
Part 4Part 4
Spatial LogicsSpatial Logics

Luca CardelliLuca Cardelli
AndyAndy Gordon | Luis CairesGordon | Luis Caires

2003-03-17 16:49

Talk 2

Properties of Secure Mobile ComputationProperties of Secure Mobile Computation
•• We would like to express properties of unique, private, We would like to express properties of unique, private,

hidden, and secret hidden, and secret namesnames::
•• ““The applet is placed in a private sandbox.The applet is placed in a private sandbox.””
•• ““The key exchange happens in a secret location.The key exchange happens in a secret location.””
•• ““A shared private key is established between two locations.A shared private key is established between two locations.””
•• ““A fresh nonce is generated and transmitted.A fresh nonce is generated and transmitted.””

•• Crucial to expressing this kind of properties is devising Crucial to expressing this kind of properties is devising
new logical quantifiers for new logical quantifiers for freshfresh and and hiddenhidden entities:entities:
•• ““There is a fresh (never used before) name such that There is a fresh (never used before) name such that …”…”
•• ““There is a hidden (unnamable) location such that There is a hidden (unnamable) location such that …”…”
•• N.B.: standard quantifiers are problematic. N.B.: standard quantifiers are problematic. ““There exists a There exists a

sandbox containing the appletsandbox containing the applet”” is rather different from is rather different from ““There There
exists a fresh sandbox containing the appletexists a fresh sandbox containing the applet”” and from and from ““There There
exists a hidden sandbox containing the appletexists a hidden sandbox containing the applet””..

2003-03-17 16:49

Talk 3

ApproachApproach
•• Use a specification logic grounded in an operational model Use a specification logic grounded in an operational model

of mobility. (So soundness is not an issue.)of mobility. (So soundness is not an issue.)

•• Express properties of dynamically changing structures of Express properties of dynamically changing structures of
locations.locations.
•• Previous work [POPLPrevious work [POPL’’00].00].

•• Express properties of hidden names. We split it into two Express properties of hidden names. We split it into two
logical tasks:logical tasks:
•• Quantify over fresh names. We adopt [GabbayQuantify over fresh names. We adopt [Gabbay--Pitts].Pitts].
•• Reveal hidden names, so we can talk about them.Reveal hidden names, so we can talk about them.
•• Combine the two, to quantify over hidden locations. Combine the two, to quantify over hidden locations.

““There is a hidden location There is a hidden location …”…” represented as:represented as:
““There is a fresh name that can be used to reveal (mention) the There is a fresh name that can be used to reveal (mention) the

hidden name of a location hidden name of a location …”…”..

2003-03-17 16:49

Talk 4

Spatial StructuresSpatial Structures
•• Our basic model of space is going to be Our basic model of space is going to be finitefinite--depth edgedepth edge--labeled labeled

unordered treesunordered trees ((c.f.c.f. semistructured data, XML). For short: semistructured data, XML). For short: spatial spatial
treestrees, represented by a syntax of , represented by a syntax of spatial expressionsspatial expressions. Unbounded . Unbounded
resources are represented by infinite branching:resources are represented by infinite branching:

CambridgeCambridge

chairchairchairchair glassglass

pintpint pintpint pintpint

glassglass glassglass

EagleEagle

......

......

CambridgeCambridge[[EagleEagle[[chairchair[[00] |] | chairchair[[00] |] | !!glassglass[[pintpint[[00]]] | ...]]]] | ...]

2003-03-17 16:49

Talk 5

Ambient StructuresAmbient Structures
•• These spatial expressions/trees are a subset of ambient These spatial expressions/trees are a subset of ambient

expressions/trees, which can represent both the spatial and expressions/trees, which can represent both the spatial and
the temporal aspects of mobile computation.the temporal aspects of mobile computation.

•• An ambient tree is a spatial tree with, possibly, threads at An ambient tree is a spatial tree with, possibly, threads at
each node that can locally change the shape of the tree.each node that can locally change the shape of the tree.

cc

aa bb

�
Thread

aa[[cc[[out a. in b. Pout a. in b. P]]]] | b| b[[00]]

2003-03-17 16:49

Talk 6

Spatial LogicsSpatial Logics
•• We want to describe mobile behaviors. The We want to describe mobile behaviors. The ambient calculusambient calculus

provides an operational model, where spatial structures (agents,provides an operational model, where spatial structures (agents,
networks, etc.) are represented by nested locations.networks, etc.) are represented by nested locations.

•• We also want to specify mobile behaviors. To this end, we deviseWe also want to specify mobile behaviors. To this end, we devise an an
ambient logicambient logic that can talk about spatial structures.that can talk about spatial structures.

ProcessesProcesses FormulasFormulas

00 (void)(void) 00 (there is nothing here)(there is nothing here)

nn[[PP]] (location)(location) nn[[��]] (there is one thing here)(there is one thing here)

P P | | QQ (composition)(composition) �� | | �� (there are two things here)(there are two things here)

PP QQ
(composition)(composition)

PP

nn

(void)(void) (location)(location)

TreesTrees

2003-03-17 16:49

Talk 7

MobilityMobility
•• MobilityMobility is change of spatial structures over time.is change of spatial structures over time.

�

�

aa
cc

cc

aa bb

�

�

bb

aa[[Q | cQ | c[[out a. in b. Pout a. in b. P]]]]

� �

| b| b[[RR]]

2003-03-17 16:49

Talk 8

MobilityMobility
•• MobilityMobility is change of spatial structures over time.is change of spatial structures over time.

�

aa

ccaa bb

�

�

cc

�

bb

� �

aa[[QQ]] | b| b[[RR]]| c| c[[in b. Pin b. P]]

2003-03-17 16:49

Talk 9

MobilityMobility
•• MobilityMobility is change of spatial structures over time.is change of spatial structures over time.

�

aa

cc

aa bb

�

�

�

bb
cc

� �

aa[[QQ]] | b| b[[R | cR | c[[PP]]]]

2003-03-17 16:49

Talk 10

Properties of Mobile ComputationProperties of Mobile Computation

agentagent firewallfirewall

� �

NowNow

These often have the form:These often have the form:
Right now, we have a spatial configuration, and later, we have Right now, we have a spatial configuration, and later, we have
another spatial configuration.another spatial configuration.
E.g.: Right now, the agent is outside the firewall, E.g.: Right now, the agent is outside the firewall, ……

2003-03-17 16:49

Talk 11

Properties of Mobile ComputationProperties of Mobile Computation
These often have the form:These often have the form:

Right now, we have a spatial configuration, and later, we have Right now, we have a spatial configuration, and later, we have
another spatial configuration.another spatial configuration.
E.g.: Right now, the agent is outside the firewall, and later (aE.g.: Right now, the agent is outside the firewall, and later (after fter
running an authentication protocol), the agent is inside the running an authentication protocol), the agent is inside the
firewall.firewall.

agentagent

firewallfirewall

�

�

LaterLater

2003-03-17 16:49

Talk 12

Modal LogicsModal Logics
•• In a modal logic, the truth of a formula is relative to a state In a modal logic, the truth of a formula is relative to a state

(called a (called a worldworld).).
•• Temporal logic: current time.Temporal logic: current time.
•• Program logic: current store contents.Program logic: current store contents.
•• Epistemic logic: current knowledge. Etc.Epistemic logic: current knowledge. Etc.

•• In our case, the truth of a In our case, the truth of a spacespace--time modal formulatime modal formula is is
relative to the relative to the here and nowhere and now of a process. of a process.
•• The formula The formula nn[[00]] is read: is read:

there is there is here and nowhere and now an empty location called an empty location called nn
•• The operator The operator nn[[��]] is a single step in space (akin to the temporal is a single step in space (akin to the temporal

next), which allows us talk about that place one step down into next), which allows us talk about that place one step down into nn..
•• Other modal operators talk about undetermined times (in the Other modal operators talk about undetermined times (in the

future) and undetermined places (in the location tree).future) and undetermined places (in the location tree).

2003-03-17 16:49

Talk 13

Logical FormulasLogical Formulas
�� �� ΦΦ ::=::= FormulasFormulas ((η η is a name is a name nn or a variable or a variable xx))

TT truetrue
¬¬�� negationnegation

�� ∨∨ ���� disjunctiondisjunction

00 voidvoid
ηη[[��]] locationlocation

�� | | ���� compositioncomposition

ηη®®�� revelationrevelation

��@@ηη location adjunctlocation adjunct

�������� composition adjunctcomposition adjunct

����ηη revelation adjunctrevelation adjunct

���� somewhere modalitysomewhere modality

���� sometime modalitysometime modality

��xx..�� universal quantification over namesuniversal quantification over names

2003-03-17 16:49

Talk 14

Simple ExamplesSimple Examples
��:: pp[[TT]] | | TT

there is a location there is a location pp here (and possibly something else)here (and possibly something else)

��:: ����

somewhere there is a location somewhere there is a location pp

�� :: �� �� ����
if there is a if there is a pp somewhere, then forever there is a somewhere, then forever there is a pp somewheresomewhere

��:: pp[[qq[[TT] |] | TT] |] | TT
there is a there is a pp with a child with a child qq herehere

��:: ����

somewhere there is a somewhere there is a pp with a child with a child qq

2003-03-17 16:49

Talk 15

ExamplesExamples

• an n � n[T] | T there is now an n here

• no n � ¬an n there is now no n here

• one n � n[T] | no n there is now exactly one n here

� � �� � ¬(¬� | T) everybody here satisfies �

• (n[T] � n[�])�� every n here satisfies �

• ��((n[T] � n[�])��) every n everywhere satisfies �

2003-03-17 16:49

Talk 16

Satisfaction for Basic TreesSatisfaction for Basic Trees

�� 00

PP QQ �� �� | | �� ifif PP �� �� QQ �� ��andand

PP

nn
�� nn[[��]] ifif �� ��PP

PP

nn
�� ��ifif�� ��@@nnPP

PP QQ �� ��if for allif for allPP �� ������ QQ �� �� we havewe have

2003-03-17 16:49

Talk 17

Satisfaction for Somewhere/SometimeSatisfaction for Somewhere/Sometime

•• N.B.: instead of N.B.: instead of ������and and ������we can use a we can use a ““temporal nexttemporal next””
operator operator ����, along with the existing , along with the existing ““spatial nextspatial next”” operator operator nn[[��]], ,
together with together with µµ--calculus style recursive formulas. calculus style recursive formulas.

