Part 4 **Spatial Logics** *Luca Cardelli Andy Gordon | Luis Caires*

Properties of Secure Mobile Computation

- We would like to express properties of unique, private, hidden, and secret *names*:
 - "The applet is placed in a private sandbox."
 - "The key exchange happens in a secret location."
 - "A shared private key is established between two locations."
 - "A fresh nonce is generated and transmitted."
- Crucial to expressing this kind of properties is devising new logical quantifiers for *fresh* and *hidden* entities:
 - "There is a fresh (never used before) name such that ..."
 - "There is a hidden (unnamable) location such that ..."
 - N.B.: standard quantifiers are problematic. "There exists a sandbox containing the applet" is rather different from "There exists a fresh sandbox containing the applet" and from "There exists a hidden sandbox containing the applet".

Approach

- Use a specification logic grounded in an operational model of mobility. (So soundness is not an issue.)
- Express properties of dynamically changing structures of locations.
 - Previous work [POPL'00].
- Express properties of hidden names. We split it into two logical tasks:
 - Quantify over fresh names. We adopt [Gabbay-Pitts].
 - Reveal hidden names, so we can talk about them.
 - Combine the two, to quantify over hidden locations.
 "There is a hidden location ..." represented as:

"There is a fresh name that can be used to reveal (mention) the hidden name of a location ...".

Spatial Structures

• Our basic model of space is going to be *finite-depth edge-labeled unordered trees* (*c.f.* semistructured data, XML). For short: *spatial trees*, represented by a syntax of *spatial expressions*. Unbounded resources are represented by infinite branching:

Cambridge[Eagle[chair[0] | chair[0] | !glass[pint[0]]] | ...]

Ambient Structures

• These spatial expressions/trees are a subset of ambient expressions/trees, which can represent both the spatial and the temporal aspects of mobile computation.

• An ambient tree is a spatial tree with, possibly, threads at each node that can locally change the shape of the tree.

a[*c*[*out a. in b. P*]] | *b*[**0**]

Spatial Logics

- We want to describe mobile behaviors. The *ambient calculus* provides an operational model, where spatial structures (agents, networks, etc.) are represented by nested locations.
- We also want to specify mobile behaviors. To this end, we devise an *ambient logic* that can talk about spatial structures.

Mobility

a[*Q* | *c*[*out a. in b. P*]]

| *b*[*R*]

2003-03-17 16:49 Talk 7

a[Q]

| *c*[*in b*. *P*] | *b*[*R*]

Mobility

• *Mobility* is change of spatial structures over time.

2003-03-17 16:49 Talk 9

a[Q]

| *b*[*R* | *c*[**P**]]

Mobility

• *Mobility* is change of spatial structures over time.

Properties of Mobile Computation

- These often have the form:
 - Right now, we have a spatial configuration, and later, we have another spatial configuration.
 - E.g.: Right now, the agent is outside the firewall, ...

2003-03-17 16:49 Talk 10

Properties of Mobile Computation

- These often have the form:
 - Right now, we have a spatial configuration, and later, we have another spatial configuration.
 - E.g.: Right now, the agent is outside the firewall, and later (after running an authentication protocol), the agent is inside the firewall.

Modal Logics

- In a modal logic, the truth of a formula is relative to a state (called a *world*).
 - Temporal logic: current time.
 - Program logic: current store contents.
 - Epistemic logic: current knowledge. Etc.
- In our case, the truth of a *space-time modal formula* is relative to the *here and now* of a process.
 - The formula *n*[0] is read:

there is *here and now* an empty location called *n*

- The operator $n[\mathcal{A}]$ is a single step in space (akin to the temporal next), which allows us talk about that place one step down into n.
- Other modal operators talk about undetermined times (in the future) and undetermined places (in the location tree).

Logical Formulas

$\mathcal{A} \in \Phi ::=$	Formulas	ormulas $(\eta \text{ is a name } n \text{ or a variable } x)$			
Τ	true				
$\neg \mathcal{A}$	negation				
$\mathcal{A} \lor \mathcal{A}'$	disjunction				
0	void				
$\eta[\mathcal{A}]$	location	<i>Я</i> @η	location adjunct		
$\mathcal{A} \mathcal{A}'$	composition	$\mathcal{A} \triangleright \mathcal{A}$	composition adjunct		
$\eta \mathbb{R} \mathcal{A}$	revelation	$\mathcal{A} \oslash \eta$	revelation adjunct		
$\boldsymbol{\Diamond} \mathcal{A}$	somewhere m	somewhere modality			
$\Diamond \mathcal{A}$	sometime mo	sometime modality			
$\forall x.\mathcal{A}$	universal qua	universal quantification over names			

Simple Examples

 $\mathbf{0}: \quad p[\mathbf{T}] \mid \mathbf{T}$

there is a location p here (and possibly something else)

somewhere there is a location p

3: 2⇒□2

if there is a p somewhere, then forever there is a p somewhere

$\mathbf{4}: \quad p[q[\mathbf{T}] \mid \mathbf{T}] \mid \mathbf{T}$

there is a p with a child q here

5: **4**

somewhere there is a p with a child q

Examples

- $an n \triangleq n[\mathbf{T}] \mid \mathbf{T}$
- $no n \triangleq \neg an n$
- one $n \triangleq n[\mathbf{T}] \mid no n$
- $\mathcal{A}^{\forall} \triangleq \neg(\neg \mathcal{A} \mid \mathbf{T})$
- $(n[\mathbf{T}] \Rightarrow n[\mathcal{A}])^{\forall}$

there is now an *n* here there is now no *n* here there is now exactly one *n* here everybody here satisfies \mathcal{A} every *n* here satisfies \mathcal{A} every *n* everywhere satisfies \mathcal{A}

Satisfaction for Basic Trees

• **⊨ 0**

Satisfaction for Somewhere/Sometime

N.B.: instead of \$\langle \mathcal{P}\$ and \$\langle \mathcal{P}\$ we can use a "temporal next" operator omega, along with the existing "spatial next" operator n[\mathcal{P}], together with μ-calculus style recursive formulas.

2003-03-17 16:49 Talk 18

Intended Model: Ambient Calculus

$P \in \Pi ::=$	Processes	Ì	M ::=	Messages
(vn) P	restriction		n	name
0	inactivity	_	in M	entry capability
P P '	parallel	Location Trees	out M	exit capability
M [P]	ambient		open M	open capability
! <i>P</i>	replication)		3	empty path
<i>M.P</i>	exercise a ca	apability	<i>M.M</i> '	composite path
(n). P	input locally	r, bind to $n > A$	ctions	
(M)	output locall	y (async)		

 $n[] \triangleq n[\mathbf{0}]$

 $M \triangleq M.0$ (where appropriate)

Reduction Semantics

- A structural congruence relation $P \equiv Q$:
 - On spatial expressions, $P \equiv Q$ iff P and Q denote the same tree. So, the syntax modulo \equiv is a notation for spatial trees.
 - On full ambient expressions, $P \equiv Q$ if in addition the respective threads are "trivially equivalent".
 - Prominent in the definition of the logic.
- A reduction relation $P \rightarrow^* Q$:
 - Defining the meaning of mobility and communication actions.
 - Closed up to structural congruence:

 $P \equiv P', P' \longrightarrow^* Q', Q' \equiv Q \implies P \longrightarrow^* Q$

Reduction

• Four basic reductions plus propagation, rearrangement (composition with structural congruence), and transitivity.

n[in m. P Q] m[R]	$\rightarrow m[n[P \mid Q] \mid R]$	(Red In)
<i>m</i> [<i>n</i> [<i>out m</i> . <i>P</i> <i>Q</i>] <i>R</i>]	$\rightarrow n[P \mid Q] \mid m[R]$	(Red Out)
open m. P m[Q]	$\rightarrow P \mid Q$	(Red Open)
$(n).P \mid \langle M \rangle$	$\rightarrow P\{n \leftarrow M\}$	(Red Comm)
$P \rightarrow Q \Rightarrow (\nu n)P \rightarrow$	$(\forall n)Q$	(Red Res)
$P \to Q \implies n[P] \to r$	<i>1[Q]</i>	(Red Amb)
$P \to Q \Rightarrow P \mid R \to q$	QIR	(Red Par)
$P' \equiv P, P \longrightarrow Q, Q \equiv Q$	$P' \Rightarrow P' \rightarrow Q'$	(Red ≡)

 \rightarrow^* is the reflexive-transitive closure of \rightarrow

Structural Congruence

• Routine, but used heavily in the logic and semantics.

$$P \equiv P$$

$$P \equiv Q \implies Q \equiv P$$

$$P \equiv Q, Q \equiv R \implies P \equiv R$$

$$P \equiv Q, Q \equiv R \implies P \equiv R$$

$$P \equiv Q \implies (\forall n)P \equiv (\forall n)Q$$

$$P \equiv Q \implies P \mid R \equiv Q \mid R$$

$$P \equiv Q \implies P \mid R \equiv Q \mid R$$

$$P \equiv Q \implies M[P] \equiv M[Q]$$

$$P \equiv Q \implies M[P] \equiv M[Q]$$

$$P \equiv Q \implies (n).P \equiv (n).Q$$

$$\varepsilon.P \equiv P$$

$$(M.M').P \equiv M.M'.P$$

- (Struct Refl) (Struct Symm) (Struct Trans)
- (Struct Res)
- (Struct Par)
- (Struct Repl)
- (Struct Amb)
- (Struct Action)
- (Struct Input)
- (Struct ε) (Struct .)

