Part 4

Spatial Logics

Luca Cardelli
Andy Gordon | Luis Caires

Properties of Secure Mobile Computation

 We would like to express properties of unique, private,
hidden, and secret names:
e “The applet is placed in a private sandbox.”
e “The key exchange happens 1n a secret location.”
e “A shared private key 1s established between two locations.”

* “A fresh nonce is generated and transmitted.”

* Crucial to expressing this kind of properties 1s devising
new logical quantifiers for fresh and hidden entities:
e “There 1s a fresh (never used before) name such that ...”
e “There 1s a hidden (unnamable) location such that ...”

* N.B.: standard quantifiers are problematic. “There exists a
sandbox containing the applet” is rather different from “There
exists a fresh sandbox containing the applet” and from “There
exists a hidden sandbox containing the applet”.

Approach

» Use a specification logic grounded in an operational model
of mobility. (So soundness 1s not an 1ssue.)

» Express properties of dynamically changing structures of
locations.

e Previous work [POPL’00].

» Express properties of hidden names. We split it into two
logical tasks:
e Quantify over fresh names. We adopt [Gabbay-Pitts].
 Reveal hidden names, so we can talk about them.
e Combine the two, to quantify over hidden locations.
“There 1s a hidden location ...” represented as:

“There 1s a fresh name that can be used to reveal (mention) the
hidden name of a location ...”.

Spatial Structures

e QOur basic model of space i1s going to be finite-depth edge-labeled
unordered trees (c.f. semistructured data, XML). For short: spatial
trees, represented by a syntax of spatial expressions. Unbounded
resources are represented by infinite branching:

Cambyidge
Eatle
chajf ch zrg S la s

pz|t

Cambridge| Eagle|chair[0] | chair[0] | 'glass[pint[0]]] | ...]

Ambient Structures

* These spatial expressions/trees are a subset of ambient
expressions/trees, which can represent both the spatial and
the temporal aspects of mobile computation.

g - e

e An ambient tree 1s a spatial tree with, possibly, threads at
each node that can locally change the shape of the tree.

alclout a. in b. P]] | b[0]

Spatial Logics

* We want to describe mobile behaviors. The ambient calculus
provides an operational model, where spatial structures (agents,
networks, etc.) are represented by nested locations.

* We also want to specify mobile behaviors. To this end, we devise an
ambient logic that can talk about spatial structures.

Processes Formulas
0 (void) 0 (there 1s nothing here)
n[P] (location) n|4] (there 1s one thing here)
Pl Q (composition) 418 (there are two things here)
Trees n

- AN

(void) (location) (composition)

Mobility
» Mobility 1s change of spatial structures over time.
a b

X X
X

alO | clout a. in b. P]] | b[R]

Mobility

» Mobility 1s change of spatial structures over time.

al Q] | c[in b. P] | D[R]

Mobility

» Mobility 1s change of spatial structures over time.

alQ] | B[R | c[P]]

Properties of Mobile Computation

&% These often have the form:

@ Right now, we have a spatial configuration, and later, we have
another spatial configuration.

@ E.g.: Right now, the agent is outside the firewall, ...

agerV\firewall

F 1 X

Now

Properties of Mobile Computation

& These often have the form:

@ Right now, we have a spatial configuration, and later, we have
another spatial configuration.

@ E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent 1s inside the
firewall.

firewall

agent i
F 4

Later

Modal Logics

* In a modal logic, the truth of a formula is relative to a state
(called a world).
e Temporal logic: current time.
* Program logic: current store contents.
e Epistemic logic: current knowledge. Etc.

e In our case, the truth of a space-time modal formula 1s
relative to the here and now of a process.
e The formula n[0] is read:
there 1s here and now an empty location called n

» The operator n[%4] is a single step in space (akin to the temporal
next), which allows us talk about that place one step down into n.

e Other modal operators talk about undetermined times (in the
future) and undetermined places (in the location tree).

Logical Formulas

e ®::= Formulas (1 is a name 7 or a variable x)
T true
—4 negation

Av A disjunction

0 void

n[#Al location A@n location adjunct
AlA composition ‘A composition adjunct
n®A revelation 40N revelation adjunct
<A somewhere modality

OA sometime modality

Vx4 universal quantification over names

Simple Examples
O: pT)IT

there 1s a location p here (and possibly something else)

o <O

somewhere there 1s a location p

©: -0

if there 1s a p somewhere, then forever there is a p somewhere

O: plglT]IT]IT
there 1s a p with a child ¢ here

o <O

somewhere there i1s a p with a child ¢

Examples

ann 2 n[T]IT

A

non —dn n

onen 2 n[T]lnon

AY &2 —(=4I1T)
(n[T] = n[A])Y
X((n[T] = n[A])Y)

there 1s now an 7n here

there 1s now no 7n here

there 1s now exactly one n here
everybody here satisfies &4
every n here satisfies 4

every n everywhere satisfies 4

Satisfaction for Basic Trees

e EO

g En[9 if A =39

ABI:‘JIICB if AI:CJJ and QI:CB

n
A ED@n if =59))

AP@DCB if for all QP@ wehave%h%

Satisfaction for Somewhere/Sometime

A oA if A FAa

(Ao it [N /N wa [\F9

e N.B.: instead of %4 and <-4 we can use a “temporal next”
operator 0%, along with the existing “spatial next” operator n[%],

together with L-calculus style recursive formulas.