PP
�� ���� �� ��QQifif

�� ����PP

QQ

�� ��QQQQPPifif andand	

	

��**

2003-03-17 16:49

Talk 18

Satisfaction for RevelationSatisfaction for Revelation
•• Trees with hidden labels:Trees with hidden labels:

PP �� nn®®�� ifif �� ��PP

==PP

mm

PP{{mm��

nn}}

nn

nn

PP �� ��ifif�� ����nnPP

nn

Etc.Etc.

Not possible if Not possible if
nn is free!is free!

PP

mm nn

== PP

mm

nn
((nn≠≠mm))

2003-03-17 16:49

Talk 19

Intended Model: Ambient CalculusIntended Model: Ambient Calculus
PP �� ΠΠ ::=::= ProcessesProcesses

((ννnn))PP restrictionrestriction

00 inactivityinactivity

PP | | PP’’ parallelparallel

MM[[PP]] ambientambient

!!PP replicationreplication

MM..PP exercise a capabilityexercise a capability

((nn).).PP input locally, bind toinput locally, bind to nn

��MM�� output locally (async)output locally (async)

MM ::=::= MessagesMessages

nn namename

in Min M entry capabilityentry capability

out Mout M exit capabilityexit capability

open Mopen M open capabilityopen capability

εε empty pathempty path

M.MM.M’’ composite pathcomposite path

nn[][] �� nn[[00]]

MM �� MM..00 (where appropriate)(where appropriate)

LocationLocation
TreesTrees

ActionsActions

2003-03-17 16:49

Talk 20

Reduction SemanticsReduction Semantics
•• A structural congruence relation A structural congruence relation P P ����QQ: :

•• On spatial expressions, On spatial expressions, P P ����QQ iff iff PP and and QQ denote the same tree. denote the same tree.
So, the syntax moduloSo, the syntax modulo ����is a notation for spatial trees. is a notation for spatial trees.

•• On full ambient expressions, On full ambient expressions, P P ����QQ if in addition the respective if in addition the respective
threads are threads are ““trivially equivalenttrivially equivalent””..

•• Prominent in the definition of the logic.Prominent in the definition of the logic.

•• A reduction relation A reduction relation P P 	

	

��** QQ: :
•• Defining the meaning of mobility and communication actions.Defining the meaning of mobility and communication actions.
•• Closed up to structural congruence:Closed up to structural congruence:

P P ����PP’’, , PP’’ 	

	

��** QQ’’, , QQ’’ ����QQ �� P P 	

	

��** QQ

2003-03-17 16:49

Talk 21

ReductionReduction
•• Four basic reductions plus propagation, rearrangement Four basic reductions plus propagation, rearrangement

(composition with structural congruence), and transitivity.(composition with structural congruence), and transitivity.

nn[[inin mm. . PP | | QQ] |] | mm[[RR]] 	

	

�� mm[[nn[[PP | | QQ] |] | RR]]
mm[[nn[[outout mm. . PP | | QQ] |] | RR]] 	

	

�� nn[[PP | | QQ] |] | mm[[RR]]
open mopen m. . PP | | mm[[QQ]] 	

	

�� PP | | QQ
((nn).).PP | | ��MM�� 	

	

�� PP{{nn←←MM}}

PP 	

	

�� QQ �� ((ννnn))PP 	

	

�� ((ννnn))QQ
PP 	

	

�� QQ �� nn[[PP]] 	

	

�� nn[[QQ]]
PP 	

	

�� QQ �� PP | | RR 	

	

�� QQ | | RR

PP’’ �� PP, , PP 	

	

�� QQ, , QQ �� QQ’’ �� PP’’ 	

	

�� QQ’’

(Red In)(Red In)
(Red Out)(Red Out)
(Red Open)(Red Open)
(Red (Red CommComm))

(Red Res)(Red Res)
(Red Amb)(Red Amb)
(Red Par)(Red Par)

(Red (Red ��))

	

	

��** is the reflexiveis the reflexive--transitive closure of transitive closure of 	

	

��

2003-03-17 16:49

Talk 22

Structural CongruenceStructural Congruence
•• Routine, but used heavily in the logic and semantics.Routine, but used heavily in the logic and semantics.

PP �� PP
PP �� QQ �� QQ �� PP
PP �� QQ, , QQ �� RR �� PP �� RR

PP �� QQ �� ((ννnn))PP �� ((ννnn))QQ
PP �� QQ �� PP | | RR �� QQ | | RR
PP �� QQ �� !!PP �� !!QQ
PP �� QQ �� MM[[PP]] �� MM[[QQ]]
PP �� QQ �� MM..PP �� MM..QQ
PP �� QQ �� ((nn).).PP �� ((nn).).QQ

εε..PP �� PP
((MM..MM’’).).PP �� MM..MM’’..PP

(Struct (Struct ReflRefl))
(Struct (Struct SymmSymm))
(Struct Trans)(Struct Trans)

(Struct Res)(Struct Res)
(Struct Par)(Struct Par)
(Struct (Struct ReplRepl))
(Struct Amb)(Struct Amb)
(Struct Action)(Struct Action)
(Struct Input)(Struct Input)

(Struct (Struct εε))
(Struct .)(Struct .)

2003-03-17 16:49

Talk 23

((ννnn))00 �� 00
((ννnn)()(ννmm))PP �� ((ννmm)()(ννnn))PP
((ννnn)()(PP | | QQ)) �� PP | (| (ννnn))QQ if if nn �� fnfn((PP))
((ννnn)()(mm[[PP])]) �� mm[([(ννnn))PP]] if if nn ≠≠ mm

PP | | QQ �� QQ | | PP
((PP | | QQ) |) | RR �� PP | (| (QQ | | RR))
PP | | 00 �� PP

!!((PP | | QQ)) �� !!PP | | !!QQ
!0!0 �� 00
!!PP �� PP | | !!PP
!!PP �� !!!!PP

(Struct Res Zero)(Struct Res Zero)
(Struct Res (Struct Res ResRes))
(Struct Res Par)(Struct Res Par)
(Struct Res Amb)(Struct Res Amb)

(Struct Par (Struct Par CommComm))
(Struct Par Assoc)(Struct Par Assoc)
(Struct Par Zero)(Struct Par Zero)

(Struct (Struct ReplRepl Par)Par)
(Struct (Struct ReplRepl Zero)Zero)
(Struct (Struct ReplRepl Copy)Copy)
(Struct (Struct ReplRepl ReplRepl))

•• These axioms (particularly the ones for These axioms (particularly the ones for !!) are sound and complete with) are sound and complete with
respect to equality of spatial trees: edgerespect to equality of spatial trees: edge--labeled finitelabeled finite--depth unordered trees, depth unordered trees,
with infinitewith infinite--branching but finitely many distinct labels under each node.branching but finitely many distinct labels under each node.

2003-03-17 16:49

Talk 24

Satisfaction: Basic Tree FormulasSatisfaction: Basic Tree Formulas

•• 00 : there is no structure here now.: there is no structure here now.
•• nn[[��]] : there is a location : there is a location nn with contents satisfying with contents satisfying ��..

�� �� | | �� : there are two structures satisfying : there are two structures satisfying �� and and ��..

�� ��@@nn : when the current structure is placed in a location : when the current structure is placed in a location nn, ,
the resulting structure satisfies the resulting structure satisfies ��..

�� ������ : when the current structure is composed with one : when the current structure is composed with one
satisfying satisfying ��, the resulting structures satisfies , the resulting structures satisfies ��..