$(\mathbf{v}n)0\equiv0$		(Struct Res Zero)
$(\vee n)(\vee m)P \equiv (\vee m)(\vee n)P$		(Struct Res Res)
$(\forall n)(P \mid Q) \equiv P \mid (\forall n)Q$	if <i>n ∉ fn(P</i>)	(Struct Res Par)
$(\forall n)(m[P]) \equiv m[(\forall n)P]$	if <i>n ≠ m</i>	(Struct Res Amb)
$P \mid Q \equiv Q \mid P$		(Struct Par Comm)
$(P \mid Q) \mid R \equiv P \mid (Q \mid R)$		(Struct Par Assoc)
$P \mid 0 \equiv P$		(Struct Par Zero)
$!(P \mid Q) \equiv !P \mid !Q$		(Struct Repl Par)
$!0 \equiv 0$		(Struct Repl Zero)
$!P \equiv P \mid !P$		(Struct Repl Copy)
$!P \equiv !!P$		(Struct Repl Repl)

• These axioms (particularly the ones for !) are sound and complete with respect to equality of spatial trees: edge-labeled finite-depth unordered trees, with infinite-branching but finitely many distinct labels under each node.

Satisfaction: Basic Tree Formulas

$P \models 0$	≜	$P \equiv 0$
$P \vDash n[\mathcal{A}]$	≜	$\exists P' \in \Pi. \ P \equiv n[P'] \land P' \models \mathcal{A}$
$P \models \mathcal{R} \mid \mathcal{B}$		$\exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models \mathcal{A} \land P'' \models \mathcal{B}$
P⊨A@n	≜	$n[P] \models \mathscr{R}$
₽⊨Я⊳₿	≜	$\forall P' \in \Pi. P' \models \mathscr{A} \Rightarrow P \mid P' \models \mathscr{B}$

- **0** : there is no structure here now.
- $n[\mathcal{A}]$: there is a location *n* with contents satisfying \mathcal{A} .
- $\mathcal{A} \mid \mathcal{B}$: there are two structures satisfying \mathcal{A} and \mathcal{B} .
- $\mathcal{A}@n$: when the current structure is placed in a location n, the resulting structure satisfies \mathcal{A} .
- $\mathcal{A} \triangleright \mathcal{B}$: when the current structure is composed with one satisfying \mathcal{A} , the resulting structures satisfies \mathcal{B} .

Meaning of Formulas: Satisfaction Relation

$P \models \mathbf{T}$		
$P \models \neg \mathscr{R}$	≜	$\neg P \vDash \mathscr{A}$
$P \vDash \mathscr{R} \lor \mathscr{B}$	≜	$P \models \mathscr{R} \lor P \models \mathscr{D}$
$P \models 0$	≜	$P \equiv 0$
$P \vDash n[\mathcal{A}]$		$\exists P' \in \Pi. \ P \equiv n[P'] \land P' \models \mathcal{A}$
P⊨A@n		$n[P] \models \mathcal{A}$
$P \models \mathcal{A} \mid \mathcal{B}$		$\exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models \mathcal{A} \land P'' \models \mathcal{B}$
₽⊨Я⊳₿		$\forall P' \in \Pi. P' \models \mathscr{R} \Rightarrow P \mid P' \models \mathscr{B}$
$P \vDash n \mathbb{R} \mathcal{A}$		$\exists P' \in \Pi. P \equiv (\forall n)P' \land P' \vDash \mathcal{A}$
$P \models \mathscr{A} \heartsuit n$		$(\forall n)P \vDash \mathscr{A}$
$P \vDash \diamondsuit \mathscr{R}$		$\exists P' \in \Pi. P \downarrow^* P' \land P' \models \mathscr{R}$
$P \models \Diamond \mathcal{A}$		$\exists P' \in \Pi. P \longrightarrow P' \land P' \vDash \mathcal{A}$
$P \vDash \forall x. \mathscr{A}$		$\forall m \in \Lambda. P \vDash \mathscr{R} \{ x \leftarrow m \}$

 $P \downarrow P'$ iff $\exists n, P''$. $P \equiv n[P'] \mid P''; \downarrow^*$ is the refl-trans closure of \downarrow

Basic Fact

• Satisfaction is invariant under structural congruence:

 $P \models \mathcal{A}, P \equiv P' \implies P' \models \mathcal{A}$

I.e.: $\{P \in \Pi \mid P \models \mathcal{A}\}$ is closed under \equiv .

- Hence, formulas describe congruence-invariant properties.
 - In particular, formulas describe properties of spatial trees.
 - N.B.: Most process logics describe bisimulation-invariant properties.
- Hence, formulas talk about *trees*.

From Satisfaction to (Propositional) Logic

Propositional validity

vld $\mathcal{A} \triangleq \forall P \in \Pi. P \models \mathcal{A}$ \mathcal{A} (closed) is valid

• Sequents

 $\mathcal{A} \vdash \mathcal{B} \quad \triangleq \quad \forall P \in \Pi. \ P \models \mathcal{A} \Longrightarrow P \models \mathcal{B}$

• Rules

 $\begin{aligned} &\mathcal{A}_1 \vdash \mathcal{B}_1; \dots; \mathcal{A}_n \vdash \mathcal{B}_n \\ &\mathcal{A}_1 \vdash \mathcal{B}_1 \land \dots \land \mathcal{A}_n \vdash \mathcal{B}_n \Longrightarrow \mathcal{A} \vdash \mathcal{B} \end{aligned} \qquad (n \ge 0)$

(N.B.: all the rules shown later are validated accordingly.)

- Conventions:
 - $\dashv \vdash$ means \vdash in both directions
 - {} means } in both directions

Obtaining...

- Logical axioms and rules.
 - Rules of propositional logic (standard).
 - Rules of location and composition $\Re | C \vdash \mathcal{B} \{ \} \Re \vdash C \triangleright \mathcal{B} \}$
 - Rules of revelation $\eta \otimes \mathcal{A} \vdash \mathcal{B} \{ \} \mathcal{A} \vdash \mathcal{B} \otimes \eta$ $\} (\neg \mathcal{A}) \otimes x \dashv \vdash \neg (\mathcal{A} \otimes x)$

I-▷ adjunction

 \mathbb{R} - \otimes adjunction

- \otimes is self-dual
- Rules of \diamondsuit and \diamondsuit modalities (standard S4, plus some)
- Rules of quantification (standard, but for name quantifiers)
- A large collection of logical consequences.