Satisfaction for Revelation
e Trees with hidden labels:

w°' Not ible if
ﬁ En®F if { 5 =g ot possible 1
n 1s free!

Intended Model: Ambient Calculus

P € I1 ::= Processes M ::= Messages
(vn)P restriction n name
0 inactivity inM entry capability
PIP’ parallel > If;);::gion out M exit capability
M[P] ambient open M open capability
P replication € empty path

M.P exercise a capability) M.M’ composite path
(n).P inputlocally, bindton > Actions

(M) output locally (async)

n[] £ n[0]
M 2 M0 (where appropriate)

Reduction Semantics

A structural congruence relation P = Q:

* On spatial expressions, P = Q 1iff P and Q denote the same tree.
So, the syntax modulo = 1s a notation for spatial trees.

e On full ambient expressions, P = Q if in addition the respective
threads are “trivially equivalent”.

* Prominent in the definition of the logic.

* A reduction relation P —" Q:
e Defining the meaning of mobility and communication actions.

* Closed up to structural congruence:
P=pP,PP—"0,0=0 = P—="0

Reduction

 Four basic reductions plus propagation, rearrangement
(composition with structural congruence), and transitivity.

nlinm. P| O]l m[R] — m[n[P|Q]I|R]
m[nlout m. P Q]| R] — n[P| Q]| m|[R]
open m. P | m[Q)] — Pl O

(n).P | (M) — P{neM}

P— 0O = (vn)P— (vn)Q
P— Q0 = n[P]— n[Q]
P—Q0 = PIR—OQOIR

P’EP,PéQ,QEQ’:P’_)Q’

%k . R o
— " 1s the reflexive-transitive closure of —

(Red In)
(Red Out)
(Red Open)
(Red Comm)

(Red Res)
(Red Amb)
(Red Par)

(Red =)

v vV Ot W
Il
QRO ROROROO OO ™

eP=P

=y

R R R U

Structural Congruence

e Routine, but used heavily in the logic and semantics.

Q=P
R = P=R

(vm)P = (vn)Q
PIR=QIR
P=10

M[P] = M[0]
M.P=M.Q

(n).P = (n).0

(M.M’).P=M.M’.P

(Struct Refl)

(Struct Symm)
(Struct Trans)

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

(Struct €)
(Struct .)

(vn)0=0
(va)(vm)P = (vm)(vn)P

(va)(P1 Q) =PIl (vn)Q
(va)(m[P]) = m[(vn)P]

PlO=0OI|P
(PIO)IR=PI(OIR)
PlO=P

WP1Q)=!PIQ

0=0
'P=P|P
P=1pP

ifn ¢ fn(P)

ifnsm

(Struct Res Zero)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)

(Struct Repl Par)

(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)

* These axioms (particularly the ones for !) are sound and complete with
respect to equality of spatial trees: edge-labeled finite-depth unordered trees,
with infinite-branching but finitely many distinct labels under each node.

Satisfaction: Basic Tree Formulas

PEO £ P=0

P E n[94] L& JPell. P=n[P AP EHA

PEAIB & 3APP’ell. P=P’ |IPPAPEAAP’ESB
PEYA@n £ n[lPIEXA

PES>B £ VPell PEA=PIPED

() : there 1s no structure here now.
e n[%] : there is a location n with contents satisfying .
e 541G : there are two structures satisfying 7 and B.

e J@n : when the current structure is placed in a location n,
the resulting structure satisfies .

e S>B : when the current structure is composed with one
satisfying %4, the resulting structures satisfies 3.

Meaning of Formulas: Satistfaction Relation

PET
PE-A
PEAV DB
PEO

P E n[#A]
PEA@n
PEA|B
P E >3
P E n®#A
P ESACn
PE %4
PE OHA
PEYxA

[1| L (- | - L 12| L (| L | il |-

- PEYA

PEAVPED

P=0

AP’ell. P=n[P’|AP’EA
n[PlE A

AP, P’ell. P=P’ | PP AP EAAP’ESB
VPell. PEA=PIPESB
AP’ell. P=(vn)P’ AP'EA
(vn)PEA

3P’ell. PV'P’ AP EHA
AP’ell. PP AP’ EA
VmeA. P E A{xe—m}

PP’ iff In,P”. P=n[P’]| P”; |"is the refl-trans closure of |

Basic Fact
e Satisfaction 1s invariant under structural congruence:
PEA P=P = PEXA
Ie.: {PelIl| P E %4} is closed under =.