PP �� 00
PP �� nn[[��]]
PP �� �� | | ��

PP �� ��@@nn
PP �� ������

�� P P �� 00
�� ��PP’’��ΠΠ. P . P �� nn[[PP’’]] ∧∧ PP’’ �� ��

�� ��PP’’,P,P””��ΠΠ. P . P �� PP’’ | | PP”” ∧∧ PP’’ �� �� ∧∧ PP”” �� ��

�� nn[[PP]] �� ��

�� ��PP’’��ΠΠ. . PP’’ �� �� �� P | PP | P’’ �� ��

2003-03-17 16:49

Talk 25

Meaning of Formulas: Satisfaction RelationMeaning of Formulas: Satisfaction Relation
PP �� TT
PP �� ¬¬��

PP �� �� ∨∨ ��

PP �� 00
PP �� nn[[��]]
PP �� ��@@nn
PP �� �� | | ��
PP �� ������

PP �� nn®®��

PP �� ����nn
PP �� ����

PP �� ����

PP �� ��xx..��

�� ¬¬ PP �� ��

�� PP �� �� ∨∨ PP �� ��

�� P P �� 00
�� ��PP’’��ΠΠ. P . P �� nn[[PP’’]] ∧∧ PP’’ �� ��

�� nn[[PP]] �� ��

�� ��PP’’,P,P””��ΠΠ. P . P �� PP’’ | | PP”” ∧∧ PP’’ �� �� ∧∧ PP”” �� ��

�� ��PP’’��ΠΠ. . PP’’ �� �� �� P | PP | P’’ �� ��

�� ��PP’’��ΠΠ. P . P �� ((ννnn))PP’’ ∧∧ PP’’ �� ��

�� ((ννnn))PP �� ��

�� ��PP’’��ΠΠ. P. P��**PP’’ ∧∧ PP’’ �� ��

�� ��PP’’��ΠΠ. P. P	

	

��**PP’’ ∧∧ PP’’ �� ��

�� ��mm��ΛΛ. . PP �� ��{{xx←←←←←←←←mm}}

PP��PP’’ iffiff ��n,Pn,P””. P . P �� nn[[PP’’]] | P| P””; ; ��** is the is the reflrefl--trans closure of trans closure of ��

2003-03-17 16:49

Talk 26

Basic FactBasic Fact
•• Satisfaction is invariant under structural congruence:Satisfaction is invariant under structural congruence:

PP �� ��, , P P �� PP’’ �� PP’’ �� ��

I.e.: {I.e.: {PP��Π Π �� PP �� ��} is closed under } is closed under ��..

•• Hence, formulas describe congruenceHence, formulas describe congruence--invariant properties. invariant properties.
•• In particular, formulas describe properties of spatial trees.In particular, formulas describe properties of spatial trees.
•• N.B.: Most process logics describe bisimulationN.B.: Most process logics describe bisimulation--invariant invariant

properties.properties.

•• Hence, formulas talk about Hence, formulas talk about treestrees..

2003-03-17 16:49

Talk 27

From Satisfaction to (Propositional) LogicFrom Satisfaction to (Propositional) Logic
•• Propositional validityPropositional validity

vldvld �� �� ��PP��ΠΠ. . P P �� �� �� (closed) is valid(closed) is valid

•• SequentsSequents
������

 �� �� ��PP��ΠΠ. . P P �� �� �� P P �� ��

•• RulesRules
��11 ��

 ��11; ...; ; ...; ��nn ��

 ��nn �������� ������

 �� �� ((nn≥≥0)0)

��11 ��

 ��11 ∧∧ ∧∧ ��nn ��

 ��nn �� ������

 ��

(N.B.: all the rules shown later are validated accordingly.)(N.B.: all the rules shown later are validated accordingly.)

•• Conventions:Conventions:

 		����

 meansmeans ��

 in both directionsin both directions

�� ���������������� meansmeans �������� in both directionsin both directions

2003-03-17 16:49

Talk 28

ObtainingObtaining……
•• Logical axioms and rules.Logical axioms and rules.

•• Rules of propositional logic (standard).Rules of propositional logic (standard).
•• Rules of location and compositionRules of location and composition

�� | | �� ��

 �� ���������������� �� ��

 ������ ||--�� adjunctionadjunction

•• Rules of revelationRules of revelation
ηη®®������

 �� ���������������� �� ��

 ����ηη ®®--�� adjunctionadjunction
�������� ((¬¬��))��xx 		����

 ¬¬((����xx)) �� is selfis self--dualdual

•• Rules of Rules of �� and and �� modalities (standard S4, plus some)modalities (standard S4, plus some)
•• Rules of quantification (standard, but for name quantifiers)Rules of quantification (standard, but for name quantifiers)

•• A large collection of logical consequences.A large collection of logical consequences.

2003-03-17 16:49

Talk 29

Rules: Propositional CalculusRules: Propositional Calculus
(A(A--L)L) ��∧∧((��∧∧��)) ��

 �� ���������������� ((��∧∧��))∧∧������

 ��

(A(A--R)R) ������

 ((��∨∨��))∨∨�� ���������������� ������

 ��∨∨((��∨∨��))
(X(X--L)L) ��∧∧������

 �� �������� ��∧∧������

 ��

(X(X--R)R) ������

 ��∨∨�� �������� ������

 ��∨∨��
(C(C--L)L) ��∧∧������

 �� �������� ������

 ��

(C(C--R)R) ������

 ��∨∨�� �������� ������

 ��

(W(W--L)L) ������

 �� �������� ��∧∧������

 ��
(W(W--R)R) ������

 �� �������� ������

 ��∨∨��
(Id)(Id) �������� ������

 ��

(Cut)(Cut) ������

 ��∨∨��;; ����∧∧������

 ���� �������� ��∧∧���� ��

 ��∨∨����

((TT)) ��∧∧TT ��

 �� �������� �� ��

 ��

((FF)) ������

 FF∨∨�� �������� �� ��

 ��

((¬¬--L)L) ������

 ��∨∨�� �������� ��∧¬∧¬������

 ��

((¬¬--R)R) ��∧∧������

 �� �������� ������

 ¬¬��∨∨��

2003-03-17 16:49

Talk 30

Rules: CompositionRules: Composition
(| (| 00)) �������� �� | | 00 		����

 �� 00 is nothingis nothing
(| (| ¬¬00)) �������� �� | | ¬¬00 ��

 ¬¬00 if a part is nonif a part is non--00, so is the whole, so is the whole

(A |)(A |) �������� �� | (| (�� | | ��)) 		����

 ((�� | | ��) |) | �� | | associativityassociativity
(X |)(X |) �������� �� | | �� ��

 �� | | �� | | commutativitycommutativity
(| (| ��

)) ���� ��

 ����;; ���� ��

 ���� �������� ���� | | ���� ��

 ���� | | ���� | congruence| congruence
(| (| ∨∨)) �������� ((��∨∨��) |) | �� ��

 �� | | ����∨∨ �� | | �� ||--∨∨ distributiondistribution

(| ||)(| ||) �������� ���� | | ���� ��

 ���� | | ���� ∨∨ ���� | | ���� ∨∨ ¬¬���� | | ¬¬���� decompositiondecomposition
((| | ��)) �� | | �� ��

 �� ���������������� �� ��

 ������ ||--�� adjunctionadjunction

((��F F ¬¬)) �������� ��FF ��

 ��¬¬ if if �� is is unsatisfiableunsatisfiable then then �� is falseis false
((¬¬ ��FF)) �������� ��FF¬¬ ��

 ��FFFF if if �� is satisfiable then is satisfiable then ��FF is is unsatisfiableunsatisfiable

wherewhere ��¬¬ �� ¬¬�� andand ��FF �� ����FF

2003-03-17 16:49

Talk 31

The Composition AdjunctThe Composition Adjunct

““Assume that every process that has a partition into pieces that Assume that every process that has a partition into pieces that
satisfy satisfy �� and and ��, also satisfies , also satisfies ��. Then, every process that . Then, every process that
satisfies satisfies ��, together with any process that satisfies , together with any process that satisfies ��, satisfies , satisfies ��. .
(And vice versa.)(And vice versa.)”” ((c.f.c.f. ((
�	
� R)R)))

•• Interpretations of Interpretations of ������::
•• PP provides provides �� in any context that provides in any context that provides ��
•• PP ensures ensures �� under any attack that ensures under any attack that ensures ��
That is, That is, P P �� ������ is a contextis a context--system spec (a concurrent version of system spec (a concurrent version of

a prea pre--post spec).post spec).
Moreover Moreover ������ is, in a precise sense, linear implication: the context is, in a precise sense, linear implication: the context

that satisfies that satisfies �� is used exactly once in the system that satisfies is used exactly once in the system that satisfies ��..

((| | ��)) �� | | �� ��

 �� ���������������� �� ��

 ������

2003-03-17 16:49

Talk 32

Some Derived RulesSome Derived Rules

““If If PP provides provides �� in any context that provides in any context that provides ��, and , and QQ provides provides ��, ,
then then PP and and QQ together provide together provide ��..””