Rules: Propositional Calculus

- (A-L) $\Re(C \wedge \mathcal{D}) \vdash \mathcal{B} \{ \} (\Re(C) \wedge \mathcal{D} \vdash \mathcal{B} \}$
- (A-R) $\mathcal{A} \vdash (\mathcal{C} \lor \mathcal{D}) \lor \mathcal{B} \{ \mathcal{A} \vdash \mathcal{C} \lor (\mathcal{D} \lor \mathcal{B}) \}$
- (X-L) $\mathcal{A} \wedge \mathcal{C} \vdash \mathcal{B}$ $\mathcal{C} \wedge \mathcal{A} \vdash \mathcal{B}$
- (X-R) $\mathcal{A} \vdash C \lor \mathcal{B} \not \mathcal{A} \vdash \mathcal{B} \lor C$
- (C-L) $\mathcal{A} \land \mathcal{A} \vdash \mathcal{B} \neq \mathcal{A} \vdash \mathcal{B}$
- (C-R) $\mathcal{A} \vdash \mathcal{B} \lor \mathcal{B} \not \mathcal{A} \vdash \mathcal{B}$
- (W-L) $\mathcal{A} \vdash \mathcal{B} \neq \mathcal{A} \land \mathcal{C} \vdash \mathcal{B}$
- $(W-R) \quad \mathcal{A} \vdash \mathcal{B} \quad \Big\} \quad \mathcal{A} \vdash \mathcal{C} \lor \mathcal{B}$
- (Id) $\mathcal{A} \vdash \mathcal{A}$
- (Cut) $\mathcal{A} \vdash C \lor \mathcal{B}; \mathcal{A} \land C \vdash \mathcal{B}' \not \mathcal{A} \land \mathcal{A} \vdash \mathcal{B} \lor \mathcal{B}'$
- $(\mathbf{T}) \qquad \mathcal{A} \wedge \mathbf{T} \vdash \mathcal{B} \quad \Big\} \quad \mathcal{A} \vdash \mathcal{B}$
- (F) $\mathcal{A} \vdash \mathbf{F} \lor \mathcal{B} \not \mathcal{A} \vdash \mathcal{B}$
- $(\neg -L) \quad \mathcal{A} \vdash C \lor \mathcal{B} \quad \ \ \, \mathcal{A} \land \neg C \vdash \mathcal{B}$
- $(\neg -\mathbf{R}) \quad \mathcal{A} \land C \vdash \mathcal{B} \quad \Big\} \quad \mathcal{A} \vdash \neg C \lor \mathcal{B}$

Rules: Composition

 $(|0\rangle \ \mathcal{A}|0 \rightarrow \mathcal{A}$ **0** is nothing $(|\neg 0\rangle$ $\mathcal{A} |\neg 0 \vdash \neg 0$ if a part is non-0, so is the whole (A) $\mathcal{A} (\mathcal{B} \mathcal{C}) \rightarrow \mathcal{A} (\mathcal{B} \mathcal{C}) \rightarrow \mathcal{A} (\mathcal{A} \mathcal{B}) \mathcal{C}$ **l** associativity (X|) $\{\mathcal{A}|\mathcal{B} \vdash \mathcal{B}|\mathcal{A}\}$ I commutativity $(\mathsf{I}\vdash) \quad \mathcal{A} \vdash \mathcal{B}; \, \mathcal{A} \vdash \mathcal{B} \quad \mathsf{A} \vdash \mathcal{B} \quad \mathsf{A} \vdash \mathcal{B} \vdash \mathcal{B} \quad \mathsf{A} \vdash \mathcal{B} \vdash \mathcal{B} \quad \mathsf{A} \vdash \mathcal{B} \quad \mathsf{A$ I congruence $(|\vee\rangle)$ { $(\Re \vee \mathcal{B})|C \vdash \mathcal{A}|C \vee \mathcal{B}|C$ I-v distribution $(|||) \quad \left\{ \mathcal{A}' \mid \mathcal{A}'' \vdash \mathcal{A}' \mid \mathcal{B}'' \lor \mathcal{B}' \mid \mathcal{A}'' \lor \neg \mathcal{B}' \mid \neg \mathcal{B}'' \mid \neg \mathcal$ decomposition $(| \triangleright)$ $\Re | C \vdash B \{\} \Re \vdash C \triangleright B$ I-▷ adjunction if \mathcal{A} is unsatisfiable then \mathcal{A} is false $(\neg \triangleright \mathbf{F}) \ \mathcal{A}^{\mathbf{F}} \neg \vdash \mathcal{A}^{\mathbf{FF}}$ if \mathcal{A} is satisfiable then $\mathcal{A}^{\mathbf{F}}$ is unsatisfiable

where $\mathscr{A}^{\neg} \triangleq \neg \mathscr{A}$ and $\mathscr{A}^{\mathbf{F}} \triangleq \mathscr{A} \triangleright \mathbf{F}$

The Composition Adjunct

(ID) $\Re IC + \vartheta \{\} \Re + CD\vartheta$

"Assume that every process that has a partition into pieces that satisfy \mathcal{A} and C, also satisfies \mathcal{B} . Then, every process that satisfies \mathcal{A} , together with any process that satisfies C, satisfies \mathcal{B} . (And vice versa.)" (*c.f.* ($\neg \circ \mathbf{R}$))

- Interpretations of $\mathcal{A} \triangleright \mathcal{B}$:
 - **P** provides \mathcal{B} in any context that provides \mathcal{A}
 - **P** ensures \mathcal{B} under any attack that ensures \mathcal{A}

That is, $P \models \mathscr{P} \triangleright \mathscr{P}$ is a context-system spec (a concurrent version of a pre-post spec).

Moreover $\mathcal{A} \triangleright \mathcal{B}$ is, in a precise sense, linear implication: the context that satisfies \mathcal{A} is used exactly once in the system that satisfies \mathcal{B} .

Some Derived Rules

$\{ (\mathcal{A} \triangleright \mathcal{B}) \mid \mathcal{A} \vdash \mathcal{B} \}$

"If **P** provides \mathcal{B} in any context that provides \mathcal{A} , and **Q** provides \mathcal{A} , then **P** and **Q** together provide \mathcal{B} ."

• Proof: $\mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{A} \triangleright \mathcal{B}$ $(\mathcal{A} \triangleright \mathcal{B}) \mid \mathcal{A} \vdash \mathcal{B}$ by (Id), $(| \triangleright)$

$\mathcal{D} \vdash \mathcal{A}; \mathcal{B} \vdash C \neq \mathcal{D} \mid (\mathcal{A} \triangleright \mathcal{B}) \vdash C$

 $(c.f. (-\circ L))$

- "If anything that satisfies \mathcal{D} satisfies \mathcal{A} , and anything that satisfies \mathcal{B} satisfies C, then: anything that has a partition into a piece satisfying \mathcal{D} (and hence \mathcal{A}), and another piece satisfying \mathcal{B} in a context that satisfies \mathcal{A} , it satisfies (\mathcal{B} and hence) C."
- Proof:

 $D \vdash A$: $A \lor B \vdash A \lor B \ D \mid A \lor B \vdash A \mid A \lor B$ assumption, (Id), $(| \vdash)$ ALADB-B above $\mathcal{B} \vdash C$

assumption

More Derived Rules

 $\mathcal{A} \vdash \mathbf{T} \mid \mathcal{A}$ you can always add more pieces (if they are $\mathbf{0}$) $F | \mathcal{A} \vdash F$ if a piece is absurd, so is the whole $0 \vdash \neg (\neg 0 \mid \neg 0)$ **0** is single-threaded $\mathcal{A} \mid \mathcal{B} \land \mathbf{0} \vdash \mathcal{A}$ you can split (but you get). Proof uses (| ||) $\mathcal{A} \vdash \mathcal{A}; \mathcal{B} \vdash \mathcal{B}' \neq \mathcal{A} \triangleright \mathcal{B} \vdash \mathcal{A} \triangleright \mathcal{B}'$ \triangleright is contravariant on the left $A \supset B \mid B \supset C \vdash A \supset C$ \triangleright is transitive $\{ (\mathcal{A} \mid \mathcal{B}) \triangleright \mathcal{C} \vdash \mathcal{A} \triangleright (\mathcal{B} \triangleright \mathcal{C}) \}$ curry/uncurry $\mathcal{A} \supset (\mathcal{B} \triangleright \mathcal{C}) \vdash \mathcal{B} \triangleright (\mathcal{A} \triangleright \mathcal{C})$ contexts commute $T \rightarrow T \to T$ truth can withstand any attack $T \vdash \mathbf{F} \triangleright \mathcal{A}$ anything goes if you can find an absurd partner

 $T \triangleright \mathcal{A} \vdash \mathcal{A}$

if \mathcal{P} resists any attack, then it holds

Rules: Location

 $(n[] \neg 0) \quad \begin{cases} n[\mathcal{A}] \vdash \neg 0 \\ n[] \neg 1 \end{pmatrix} \quad \begin{cases} n[\mathcal{A}] \vdash \neg (\neg 0 \mid \neg 0) \end{cases}$