* Hence, formulas describe congruence-invariant properties.
 In particular, formulas describe properties of spatial trees.

* N.B.: Most process logics describe bisimulation-invariant
properties.

 Hence, formulas talk about trees.

From Satisfaction to (Propositional) Logic

Propositional validity

vid 4 &2 VPell. PEA 4 (closed) is valid
Sequents

A-B 2 VPell. PEA=PESDB
Rules

AFB;. A rB tFA-B A (n>0)

A-B A "AFB =ADB

(N.B.: all the rules shown later are validated accordingly.)

Conventions:
— -+ means F 1n both directions

4 F means F in both directions

Obtaining...

* Logical axioms and rules.
e Rules of propositional logic (standard).
e Rules of location and composition

AICHFB At D+ C>B l->> adjunction

e Rules of revelation
N®F+ B 3t D+ BO ®-O adjunction
t (=A)Ox - —(4Ox) ® is self-dual

e Rules of <~ and ¢ modalities (standard S4, plus some)
* Rules of quantification (standard, but for name quantifiers)

e A large collection of logical consequences.

Rules: Propositional Calculus

(A-L) FACAD)F B it (FAOADF B
(A-R) F+ (GCVOVB {t D+ CU(DVDB)
(X-L) SrCHB t CAA+B

(X-R) Z+CVB t F+BVC

(C-L) Drg+B t 9+B

(C-R) F+BvB ¢t F+B

(W-L) A+B t I C+B

(W-R) HA+B t F+CvB

(1) b A-F

(Cut) AFCOVB; ACHB' t I T+ BVB'
(T) INTH-B ¢t F+-B

(F) G-FvB t G+B

(—-L) HFA+-CvB t rn—C+B

(—=-R) GrCHDB t A+ -CvB

Rules: Composition

(10) ¢ A0+ 0 is nothing

(1=0) t Z1=0F—0 if a part is non-0, so is the whole
(Al) t GI(@BIO) 4 (FIDB)IC | associativity
X1) t FIB-B\F | commutativity
(IF) FrB: 9 +B FNF+-B 1B | congruence
(I1v) t (BB ICFAICVBIC l-v distribution
(M) + FIFG-FIB VB IE v—B =B decomposition
(1>) DICHFB It F+-0C>B |-> adjunction
CF—-) ¢ FF-F if 9 is unsatisfiable then 7 is false

(—DF) ¢ G+ FFF if Fis satisfiable then ¥ is unsatisfiable
where Z & -4 and %4F & YbF

The Composition Adjunct
(I>) FICHB At A+O>B

“Assume that every process that has a partition into pieces that
satisfy 4 and C, also satisfies ‘3. Then, every process that
satisfies &, together with any process that satisfies C, satisfies 5.

(And vice versa.)” (c.f. (— R))

* Interpretations of $2>5:
e P provides ‘B in any context that provides 4
e P ensures ‘B under any attack that ensures %2

That is, P F > is a context-system spec (a concurrent version of
a pre-post spec).

Moreover $9>B is, in a precise sense, linear implication: the context
that satisfies %4 is used exactly once in the system that satisfies 3.

Some Derived Rules

b (T>B) 1D+ B

“If P provides ‘3 in any context that provides %2, and Q provides %,
then P and Q together provide 3.”

e Proof: S>BF+D>B ¢t (G>B) 1D+ B by (Id), (1 >)

D-F: Br-C ¢t DV(EB)FC (c.f (— L))

“If anything that satisfies <) satisfies %4, and anything that satisfies
‘B satisfies C, then: anything that has a partition into a piece
satisfying <) (and hence %), and another piece satisfying 3 in a
context that satisfies &, it satisfies (‘3 and hence) C.”