•• Proof: Proof: ������ ��

 ������ �������� ((������) |) | �� ��

 �� by by (Id)(Id), , ((| | ��))

�������� ((������) |) | �� ��

 ��

““If anything that satisfies If anything that satisfies �� satisfies satisfies ��, and anything that satisfies , and anything that satisfies
�� satisfies satisfies ��, then: anything that has a partition into a piece , then: anything that has a partition into a piece
satisfying satisfying �� (and hence (and hence ��), and another piece satisfying), and another piece satisfying �� in a in a
context that satisfies context that satisfies ��, it satisfies (, it satisfies (�� and hence) and hence) ��..””
Proof: Proof:
�� ��

 ��; ; ������ ��

 ������ �������� �� | | ������ ��

 �� | | ������ assumption, assumption, (Id)(Id), , (| (| ��

))

�� | | ������ ��

 �� aboveabove

�� ��

 �� assumptionassumption

�� ��

 ��; ; �� ��

 �� �������� �� | (| (������)) ��

 �� ((c.f.c.f. ((
�	
� L)L)))

2003-03-17 16:49

Talk 33

More Derived RulesMore Derived Rules
�������� �� ��

 TT | | �� you can always add more pieces (if they are you can always add more pieces (if they are 00))
�������� FF | | �� ��

 FF if a piece is absurd, so is the wholeif a piece is absurd, so is the whole
�������� 00 ��

 ¬¬((¬¬0 0 | | ¬¬00)) 00 is singleis single--threadedthreaded
�������� �� | | �� ∧∧ 00 ��

 �� you can split you can split 00 (but you get (but you get 00). Proof uses). Proof uses (| ||)(| ||)

���� ��

 ��; ; ������

 ���� �������� ����������

 ���������� �� is contravariant on the leftis contravariant on the left
�������� ������ | | ������ ��

 ������ �� is transitiveis transitive

�������� ((�� | | ��))���� 		����

 ����((������)) �� curry/curry/uncurryuncurry
�������� ����((������)) ��

 ����((������)) contexts commutecontexts commute

�������� TT 		����

 TT��TT truth can withstand any attacktruth can withstand any attack
�������� TT ��

 FF���� anything goes if you can find an absurd partneranything goes if you can find an absurd partner
�������� TT���� ��

 �� if if �� resists any attack, then it holdsresists any attack, then it holds

2003-03-17 16:49

Talk 34

Rules: LocationRules: Location
((nn[] [] ¬¬00)) �������� nn[[��]] ��

 ¬¬00 locations existlocations exist
((nn[][] ¬¬ |)|) �������� nn[[��]] ��

 ¬¬((¬¬0 0 | | ¬¬00)) are not decomposableare not decomposable

((nn[][] ��

)) ������

 �� ���������������� nn[[��]] ��

 nn[[��]] nn[][] congruencecongruence
((nn[] [] ∧∧)) �������� nn[[��]]∧∧nn[[��]] ��

 nn[[��∧∧��]] nn[][]--∧∧ distributiondistribution
((nn[] [] ∨∨)) �������� nn[[��∨∨��]] ��

 nn[[��]]∨∨nn[[��]] nn[][]--∨∨ distributiondistribution

((nn[] @)[] @) nn[[��]] ��

 �� ���������������� ������

 ��@@nn nn[][]--@@ adjunctionadjunction
((¬¬ @)@) �������� ��@@nn 		����

 ¬¬((((¬¬��)@)@nn)) @@ is selfis self--dualdual

2003-03-17 16:49

Talk 35

Some Derived RulesSome Derived Rules
������

 �� �������� ��@@nn ��

 ��@@nn @@ congruencecongruence

�������� nn[[��@@nn]] ��

 ��

�������� ����		����

 nn[[��]@]@nn

�������� nn[[¬¬��]] ��

 ¬¬nn[[��]]

�������� ¬¬nn[[��]] 		����

 ¬¬nn[[TT]] ∨∨ nn[[¬¬��]]

2003-03-17 16:49

Talk 36

Rules: Time and Space ModalitiesRules: Time and Space Modalities
((��)) �������� ���� 		����

 ¬¬��¬¬�� ((��)) �������� ���� 		����

 ¬¬��¬¬��

((�� K)K) �������� ��((������)) ��

 ���������� ((�� K)K) �������� ��((������)) ��

 ����������

((�� T)T) �������� ���� ��

 �� ((�� T)T) �������� ���� ��

 ��

((�� 4)4) �������� ���� ��

 ������ ((�� 4)4) �������� ���� ��

 ������

((�� TT)) �������� TT ��

 ��TT ((�� TT)) �������� TT ��

 ��TT
((�� ��

)) ������

 �� �������� ��������

 ���� ((�� ��

)) ������

 �� �������� ��������

 ����

((��nn[])[]) �������� nn[[����]] ��

 ��nn[[��]] ((��nn[])[]) �������� nn[[����]] ��

 ����

((�� |)|) �������� ���� | | ��������

 ��((�� | | ��)) ((�� |)|) �������� ���� | | ������

 ��((�� | | TT))

((����)) �������� ������ ��

 ������

S4, but not S5: S4, but not S5: ¬¬ vldvld ���� ��

 ������ ¬¬ vldvld ���� ��

 ������

((����)): if somewhere sometime : if somewhere sometime ��, then sometime somewhere , then sometime somewhere ��

2003-03-17 16:49

Talk 37

EqualityEquality
•• Name equality can be defined within the logic:Name equality can be defined within the logic:

Since (for any substitution applied to Since (for any substitution applied to ηη,,µµ):):
P P �� ηη[[TT]@]@µµ
iff iff µµ[[PP]] �� ηη[[TT]]
iff iff ηη = = µµ ∧∧ P P �� TT
iffiff ηη = = µµ

•• Example: Example: ““Any two ambients here have different namesAny two ambients here have different names””::

��xx..��yy. . xx[[TT] |] | yy[[TT] |] | TT �� ¬¬ xx=y=y

ηη = = µµ �� ηη[[TT]@]@µµ

2003-03-17 16:49

Talk 38

Ex: Immovable Object vs. Irresistible ForceEx: Immovable Object vs. Irresistible Force

ImIm | | IrIr ��

 ((T T �� ��((objobj[] | [] | TT)) |)) | TT ������

 TT

��

 ��((objobj[] | [] | TT)) ((������) |) | ������

 ��

��

 ����((objobj[] | [] | TT)) ������

 ����

ImIm | | IrIr ��

 TT | (| (T T �� ����¬¬((objobj[] | [] | TT)))) ������

 TT

��

 ����¬¬((objobj[] | [] | TT)) ��¬¬������

 ¬¬����

��

 ¬¬����((objobj[] | [] | TT)) ��¬¬������

 ¬¬����

Hence: Hence: ImIm | | Ir Ir ��

 FF ����∧∧ ¬¬������

 FF

ImIm �� T T �� ��((objobj[] | [] | TT))

IrIr �� T T �� ����¬¬((objobj[] | [] | TT))

2003-03-17 16:49

Talk 39

RestrictionRestriction
•• ((ννnn))PP

•• ““The name The name nn is known only inside is known only inside PP..””
•• ““Create a Create a newnew name name nn and use it in and use it in PP..””
•• It It extrudesextrudes (floats) because it represents knowledge, not behavior:(floats) because it represents knowledge, not behavior:

•• Used initially to represent private channels.Used initially to represent private channels.
•• Later, to represent private names of any kind:Later, to represent private names of any kind:

Channels, Locations, Channels, Locations, NoncesNonces, , CryptokeysCryptokeys, , ……

((ννnn))PP �� ((ννmm)()(PP{{nn��

mm})})
((ννnn))00 �� 00
((ννnn)()(ννmm))PP �� ((ννmm)()(ννnn))PP
((ννnn)()(PP | | QQ)) �� ((ννnn))PP | | QQ ifif nn��fnfn((QQ))

a.k.a.a.k.a. ((ννnn)()(PP | (| (ννnn))QQ’’)) �� ((ννnn))PP | (| (ννnn))QQ’’
((ννnn)()(mm[[PP])]) �� mm[([(ννnn))PP]] if if nn ≠≠ mm

a private name is as good a private name is as good
as anotheras another

scope extrusionscope extrusion

2003-03-17 16:49

Talk 40

RevelationRevelation

•• nn®®�� is read, informally:is read, informally:
•• RevealReveal a private name as a private name as nn and check that the revealed process and check that the revealed process

satisfies satisfies ��..

•• Pull out (by extrusion) a Pull out (by extrusion) a ((ννnn)) binder, and check that the process binder, and check that the process
stripped of the binder satisfies stripped of the binder satisfies ��..

•• Examples: Examples:
•• nn��nn[[00]]: reveal a restricted name (say, : reveal a restricted name (say, pp) as) as nn and check the and check the

presence of an empty presence of an empty nn location in the revealed process.location in the revealed process.

((ννpp))pp[[00]] �� nn��nn[[00]]
because because ((ννpp))pp[[00]] ����((ννnn))nn[[00]] and and nn[[00]] �� nn[[00]]

PP �� nn®®�� �� ��PP’’��ΠΠ. P . P �� ((ννnn))PP’’ ∧∧ PP’’ �� ��

2003-03-17 16:49

Talk 41

Derived Formulas: RevelationDerived Formulas: Revelation

•• Examples:Examples:
•• nn[][] �� ©©nn

•• ((ννpp))pp[][] �� closedclosed
•• nn[] | [] | mm[][] �� separateseparate

©©nn �� ¬¬nn��TT

closedclosed �� ¬¬��xx..©©xx

separateseparate �� ¬¬��xx..©©x | x | ©©xx

P P �� -- iffiff ¬¬��PP’’��ΠΠ. P . P �� ((ννnn))PP’’

iffiff nn��fnfn((PP))

P P �� -- iffiff ¬¬��nn��ΛΛ. . nn��fnfn((PP))

P P �� -- iffiff ¬¬��nn��ΛΛ, P, P’’��ΠΠ, P, P””��ΠΠ..