 $(n[] \vdash) \qquad \mathcal{A} \vdash \mathcal{B} \{ \} n[\mathcal{A}] \vdash n[\mathcal{B}] \\ (n[] \land) \qquad \} n[\mathcal{A}] \land n[C] \vdash n[\mathcal{A} \land C] \\ (n[] \lor) \qquad \} n[C \lor \mathcal{B}] \vdash n[C] \lor n[\mathcal{B}]$

locations exist are not decomposable

n[] congruence $n[]-\land$ distribution $n[]-\lor$ distribution

 $(n[] @) \quad n[\mathcal{A}] \vdash \mathcal{B} \{\} \ \mathcal{A} \vdash \mathcal{B} @ n$ $(\neg @) \quad \} \ \mathcal{A} @ n \dashv \vdash \neg ((\neg \mathcal{A}) @ n)$

n[]-@ adjunction@ is self-dual

2003-03-17 16:49 Talk 34

Some Derived Rules

 $\mathcal{A} \vdash \mathcal{B} \ \mathcal{A} \otimes n \vdash \mathcal{B} \otimes n$

@ congruence

- $n[\mathcal{A}@n] \vdash \mathcal{A}$
- } A -⊩ n[A]@n
- $n[\neg \mathcal{A}] \vdash \neg n[\mathcal{A}]$
- $-n[\mathcal{A}] \rightarrow -n[\mathbf{T}] \lor n[-\mathcal{A}]$

Rules: Time and Space Modalities

(�)	┟╲ℛ╶╟╴╶┓┓─Я	(�)	┟�ℛ⊣⊢¬¤¬ℛ
(□ K)	} ⊡(A⇒B) ⊢ ⊡A⇒⊡B	(¤K)	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(□ T)	ץ םא⊢ <i>א</i>	(¤ T)	} ¤Я⊢Я
(□ 4)	} oЯ⊢ ooЯ	(¤4)	} ¤Я⊢ ¤¤Я
(□ T)	} T ⊢ □ T	(¤ T)	T⊢ ⊐T
(□⊢)	𝒫⊢𝒫 \ פ𝒫⊢ פ𝔅	(∀⊢)	$\mathcal{A} \vdash \mathcal{B} \neq \mathcal{A} \vdash \mathcal{A} \mathcal{B}$
(�n[])	$n[\Diamond \mathcal{A}] \vdash \Diamond n[\mathcal{A}]$	(◇ <i>n</i> [])	$n[\diamond \mathcal{A}] \vdash \diamond \mathcal{A}$
(\$1)	$\diamond \mathcal{A} \diamond \mathcal{B} \vdash \diamond (\mathcal{A} \mid \mathcal{B})$	(∻I)	} �Я ₿⊢ �(Я Т)
(��)	}		

S4, but not S5: $\neg vld \diamond \mathcal{A} \vdash \Box \diamond \mathcal{A} \qquad \neg vld \diamond \mathcal{A} \vdash \Box \diamond \mathcal{A}$ ($\diamond \diamond$): if somewhere sometime \mathcal{A} , then sometime somewhere \mathcal{A}
Equality

• Name equality can be defined within the logic:

 $\eta = \mu \triangleq \eta[T]@\mu$

Since (for any substitution applied to η, μ): $P \models \eta[\mathbf{T}] @ \mu$ iff $\mu[P] \models \eta[\mathbf{T}]$ iff $\eta = \mu \land P \models \mathbf{T}$ iff $\eta = \mu$

• Example: "Any two ambients here have different names": $\forall x.\forall y. x[\mathbf{T}] \mid y[\mathbf{T}] \mid \mathbf{T} \Rightarrow \neg x = y$

Ex: Immovable Object vs. Irresistible Force

- $Im \triangleq \mathbf{T} \triangleright \Box(obj[] \mid \mathbf{T})$
- $Ir \triangleq \mathbf{T} \triangleright \Box \diamondsuit \neg (obj[] \mid \mathbf{T})$
- $Im \mid Ir \vdash (\mathbf{T} \triangleright \Box(obj[] \mid \mathbf{T})) \mid \mathbf{T}$
 - $\vdash \Box(obj[] \mid \mathbf{T})$
 - $\vdash \Diamond \Box(obj[] \mid \mathbf{T})$
- $Im \mid Ir \vdash \mathbf{T} \mid (\mathbf{T} \triangleright \Box \diamondsuit \neg (obj[] \mid \mathbf{T}))$
 - $\vdash \Box \Diamond \neg (obj[] \mid \mathbf{T})$
 - $\vdash \neg \Diamond \Box(obj[] \mid \mathbf{T})$

Hence: $Im \mid Ir \vdash \mathbf{F}$

 $\begin{array}{l} \mathcal{A}\vdash\mathbf{T} \\ (\mathcal{A}\triangleright\mathcal{B})\,|\,\mathcal{A}\vdash\mathcal{B} \\ \mathcal{A}\vdash\Diamond\mathcal{A} \end{array}$ $\begin{array}{l} \mathcal{A}\vdash\mathbf{T} \\ \Diamond\neg\mathcal{A}\vdash\neg\Box\mathcal{A} \end{array}$

 $\Box \neg \mathcal{A} \vdash \neg \Diamond \mathcal{A}$

 $\mathcal{A} \wedge \neg \mathcal{A} \vdash \mathbf{F}$

Restriction

• (vn)P

- "The name *n* is known only inside *P*."
- "Create a <u>new</u> name *n* and use it in *P*."
- It *extrudes* (floats) because it represents knowledge, not behavior:

```
(\forall n)P \equiv (\forall m)(P\{n \leftarrow m\})

(\forall n)0 \equiv 0

(\forall n)(\forall m)P \equiv (\forall m)(\forall n)P

(\forall n)(P \mid Q) \equiv (\forall m)P \mid Q \text{ if } n \notin fn(Q)

a.k.a. (\forall n)(P \mid (\forall n)Q') \equiv (\forall n)P \mid (\forall n)Q'

(\forall n)(m[P]) \equiv m[(\forall n)P] \text{ if } n \neq m

scope extrusion
```

- Used initially to represent private channels.
- Later, to represent private names of any kind: Channels, Locations, Nonces, Cryptokeys, ...

Revelation

 $P \vDash n \otimes \mathcal{A} \quad \triangleq \quad \exists P' \in \Pi. \ P \equiv (\forall n) P' \land P' \vDash \mathcal{A}$

- $n \mathbb{R} \mathcal{A}$ is read, informally:
 - *Reveal* a private name as n and check that the revealed process satisfies \mathcal{A} .
 - Pull out (by extrusion) a (∇n) binder, and check that the process stripped of the binder satisfies \mathcal{A} .
- Examples:
 - *n*®*n*[**0**]: reveal a restricted name (say, *p*) as *n* and check the presence of an empty *n* location in the revealed process.

 $(vp)p[\mathbf{0}] \vDash n \otimes n[\mathbf{0}]$ because $(vp)p[\mathbf{0}] \equiv (vn)n[\mathbf{0}]$ and $n[\mathbf{0}] \vDash n[\mathbf{0}]$

Derived Formulas: Revelation

- closed $\triangleq \neg \exists x. @x$ $P \vDash iff \neg \exists n \in \Lambda. n \in fn(P)$
- separate $\triangleq \neg \exists x. @x | @x$ $P \models iff \neg \exists n \in \Lambda, P' \in \Pi, P'' \in \Pi.$ $P \equiv P' | P'' \land n \in fn(P') \land n \in fn(P'')$
- Examples:
 - $n[] \models \mathbb{O}n$
 - $(vp)p[] \vDash closed$
 - $n[] \mid m[] \vDash separate$

2003-03-17 16:49 Talk 41

Revelation Rules

- Some mirror properties of restriction:
 - $x \otimes x \otimes \mathcal{A} \rightarrow x \otimes \mathcal{A}$
 - $\begin{array}{l} x \otimes y \otimes \mathcal{A} \dashv \vdash y \otimes x \otimes \mathcal{A} \end{array}$
 - $x \mathbb{B}(\mathcal{A} \mid x \mathbb{B}^{\mathcal{B}}) \dashv \vdash x \mathbb{B}^{\mathcal{A}} \mid x \mathbb{B}^{\mathcal{B}}$

(scope extrusion)

- Some behave well with logical operators:

 - $\mathcal{A} \vdash \mathcal{B} \ x \mathbb{R} \mathcal{A} \vdash x \mathbb{R} \mathcal{B}$
- Some deal with the adjunction:
 - $\eta \otimes \mathcal{A} \vdash \mathcal{B} \{ \} \mathcal{A} \vdash \mathcal{B} \otimes \eta$
 - $\left\{ (\neg \mathcal{A}) \otimes x \dashv \vdash \neg (\mathcal{A} \otimes x) \right\}$
 - $\{ (\mathcal{A} \mid \mathcal{B}) \otimes x \vdash \mathcal{A} \otimes x \mid \mathcal{B} \otimes x$
 - $x \mathbb{R}((\mathcal{A} \mid \mathcal{B}) \otimes x) \dashv x \mathbb{R}(\mathcal{A} \otimes x) \mid x \mathbb{R}(\mathcal{B} \otimes x)$