@ Proof:

DvE A, A>B - A>PB } DN A>B A1 SA>B assumption, (1d), (1)
ANIAD>B B above
BrC assumption

More Derived Rules

P A-TIE you can always add more pieces (if they are 0)
t FIG-F if a piece is absurd, so is the whole

t OF—(—=01—=0) 0 is single-threaded

t AIBAOFA you can split 0 (but you get 0). Proof uses (| Il)

D+F BB ¢ BBFEA>B > is contravariant on the left
b DB B>C - B0 > is transitive

b (F1B)>C - F>(B>0) > curry/uncurry
b > (B>0) F B> (F>0) contexts commute

t T T>T truth can withstand any attack
t THF>S anything goes if you can find an absurd partner
P TOA - if 4 resists any attack, then it holds

Rules: Location

(n[] 00) } n[A + 0 locations exist

(n[] 1) } n[#A] + —(=0 | =0) are not decomposable
m[lF) Fr-B 3t n[D]F n[B] n[] congruence
@A) ¢ n[BAn[C] v+ n[AAC) n[]-A distribution

(n[] v) t n[CVvB] + n[Clvn[B] n[]-v distribution
] @) n[FFB it D+ B@n n[]-@ adjunction

(~@) | F@n I —((—H)@n) @ is self-dual

Some Derived Rules
G+ B t A@nt+ B@n @ congruence

b n[A@n)+F
t DA n[A)@n

t n[—] + —n[9]
b —n[H] A —n[T] v n[=A]

Rules: Time and Space Modalities

(©) }Og-ll-ﬂl:l—@
@K) to@E=9)+ oF=oB
@T) (oA+A

(04) toAFonF

@T) tTroT

(@F) F+BtoFr+oB

(on[]) t n[OF] + On[9]
©1) tOFA OB OH|B)

(#0) t LOAF OF
S4, but not S5:

—vld CAF oOA

(%) b A —2—F

(RK) t2X(F=>D)F 2HF=>HDB
(XT) tRA+D

(X 4) 2AFrrF

(XT) tTFXHRT

(XF) DBt rRA- 2B

(4nl]) ta[RA - A
$1) 4DIBFHEIT

—IVld<>SZ[|—):(<>SZ[

(<-<©): if somewhere sometime %, then sometime somewhere &4

Equality

* Name equality can be defined within the logic:

n=p & nTep

Since (for any substitution applied to n,L):
PFn[T]@u
iff p[P] EN([T]
iff n=wAPET
iffn =
 Example: “Any two ambients here have different names™:

VxVy. x[T] 1 y[T]I T = —x=y

Ex: Immovable Object vs. Irresistible Force

Im & T o(b]T)
Ir & Tbod(ob[]1T)

Im\Ir v (T>0OGbH[IT)IT DT
- o(ebj[] 1 T) (A>B) | D+ B
- <o(ebj[]11T) Ar OF
Im\Ir v TI(T>oOl—(ebj[]1T)) DT
F oO—(ebj[]11 T) O— A+ —oA
F —<o(ebj[] 1 T) 0~ - ~0F

Hence: Im|Ir+ F DA—49FF

Restriction
e (vn)P

e “The name n 1s known only inside P.”
e “Create a new name n and use it in P.”

It extrudes (floats) because it represents knowledge, not behavior:

(va)P = (vin)(P{n<m}) :Sp;w;age?ame is as good
(vn)0 =0
(va)(vm)P = (vm)(vn)P
(va)(P1Q) = (Vm)P1 Q if n¢fu(Q)

aka. (vr)(P | (vn)Q’) = (vn)P | (vn)Q’
(va)(m[P]) = m[(va)P] ifn#m

scope extrusion

e Used initially to represent private channels.
 Later, to represent private names of any kind:
Channels, Locations, Nonces, Cryptokeys, ...

Revelation
PEn®YE & 3IAPell. P=(vn)P’AP’EA

* n®% is read, informally:

* Reveal a private name as n and check that the revealed process
satisfies %.

e Pull out (by extrusion) a (vn) binder, and check that the process
stripped of the binder satisfies %.

e Examples:

 n®n[0]: reveal a restricted name (say, p) as n and check the
presence of an empty n location 1n the revealed process.

(vp)p[0] F n®n[0]
because (vp)p[0] = (vn)n[0] and n[0] FE n[0]

Derived Formulas: Revelation

©n £ —n®T PE -iff =dP’ell. P = (vn)P’
iff nefn(P)
closed £ —dx.©Ox PE - iff —dneA. nefn(P)

separate & —Jx.©x | ©Ox PE -iff —3neA, P’ell, P eIl
P=P’| P” A nefa(P’) A nefa(P”)

* Examples:

e n[]E ©n
e (vp)pll E closed

e n[] | m[]F separate

Revelation Rules

e Some mirror properties of restriction:

F x®x®F - x®@F

b x®y® - yOX®F

F X®(A | x®B) 4 x®LA | x®PB (scope extrusion)
* Some behave well with logical operators:

t X®AV B) + x®A v x®A

AL B ¢ x®A F x®B
* Some deal with the adjunction:

N®A+ B 1t A+ BOY

t (=) Ox A =(AOx)

P (D1 B)Ox F AOx | BOx

b x®(A B)Ox) - x®(AOX) | x®(BOx)