P P �� PP’’ || PP”” ∧∧ nn��fnfn((PP’’)) ∧∧ nn��fnfn((PP””))

2003-03-17 16:49

Talk 42

Revelation RulesRevelation Rules
•• Some mirror properties of restriction:Some mirror properties of restriction:

�� xx®®xx®®�� 		����

 xx®®��

�� xx®®yy®®�� 		����

 yy®®xx®®��

�� xx®®((�� | | xx®®��)) 		����

 xx®®�� | | xx®®�� (scope extrusion)(scope extrusion)

•• Some behave well with logical operators:Some behave well with logical operators:
�� xx®®((����∨∨ ��)) ��

 xx®®����∨∨ xx®®��

������

 �� �� xx®®�� ��

 xx®®��

•• Some deal with the adjunction:Some deal with the adjunction:
ηη®®������

 �� ���� �� ��

 ����ηη
�� ((¬¬��))��xx 		����

 ¬¬((����xx))
�� ((�� | | ��))��xx ��

 ����xx | | ����xx
�� xx®®((((�� | | ��))��xx)) 		����

 xx®®((����xx) |) | xx®®((����xx))

2003-03-17 16:49

Talk 43

Rules: RevelationRules: Revelation
((®®)) �������� xx®®xx®®�� 		����

 xx®®�� ®® idempotencyidempotency
((®® ®®)) �������� xx®®yy®®�� ��

 yy®®xx®®�� ®® commutativitycommutativity
((®® ∨∨)) �������� xx®®((����∨∨ ��)) ��

 xx®®����∨∨ xx®®�� ®®--∨∨ distributiondistribution
((®® ��

)) ������

 �� �������� xx®®�� ��

 xx®®�� ®® congruencecongruence

((®® ��)) ηη®®������

 �� ���������������� �� ��

 ����ηη ®®--�� adjunctionadjunction
((�� ¬¬)) �������� ((¬¬��))��xx 		����

 ¬¬((����xx)) �� is selfis self--dualdual
((�� ��FF)) �������� ��FF��xx 		����

 ��FF �� unsatisfiableunsatisfiable

2003-03-17 16:49

Talk 44

((®® 00)) �������� xx®®0 0 		����

 00 ®®//��--00 rulesrules
((�� 00)) �������� 00��xx ��

 00

((®® |)|) �������� xx®®((�� | | xx®®��)) 		����

 xx®®�� | | xx®®�� ®®//��--|| rulesrules
((�� |)|) �������� ((�� | | ��))��xx ��

 ����xx | | ����xx
((®® �� |)|) �������� xx®®((((�� | | ��))��xx)) ��

 xx®®((����xx) |) | xx®®((����xx))

((®® nn[])[]) �������� xx®®yy[[��]] 		����

 yy[[xx®®��]] ((xx ≠≠ yy)) ®®//��--nn[[]] rulesrules
((�� nn[])[]) �������� yy[[��]]��xx ��

 yy[[����xx]] ((xx ≠≠ yy))
((�� nn[])[]) �������� xx[[��]]��xx ��

 FF

2003-03-17 16:49

Talk 45

FreshFresh--Name QuantifierName Quantifier

•• C.f.C.f.: : P P �� ��xx..�� iffiff ��mm��ΛΛ. . P P �� ��{{xx←←←←←←←←mm}}

•• Actually definable (Actually definable (metatheoreticallymetatheoretically, as an abbreviation):, as an abbreviation):

��x.x.�� �� ��x. x. xx#(#(fnvfnv((��))--{{xx}) }) ∧∧ xx®®TT ∧∧ ��

Provided we add the axiom schema:Provided we add the axiom schema:

(GP)(GP) �� ��xx. . xx##NN ∧∧ xx®®TT ∧∧ ������		����

 ��xx. . ((xx##NN ∧∧ xx®®TT)) �� ��

where where N N ⊇⊇ fnvfnv((��))--{{xx} and } and xx��NN

•• Fundamental Fundamental ““freshnessfreshness”” property (Gabbayproperty (Gabbay--Pitts):Pitts):

��x.x.�� iffiff ��mm��ΛΛ. m. m��fnfn((P,P,��)) ∧∧ PP �� ��{{xx←←←←←←←←mm}}

iffiff ��mm��ΛΛ. m. m��fnfn((P,P,��)) �� PP �� ��{{xx←←←←←←←←mm}}

because because any fresh name is as good as any otherany fresh name is as good as any other..

PP �� ��x.x.�� �� ��mm��ΛΛ. m. m��fnfn((P,P,��)) ∧∧ PP �� ��{{xx←←←←←←←←mm}}

2003-03-17 16:49

Talk 46

•• Very nice logical properties:Very nice logical properties:

 ��x.x.�� ��

 ��x.x.�� ��

 ��x.x.��
�� ¬¬��x.x.�� 		����

 ��x.x.¬¬��

•• ��x.x.((�� | | ��)) 		����

 ((��x.x.��)) | | ((��x.x.��)) (hint: (GP) (hint: (GP) �� for for ��, , �� for for ⇐⇐))

 ���x.x.�� 		����

 ��x.x.���

2003-03-17 16:49

Talk 47

HiddenHidden--Name QuantifierName Quantifier

P P �� HHxx..�� iffiff
��mm��ΛΛ, , PP’’��ΠΠ. . mm��fnfn((��)) ∧∧ P P �� ((ννmm))PP’’ ∧∧ PP’’ �� ��{{xx←←mm}}

•• Example: Example: HHxx..xx[] = [] = ��x.xx.x®®xx[][]
•• ““for hidden for hidden xx, we find a void location called , we find a void location called xx”” = = ““for fresh for fresh xx, ,

we reveal a hidden name as we reveal a hidden name as xx, then we find a void location , then we find a void location xx””
•• ((ννnn))nn[][] �� HHxx..xx[] [] because because ((ννnn))nn[][] �� ��x.xx.x®®xx[] []

because because ((ννnn))nn[][] �� nn®®nn[] [] (where (where nn��fnfn((((ννnn))nn[])[])).).

•• Counterexamples:Counterexamples:
•• ((ννmm))mm[][] �� HHxx..nn[][] (N.B.: this holds for (N.B.: this holds for HHxx..�� ������x.xx.x®®�� !)!)

•• ((ννnn))nn[] | ([] | (ννnn))nn[][] �� HHxx.(.(xx[] | [] | xx[])[])
•• ((ννnn)()(nn[] | [] | nn[])[]) �� HHxx..xx[] | [] | HHxx..xx[][]

HHxx..�� �� ��x.xx.x®®��

2003-03-17 16:49

Talk 48

Forget Forget nn®®����������������and and ��������x.x.��������, why not just use , why not just use HHxx..��������??
•• Consider:Consider:

��x.xx.x®®((�� | | xx®®��))
		����

 ��x.x.((xx®®�� | | xx®®��))
		����

 ((��x.xx.x®®��) | () | (��x.xx.x®®��))

•• That is:That is:
HHxx.(.(�� | | xx®®��)) 		����

 HHxx..�� | | HHxx..��

•• Hence, the scope extrusion rule for Hence, the scope extrusion rule for HH still uses still uses ®®..

•• No matter what one No matter what one choseschoses as primitives, we have explored as primitives, we have explored
interesting connections between these operators. (interesting connections between these operators. (��++®® and and
HH++©© are are almostalmost interdefinableinterdefinable [Caires].)[Caires].)

2003-03-17 16:49

Talk 49

Example: Key SharingExample: Key Sharing
•• Consider a situation where Consider a situation where ““a hidden name a hidden name xx is shared by is shared by

two locations two locations nn and and mm, and is , and is not knownnot known outside those outside those
locationslocations””..

HHxx.(.(nn[[©©xx] |] | mm[[©©xx])])

•• PP �� HHxx.(.(nn[[©©xx] |] | mm[[©©xx])])

⇔⇔ ��rr��ΛΛ. . rr��fnfn((PP))∪∪{{nn,,mm} } ∧∧ ��RR’’,R,R””��ΠΠ. P . P �� ((ννrr)()(nn[[RR’’] |] | mm[[RR””])])
∧∧ rr��fnfn((RR’’)) ∧∧ rr��fnfn((RR””))

•• E.g.: take E.g.: take PP = = ((ννpp) () (nn[[pp[]] | []] | mm[[pp[]])[]])..

•• A protocol establishing a shared key should satisfy:A protocol establishing a shared key should satisfy:

��HHxx.(.(nn[[©©xx] |] | mm[[©©xx])])

2003-03-17 16:49

Talk 50

From Logic back to TypesFrom Logic back to Types
•• A logic is A logic is just a very rich type systemjust a very rich type system..

•• Type systems are very Type systems are very ““structuralstructural”” (i.e., the structure of types reflects closely (i.e., the structure of types reflects closely
the structure of values). Our logic is extremely structural (intthe structure of values). Our logic is extremely structural (intensional) for a ensional) for a
logic. It is in fact almost as structural as a type system.logic. It is in fact almost as structural as a type system.

•• Type systems for process calculi often have a parallel compositiType systems for process calculi often have a parallel composition operation on operation
on types. I.e., they are on types. I.e., they are ““spatialspatial”” in our sense.in our sense.

•• Therefore, our work may help in discerning patterns in the largeTherefore, our work may help in discerning patterns in the large and diverse and diverse
collection of type systems for process calculi. These usually becollection of type systems for process calculi. These usually become come
particularly tangled when trying to handle restriction.particularly tangled when trying to handle restriction.

•• Suppose that Suppose that PP : : �� means that process means that process PP may have may have ““effectseffects”” ��,,
where an effect is any kind of information about the behavior ofwhere an effect is any kind of information about the behavior of P P
that one may want to track statically. Then the following kind othat one may want to track statically. Then the following kind of f
typing rules happen:typing rules happen:
•• Effects may be composed:Effects may be composed:

ΓΓ ��

 PP : : �� , Γ, Γ ��

 QQ : : �� �������� ΓΓ ��

 P P | | QQ : : �� | | ��
•• Effects may be hidden:Effects may be hidden:

Γ, Γ, nn::�� ��

 PP : : ��{{xx←←nn}} �������� ΓΓ ��

 ((ννnn::��))PP : : HHxx::��..��
•• C.f.C.f. Kobayashi: behavioral type systems. Kobayashi: behavioral type systems. C.f.C.f. ““exchange typesexchange types”” for Ambients.for Ambients.