Rules: Revelation

- (**B**) $\begin{cases} x \otimes x \otimes \mathcal{A} \rightarrow \mathcal{A} \\ x \otimes \mathcal{A} & \mathcal{A} \end{cases}$
- $(\mathbb{R} \mathbb{R}) \quad \Big\{ x \mathbb{R} y \mathbb{R} \mathcal{A} \vdash y \mathbb{R} x \mathbb{R} \mathcal{A} \Big\}$
- $(\mathbb{R} \lor) \quad \Big\{ x \mathbb{R}(\mathcal{A} \lor \mathcal{B}) \vdash x \mathbb{R} \mathcal{A} \lor x \mathbb{R} \mathcal{A} \Big\}$
- $(\mathbb{R} \vdash) \qquad \mathcal{A} \vdash \mathcal{B} \quad x \mathbb{R} \mathcal{A} \vdash x \mathbb{R} \mathcal{B}$
- ($\mathbb{B} \bigcirc$) $\eta \mathbb{B} \mathcal{A} \vdash \mathcal{B} \{ \mathcal{A} \vdash \mathcal{B} \bigcirc \eta \}$
- $(\bigcirc \neg)$ } $(\neg \mathscr{A}) \oslash x \dashv \neg (\mathscr{A} \oslash x)$

In the second second

(® ()	} x®0 ⊣⊢ 0		®∕⊙-0 rules
(00)	$0 \otimes x \vdash 0$		
(®) (○) (® ○)	$\begin{cases} x \otimes (\mathcal{A} \mid x \otimes \mathcal{B}) \rightarrow \vdash x \otimes \mathcal{A} \\ (\mathcal{A} \mid \mathcal{B}) \otimes x \vdash \mathcal{A} \otimes x \mid \mathcal{B} \\ x \otimes ((\mathcal{A} \mid \mathcal{B}) \otimes x) \vdash x \otimes (\mathcal{A} \mid \mathcal{B}) \\ \end{cases}$	x®B Sx 7Ox) x®(BOx)	®∕⊙-l rules
(® n[]) (⊙ n[]) (⊙ n[])	$ \begin{array}{l} x \otimes y[\mathcal{A}] \dashv \vdash y[x \otimes \mathcal{A}] \\ y[\mathcal{A}] \otimes x \vdash y[\mathcal{A} \otimes x] \\ x[\mathcal{A}] \otimes x \vdash \mathbf{F} \end{array} $	$(x \neq y)$ $(x \neq y)$	®/⊙-n[-] rules

Fresh-Name Quantifier

 $P \models \forall x. \mathcal{A} \triangleq \exists m \in \Lambda. m \notin fn(P, \mathcal{A}) \land P \models \mathcal{A} \{x \leftarrow m\}$

- C.f.: $P \models \exists x. \mathcal{A} \text{ iff } \exists m \in \Lambda. P \models \mathcal{A} \{x \leftarrow m\}$
- Actually definable (metatheoretically, as an abbreviation):

 $\forall x.\mathcal{A} \triangleq \exists x. \ x \# (fnv(\mathcal{A}) - \{x\}) \land x \circledast \mathbf{T} \land \mathcal{A}$

Provided we add the axiom schema:

(GP) $\exists x. x \# N \land x \circledast \mathbf{T} \land \mathcal{A} \dashv \vdash \forall x. (x \# N \land x \circledast \mathbf{T}) \Rightarrow \mathcal{A}$ where $N \supseteq fnv(\mathcal{A}) \cdot \{x\}$ and $x \notin N$

Fundamental "freshness" property (Gabbay-Pitts):

Vx. \mathscr{A} iff ∃*m*∈ Λ . *m*∉*fn*(*P*, \mathscr{A}) ∧ *P* ⊨ \mathscr{A} {*x*←*m*} iff ∀*m*∈ Λ . *m*∉*fn*(*P*, \mathscr{A}) ⇒ *P* ⊨ \mathscr{A} {*x*←*m*} because any fresh name is as good as any other.

- Very nice logical properties:
 - $\quad \forall x. \mathcal{A} \vdash \mathsf{N} x. \mathcal{A} \vdash \exists x. \mathcal{A}$
 - $\neg Nx.\mathcal{A} \dashv \vdash Nx.\neg \mathcal{A}$
 - $\mathsf{N}x.(\mathcal{A} | \mathcal{B}) \to \mathsf{H} (\mathsf{N}x.\mathcal{A}) | (\mathsf{N}x.\mathcal{B})$
 - $\Diamond \mathsf{N} x. \mathscr{A} \dashv \mathsf{H} \mathsf{N} x. \Diamond \mathscr{A}$

(hint: (GP) \exists for \Rightarrow , \forall for \Leftarrow)

Hidden-Name Quantifier

 $\mathbf{H}x.\mathcal{A} \triangleq \mathbf{V}x.x\mathbf{B}\mathcal{A}$

 $P \models Hx.\mathcal{A}$ iff

 $\exists m \in \Lambda, P' \in \Pi. \ m \notin fn(\mathcal{A}) \land P \equiv (\vee m)P' \land P' \vDash \mathcal{A} \{x \leftarrow m\}$

- Example: Hx.x[] = Vx.x@x[]
 - "for hidden x, we find a void location called x" = "for fresh x, we reveal a hidden name as x, then we find a void location x"
 - $(\forall n)n[] \vDash Hx.x[]$ because $(\forall n)n[] \vDash Vx.x@x[]$ because $(\forall n)n[] \vDash n@n[]$ (where $n \notin fn((\forall n)n[])$).

• Counterexamples:

- $(\nabla m)m[] \nvDash Hx.n[]$ (N.B.: this holds for $Hx.\mathcal{A} \triangleq \exists x.x \otimes \mathcal{A} !$)
- $(\forall n)n[] \mid (\forall n)n[] \nvDash Hx.(x[] \mid x[])$
- $(\forall n)(n[] \mid n[]) \nvDash Hx.x[] \mid Hx.x[]$

Forget $n \otimes \mathcal{A}$ and $\mathcal{N}x.\mathcal{A}$, why not just use $Hx.\mathcal{A}$?

• Consider:

 $\begin{array}{l} & (X \cdot x \cdot B) \\ \neg \vdash & (X \cdot x \cdot B) \\ \neg \vdash & (X \cdot x \cdot B) \\ \neg \vdash & (X \cdot x \cdot B) \\ \end{array}$

- That is: $Hx.(\mathcal{A} \mid x \otimes \mathcal{B}) \dashv \vdash Hx.\mathcal{A} \mid Hx.\mathcal{B}$
- Hence, the scope extrusion rule for **H** still uses **®**.

No matter what one choses as primitives, we have explored interesting connections between these operators. (I/+R) and H+C are *almost* interdefinable [Caires].)

Example: Key Sharing

• Consider a situation where "a hidden name x is shared by two locations n and m, and is <u>not known</u> outside those locations".

Hx.(n[@x] | m[@x])

• $P \vDash Hx.(n[@x] \mid m[@x])$

 $\Leftrightarrow \exists r \in \Lambda. \ r \notin fn(P) \cup \{n,m\} \land \exists R', R'' \in \Pi. \ P \equiv (\forall r)(n[R'] \mid m[R'']) \\ \land r \in fn(R') \land r \in fn(R'')$

- E.g.: take P = (vp) (n[p[]] | m[p[]]).
- A protocol establishing a shared key should satisfy:

Hx.(n[@x] | m[@x])

From Logic back to Types

- A logic is just a very rich type system.
 - Type systems are very "structural" (i.e., the structure of types reflects closely the structure of values). Our logic is extremely structural (intensional) for a logic. It is in fact almost as structural as a type system.
 - Type systems for process calculi often have a parallel composition operation on types. I.e., they are "spatial" in our sense.
 - Therefore, our work may help in discerning patterns in the large and diverse collection of type systems for process calculi. These usually become particularly tangled when trying to handle restriction.
- Suppose that *P* : \mathcal{A} means that process *P* may have "effects" \mathcal{A} , where an effect is any kind of information about the behavior of *P* that one may want to track statically. Then the following kind of typing rules happen:
 - Effects may be composed: $\Gamma \vdash P : \mathcal{A}, \ \Gamma \vdash Q : \mathcal{B} \ \ \Gamma \vdash P \mid Q : \mathcal{A} \mid \mathcal{B}$
 - Effects may be hidden: $\Gamma, n: \mathcal{A} \vdash P : \mathcal{B}\{x \leftarrow n\} \ \ \Gamma \vdash (\forall n: \mathcal{A})P : Hx: \mathcal{A}.\mathcal{B}$
 - C.f. Kobayashi: behavioral type systems. C.f. "exchange types" for Ambients.