Rules: Revelation

(®) t x®x®A - x®A ® idempotency
®®) x®YDHAF y®x®A ® commutativity
®V) x®DAVDB)Fx®A vV x®A ®-v distribution
®F) DAFDB ¢ x®F+ x®B ® congruence
(®O0) NOAF Bt A+ BOn ®-O adjunction
(© =) (=A)Ox - —(AOx) O is self-dual

(O bF) t HFOx 4+ FF O unsatisfiable

(® 0) b x®0 - 0 ®/0-0 rules
(S 0) b 00x 0

®1) b x®(H | x®B) 4 x®HA | x®B ®/O-| rules
Q1) b (Z1B)Ox - AOx | BOx
@®O1) x®(Z|B)Ox) F x®(HOX) | x®(BOx)

®n[]) t x®y[HA] 4+ yx®HA] (x#Y) ®/-n[-] rules
(Onll) ¢ YIAIOx+ y[AOx] (xY)
On[]) t xAOx+F

Fresh-Name Quantifier

PEWA £ JmeA mifm(P,A) A PE A{xe—m)
o Cf: PEIxA iff dmeA. PE A{x¢m)}

» Actually definable (metatheoretically, as an abbreviation):

Wx.4 & Fx. x#(nv(AD)-{x})) Ax®T A A

Provided we add the axiom schema:
(GP) ¢ Jx. x#N A X®T AL 4F Vx. (N A x®T) = F

where N D fav(4)-{x} and x¢ N

 Fundamental “freshness” property (Gabbay-Pitts):

Wx.4 iff dmeA. méfn(P,A) A P E A{x¢m)
iff VmeA. méfn(P,4) = P FE A{xm)

because any fresh name is as good as any other.

* Very nice logical properties:
- Vx4 F x4+ AxA
x4 4+ Nx.—A
e Nx.(A41DB) 4 (Nx.9) 1 (Nx.B) (hint: (GP) 3 for =, V for <)
- OMx.A - Nx.OA

Hidden-Name Quantifier

Hx.A Nx.x®A

PEHx4A iff
dmeA, P’ell. méfn(A) A P = (vin)P’ A P’ E A{x—m)

e Example: Hx.x[] = Vx.x®x[]

e “for hidden x, we find a void location called x” = “for fresh x,
we reveal a hidden name as x, then we find a void location x”

e (vn)n[] E Hx.x[] because (vn)n[] E Vx.x®x]]
because (vn)n[] F n®n[] (where né¢fn((vn)n[])).

>

e Counterexamples:
e (vm)m|] ¥ Hx.n[] (N.B.: this holds for Hx.7 2 Jx.x®A !)
* (vm)n[] | (va)n[] # Hx.(x[] | x[])
e (vn)(n[]|n[]) ¥ Hx.x[] | Hx.x[]

Forget n®%4 and /1x.54, why not just use Hx.54?

Consider:
WNx. x®(A4 | x®PB)
4 Nx.(x®A | x®B)
4 (Nx.x®A) | (Nx.x®DB)

That 1s:
Hx.(4 | x®B) 4 Hx.<4 | Hx.B

Hence, the scope extrusion rule for H still uses ®.

No matter what one choses as primitives, we have explored
interesting connections between these operators. (/[+® and
H+© are almost interdefinable [Caires].)

Example: Key Sharing

e Consider a situation where “a hidden name x is shared by
two locations n and m, and 1S not known outside those
locations™.

Hx.(n[©x] | m[©x])

e PE Hx.(n[©x] | m[©x])

& dreA. réfm(P)u{n,m} A dR’,R”’ell. P = (vr)(n[R’] | m[R”])
ATEM(R’) A refn(R”)

* E.g.: take P = (vp) (n[p[1] | m[p[1D.

* A protocol establishing a shared key should satisty:
OHx.(n[©Ox] | m[©x])

From Logic back to Types

* A logic is just a very rich type system.

» Type systems are very “structural” (i.e., the structure of types reflects closely
the structure of values). Our logic is extremely structural (intensional) for a
logic. It is in fact almost as structural as a type system.

» Type systems for process calculi often have a parallel composition operation
on types. L.e., they are “spatial” in our sense.

e Therefore, our work may help in discerning patterns in the large and diverse
collection of type systems for process calculi. These usually become
particularly tangled when trying to handle restriction.

* Suppose that P : %4 means that process P may have “effects” &2,
where an effect 1s any kind of information about the behavior of P
that one may want to track statically. Then the following kind of
typmg rules happen:

Effects may be composed:
TFP: A, THFQ: B tTHPIQ:FIPB
» Effects may be hidden:
[, n4F P: B{xen) t TF (VAP : Hx:A.B
* (C.f. Kobayashi: behavioral type systems. C.f. “exchange types” for Ambients.