2003-03-17 16:49

Talk 51

ApplicationsApplications
•• Modelchecking security+mobility assertions:Modelchecking security+mobility assertions:

•• If If PP is is !!--free and free and �� is is ��--free, then free, then P P �� �� is decidable.is decidable.

•• This provides a way of mechanically checking (certain) assertionThis provides a way of mechanically checking (certain) assertions about s about
(certain) mobile processes.(certain) mobile processes.

•• Expressing mobility/security policies of host sites. (ConferringExpressing mobility/security policies of host sites. (Conferring more flexibility more flexibility
than just sandboxing the agent.)than just sandboxing the agent.)

•• JustJust--inin--time verification of code containing mobility instructions (by etime verification of code containing mobility instructions (by either ither
modelchecking or proofmodelchecking or proof--carrying code).carrying code).

•• Expressing properties of type systems (beyond subject reduction)Expressing properties of type systems (beyond subject reduction)..
•• Expressing LockingExpressing Locking

•• If If EE, , nn::AmbAmb••[[SS]] ��

 PP : : TT (a typing judgment asserting that no ambient called (a typing judgment asserting that no ambient called
nn can ever be opened in can ever be opened in PP), then:), then:

PP �� ��((��an n an n �� ����an nan n))
•• Expressing ImmobilityExpressing Immobility

•• If If EE, , pp::AmbAmb••[[SS],], qq::AmbAmb••[[��SS’’]] ��

 PP : : TT (a typing judgment asserting that no (a typing judgment asserting that no
ambient called ambient called qq can ever move within can ever move within PP), then:), then:

PP �� ��((��((p parents qp parents q)) �� ����((p parents qp parents q))))
where where p parents qp parents q ������pp[[qq[[TT] |] | TT] |] | TT

2003-03-17 16:49

Talk 52

ConclusionsConclusions
•• The novel aspects of our logic lie in its explicit treatment The novel aspects of our logic lie in its explicit treatment

of space and of the evolution of space over time (mobility).of space and of the evolution of space over time (mobility).

•• We can now talk also about fresh and hidden locations.We can now talk also about fresh and hidden locations.

•• These ideas can be applied to any process calculus that These ideas can be applied to any process calculus that
embodies a distinction between spatial and temporal embodies a distinction between spatial and temporal
operators, and a restriction operator.operators, and a restriction operator.

•• Our logical rules arise from a particular model. This Our logical rules arise from a particular model. This
approach makes the logic very concrete (and sound), but approach makes the logic very concrete (and sound), but
raises questions of logical completeness.raises questions of logical completeness.

<<http://http://www.luca.demon.co.ukwww.luca.demon.co.uk> Logical Properties of Name Restriction> Logical Properties of Name Restriction

2003-03-17 16:49

Talk 53

ExerciseExercise
•• Show that Show that �������� ((�� | | ��)) ∧∧ 00 ��

 �� is valid (by applying the is valid (by applying the

definition of sequent and of satisfaction). The proof is definition of sequent and of satisfaction). The proof is
short. In the process, you will discover you need a little short. In the process, you will discover you need a little
ambient calculus lemma about ambient calculus lemma about P P | | QQ �� 00; you do not need ; you do not need
to prove it but you need to identify it.to prove it but you need to identify it.

•• (Hard/Optional)(Hard/Optional)
Find a formal derivation of Find a formal derivation of �������� ((�� | | ��)) ∧∧ 00 ��

 �� from the from the
axioms in the slides.axioms in the slides.
(My) proof uses the decomposition axiom, (My) proof uses the decomposition axiom, (| ||)(| ||)..

2003-03-17 16:49

Talk 54

•• NO INPUTNO INPUT

���

2003-03-17 16:49

Talk 55

SemanticsSemantics
•• Version 1 [CardelliVersion 1 [Cardelli--Gordon]Gordon]

•• For the restrictionFor the restriction--free ambient calculus.free ambient calculus.
•• Formulas denote sets of processes that are closed under structurFormulas denote sets of processes that are closed under structural al

congruence. congruence.

•• Version 2 [CardelliVersion 2 [Cardelli--Gordon]Gordon]
•• For the ambient calculus with restriction.For the ambient calculus with restriction.
•• Formulas denote sets of processes that are closed under structurFormulas denote sets of processes that are closed under structural al

congruence. Freshness handled congruence. Freshness handled ““metatheoreticallymetatheoretically””..

•• Version 3 [CairesVersion 3 [Caires--Cardelli]Cardelli]
•• To handle both restriction and recursive formulas, and to handleTo handle both restriction and recursive formulas, and to handle

freshness freshness ““properlyproperly””. (For the . (For the ππ--calculus, for simplicity.)calculus, for simplicity.)
•• Formulas denote sets of processes that are closed under Formulas denote sets of processes that are closed under

congruence and that have congruence and that have finite supportfinite support (are closed under (are closed under
transpositions outside of a finite set transpositions outside of a finite set NN of names).of names).

2003-03-17 16:49

Talk 56

A Good PropertyA Good Property
•• A property not shared by other candidate definitions, such A property not shared by other candidate definitions, such

as as ��x.xx.x®®�� and and ��x.xx.x®®��. This is even derivable within the . This is even derivable within the
logic:logic:

HHxx.(.(��{{nn←←xx}) }) ∧∧ nn®®TT 		����

 nn®®���� where where x x �� fvfv((��))

•• It implies:It implies:

P P �� �� �� ((ννnn))PP �� HHxx.(.(��{{nn←←xx})})

PP �� HHxx.(.(��{{nn←←xx}) }) ∧∧ nn��fnfn((PP)) �� PP �� nn®®��

PP �� nn®®�� �� PP �� HHxx.(.(��{{nn←←xx})})

2003-03-17 16:49

Talk 57

A Surprising PropertyA Surprising Property

•• Ex.: Ex.: HHxx.(.(¬¬00 | | ¬¬00)) �� ¬¬00 | | ¬¬00
If for a hidden If for a hidden xx the inner system can be decomposed into two the inner system can be decomposed into two
nonnon--void parts, it does not mean that the whole system can be void parts, it does not mean that the whole system can be
decomposed, because the two parts may be entangled by decomposed, because the two parts may be entangled by
restriction:restriction:

((ννnn)()(nn[] | [] | nn[]) []) �� ��xx..xx®®((¬¬00 | | ¬¬00)) but:but:
((ννnn)()(nn[] | [] | nn[]) []) �� ¬¬00 | | ¬¬00. .

•• This is This is ®®’’s fault, not s fault, not ��’’s: with the same counterexample we can s: with the same counterexample we can
show show nn®®((¬¬00 | | ¬¬00)) �� ¬¬00 | | ¬¬00..

•• However, However, HHxx..00 ��

 00..
•• Moreover, Moreover, ������

 HHxx..�� for for x x �� fvfv((��))..

HHxx..�� �� ������������for for x x �� fvfv((��))

2003-03-17 16:49

Talk 58

Satisfaction for HiddenSatisfaction for Hidden--Name QuantificationName Quantification
•• It makes sense also to define a It makes sense also to define a hidden name quantifierhidden name quantifier HHxx..��::

•• nn®®��: reveal a hidden name : reveal a hidden name if possibleif possible as a given as a given nn, and assert , and assert ��{{nn}}..
•• HHxx..��: reveal a hidden name as : reveal a hidden name as any freshany fresh name name xx and assert and assert ��{{xx}}..

•• Design decision: how to define Design decision: how to define HHxx..��, keeping in mind that , keeping in mind that
““freshnessfreshness”” may spill into the logic?may spill into the logic?
•• The Obvious ThingThe Obvious Thing: extend the syntax with : extend the syntax with HHxx..�� and define it directly. and define it directly.
•• Luis Caires:Luis Caires: Extend the syntax with Extend the syntax with HHxx..�� and add signatures to keep track of and add signatures to keep track of

free names, to enforce the side condition free names, to enforce the side condition nn��fnfn((��)): : ΣΣ��PP �� ΣΣ����..
•• Us:Us: Retain Retain nn®®����and mix it with a logical notions of freshness and mix it with a logical notions of freshness ��x.x.����(one extra (one extra

axiom schema, no new syntax). We eventually define: axiom schema, no new syntax). We eventually define: HHxx..�� ��������x.xx.x®®��..

ifif �� ��{{xx��

nn}}PPPP �� HHxx..��
nn

with with nn��fnfn((��))

2003-03-17 16:49

Talk 59

The Decomposition OperatorThe Decomposition Operator
•• Consider the De Morgan dual of Consider the De Morgan dual of || ::

�� |||| �� �� ¬¬((¬¬�� || ¬¬��))

���� �� �� || || FF
���� �� �� | | TT

P P �� -- iffiff ��PP’’,P,P””��ΠΠ. P . P �� PP’’|P|P”” ��

PP’’ �� �� ∨∨ PP”” �� ��

P P �� -- iffiff ��PP’’,P,P””��ΠΠ. P . P �� PP’’|P|P”” �� PP’’ �� ��

P P �� -- iffiff ��PP’’,P,P””��ΠΠ. P . P �� PP’’|P|P”” ∧∧ PP’’ �� ��

�� |||| �� for every partition, one piece satisfiesfor every partition, one piece satisfies ��
or the other piece satisfiesor the other piece satisfies ��

���� ⇔⇔ ¬¬((((¬¬��))��)) every component satisfiesevery component satisfies ��
���� ⇔⇔ ¬¬((((¬¬��))��)) some component satisfiessome component satisfies ��

Examples:Examples:
((pp[[TT]] �� pp[[qq[[TT]]��])])�� every every pp has a has a qq childchild
((pp[[TT]] �� pp[[qq[[TT] | (] | (¬¬qq[[TT]]))��])])�� every every pp has a unique has a unique qq childchild

2003-03-17 16:49

Talk 60

The Decomposition AxiomThe Decomposition Axiom

•• Alternative formulations and special cases:Alternative formulations and special cases:
�������� ((���� | | ����)) ∧∧ ((���� || || ����)) ��

 ((���� | | ����)) ∨∨ ((���� | | ����))

““If If PP has a partition into pieces that satisfy has a partition into pieces that satisfy ���� and and ����, and every , and every
partition has one piece that satisfies partition has one piece that satisfies ���� or the other that satisfies or the other that satisfies
����,, then either then either PP has a partition into pieces that satisfy has a partition into pieces that satisfy ���� and and ����, ,
or it has a partition into pieces that satisfy or it has a partition into pieces that satisfy ���� and and ����..””