Applications

- Modelchecking security+mobility assertions:
 - If *P* is !-free and \mathcal{A} is \triangleright -free, then $P \vDash \mathcal{A}$ is decidable.
 - This provides a way of mechanically checking (certain) assertions about (certain) mobile processes.
 - Expressing mobility/security policies of host sites. (Conferring more flexibility than just sandboxing the agent.)
 - Just-in-time verification of code containing mobility instructions (by either modelchecking or proof-carrying code).
- Expressing properties of type systems (beyond subject reduction).
 - Expressing Locking
 - If *E*, *n*:*Amb*•[*S*] ⊢ *P* : *T* (a typing judgment asserting that no ambient called *n* can ever be opened in *P*), then:

 $P \vDash \Box(\diamondsuit an \ n \Rightarrow \Box \diamondsuit an \ n)$

- Expressing Immobility
 - If *E*, *p*:*Amb*•[*S*], *q*:*Amb*•[[⊻]*S*'] ⊢ *P* : *T* (a typing judgment asserting that no ambient called *q* can ever move within *P*), then:

 $P \vDash \Box(\diamondsuit(p \text{ parents } q) \Rightarrow \Box \diamondsuit(p \text{ parents } q))$ where p parents $q \triangleq p[q[\mathbf{T}] | \mathbf{T}] | \mathbf{T}$

03-03-17 16:49 Talk 51

Conclusions

- The novel aspects of our logic lie in its explicit treatment of space and of the evolution of space over time (mobility).
- We can now talk also about fresh and hidden locations.
- These ideas can be applied to any process calculus that embodies a distinction between spatial and temporal operators, and a restriction operator.
- Our logical rules arise from a particular model. This approach makes the logic very concrete (and sound), but raises questions of logical completeness.

Logical Properties of Name Restriction

Exercise

- Show that { (𝔅 | 𝔅) ∧ 0 ⊢ 𝔅 is valid (by applying the definition of sequent and of satisfaction). The proof is short. In the process, you will discover you need a little ambient calculus lemma about P | Q ≡ 0; you do not need to prove it but you need to identify it.
- (Hard/Optional)
 Find a formal derivation of *Y*(𝔅 𝔅 𝔅) ∧ 𝔅 𝑉 𝔅 from the axioms in the slides.
 (My) proof uses the decomposition axiom, (| ||).

Semantics

- Version 1 [Cardelli-Gordon]
 - For the restriction-free ambient calculus.
 - Formulas denote sets of processes that are closed under structural congruence.
- Version 2 [Cardelli-Gordon]
 - For the ambient calculus with restriction.
 - Formulas denote sets of processes that are closed under structural congruence. Freshness handled "metatheoretically".
- Version 3 [Caires-Cardelli]
 - To handle both restriction and recursive formulas, and to handle freshness "properly". (For the π -calculus, for simplicity.)
 - Formulas denote sets of processes that are closed under congruence and that have *finite support* (are closed under transpositions outside of a finite set *N* of names).

A Good Property

A property not shared by other candidate definitions, such as ∃x.x®A and ∀x.x®A. This is even derivable within the logic:

 $Hx.(\mathcal{A}\{n \leftarrow x\}) \land n \mathbb{B}\mathbf{T} \dashv \vdash n \mathbb{B}\mathcal{A} \quad \text{where } x \notin fv(\mathcal{A})$

• It implies:

 $P \vDash \mathcal{A} \implies (\forall n)P \vDash \operatorname{Hx.}(\mathcal{A}\{n \leftarrow x\})$

 $P \vDash \operatorname{Hx.}(\mathcal{A}\{n \leftarrow x\}) \land n \notin fn(P) \implies P \vDash n \otimes \mathcal{A}$

 $P \vDash n \otimes \mathcal{A} \implies P \vDash Hx.(\mathcal{A}\{n \leftarrow x\})$

A Surprising Property

$\mathbf{H} x. \mathcal{R} \not\vdash \mathcal{R} \quad \text{for } x \notin f v(\mathcal{R})$

• Ex.: $Hx.(\neg 0 | \neg 0) \not\vdash \neg 0 | \neg 0$

If for a hidden x the inner system can be decomposed into two non-void parts, it does not mean that the whole system can be decomposed, because the two parts may be entangled by restriction:

 $(\forall n)(n[] \mid n[]) \vDash \forall x.x \otimes (\neg 0 \mid \neg 0)$ but: $(\forall n)(n[] \mid n[]) \nvDash \neg 0 \mid \neg 0.$

- This is \mathbb{R} 's fault, not \mathbb{N} 's: with the same counterexample we can show $n\mathbb{R}(\neg 0 | \neg 0) \not\vdash \neg 0 | \neg 0$.
- However, $Hx.0 \vdash 0$.
- Moreover, $\mathcal{A} \vdash Hx.\mathcal{A}$ for $x \notin fv(\mathcal{A})$.

Satisfaction for Hidden-Name Quantification

- It makes sense also to define a *hidden name quantifier* $Hx.\mathcal{A}$:
 - $n\mathbb{R}\mathcal{A}$: reveal a hidden name <u>if possible</u> as a given *n*, and assert $\mathcal{A}\{n\}$.
 - Hx. \mathcal{A} : reveal a hidden name as <u>any fresh</u> name x and assert $\mathcal{A}{x}$.

$$\begin{array}{c}
\begin{array}{c}
n\\
\end{array}\\
P\end{array} &\models Hx.\mathcal{R} & \text{if} \\
\begin{array}{c}
\end{array} &\swarrow P \\
P \\
\end{array} &\models \mathcal{R}\{x \leftarrow n\} \\
\end{array}$$
with $n \notin fn(\mathcal{R})$

- Design decision: how to define $Hx.\mathcal{A}$, keeping in mind that "freshness" may spill into the logic?
 - *The Obvious Thing*: extend the syntax with $Hx.\mathcal{A}$ and define it directly.
 - *Luis Caires:* Extend the syntax with Hx.𝔅 and add signatures to keep track of free names, to enforce the side condition n∉fn(𝔅): Σ•P ⊨ Σ•𝔅.
 - Us: Retain $n \otimes \mathcal{A}$ and mix it with a logical notions of freshness $\mathcal{N}x.\mathcal{A}$ (one extra axiom schema, no new syntax). We eventually define: $Hx.\mathcal{A} \triangleq \mathcal{N}x.x\otimes \mathcal{A}$.

The Decomposition Operator

• Consider the De Morgan dual of | :

ЯIB	$\triangleq \neg (\neg \mathcal{A} \mid \neg \mathcal{B})$	$P \vDash \text{-iff } \forall P', P'' \in \Pi. P \equiv P' P'' \Rightarrow$
		$P' \vDash \mathscr{A} \lor P'' \vDash \mathscr{B}$
\mathscr{A}^{\forall}	≜ <i>Я</i> ∥ F	$P \vDash \text{-} \text{iff } \forall P', P'' \in \Pi. P \equiv P' P'' \Rightarrow P' \vDash \mathscr{A}$
Ħ	≜ 🕫 I T	$P \vDash \text{-} \text{iff } \exists P', P'' \in \Pi. P \equiv P' P'' \land P' \vDash \mathscr{A}$
	$\mathcal{A} \parallel \mathcal{B}$	for every partition, one piece satisfies \mathcal{P}
	$\mathcal{A}^{\forall} \Leftrightarrow \neg((\neg \mathcal{A})^{\exists})$	every component satisfies \mathcal{A}
	$\mathscr{A}^{\exists} \Leftrightarrow \neg((\neg \mathscr{A})^{\forall})$	some component satisfies \mathcal{A}
Examp	oles:	
	$(p[\mathbf{T}] \Rightarrow p[q[\mathbf{T}]^{\exists}])$	\forall every <i>p</i> has a <i>q</i> child

 $(p[\mathbf{T}] \Rightarrow p[q[\mathbf{T}] \mid (\neg q[\mathbf{T}])^{\forall}])^{\forall}$ every p has a unique q child

The Decomposition Axiom

$(|||) \quad \left\{ (\mathcal{A}'|\mathcal{A}'') \vdash (\mathcal{A}'|\mathcal{B}'') \lor (\mathcal{B}'|\mathcal{A}'') \lor (\neg \mathcal{B}'|\neg \mathcal{B}'') \right\}$