Applications

* Modelchecking security+mobility assertions:
e If Pis !-free and 4 is >-free, then P E 4 is decidable.

 This provides a way of mechanically checking (certain) assertions about
(certain) mobile processes.

» Expressing mobility/security policies of host sites. (Conferring more flexibility
than just sandboxing the agent.)

» Just-in-time verification of code containing mobility instructions (by either
modelchecking or proof-carrying code).

» Expressing properties of type systems (beyond subject reduction).
» Expressing Locking

o If E, n:Amb°®|S| + P : T (a typing judgment asserting that no ambient called
n can ever be opened in P), then:

P FEo(<-an n = o<-an n)
» Expressing Immobility

o If E, p:Amb®[S], g:Amb°|¥S’] = P : T (a typing judgment asserting that no
ambient called g can ever move within P), then:

P E o(=(p parents g) = o<~ (p parents q))
where p parents g 2 p[g[T]I T]IT

Conclusions
The novel aspects of our logic lie in its explicit treatment
of space and of the evolution of space over time (mobility).

We can now talk also about fresh and hidden locations.

These 1deas can be applied to any process calculus that
embodies a distinction between spatial and temporal
operators, and a restriction operator.

Our logical rules arise from a particular model. This
approach makes the logic very concrete (and sound), but
raises questions of logical completeness.

<http://www.luca.demon.co.uk> Logical Properties of Name Restriction

Exercise

 Show that ¢ (Z1DB) A 0F < is valid (by applying the
definition of sequent and of satisfaction). The proof 1s
short. In the process, you will discover you need a little
ambient calculus lemma about P | Q = 0; you do not need
to prove it but you need to identify it.

e (Hard/Optional)
Find a formal derivation of { (Z1B) A 0 + < from the

axioms in the slides.
(My) proof uses the decomposition axiom, (| Il).

Semantics
 Version 1 [Cardelli-Gordon]

e For the restriction-free ambient calculus.

* Formulas denote sets of processes that are closed under structural
congruence.

e Version 2 [Cardelli-Gordon]

 For the ambient calculus with restriction.

* Formulas denote sets of processes that are closed under structural
congruence. Freshness handled “metatheoretically”.

e Version 3 [Caires-Cardelli]

 To handle both restriction and recursive formulas, and to handle
freshness “properly”. (For the m-calculus, for simplicity.)

* Formulas denote sets of processes that are closed under
congruence and that have finite support (are closed under
transpositions outside of a finite set N of names).

A Good Property

* A property not shared by other candidate definitions, such
as Jx.x®%4 and Vx.x®%4. This is even derivable within the

logic:
Hx.(A{n<x}) A n®T 4+ n®4 where x ¢ V(%)
It implies:
PEYA = (vn)P E Hx.(A{n<x})
P E Hx.(A{n<x)}) Ané¢fm(P) = PEn®A
PEn®4 = PE Hx.(A{n<x})

A Surprising Property
HxA ¥ A forx ¢ f(A)
 EX.: Hx.(—|0 | _IO) # =01 —0

If for a hidden x the inner system can be decomposed into two
non-void parts, 1t does not mean that the whole system can be
decomposed, because the two parts may be entangled by
restriction:

(van)(n[] | n[]) E NWxx®(—01—0) but:
(vn)(n[] | n[]) # —0 | —0.

e This is ®’s fault, not /I’s: with the same counterexample we can
show n®(—10 | _IO) # —0 | 0.

e However, Hx.0 - 0.
* Moreover, 4+ Hx.4 for x ¢ fu(A).

Satisfaction for Hidden-Name Quantification

It makes sense also to define a hidden name quantifier Hx.4-
o n®%: reveal a hidden name if possible as a given n, and assert Z{n}.
e Hx.%4: reveal a hidden name as any fresh name x and assert 7{x}.

A EHxST if A = Dfxn)

with néfn(4)

e Design decision: how to define Hx.%2, keeping in mind that
“freshness” may spill into the logic?

The Obvious Thing: extend the syntax with Hx.%Z and define it directly.

Luis Caires: Extend the syntax with Hx.%7 and add signatures to keep track of
free names, to enforce the side condition n¢fin(4): LeP | Ye%.

Us: Retain n®% and mix it with a logical notions of freshness 1x.57 (one extra
axiom schema, no new syntax). We eventually define: Hx.5%7 2 Wx.x®%.