�������� ¬¬((�� | | ��)) ��

 ((�� | | TT)) �� ((TT | | ¬¬��))
““If If PP has no partition into pieces that satisfy has no partition into pieces that satisfy �� and and ��, but , but PP has a has a
piece that satisfies piece that satisfies ��, then , then PP has a piece that does not satisfy has a piece that does not satisfy ��..””

 �������� ¬¬((TT | | ��)) ��

 TT | | ¬¬��

 �������� ¬¬((�� | | ��)) ��

 ((¬¬�� | | TT)) ∨∨ ((TT | | ¬¬��))

(| ||)(| ||) �������� ((���� | | ����)) ��

 ((���� | | ����)) ∨∨ ((���� | | ����)) ∨∨ ((¬¬���� | | ¬¬����))

2003-03-17 16:49

Talk 61

Logical AdjunctionsLogical Adjunctions
•• This is a logic with multiple logical adjunctions This is a logic with multiple logical adjunctions

(4 of them!):(4 of them!):
�� ∧∧ //////// �� (classical)(classical)

����∧∧ ������

 �� iffiff ������

 ������ ��

•• || //////// �� (linear, (linear, ⊗⊗ //////// 	
�	
�))

����| | ������

 �� iffiff ������

 ������ ��

•• nn[[]] //////// 		@@nn

nn[[��]] ��

 �� iffiff ������

 ��@@nn
•• nn®®		 //////// 		��nn

nn®®������

 �� iffiff ������

 ����nn

•• Which one should be taken as Which one should be taken as thethe logical adjunction for logical adjunction for
sequents? (I.e., what should sequents? (I.e., what should ““,,”” mean in a sequent?)mean in a sequent?)

•• We do not choose, and take sequents of the form We do not choose, and take sequents of the form ������

 ��..

2003-03-17 16:49

Talk 62

““NeutralNeutral”” SequentsSequents
•• Our logic is formulated with singleOur logic is formulated with single--premise, singlepremise, single--

conclusion sequents. We donconclusion sequents. We don’’t pret pre--judge judge ““,,””..
•• By taking By taking ∧∧ on the left and on the left and ∨∨ on the right of on the right of ��

 as structural as structural

operators, we can derive all the standard rules of sequent and operators, we can derive all the standard rules of sequent and
natural deduction systems with multiple premises/conclusions. natural deduction systems with multiple premises/conclusions.

•• By taking By taking || on the left of on the left of ��

 as a structural operator, we can derive as a structural operator, we can derive
all the rules of intuitionistic linear logic (by appropriate mapall the rules of intuitionistic linear logic (by appropriate mappings pings
of the ILL connectives).of the ILL connectives).

•• By taking By taking nestingsnestings of of ∧∧ and and || on the left of on the left of ��

 as structural as structural
““bunchesbunches””, we obtain a bunched logic, with its two associated , we obtain a bunched logic, with its two associated
implications, implications, �� and and ��..

•• This is convenient. We do not know much, however, about This is convenient. We do not know much, however, about
the metathe meta--theory of this presentation style.theory of this presentation style.

2003-03-17 16:49

Talk 63

Ambient Calculus: ExampleAmbient Calculus: Example

aa[[msgmsg[[��MM�� || out a. in b. Pout a. in b. P]]]] | | bb[[open msgopen msg. (. (nn).). PP]]

aa[] [] | | bb[[PP{{nn��

MM}]}]

location alocation a location blocation b

send M from a to bsend M from a to b receive nreceive n;; do Pdo P

The packet The packet msgmsg moves from moves from aa to to bb, mediated by the capabilities , mediated by the capabilities out aout a
(to exit (to exit aa),), in bin b (to enter (to enter bb), and), and open msgopen msg (to open the (to open the msgmsg envelope).envelope).

aa[[msgmsg[[��MM�� || out a. in b. Pout a. in b. P]]]] | | bb[[open msgopen msg. (. (nn).). PP]]

(exit)(exit) 	

	

�� aa[] | [] | msgmsg[[��MM�� || in b. Pin b. P]] | | bb[[open msgopen msg. (. (nn).). PP]]

	

	

��(enter)(enter) aa[][] | | bb[[msgmsg[[��MM��] |] | open msg.open msg. ((nn).). PP]]

	

	

��(open)(open) aa[] [] | | bb[[��MM�� | (| (nn).). PP]]

	

	

��(read)(read)

2003-03-17 16:49

Talk 64

Connections with Intuitionistic Linear LogicConnections with Intuitionistic Linear Logic
•• Weakening and contraction are not valid rules: Weakening and contraction are not valid rules:

principle of principle of conservation of spaceconservation of space..

•• Semantic connection: sets of processes closed under Semantic connection: sets of processes closed under �� and and
ordered by inclusion form a quantale (a model of ILL).ordered by inclusion form a quantale (a model of ILL).

•• Multiplicative intuitionistic linear logic (MILL) can be Multiplicative intuitionistic linear logic (MILL) can be
faithfully embedded in our logic:faithfully embedded in our logic:

MILL rules and our rules are interderivable (MILL rules and our rules are interderivable (““our rulesour rules””
means the rules involving only means the rules involving only 00, , ||, , ��, plus a derivable cut , plus a derivable cut
rule for rule for ||).).

11MILLMILL �� 00
�� ⊗⊗MILLMILL �� �� �� || ��
�� 	
�	
�MILLMILL �� �� �� �� ��

2003-03-17 16:49

Talk 65

•• Full intuitionistic linear logic (ILL) can be embedded:Full intuitionistic linear logic (ILL) can be embedded:

•• The rules of ILL can be logically derived from these The rules of ILL can be logically derived from these
definitions. (E.g.: the proof of definitions. (E.g.: the proof of !!������

 !!�� ⊗⊗ !!�� uses the uses the
decomposition axiom.)decomposition axiom.)

•• So, So, ��11,,,, ��nn ��

ILLILL �� implies implies ��11 | | | | ��nn ��

 ��..

•• Some discrepancies: Some discrepancies: ��ILLILL = = 00ILLILL; the additives distribute; ; the additives distribute;
!!�� is not is not ““replicationreplication””; ; !!��	
�	
��� is not so interesting; is not so interesting; ����//��00

is unusually interesting.is unusually interesting.

11ILLILL �� 00
��ILLILL �� FF
��ILLILL �� TT
00ILLILL �� FF

�� ⊕⊕ �� �� �� ∨∨ ��

�� && �� �� �� ∧∧ ��

�� ⊗⊗ �� �� �� || ��
����	
�	
��� �� �� �� ��

!!�� �� 00 ∧∧ ((00 �� ��))¬¬FF

2003-03-17 16:49

Talk 66

Connection with Relevant LogicConnection with Relevant Logic
•• (Noted after the fact [O(Noted after the fact [O’’Hearn, Pym].) The definition of Hearn, Pym].) The definition of

the satisfaction relation is very similar to Urquhartthe satisfaction relation is very similar to Urquhart’’s s
semantics of relevant logic. In particular semantics of relevant logic. In particular ����| | �� is defined is defined
just likejust like intensional conjunctionintensional conjunction, and , and ������ is defined just is defined just
like like relevant implicationrelevant implication in that semantics.in that semantics.

•• Except: Except:
•• We do not have contraction. This does not make sense in process We do not have contraction. This does not make sense in process

calculi, because calculi, because PP | | PP ≠≠ PP. Urquhart semantics without . Urquhart semantics without
contraction does not seem to have been studied.contraction does not seem to have been studied.

•• We use an equivalence We use an equivalence ��, instead of a Kripke, instead of a Kripke--style partial order style partial order ��
as in Urquhartas in Urquhart’’s general case. (We may have a need for a partial s general case. (We may have a need for a partial
order in more sophisticated versions of our logic.)order in more sophisticated versions of our logic.)

2003-03-17 16:49

Talk 67

Connections with Bunched LogicConnections with Bunched Logic
•• Peter OPeter O’’Hearn and David Pym study Hearn and David Pym study bunched logicsbunched logics, ,

where sequents have two structural combinators, instead of where sequents have two structural combinators, instead of
the standard single the standard single ““,,”” combinator (usually meaning combinator (usually meaning ∧∧ or or ⊗⊗
on the left) found in most presentations of logic. Thus, on the left) found in most presentations of logic. Thus,
sequents are sequents are bunchesbunches of formulas, instead of lists of of formulas, instead of lists of
formulas. Correspondingly, there are two implications that formulas. Correspondingly, there are two implications that
arise as the adjuncts of the two structural combinators. arise as the adjuncts of the two structural combinators.

