[[TT]]
E E �� nn : : GG[[SS]] E E �� TT

(Exp In)(Exp In)

EE �� outout n n :: CapCap[[TT]]
E E �� nn : : GG[[SS]] E E �� TT

(Exp Out)(Exp Out)

EE �� openopen n n :: CapCap[[TT]]
E E �� nn : : GG[[TT]]

(Exp Open)(Exp Open)

E E �� MM..P P :: TT
E E �� M M :: CapCap[[TT]] E E �� P P :: TT

(Proc Action)(Proc Action)

E E �� MM[[PP]] :: TT
E E �� MM : : GG[[SS]] E E �� P P :: SS E E �� TT

(Proc Amb)(Proc Amb)

EE, , GG �� ��
E E �� �� GG

domdom((EE))

((EnvEnv GG))

EE �� GG[[TT]]
GG��domdom((EE)) E E �� TT

(Type (Type GG))

EE �� CapCap[[TT]]
E E �� TT

(Type (Type CapCap))

EE �� ShhShh
E E �� TT

(Type (Type ShhShh))

E E �� WW11××......××WWkk

E E �� WW11 E E �� WWkk

(Type Tuple)(Type Tuple)

2003-03-17 16:42

Talk 44

•• Prop (Subject Reduction)Prop (Subject Reduction)
If If EE �� PP :: TT and and PP �������� QQ
then there exists then there exists GsGs such that such that GsGs, , EE �� QQ :: TT..

E E �� ((nn11::WW11, ,, , nnkk::WWkk).).PP :: WW11××......××WWkk

E, nE, n11::WW11, ..., , ..., nnkk::WWkk �� P P :: WW11××......××WWkk

(Proc Input)(Proc Input)

E E �� ��MM11, ,, , MMkk�� :: WW11××......××WWkk

E E �� MM11::WW11 E E �� MMkk::WWkk

(Proc Output)(Proc Output)

E E �� 00 :: TT
E E �� �

(Proc Zero)

E E �� ((ννnn::GG[[SS])])PP :: TT
EE, , nn::GG[[SS]] �� P P :: TT

(Proc Res)(Proc Res)

E E �� P | Q P | Q :: TT
E E �� P P :: TT E E �� Q Q :: TT

(Proc Par)(Proc Par)

E E �� !!P P :: TT
E E �� P P :: TT

(Proc Repl)

E E �� ((ννGG))PP :: TT
EE, , G G �� P P :: TT GG

fgfg((TT))

(Proc (Proc GResGRes))

2003-03-17 16:42

Talk 45

ConclusionsConclusions
•• A new programming construct for expressing secrecy A new programming construct for expressing secrecy

intentions.intentions.

•• Good for Good for ““pure namespure names”” like channels, heap references, like channels, heap references,
noncesnonces, keys., keys.

•• Groups are like sorts, but no Groups are like sorts, but no ““new sortnew sort”” construct has construct has
previously been studied.previously been studied.

•• Basic idea could be added to any language, and is easily Basic idea could be added to any language, and is easily
checked statically (no flow analysischecked statically (no flow analysis……).).