The Decomposition Operator
e Consider the De Morgan dual of | :

ANB & ~(—-AI=B) PE-iff VP’ ,P’ell. P=P’IP” =

PEAVP ED
@ LEAIF PE-iff VP’ ,P’ell. P=PIP” =P EHA
/5 LT PE-iff AP ,P7’ell. P=P’\P”’ AP’EA
Al B for every partition, one piece satisfies 4

or the other piece satisfies 3
A < (A7) every component satisfies &4
P < —((=4)Y) some component satisfies 4
Examples:
(p[T] = plq[T1A)" every p has a ¢ child
(p[T] = plg[T] | (—g[T]D"])Y every p has a unique ¢ child

The Decomposition Axiom

() ¢ FNEHFFENB)V BIE)v(=B1-B)
Alternative formulations and special cases:
F @NDYABNB Y@ NB)V (BN)
“If P has a partition into pieces that satisfy ¢4 and &4 , and every
partition has one piece that satisfies 3" or the other that satisfies

‘B , then either P has a partition into pieces that satisfy ¢4 and 5 ,
or it has a partition into pieces that satisfy ‘3 and &4 .”

b (A1 B) - (AI'T) = (T —B)
“If P has no partition into pieces that satisfy 7 and 3, but P has a
piece that satisfies &2, then P has a piece that does not satisfy 3.”

t (T1B)+TI-B
b (DI B (—ZIT) v (T | —B)

Logical Adjunctions

e This 1s a logic with multiple logical adjunctions
(4 of them!):

Al = (classical)
ANCFDB iff A-C=DB
e | /D> (linear, ® / —o)
AICFB iff A-CD> DB
e n|-]/-@n
n[Al-B iff YA+ B@n
e n®-/-On
n®Ar+B iff A BOn
 Which one should be taken as the logical adjunction for
sequents? (I.e., what should “,” mean in a sequent?)

* We do not choose, and take sequents of the form 4 - 3.

“Neutral” Sequents

* Our logic 1s formulated with single-premise, single-

¢¢ 99

conclusion sequents. We don’t pre-judge “,”.

By taking A on the left and v on the right of F as structural
operators, we can derive all the standard rules of sequent and
natural deduction systems with multiple premises/conclusions.

» By taking | on the left of F as a structural operator, we can derive
all the rules of intuitionistic linear logic (by appropriate mappings
of the ILL connectives).

By taking nestings of A and | on the left of + as structural
“bunches”, we obtain a bunched logic, with its two associated
implications, = and .

e This 1s convenient. We do not know much, however, about
the meta-theory of this presentation style.

Ambient Calculus: Example

location a location b
A A
~ ~N ~N
almsg[(M) | out a. in b. P]] | blopen msg. (n). P]
g Y \ J
~ '
send M from a to b receive n; do P

The packet msg moves from a to b, mediated by the capabilities out a
(to exit a), in b (to enter b), and open msg (to open the msg envelope).

almsg[(M) | out a. in b. P]] | blopen msg. (n). P]

(exit) — a] | msg[{M) lin b. P] | blopen msg. (n). P]

(enter) — al] | blmsg[{(M)] | open msg. (n). P]
(open) — al] | b[(M) | (n). P]

(read) — a[| b|P{n<—M1}]

Connections with Intuitionistic Linear Logic

 Weakening and contraction are not valid rules:
principle of conservation of space.

e Semantic connection: sets of processes closed under = and
ordered by inclusion form a quantale (a model of ILL).

e Multiplicative intuitionistic linear logic (MILL) can be
faithfully embedded in our logic:

1MILL é 0
D@, B 2 DB

MILL rules and our rules are interderivable (‘“‘our rules”
means the rules involving only 0, |, I>, plus a derivable cut
rule for |).

Full intuitionistic linear logic (ILL) can be embedded:

1;; £ 0 ADB & AvSB
1y & F AEDB & A~D
Ty, 2 T ARB & AIB
O, & F A—oB & A>B
14 £ 0AO0=>97F

—

The rules of ILL can be logically derived from these
definitions. (E.g.: the proof of !4 - !9 ® 99 uses the

decomposition axiom.)

So, 4, ..., Ay B implies 4, | ... |4 F B.

Some discrepancies: L, = 0, ,; the additives distribute;
154 is not “replication”; 1%4—B is not so interesting; $2+/52°
1s unusually interesting.

Connection with Relevant Logic

* (Noted after the fact [O’Hearn, Pym].) The definition of

the satisfaction relation i1s very similar to Urquhart’s
semantics of relevant logic. In particular 7 | ‘3 is defined

just like intensional conjunction, and > is defined just
like relevant implication 1n that semantics.

* Except:

* We do not have contraction. This does not make sense in process
calculi, because P | P # P. Urquhart semantics without
contraction does not seem to have been studied.

* We use an equivalence =, instead of a Kripke-style partial order ¢
as in Urquhart’s general case. (We may have a need for a partial
order in more sophisticated versions of our logic.)