- Alternative formulations and special cases:
 - $\left\{ \begin{array}{c} (\mathcal{A}^{'} \mid \mathcal{A}^{''}) \land (\mathcal{B}^{'} \mid \mathcal{B}^{''}) \vdash (\mathcal{A}^{'} \mid \mathcal{B}^{''}) \lor (\mathcal{B}^{'} \mid \mathcal{A}^{''}) \\ \end{array} \right.$

"If P has a partition into pieces that satisfy \mathcal{A} and \mathcal{A} , and every partition has one piece that satisfies \mathcal{B} or the other that satisfies \mathcal{B} , then either P has a partition into pieces that satisfy \mathcal{A} and \mathcal{B} , or it has a partition into pieces that satisfy \mathcal{B} and \mathcal{A} ."

$$\left\{ \neg(\mathcal{A} \mid \mathcal{B}) \vdash (\mathcal{A} \mid \mathbf{T}) \Rightarrow (\mathbf{T} \mid \neg \mathcal{B}) \right\}$$

"If *P* has no partition into pieces that satisfy \mathcal{A} and \mathcal{B} , but *P* has a piece that satisfies \mathcal{A} , then *P* has a piece that does not satisfy \mathcal{B} ."

$$\big\} \neg (\mathbf{T} \mid \mathcal{B}) \vdash \mathbf{T} \mid \neg \mathcal{B}$$

$$\ \ \neg (\mathcal{A} \mid \mathcal{B}) \vdash (\neg \mathcal{A} \mid \mathbf{T}) \lor (\mathbf{T} \mid \neg \mathcal{B})$$

Logical Adjunctions

- This is a logic with multiple logical adjunctions (4 of them!):
 - \wedge / \Rightarrow (classical)
 - $\mathcal{A} \land \mathcal{C} \vdash \mathcal{B} \quad \text{iff} \quad \mathcal{A} \vdash \mathcal{C} \Rightarrow \mathcal{B}$
 - $| / \triangleright$ (linear, \otimes / \multimap)
 - $\mathcal{A} \mid C \vdash \mathcal{B}$ iff $\mathcal{A} \vdash C \triangleright \mathcal{B}$
 - *n*[-] / -@*n*
 - $n[\mathcal{A}] \vdash \mathcal{B} \quad \text{iff} \quad \mathcal{A} \vdash \mathcal{B}@n$
 - $n\mathbb{R}$ -/- $\bigcirc n$
 - $n \otimes \mathcal{A} \vdash \mathcal{B}$ iff $\mathcal{A} \vdash \mathcal{B} \otimes n$
- Which one should be taken as *the* logical adjunction for sequents? (I.e., what should "," mean in a sequent?)
- We do not choose, and take sequents of the form $\mathcal{A} \vdash \mathcal{B}$.

"Neutral" Sequents

- Our logic is formulated with single-premise, singleconclusion sequents. We don't pre-judge ",".
 - By taking ∧ on the left and ∨ on the right of ⊢ as structural operators, we can derive all the standard rules of sequent and natural deduction systems with multiple premises/conclusions.
 - By taking I on the left of ⊢ as a structural operator, we can derive all the rules of intuitionistic linear logic (by appropriate mappings of the ILL connectives).
 - By taking nestings of ∧ and | on the left of ⊢ as structural "bunches", we obtain a bunched logic, with its two associated implications, ⇒ and ▷.
- This is convenient. We do not know much, however, about the meta-theory of this presentation style.

Ambient Calculus: Example

The packet msg moves from a to b, mediated by the capabilities *out* a (to exit a), *in* b (to enter b), and *open* msg (to open the msg envelope).

 $a[msg[\langle M \rangle \mid out \ a. in \ b. \ P]] \quad | \ b[open \ msg. \ (n). \ P]$ $(exit) \rightarrow a[] \quad | \ msg[\langle M \rangle \mid in \ b. \ P] \quad | \ b[open \ msg. \ (n). \ P]$ $(enter) \rightarrow a[] \quad | \ b[msg[\langle M \rangle] \mid open \ msg. \ (n). \ P]$ $(open) \rightarrow a[] \quad | \ b[\langle M \rangle] \mid (n). \ P]$ $(read) \rightarrow a[] \quad | \ b[P\{n \leftarrow M\}]$

Connections with Intuitionistic Linear Logic

- Weakening and contraction are not valid rules: principle of *conservation of space*.
- Semantic connection: sets of processes closed under ≡ and ordered by inclusion form a quantale (a model of ILL).
- Multiplicative intuitionistic linear logic (MILL) can be faithfully embedded in our logic:

MILL rules and our rules are interderivable ("our rules" means the rules involving only 0, |, \triangleright , plus a derivable cut rule for |).

2003-03-17 16:49 Talk 64 • Full intuitionistic linear logic (ILL) can be embedded:

1 _{ILL} ≜	0	$\mathcal{A} \oplus \mathcal{B}$		$\mathcal{A} \lor \mathcal{B}$
	F	A& B	≜	$\mathcal{A} \wedge \mathcal{B}$
T _{ILL} ≜	Τ	$\mathcal{A}\otimes\mathcal{B}$	≜	AB
	F	$\mathcal{A} \multimap \mathcal{B}$	≜	$\mathcal{A} \triangleright \mathcal{B}$
		!A	≜	$0 \land (0 \Rightarrow \mathcal{R})^{\neg \mathbf{I}}$

- The rules of ILL can be logically derived from these definitions. (E.g.: the proof of !𝔅 ⊢ !𝔅 ⊗ !𝔅 uses the decomposition axiom.)
- So, $\mathcal{A}_1, ..., \mathcal{A}_n \vdash_{\mathrm{ILL}} \mathcal{B}$ implies $\mathcal{A}_1 \mid ... \mid \mathcal{A}_n \vdash \mathcal{B}$.
- Some discrepancies: ⊥_{ILL} = 0_{ILL}; the additives distribute;
 !A is not "replication"; !A→B is not so interesting; A⊥/A⁰ is unusually interesting.

Connection with Relevant Logic

(Noted after the fact [O'Hearn, Pym].) The definition of the satisfaction relation is very similar to Urquhart's semantics of relevant logic. In particular *A* | *B* is defined just like *intensional conjunction*, and *A*⊳*B* is defined just like *relevant implication* in that semantics.

• Except:

- We do not have contraction. This does not make sense in process calculi, because P | P ≠ P. Urquhart semantics without contraction does not seem to have been studied.
- We use an equivalence ≡, instead of a Kripke-style partial order ø as in Urquhart's general case. (We may have a need for a partial order in more sophisticated versions of our logic.)

Connections with Bunched Logic

- Peter O'Hearn and David Pym study *bunched logics*, where sequents have two structural combinators, instead of the standard single "," combinator (usually meaning ∧ or ⊗ on the left) found in most presentations of logic. Thus, sequents are *bunches* of formulas, instead of lists of formulas. Correspondingly, there are two implications that arise as the adjuncts of the two structural combinators.
- The situation is very similar to our combinators | and ∧, which can combine to irreducible bunches of formulas in sequents, and to our two implications ⇒ and ▷. However, we have a classical and a linear implication, while bunched logics have so far had an intuitionistic and a linear implication.