•• The situation is very similar to our combinators The situation is very similar to our combinators || and and ∧∧, ,
which can combine to irreducible bunches of formulas in which can combine to irreducible bunches of formulas in
sequents, and to our two implications sequents, and to our two implications �� and and ��. However, . However,
we have a classical and a linear implication, while bunched we have a classical and a linear implication, while bunched
logics have so far had an intuitionistic and a linear logics have so far had an intuitionistic and a linear
implication.implication.

2003-03-17 16:49

Talk 68

Semantic Connections with the Linear LogicSemantic Connections with the Linear Logic
•• A (commutative) quantale A (commutative) quantale

 is a structureis a structure

<<SS��SetSet, , ≤≤��SS22→→Bool, Bool, ������((SS))→→SS, , ⊗⊗��SS22→→SS, 1, 1��SS>> such that:such that:
≤≤, , �� is a complete join is a complete join semilatticesemilattice

⊗⊗, 1, 1 is a commutative is a commutative monoidmonoid

p p ⊗⊗ ��QQ == ��{{pp ⊗⊗ q q �� qq��QQ}}

•• They are complete models of Intuitionistic Linear Logic (ILL):They are complete models of Intuitionistic Linear Logic (ILL):
 �� ⊕⊕ ��!! �� ��{{ ��!!, , ��!!}} 11ILLILL!! �� 11
 �� && ��!! �� ��{{C C �� CC≤≤ ��!! ∧∧ CC≤≤ ��!!}} ��ILLILL!! �� any element ofany element of SS
 �� ⊗⊗ ��!! �� ��!! ⊗⊗ ��!! ��ILLILL!! �� ��SS
 �� 	
�	
���!! �� ��{{C C �� CC⊗⊗ ��!! ≤≤ ��!!}} 00ILLILL!! �� ����

 !!��!�!� �� υυXX. . 11 & & �� & & XX⊗⊗XX!! wherewhere υυXX. . AA{{XX}} �� ��{{C C �� CC ≤≤ AA{{CC}}}}

vldvldILLILL((��11,,,, ��nn ��

ILLILL ��))

 �� ��11!!

 ⊗⊗

 ⊗⊗

 ��nn!!

 ≤≤

 ��!!

2003-03-17 16:49

Talk 69

The Process QuantaleThe Process Quantale
•• The sets of processes closed under The sets of processes closed under �� and ordered by and ordered by

inclusion form a quantale (let inclusion form a quantale (let AA�� �� {{P P �� ��QQ��AA. P. P��QQ}}):):
ΘΘ �� <<ΦΦ, , ⊆⊆, , "", , ⊗⊗, , 11> > where, for where, for A,B A,B ⊆⊆ ΠΠ::
ΦΦ ����{{AA�� �� A A ⊆⊆ ΠΠ}}
11ΘΘ ����{{00}}��

AA ⊗⊗ΘΘ BB ����{{P P | | QQ �� PP �� AA ∧∧ QQ �� BB}}��

•• ILL validity in ILL validity in ΘΘ::
vldvldILLILL((��11,,,, ��nn ��

ILLILL ��))ΘΘ

⇔⇔ ��11!! ⊗⊗ΘΘ ⊗⊗ΘΘ ��nn!! ⊆⊆ ��!!

⇔⇔ ��11 || || ��nn!! ⊆⊆ ��!!

⇔⇔ ((Π Π −− ��11 || || ��nn!!)) ∪∪ ��!��!��= = ΠΠ
⇔⇔ ��11 || || ��nn �� ��!��!��== ΠΠ

2003-03-17 16:49

Talk 70

Process DomainProcess Domain
•• Semantic domain: Semantic domain: Θ

The domain The domain Θ isis both a quantale both a quantale (1, (1, ⊗⊗, , ⊆⊆, , "")) and a and a booleanboolean
algebra algebra ((��, , ΠΠ, , ∪∪, , ∩∩, , ΠΠ––)). It has additional structure induced by . It has additional structure induced by
nn[[PP]] and and ((ννnn))PP..

•• Spatial operators over Spatial operators over Θ::

ΠΠ
��CC⊆⊆ΠΠ.. CC��

ΦΦ

�� the set of process expressionsthe set of process expressions
�� {{PP��ΠΠ �� ��PP’’��CC. P. P’’��PP}}
�� {{CC�� �� CC⊆⊆ΠΠ}}

11
��C,DC,D��Θ.. CC⊗⊗DD
��nn��ΛΛ, , CC��Θ.. nn[[CC]]
��nn��ΛΛ, , CC��Θ.. nn��CC

�� {{00}}��

�� {{PP||QQ �� PP��CC ∧∧ QQ��DD}}��

�� {{nn[[PP]] �� PP��CC}}��

�� {({(ννnn))PP �� PP��CC}}��

2003-03-17 16:49

Talk 71

Semantics of RevelationSemantics of Revelation

•• This means: take all processes of the form This means: take all processes of the form ((ννnn))PP ((notnot up to up to
renaming of renaming of nn), remove the ones such that), remove the ones such that PP��CC, and , and ��--
close the result (thus adding all the close the result (thus adding all the αα--variants).variants).

•• nn��CC is read, informally:is read, informally:
•• RevealReveal a private name as a private name as nn and check that the contents are in and check that the contents are in CC..

•• Pull (by Pull (by ��) a) a ((ννnn)) binder at the top and check the rest is in binder at the top and check the rest is in CC..

•• Ex.: Ex.: nn��nn[1][1]: reveal a private name (say, : reveal a private name (say, pp) as) as nn and check and check
that there is an empty that there is an empty nn ambient in the revealed process.ambient in the revealed process.

((ννpp))pp[[00]] �� nn��nn[1][1]
because because ((ννpp))pp[[00]] ����((ννnn))nn[[00]] and and nn[[00]] �� nn[1][1]

nn��CC �� {({(ννnn))PP �� PP��CC}}��

2003-03-17 16:49

Talk 72

•• More examples of More examples of nn��C C �� {{ννnn))PP �� PP��CC}}��::
•• 00 �� nn��11 because because 0 0 ����((ννnn))00 and and 00 �� 11
•• mm[[00]] �� nn��ΠΠ because because mm[[00]] ����((ννnn))mm[[00]] and and mm[[00]] �� ΠΠ
•• nn[[00]] �� nn��ΠΠ because because nn[[00]] # �# �((ννnn))......

•• Therefore, Therefore, nn��CC is:is:
•• closed under closed under αα--variantsvariants

•• closed under closed under ��--variantsvariants

•• not closed under changes in the set of free namesnot closed under changes in the set of free names

•• not closed under reduction (free names may disappear)not closed under reduction (free names may disappear)

•• not closed under any equivalence that includes reductionnot closed under any equivalence that includes reduction

•• still ok for temporal reasoning: still ok for temporal reasoning: ¬¬nn���� ∧∧ ��nn����

2003-03-17 16:49

Talk 73

Semantics of the LogicSemantics of the Logic
 TT!!

 ¬¬��!!

 �� ∨∨ ��!!

 00!!

 nn[[��]]!!
 ��@@nn!!

 �� | | ��!!

 ������!!

 nn®®��!!

 ����nn!!

 ����!!

 � ���!!

 ��xx..��!!

�� ΠΠ
�� Π Π −− ��!!

�� ��!�!�∪∪ ��!!

�� 11
�� nn[[��!!]]
�� ""{{CC��Θ �� nn[[CC]] ⊆⊆ ��!!}}
�� ��!! ⊗⊗ ��!!

�� ""{{CC��Θ �� CC⊗⊗ ��!! ⊆⊆ ��!!}}
�� nn�� ��!!

�� ""{{CC��Θ �� nn®®C C ⊆⊆ ��!!}}
�� {{PP��ΠΠ �� ��PP’’��ΠΠ. P. P��**PP’’ ∧∧ PP’’�� ��!!}}
�� {{PP��ΠΠ �� ��PP’’��ΠΠ. P. P	

	

��**PP’’ ∧∧ PP’’�� ��!!}}
�� $$mm��ΛΛ ��{{xx←←←←←←←←mm}}!!

PP��PP’’ iffiff ��n,Pn,P””. P . P �� nn[[PP’’]] | P| P””; ; ��** is the is the reflrefl--trans closure of trans closure of ��

2003-03-17 16:49

Talk 74

Basic FactBasic Fact
•• Formulas describe only congruenceFormulas describe only congruence--invariant properties:invariant properties:

������ΦΦ. . ��!�!��� ΘΘ

2003-03-17 16:49

Talk 75

Recovering the Satisfaction RelationRecovering the Satisfaction Relation

•• The properties of satisfaction for each logic constructs are The properties of satisfaction for each logic constructs are
then derivable.then derivable.

•• This approach to defining satisfaction is particularly good This approach to defining satisfaction is particularly good
for introducing recursive formulas in the logic: it is easy to for introducing recursive formulas in the logic: it is easy to
give them semantics as least and greatest fixpoints in the give them semantics as least and greatest fixpoints in the
model, while it is not easy to define them directly via a model, while it is not easy to define them directly via a
satisfaction relation.satisfaction relation.

P P �� ������������ P P �� ��!!