Connections with Bunched Logic

e Peter O’Hearn and David Pym study bunched logics,
where sequents have two structural combinators, instead of
the standard single *,” combinator (usually meaning A or ®
on the left) found in most presentations of logic. Thus,
sequents are bunches of formulas, instead of lists of
formulas. Correspondingly, there are two implications that

arise as the adjuncts of the two structural combinators.

e The situation 1s very similar to our combinators | and A,
which can combine to irreducible bunches of formulas in
sequents, and to our two 1implications = and >. However,
we have a classical and a linear implication, while bunched
logics have so far had an intuitionistic and a linear
implication.

Semantic Connections with the Linear Logic
e A (commutative) quantale ¢) is a structure
<SeSet, <eS*—Bool, \/€P(S)—S, ®eS>*—S, 1€S5> such that:

<, \/ is a complete join semilattice

®, 1 1s a commutative monoid
p®\VQ = \/{p®q[qeQ}

* They are complete models of Intuitionistic Linear Logic (ILL):

[A@B] = V{I#A I3} 1.1 =2 1
[A&B] & \{C]CLA] A CL[B]} [L;;] & any element of S
[A®B] & [A®[DF] [T 2 VS
[A—B] 4 \/{Cﬂ CR[A] <[]} [0y,] 2 \/¢
[

[49] & vX.[1 & A& XR®X] where vX. A{X} 2 \/{C[|C<LA{C})

Vidy (Do n Dy by Do 2 (D] @ - ®p [D,]o <o [Bl,

The Process Quantale

e The sets of processes closed under and ordered by
inclusion form a quantale (et A= 2 {P]| 3dQ€A. P=0}):
O2<d,c |), ® 1> where, for A,B cIT:
A [A=]|ACII)
£ {0}=
A® B 2 [PIQ|PeAAQE€B)*
e ILL validity in ®:
vid, (D, s D, Fp Be
& [9]® ... ® [4] < B]
& [F 1. 19]c[B]
o M- . 1FDulB] = I
& [A . 1A =>B] =11

Process Domain

e Semantic domain: ®

IT £ the set of process expressions
VCcIl. C= & {Pell|3P’eC. P’=P}
® & {C|Ccln)

The domain ® is both a quantale (1, ®, c, |)) and a boolean
algebra (g, I, U, N, IT"). It has additional structure induced by
n[P] and (vn)P.

e Spatial operators over O:

1 £ {0)=
VYC,De0O. C®D £ {[PIO|PeC A QeD)=
VneA, Ce®. n[C] 4 {n[P]|PeC)=
A

VneA, Ce®. n®C {(va)P | PeC}=

Semantics of Revelation
n®C & {(vn)P|PeC)=

e This means: take all processes of the form (vn)P (not up to
renaming of n), remove the ones such that P¢C, and =-
close the result (thus adding all the o-variants).

e n®C 1s read, informally:
* Reveal a private name as n and check that the contents are in C.

e Pull (by =) a (vn) binder at the top and check the rest is in C.

 Ex.: n®n[1]: reveal a private name (say, p) as n and check
that there 1s an empty n ambient in the revealed process.
(vp)pl0] € n®n[1]
because (Vp)p[0] = (vn)n[0] and n[0] € n[1]

* More examples of n®C 2 {vn)P | PeC}=:

0en®l because 0 = (vn)0and 0 € 1
m[0] € n®I1 because m[0] = (van)m[0] and m[0] € I1
n[0] ¢ n®I1 because n[0] Z (vn)...

e Therefore, n®C 1s:

closed under o-variants

closed under =-variants

not closed under changes in the set of free names

not closed under reduction (free names may disappear)
not closed under any equivalence that includes reduction

still ok for temporal reasoning: —n®%7 A Gn®A

Semantics of the Logic

[T] A I

| L -]

[AvB] £ [AV[2B]

[0] T |

[l & nll¥]

[9@n] & U{CeO [n[C]c[Al)

[A1B] £ [A®[2]

[>B] £ U{CeO|C®[A] < [Bl)

[n®A] £ n®[¥]

[FOn] & |J{CeO® |n®C c[¥]}

[<] L [Pell|3P’ell PP’ A P’€[4])}
[O%4] £ {Pell|3P’ell. P—"P’ A P’e[#4]}
[Vx.A] L Nmea [Alxem}]

PP’ iff In,P”. P=n[P’]| P”; |"is the refl-trans closure of |

Basic Fact

* Formulas describe only congruence-invariant properties:

VAed. [A] € O

Recovering the Satisfaction Relation
PEA & Pe|4]

e The properties of satisfaction for each logic constructs are
then derivable.

e This approach to defining satisfaction 1s particularly good
for introducing recursive formulas in the logic: it is easy to
give them semantics as least and greatest fixpoints in the
model, while it 1s not easy to define them directly via a
satisfaction relation.