Semantic Connections with the Linear Logic

• A (commutative) quantale Q is a structure

 $<S \in Set, \le S^2 \rightarrow Bool, \forall \in \mathcal{P}(S) \rightarrow S, \otimes \in S^2 \rightarrow S, 1 \in S > such that:$

 \leq , \bigvee is a complete join semilattice

 \otimes , 1 is a commutative monoid

 $p \otimes \bigvee Q = \bigvee \{p \otimes q \, \| \, q \in Q\}$

• They are complete models of Intuitionistic Linear Logic (ILL):

 $\begin{bmatrix} \mathscr{A} \oplus \mathscr{B} \end{bmatrix} \stackrel{\wedge}{=} \bigvee \{ \llbracket \mathscr{A} \rrbracket, \llbracket \mathscr{B} \rrbracket \} \qquad \qquad \begin{bmatrix} \mathbf{1}_{\mathrm{ILL}} \rrbracket \stackrel{\wedge}{=} 1 \\ \llbracket \mathscr{A} \& \mathscr{B} \rrbracket \stackrel{\wedge}{=} \bigvee \{ \mathscr{C} \lVert \mathscr{C} \leq \llbracket \mathscr{A} \rrbracket \land \mathscr{C} \leq \llbracket \mathscr{B} \rrbracket \} \qquad \qquad \llbracket \bot_{\mathrm{ILL}} \rrbracket \stackrel{\wedge}{=} \text{ any element of } S \\ \llbracket \mathscr{A} \otimes \mathscr{B} \rrbracket \stackrel{\wedge}{=} \llbracket \mathscr{A} \rrbracket \otimes \llbracket \mathscr{B} \rrbracket \qquad \qquad \llbracket \mathsf{T}_{\mathrm{ILL}} \rrbracket \stackrel{\wedge}{=} \bigvee S \\ \llbracket \mathscr{A} \multimap \mathscr{B} \rrbracket \stackrel{\wedge}{=} \bigvee \{ \mathscr{C} \lVert \mathscr{C} \otimes \llbracket \mathscr{A} \rrbracket \leq \llbracket \mathscr{B} \rrbracket \} \qquad \qquad \llbracket \mathbf{0}_{\mathrm{ILL}} \rrbracket \stackrel{\wedge}{=} \bigvee \mathscr{S} \\ \llbracket \mathscr{A} \rrbracket \stackrel{\wedge}{=} \upsilon X. \llbracket \mathbf{1} \& \mathscr{A} \& X \otimes X \rrbracket \text{ where } \upsilon X. A \{ X \} \stackrel{\wedge}{=} \bigvee \{ \mathscr{C} \rVert \mathscr{C} \leq A \{ C \} \}$

 $\mathbf{vld}_{\mathrm{ILL}}(\mathscr{A}_{1},...,\mathscr{A}_{n}\vdash_{\mathrm{ILL}}\mathscr{B})_{Q} \triangleq [\![\mathscr{A}_{1}]\!]_{Q}\otimes_{Q}...\otimes_{Q}[\![\mathscr{A}_{n}]\!]_{Q}\leq_{Q}[\![\mathscr{B}]\!]_{Q}$

The Process Quantale

• The sets of processes closed under \equiv and ordered by inclusion form a quantale (let $A^{\equiv} \triangleq \{P \mid \exists Q \in A. P \equiv Q\}$):

$$\Theta \triangleq \langle \Phi, \subseteq, \bigcup, \otimes, \mathbf{1} \rangle$$
 where, for $A, B \subseteq \Pi$:

 $\Phi \triangleq \{A^{\equiv} \, \| \, A \subseteq \Pi\}$

$$1_{\Theta} \triangleq \{\mathbf{0}\}^{\equiv}$$

 $A \otimes_{\Theta} B \triangleq \{P \mid Q \mid P \in A \land Q \in B\}^{\equiv}$

• ILL validity in Θ :

 $\begin{aligned} \mathbf{vld}_{\mathrm{ILL}}(\mathcal{A}_{1}, \dots, \mathcal{A}_{n} \vdash_{\mathrm{ILL}} \mathcal{B})_{\Theta} \\ \Leftrightarrow \quad [\mathcal{A}_{1}] \otimes_{\Theta} \dots \otimes_{\Theta} [\mathcal{A}_{n}] \subseteq [\mathcal{B}] \\ \Leftrightarrow \quad [\mathcal{A}_{1} \mid \dots \mid \mathcal{A}_{n}] \subseteq [\mathcal{B}] \\ \Leftrightarrow \quad [\mathcal{A}_{1} \mid \dots \mid \mathcal{A}_{n}] \cup [\mathcal{B}] = \Pi \\ \Leftrightarrow \quad (\Pi - [\mathcal{A}_{1} \mid \dots \mid \mathcal{A}_{n} \Rightarrow \mathcal{B}] = \Pi \end{aligned}$

Process Domain

• Semantic domain: Θ

 $\begin{array}{ll} \Pi & \triangleq & \text{the set of process expressions} \\ \forall C \subseteq \Pi. & C^{\equiv} & \triangleq & \{P \in \Pi \mid \exists P' \in C. \ P' \equiv P\} \\ \Phi & \triangleq & \{C^{\equiv} \mid C \subseteq \Pi\} \end{array}$

The domain Θ is both a quantale $(1, \otimes, \subseteq, \bigcup)$ and a boolean algebra $(\emptyset, \Pi, \cup, \cap, \Pi^{-})$. It has additional structure induced by n[P] and $(\forall n)P$.

• Spatial operators over Θ :

	1	≜	{0} [≡]
$\forall C, D \in \Theta.$	C⊗D	≜	$\{P Q \mid P \in C \land Q \in D\}^{\equiv}$
$\forall n \in \Lambda, C \in \Theta.$	<i>n</i> [<i>C</i>]	≜	$\{n[P] \mid P \in C\}^{\equiv}$
$\forall n \in \Lambda, C \in \Theta.$	n®C	≜	$\{(\forall n)P \mid P \in C\}^{\equiv}$

Semantics of Revelation

$n \mathbb{B}C \triangleq \{(\forall n)P \parallel P \in C\}^{\equiv}$

- This means: take all processes of the form $(\forall n)P$ (*not* up to renaming of *n*), remove the ones such that $P \notin C$, and \equiv -close the result (thus adding all the α -variants).
- *n***®***C* is read, informally:
 - *Reveal* a private name as *n* and check that the contents are in *C*.
 - Pull (by \equiv) a ($\vee n$) binder at the top and check the rest is in *C*.
- Ex.: n®n[1]: reveal a private name (say, p) as n and check that there is an empty n ambient in the revealed process.
 (vp)p[0] ∈ n®n[1] because (vp)p[0] ≡ (vn)n[0] and n[0] ∈ n[1]

- More examples of $n \otimes C \triangleq \{v_n\} P || P \in C\}^{\equiv}$:
 - $\mathbf{0} \in n \mathbb{R}^1$ because $\mathbf{0} \equiv (\mathbf{v}n)\mathbf{0}$ and $\mathbf{0} \in 1$
 - $m[\mathbf{0}] \in n \otimes \Pi$ because $m[\mathbf{0}] \equiv (vn)m[\mathbf{0}]$ and $m[\mathbf{0}] \in \Pi$
 - $n[\mathbf{0}] \notin n \otimes \Pi$ because $n[\mathbf{0}] \not\equiv (\forall n) \dots$
- Therefore, $n \otimes C$ is:
 - closed under α -variants
 - closed under ≡-variants
 - not closed under changes in the set of free names
 - not closed under reduction (free names may disappear)
 - not closed under any equivalence that includes reduction
 - still ok for temporal reasoning: $\neg n \mathbb{R} \mathcal{A} \land \Diamond n \mathbb{R} \mathcal{A}$
Semantics of the Logic

≜	Π
≜	$\Pi - \llbracket \mathscr{R} \rrbracket$
≜	$\llbracket \mathcal{A} \rrbracket \cup \llbracket \mathcal{B} \rrbracket$
≜	1
≜	n[[A]]
≜	$\bigcup \{ C \in \Theta \mid n[C] \subseteq \llbracket \mathcal{A} \rrbracket \}$
≜	
≜	$\bigcup \{ C \in \Theta \mid C \otimes \llbracket \mathcal{A} \rrbracket \subseteq \llbracket \mathcal{B} \rrbracket \}$
≜	n®[A]
≜	$\bigcup \{ C \in \Theta \mid n \otimes C \subseteq \llbracket \mathcal{A} \rrbracket \}$
≜	$\{P \in \Pi \mid \exists P' \in \Pi. P \downarrow^* P' \land P' \in \llbracket \mathcal{A} \rrbracket\}$
≜	$\{P \in \Pi \mid \exists P' \in \Pi. P \rightarrow P' \land P' \in \llbracket \mathcal{A} \rrbracket\}$
≜	$\bigcap_{m \in \Lambda} \llbracket \mathscr{A} \{ x \leftarrow m \} \rrbracket$

 $P \downarrow P'$ iff $\exists n, P''$. $P \equiv n[P'] \mid P''; \downarrow^*$ is the refl-trans closure of \downarrow

Basic Fact

• Formulas describe only congruence-invariant properties:

$\forall \mathcal{R} \in \Phi. \llbracket \mathcal{R} \rrbracket \in \Theta$

Recovering the Satisfaction Relation

$P \vDash \mathscr{A} \triangleq P \in \llbracket \mathscr{A} \rrbracket$

- The properties of satisfaction for each logic constructs are then derivable.
- This approach to defining satisfaction is particularly good for introducing recursive formulas in the logic: it is easy to give them semantics as least and greatest fixpoints in the model, while it is not easy to define them directly via a satisfaction relation.